ArticlePDF Available

Figures

Content may be subject to copyright.
ACTA GEOGRAPHICA SINICA
79 7
2024 7
Vol.79, No.7
July, 2024
北极地区热融湖分布特征及变化机制研究
刘诗奇
1
1, 2
于静洁
1, 2
蔡红艳
3
杨林生
2, 4
牟翠翠
5
刘昌明
1
1. 中国科学院地理科学与资源研究所 中国科学院陆地水循环及地表过程重点实验室,
北京 100101 2. 中国科学院大学,北京 100049 3. 中国科学院地理科学与资源研究所
资源与环境信息系统国家重点实验室北京 100101 4. 中国科学院地理科学与
资源研究所 中国科学院陆地表层格局与模拟重点实验室,北京 100101
5. 兰州大学资源环境学院西部环境教育部重点实验室,兰州 730000
摘要:北极热融湖作为多年冻土区典型热喀 斯特景观之一其分布和变化规律深刻影响着区
域的生态植被、水文和碳循环过程。然而,对于整个北极热融湖分布特征和变化机制的理解仍
然不足为此,本文基于荟萃分析和数理统计方法,对热融湖的分布规律和变化机制展开研究。
结果表明,北极热融湖的分布和变化具有较强的时空异质性,且与多年冻土条件、岩石土壤类
型、地下冰含量和土壤温度等密切相关。大部分北极热融湖分布在连续多年冻土区、下冰含
量高于10%平均土壤温度在-4以上且存在一定垂向土壤温度差异的具有特定岩石和土壤
类型的地区,不同环境条件下的热融湖变化趋势存在差异。总体上,极热融湖的变化过程
包括初始形成、中期扩张和晚期萎缩三大阶段,且受到水量与水热平衡的双重影响。热融湖作
为反映多年冻土退化和气候环境变化的重要指示,对北极生态系统碳循环水文过程和生态环
境变化等均具有深远影响。
关键词:融湖;多年冻土;土壤岩性;下冰;北极
DOI: 10.11821/dlxb202407008
1 引言
全球90%的多年冻土分布在极地地区[1]。伴随着全球气候变暖,北极地区多年冻土温
度升高、活动层厚度增加、多年冻土不断退[2-3],不仅引发了地表塌陷和热融湖等热喀
斯特地貌的局地变化,还导致了诸如北冰洋淡水汇入量增加、大气碳排放增加、河流
文及碳循环过程变化等全球范围的显著改变[4-6]。全球气候模型 CCSM3 据预测,到
2100 100 km2 [7-8],并促使热融湖大量发育[9]
2019IPCC 气候变化中的海洋和冰冻圈特别报告》指出,在多年冻土退化、地下冰流
失、冰川退缩等共同影响下210020%的北极多年冻土 RCP8.5 发生突然融化
地面沉降,并将导致包括热融湖在内的北极湖泊面积增50% 中等信 [10]
收稿日期:2023-11-22; 修订日期:2024-07-02
基金项目: 家自然 科学基金项(42371033); 国家自然科学基金中俄合作研究项目(42061134017); 国家科技基础资
(2022FY101900, 2022FY101901) [Foundation: National Natural Science Foundation of
China, No.42371033; National Natural Science Foundation of China-Russian Science Foundation, No.4206113
4017; Science & Technology Fundamental Resources Investigation Program, No.2022FY101900, No.2022FY
101901]
作者简介:刘诗奇(1990-), , 黑龙江人, 助理研究员, 中国地理学会会员(S110008059M), 研究方向为北极典型流域沉
积环境及水碳循环。E-mail: liusq@igsnrr.ac.cn
通讯作者:王平(1979-), , 安徽人, 研究员, 研究方向为水文水资源E-mail: wangping@igsnrr.ac.cn
1751-1767
79
热融湖作为北极流域水文系统变化及多年冻土退化的重要体现[11-12],其数量、规模、
分布及动态十分复[13],蒸发、降水、地质条件、径流特征、地貌景观及多年冻土退化
等均能对热融湖产生显著影响[14-1 7],并引发一系列环境后果。一方面,北极多年冻土区的
热融湖变化易引发下游洪水,如自1955年以来阿拉斯加北部地区已发生了18此类洪水
事件[18]19512007年育空河流域Old Crow Flats的灾难性洪水频率增加了5[13]。另
一方面,热融湖作为温室气体排放的热点 Hotspot[9, 19],其释放的甲烷 CH4
和二氧
化碳 CO2
会进一步加速气候变暖及多年冻土退化[20]。此外,热融湖作为多年冻土泥炭
Peatland 泥炭丘湿地复合体 Palsas Mire Complex 重要组成部分,其动态变
一定程度上反映了多年冻土气候变化的响[21]。因此,包括热融湖分布和变化特征在
内的北极陆地环境变化,深刻影响着北极地区的水文、生态、地球化学过程、冻土工
设施及第一产业资源的可持续利用与开发[22-25]
近年来,尽管北极地区热融湖变化已引起学术界的广泛关注,但由于北极地区实地
考察难度较大、观测数据稀缺、水文过程及变化机制复杂多变、研究对象和尺度存在
异,对热融湖分布特征、动态变化及机制的理解仍然存在不足[26 -27],更难以量化其对气候
变化响应以及对多年冻土退化、温室气体排放等的贡献。因此,北极热融湖的分布于
化机制研究仍有待进一步深入。本文在前人研究基础上,结合热融湖所在地区的多年
土、岩石土壤类型、地下冰含量、土壤温度条件数据,在流域尺度上分析了北极热融
的分布规律及其主要环境特征,对比了热融湖变化在不同环境条件下的差异,并揭示
北极热融湖变化的关键阶段和驱动要素,为深入了解全球变暖条件下的北极热融湖演
过程提供科学依据
2 数据与方法
为解北极地区热融湖发育及分布特征,对北半球热融湖泊、多年冻土、岩性、土壤、
地下冰、土壤温度等数据进行统计分析,并ArcGIS软件环境下,对环北极不同热融湖
覆盖度地区的上述本底条件进行叠置分析,探讨热融湖分布规律及主要环境特征。其中
热融湖数据来自于美国国家航空航天 NASA 下属的Earthdata数据开放平台 https://
daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1332,该数据集提供了截至2015年北极多年冻土
区各类热喀斯特地貌景观的分布及面积估算,并根据热融湖覆盖度 Landscape
Coverage 将其划分为很高 60%~100% 30%~60% 10%~30%
1%~10% 和无 0~1%5种类型[28]。北极多年冻土数据源于国家青藏高原科学数据中
心的高分辨率北半球多年冻土数据集 20002016年)http://data. tpdc.ac. cn/zh-hans/
data/5093d9ff-a5fc-4f10-a53f-c01e7b781368/,空间分辨率1 km,并 年冻
层厚度 ALTcm 据,其中多年冻土可依据其空间发生概率 Probability% 分为
4 90%~100% 50%~90% 10%~50%
< 10% [29]。岩性数据来自PANGAEA数据库中Hartmann
GLiM 0.5° [30] 30弧秒土壤数据集 Harmonized
World Soil DatabaseHWSD version 1.2 0~30 cm表层土壤结构属划分土壤类
[31]。地下冰含量数据来自Brown[32]的环北极多年冻土与地下冰数据集 第二版 ,并
将地下冰含量划分为高 > 20%、中 10%~20% 和低 < 10%3类型。不同深度的
土壤温度 0~7 cm7~28 cm28~100 cm100~289 cm 来自于ERA5-Land[33]
计算了4个不同深度的平均土壤温度和垂向土壤温度差异 最深与最浅层土壤温度差异
北极地区的流域边界来自HydroSHEDS水文地理数据集中的3 level 3 流域边界[34]
1752
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
3 北极地区热融湖分布及环境特征
热喀斯特 Thermokarst 现象,是指由于富冰多年冻土或地下冰融化所导致的一系
列特殊地貌的形成过程,并形成热融湖、热融滑塌、热融湿地等不同地貌[35]。其中,
极地区的热融湖更易形成在地形坡度小1.88°的地区[36],其深度普遍介于几米至十余米
之间,而Yedoma多年冻土区,深度甚至可超过20 m[35, 37] 。热融湖的湖盆特征与其所在
位置和成因密切相关,是地质条件和气候因素的综合作用结果。例如,北冰洋沿岸海
粉砂岩发育地区形成的热融湖通常具有水体较浅 2 m、水深相对均匀,且较少发育
滨湖 Littoral Shelve 的特征;相较之下,北极海岸平原内陆区的热融湖,由于受到
风成岩的 冰量 ,其均水 1 m,但湖盆中心水体可达3~5 m深,
反映了深层融 Talik 与滨—浅湖砂岩沉积作用的复杂影响[38]。因此,深入剖析
湖的分布规律及环境特征,对于理解气候变化条件下的寒区水热平衡和水文动态变化
复杂机理过程十分重要。
3.1 北极地区热融湖分布特征
北极融湖 Thermokarst Lake/Pond 作为典型的热喀斯特地貌,广泛分布在美国
阿拉斯加[22, 39]加拿 [16 , 40]俄罗西伯[41-43] 及亚欧大陆北部[44]地区 (图1。整
上,北极热融湖总面积约1.3×106 km2 [28],约占多年冻土区的7.1%[45]但受局地条件影响,
不同地区的热融湖发育面积和覆盖程度存在显著差异。
1 北极地区热融湖分布特征
Fig. 1 Distribution characteristics of thermokarst lakes in the Arctic
1753
79
从流 ,北 域热 区的 较大 为典
型的 拿河 远东 迪吉 、阿 、科
马河及帕里亚瓦姆、叶尼塞河麦肯锡河、拉普捷夫海沿Yedoma发育地带主要
河流 (雅西纳河、坦加、波皮盖 和奥内克育空、鄂河、堪察半岛
和北 哈德 主要 (科珀曼河 河、 和海 河) 等流
1,这些流域热融湖发育地区的区域总面积均超过50km2,占流域总面积的80%
75%、叶尼塞河62%和鄂毕河21%。在上述大河流域中,尽管热融湖
发育 区域 大, 部分 育地 中等 热融
育地区,即热融湖覆盖度小于30%。即便对于勒拿河、俄罗斯远东河流、麦肯锡河和拉
沿Yedoma流域等地区,热融湖覆盖度很高和高的地区范围较大 17.4~
34.7km2
但其在流域总面积中的占比仍然很小,仅8%~22%
此外 部分 总面 热融 却较 罗斯
亚马 、西 西平原 、普 塔兹 河) 1。亚
马尔半岛为热融湖发育地区的区域总面积约11.4km2,占流域总面积的96%
全部 湖覆 和高 。此 大西 (安德森河 河、
纳戴 河) 和新西伯利 也是 对较 的地 湖发 的区
总面积分别占流域整体97%88%,其中将近一半为热融湖覆盖度很高和高的地区。
当前 面积 究多 育空 拉斯 地区
科尔维尔河、诺阿塔克河、科布克河,以及俄罗斯亚马尔—涅涅茨自治区等地[46]。然
而, 偏远 置和 劣的 ,对 北部 湾沿
原、大北 (尤其是 维多 伊丽 王群 岛) 以及
新西 群岛 半岛 岛等 湖的 究仍 挑战
关研 相对 此, 究北 融湖 多地 技术
地考察及区域环境分析,以揭示其分布特征和对气候变化的响应机制。
1 北极典型流域/地区的热融湖发育面积
Tab. 1 Development area of thermokarst lake development regions in typical Arctic river basins/areas
序号
1
2
3
4
5
6
7
8
9
10
11
12
13
流域/地区
名称
勒拿河
俄罗斯远东主要河流
西西伯利亚平原北部河流
育空河
拉普捷夫海沿岸主要河流
北极海—哈德逊湾地区
主要河流
加拿大西北部
俄罗斯亚马尔半岛
新西伯利亚群岛
堪察加半岛
麦肯锡河
叶尼塞河
鄂毕河
总面积
(km2)
246.77
162.52
44.03
83.82
114.58
55.21
15.56
11.81
3.87
75.52
180.59
251.82
310.32
不同覆盖度热融湖发育地区面积(km2)
很高
10.52
34.16
17.16
1.96
16.25
2.41
6.43
10.86
1.53
5.87
5.39
2.22
1.75
9.78
0.50
6.27
2.35
1.67
0
0.89
0
0
0.07
12.02
0.59
0.45
中等
0.37
3.08
8.15
0.84
12.7
5.02
5.38
0.12
1.28
1.55
2.83
1.29
0.88
15.82
6.79
5.99
13.44
9.12
0.03
1.95
0.00
0.00
2.65
33.72
7.78
5.61
209.98
116.60
6.07
64.39
73.45
46.42
0.45
0.42
0.58
50.05
81.77
144.48
54.94
热融湖发育地区
总面积
(km2)
246.48
161.14
43.64
82.97
113.23
53.88
15.10
11.39
3.39
60.19
135.73
156.36
63.63
占比(%)
99.88
99.15
99.12
98.99
98.82
97.60
97.06
96.47
87.68
79.70
75.16
62.09
20.50
1754
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
3.2 北极热融湖分布地区的主要环境特征
通过分析北极热融湖所在区域的主要环境特征,发现绝大部分热融湖 约占总面
91% 土区 (图2a,但不同热融湖分布地区的岩石土壤类型、
地下冰含量和土壤温度等条件方面存在显著差异 2
其中,分布在硅质碎屑岩、混合沉积岩和未固结沉积物地区的热融湖,其面积约
占热融湖总面积的88% (图2b。在类型 ,近 91%面积的热融湖位于表层土壤
0~30 cm (图2c
随着土壤温度条件变化存在差异。北极热融湖分布地区的平均表层土壤温度介于
-21.7~6.5 80%的热融湖分布面积集中在平均表层土壤温度高于-4
的地。值 意的分布土壤 -4~0 的热融湖面积略高于土壤温度0
上地 (图2d,指着热湖分与土 度条的非线性响 系。时,60%
面积的热融湖所在地区呈现出0.5~1 的垂向土壤温度差异,而近1/3 于垂
向土壤温度差异超过1 地区 2e。除此之外,超过一半 57% 面积的热融
分布在高地下冰含量地区,而分布在地下冰含量10%~20%地区热融湖的面积占比近40%
2f。整体上,地下冰含量较低、土壤温度较低或垂向土壤温度差异较小的地区热融
湖分布相对较少 3
2 北极热融湖覆盖地区的主要多年冻土类型[29]岩性[30]土壤[31] 土壤温度[33]及地下冰含量[32]特征
Fig. 2 Characteristics of permafrost[29 ], lithology[30] , soil[31], soil temperature[3 3] and ground ice content[3 2]
in the thermokarst lake developed area
1755
79
岩石和土壤类型也会一定程度上影响热融湖分布地区的地下冰含量和多年冻土特征。
例如,相比于其他岩性,未固结沉积物的比热容和含水率通常较高[47],可能导致在相同
的水条件,这 区的下冰量和续多 土比可能 3a3c
时,不同土壤类型中的液态水含量及其冻结过程差异[48],可能是导致壤土、粉砂质壤土
和砂壤土区连续多 冻土例较且地冰含不同关键 3b3d。此
外,岩石和土壤类型的变化,作为气候、地貌和植被等环境要素综合作用的结果,其
示的环境条件差异也会影响热融湖的分布规律。例如,在勒拿河三角洲地区,西部的
代河漫滩带热融湖多,20 hm2以上热融湖数量约占全区的67%,而在细粒和富冰沉
积物发育的三角洲沿岸及南部地区,大面积的热融湖较少[49],尤其是在Yedoma发育地
区,热融湖覆盖度低于其他地区 (约5.2%[50]。因此,岩性和土壤类型通过其物理性质
2 不同多年冻土类型岩性、壤类型、壤温度及地下冰含量条件下的北极热融湖面
Tab. 2 The area of Arctic thermokarst lake under different permafrost, lithology, soil, soil temperature
and ground ice content conditions
序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
参数
多年冻土类
岩性
土壤类型
平均土壤温
垂向土壤温度差异
地下冰含量
类别
连续多年冻土
不连续多年冻土
零星多年冻土
孤立多年冻土
无多年冻土
硅质碎屑岩
混合沉积岩
未固结沉积物
碳酸盐岩
岩浆岩
变质岩
蒸发岩、冰川及数据缺失部分
壤土
粉砂质壤土
砂质壤土
黏土
壤质砂土
粘壤土、砂质粘壤土、砂土及数据缺失部分
较低
较高
无数据
无数据
无数据
热融湖面积( km²)
11052.20
398.53
618.85
405.63
502.71
4477.63
3901.48
2999.26
457.31
437.16
241.70
463.39
5630.82
3982.00
2216.91
484.51
311.30
352.38
1241.70
6073.65
5219.04
443.54
4180.06
7642.32
712.00
443.54
7363.45
5088.18
488.09
38.21
占比(%)
85.16
3.07
4.77
3.13
3.87
34.50
30.06
23.11
3.52
3.37
1.86
3.57
43.39
30.68
17.08
3.73
2.40
2.72
9.57
46.80
40.21
3.42
32.21
58.89
5.49
3.42
56.74
39.21
3.76
0.29
1756
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
如渗透性、导热率、保水能力和比热容等的差异,间接影响区域地下冰含量和多年冻
的特征,进而作用于热融湖的形成与分布。
4 热融湖的变化规律与机制
北极多年冻土区的热融湖最初多形成于末次冰期之后,即晚更新世末期至全新世期
间,并在中全新世大暖期的鼎盛阶段 Holocene Thermal Maximum 达到顶峰[51-52] 。在当
3 北极热融湖地区的主要多年冻土类型、性、土壤及地下冰条件特征
Tab. 3 Characteristics of permafrost, lithology, soil and ground ice conditions
in the Arctic thermokarst lake developed area
序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
多年冻土类
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
连续多年冻
岩石类型
未固结沉积
硅质碎屑岩
硅质碎屑岩
未固结沉积
硅质碎屑岩
混合沉积岩
混合沉积岩
硅质碎屑岩
混合沉积岩
硅质碎屑岩
未固结沉积
混合沉积岩
未固结沉积
未固结沉积
混合沉积岩
硅质碎屑岩
混合沉积岩
硅质碎屑岩
未固结沉积
未固结沉积
混合沉积岩
混合沉积岩
混合沉积岩
未固结沉积
混合沉积岩
硅质碎屑岩
硅质碎屑岩
硅质碎屑岩
混合沉积岩
混合沉积岩
未固结沉积
混合沉积岩
混合沉积岩
土壤类型
壤土
壤土
壤土
壤土
粉砂质壤土
粉砂质壤土
壤土
砂质壤土
砂质壤土
壤土
粉砂质壤土
粉砂质壤土
壤土
粉砂质壤土
粉砂质壤土
壤土
粉砂质壤土
壤土
砂质壤土
壤土
粉砂质壤土
粉砂质壤土
砂质壤土
砂质壤土
壤土
砂质壤土
粉砂质壤土
壤土
壤土
壤土
砂质壤土
粉砂质壤土
粉砂质壤土
地下冰
含量
土壤平均
温度()
-4~0
-4~0
-4~0
-4~0
-4~0
-4~0
-4~0
> 0
-4~0
>0
-4~0
> 0
> 0
-4~0
-4~0
-4~0
-4~0
> 0
< -4
< -4
<-4
>0
-4~0
-4~0
> 0
> 0
-4~0
-4~0
-4~0
-4~0
-4~0
-4~0
> 0
垂向土壤
温差()
> 1
0.5~1
0.5~1
0.5~1
0.5~1
>1
0.5~1
> 1
0.5~1
0.5~1
0.5~1
> 1
0.5~1
> 1
0.5~1
> 1
0.5~1
0.5~1
0.5~1
0.5~1
0.5~1
0.5~1
> 1
0.5~1
0.5~1
> 1
0.5~1
> 1
0.5~1
> 1
> 1
0.5~1
0.5~1
热融湖
覆盖度
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
很高
热融湖地区区域
面积(106 hm2)
6.12
5.31
4.53
3.63
3.07
2.82
2.65
2.48
2.24
1.86
1.85
1.76
1.73
1.71
1.63
1.61
1.56
1.46
1.45
1.39
1.32
1.31
1.31
1.30
1.21
1.17
1.11
1.09
1.03
0.97
0.88
0.85
0.84
累计占比
(%)
4.72
8.80
12.29
15.09
17.46
19.63
21.67
23.58
25.31
26.74
28.17
29.52
30.85
32.17
33.43
34.67
35.87
37.00
38.12
39.19
40.20
41.22
42.23
43.23
44.16
45.07
45.92
46.76
47.56
48.31
48.99
49.64
50.29
注:土壤平 均温度和垂向温 差均基于 0~7 cm7~28 cm28~100 cm 100~289 cm 4 层土壤温度数据计算获取。
1757
79
前复杂的北极区域背景下,伴随着全球气候波动,热融湖的规模、数量及分布规律均
生明显变化,且具有显著的时空异质性。基Webb等对139个热融湖变化地点的研究[46]
本文进一步综合热融湖分布地区的多年冻土特征、岩石土壤类型、地下冰含量及土壤
度条件等因素,探讨当前北极热融湖变化的主要规律和环境特征,并分析导致热融湖
成与演化的关键机制,为理解北极热融湖演化提供新的视角。
4.1 北极热融湖的变化规律及环境特征
北极地区的热融湖变化包括新增、扩张、萎缩和干涸等多种形式,不同发展阶段的
热融湖可在同一地理区域共存,并在较大的地理范围内表现为区域内热融湖面积或数
的整 。具 俄罗 雅库 为北 湖面 代表
[53-58]其热融湖面积19992014间增加了48.5%[5 9];同时,包括巴芬岛等在内的加
拿大努纳武特地[60]、科雷马河低地[43],以及加拿大西北部图克托亚图克半岛[15-16]等地区
热融湖面积也以增加为主。与之相反,在北美阿拉斯加地[14, 39, 61-62]俄罗斯西西伯利亚
低地[56]和亚马尔苔原[63] 等地区,热融湖面积主要呈减少趋势
进一步研究表明,不同环境下的北极热融湖变化具有一定规律性特征,以多年冻土
条件为例,约85%的北极干涸热融湖位于连续多年冻土边界200 km范围内[44]此外,对
于整个北极地区而言,热融湖在连续和不连续多年冻土区也呈现出显著不同的变化趋势
即位于不连续多年冻土的大部分 63% 热融湖面积呈缩小趋势,而在连续多年冻土
3 北极热融湖发育地区不同岩石、土壤类型地区的多年冻土与地下冰占比特征
Fig. 3 The proportion of different permafrost types and ground ice content in the Arctic thermokarst lake developed area
under different rock and soil types
1758
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
区,面积增加 40% 和减少 38% 的热融湖数量大体持平[46]值得注意的是,这种热
融湖变化规律在较大时空范围内更为普遍,而在某些特定时期或地区,热融湖的变化
能更为复杂,甚至呈现出相反的趋势。例如,在加拿大连续多年冻土区,面积增加的
融湖略多于面积减少的而在不连续多年冻土区,大数热融湖 63% 的面呈现
增加趋势 4另外,从时间维度上看1990年之后,北极连续多年冻土区大部分热
60% 围扩 1990
46% 的热融湖数量超过了面积减少 30% 的数量 5
此外,北极热融湖的变化规律也会在不同岩石土壤类型、地下冰含量以及土壤温度
条件下存在一定差异。具体而言,大多数面积增加的热融湖出现在中、高地下冰含量
区,而无明显变化趋势的热融湖主要分布在地下冰含量较低的地区;与此同时,当平
土壤温度较低 -4 ,面积发生变化的热融湖数量相对较少;在平均土壤温度处
于中等水平 -4~0 的地区,面积发生变化的热融湖数量明显增加,并且面积增加与
减少的热融湖数量大致相当;而在平均土壤温度较高 > 0 的情况下,面积减少的
融湖量则显多面积加的融湖 (图4a。除此之外,当垂向土壤温度差异超过
1.0 ,热融湖面积的增加与减少占比大致相当;而在0.5~1.0 的垂向土壤温度差异
条件下,面积减少的热融湖占比更高;同时,热融湖变化在不同岩石土壤类型地区直
4 不同地区连续与不连续多年冻土区热融湖变化趋势差异
Tab. 4 The differences of thermokarst lake change trends across continuous and discontinuous permafrost areas
in different regions
国家/地区
阿拉斯加
加拿大
俄罗斯
格陵兰
多年冻土类型
连续多年冻
不连续多年冻土
连续多年冻
不连续多年冻土
连续多年冻
不连续多年冻土
连续多年冻
不连续多年冻土
连续多年冻
不连续多年冻土
热融湖变化趋势
减少
无趋势
增加
减少
无趋势
增加
减少
无趋势
增加
减少
无趋势
增加
减少
无趋势
增加
减少
无趋势
增加
减少
减少
增加
增加
研究站点数()
6
6
7
27
6
6
6
2
7
1
2
5
13
7
14
15
3
4
1
1
0
0
研究站点数量占比(%)
31.58
31.58
36.84
69.23
15.38
15.38
40.00
13.33
46.67
12.50
25.00
62.50
38.24
20.59
41.18
68.18
13.64
18.18
100
100
0
0
1759
79
也有所不同,在未固结沉积物较为发育的地区,热融湖面积增加的情况相对较少,而
土壤类型而言,大多数热融湖的面积变化集中在壤土区 4b
4.2 北极热融湖的主要发展阶段与关键机制
整体言,极热融湖 发育分为始形、中扩张晚期3阶段
中,促使热融湖形成的关键驱动要素因其发育环境不同而存在一定差 5a。例如
广泛分布于苔原或北方低地的热融湖[43 , 64-66],其形成过程通常与富冰多年冻土退化及厚层
地下冰融化所导致的地面沉降、塌陷和排水量增加有关[26, 67-69]。然而,对于冰川较为发育
的多年冻土区而言,热融湖的形成还与冰川冰和沉积物内冰的融化密切相关[70],对于地
下冰楔发育等地区,当地表存在如森林火灾或暴雨引起的植被破坏,以及上覆泥炭层
裂导致的冰楔出露等能量扰动时,也会进一步促使热融湖的形成和发育[71]。此外,对于
多年冻土不发育的地区,当其地下水位较浅且广泛分布渗透率较低的泥炭地时,也可
导致形成热融湖 例如西伯利亚西部部分地区 [44]
在随的扩张和 涸阶,热湖的盆形和水条件均发显著 5b~
5c。以勒拿河三角洲苔原低洼地带的热融湖为例[50],在早期苔原多边形发展成为热融湖
后,进入 期扩期,一步在横和纵上持续扩并在融湖部发生沉作用
该阶段的热融湖下方易形成深层融区,直至湖盆底部含冰复合沉积物 Ice Complex
Deposits 全融化时,热融湖开始仅发生横向上的扩张;在此之后,受地表水渗漏等作
用的影响,热融湖面积缩小、水体变浅并进入晚期干涸阶段,该阶段常伴随部分出露
底沉积物和融区的再次冻结,并在湖盆下方形成更为复杂的含冰复合体。
热融湖的发展受气候变化、多年冻土条件、水文过程、地形地貌以及土地覆盖状况
等多种因素的综合影响[7 2-74]。总体上,这些因素主要通过水量和水热两大驱动机制对热融
湖产生影响。就水量而言,气候变化通过改变降水、蒸发、径流以及积雪/年冻土融水
等水文要素,在局地尺度上直接影响着热融湖的变化趋势。例如,20022015年格陵兰
岛西南部地区由于蒸发量增加,使得康埃卢苏阿克附近的局地热融湖总面积整体呈减
趋势,而在西西缪特海岸附近,受局地降水量显著增加的影响,热融湖面积反而呈增
趋势[7 5];尽管降水对热融湖变化的影响存在一定时滞效应[16],但整体上高降水量年份通
5 不同研究时间范围的连续与不连续多年冻土区热融湖变化趋势差异
Tab. 5 The differences in thermokarst lakes change trends across continuous and
discontinuous permafrost areas during different study periods
多年冻土类
连续多年冻
不连续多年冻土
研究时段的起始年份
早于 1990
晚于 1990
早于 1990
晚于 1990
热融湖变化趋势
减少
无趋势
增加
减少
无趋势
增加
减少
无趋势
增加
减少
无趋势
增加
研究站点数()
17
12
25
9
3
3
35
7
14
9
4
1
研究站点数量占比(%)
31.48
22.22
46.30
60.00
20.00
20.00
62.50
12.50
25.00
64.29
28.57
7.14
1760
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
常伴随着热融湖的显著扩张[64];此外,一定量的积雪融水也会促进热融湖的扩张,但过
量的融水则可能引起热融湖快速排水和萎[76]。在水热条件方面,冻融过程是引起北
极热融湖变化的关键因素,多年冻土的初期融化往往伴随着热融湖面积的增加,而持
的升温则会导致进一步的融,最终使热融湖面积减[46]。一方面,热侵蚀和物理侵蚀
作用会促使热融湖扩大并与相邻水体合并,形成更大的热融湖,尤其是在冰川发育的
年冻土区[70 ]。另一方面,异常温暖的年份加剧了热侵蚀作用,导致热融湖频繁排水,从
而减少热湖水[39, 77]。值得注意的是,随着多年冻土退化,尤其是当热融湖下方深层
融区穿透多年冻土[78],热融湖更易因地下水渗漏而发生萎缩甚至完全干涸 5c
因此,热融湖的动态变化与其发育阶段、深层融区形成程度、浅层含水层渗透性、冻
状态等因紧密[44, 7 9]。这一热融湖萎缩的关键机制已经通过地球物理勘测方法
探地雷 GPR 和直流电阻率法 DC)) 在阿拉斯加部分不连续多年冻土区域的热融
湖研究中得到了证实[78-79]。除此之外,近年来北极地区频繁发生的极端高温和极端降水事
件也是影响热融湖变化的关键性因素之一,并通过加剧热侵蚀作用和改变水量而引起
融湖的突性排事件,进改变热融的规和数[76, 80]。这些北极气候及陆地环境
的变化均会影响北极地区的可持续发[25, 8 1-82]。因此,鉴于热融湖的变化和发展过程极为
复杂,其影响因素和作用机制在特定时空范围乃至整个北极地区都存在差异,因此需
通过进一步的观测和模拟分析来加深理解,为气候及陆地环境变化下的北极地区可持
发展提供更多科学依据。
注:热融湖 变化数据来源自 Webb Liljedahl[46]
4 北极热融面积变化的环境要素特征
Fig. 4 Characteristics of environmental factors in the area changes of Arctic thermokarst lake
1761
79
5 结论与展望
在全球增温的背景下,北极的热融湖分布表现出显著的时空异质性。其中,在勒拿
河、叶尼塞河和麦肯锡河等大河流域,热融湖分布地区的总面积较广,但覆盖度却相
较低;相反,在俄罗斯亚马尔半岛和西西伯利亚平原北部等地,尽管热融湖的分布面
较小,但覆盖度却较高。受限于偏远的地理位置和较为恶劣的气候条件,对热融湖进
大范围野外考察存在较高难度,而卫星遥感技术分辨率有限,因此对于部分北极地区
热融湖相关研究仍相对匮乏。
通过研究北极热融湖分布地区的环境特征,发现热融湖的分布和变化与多年冻土条
件、岩石土壤类型、地下冰含量和土壤温度等密切相关。具体来说,北极热融湖主要
布在连续多年冻土地区、地下冰含量超过10%的地区,以及平均土壤温度高于-4 且存
在一定垂 土壤度差的环境中而不环境条件的热湖变趋势也有不同
5 热融湖演化过程及关键过程示意图
Fig. 5 Schematic diagram of the evolution and key processes of thermokarst lakes
1762
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
鉴于北极热融湖的分布和变化机制极其复杂,关于热融湖变化的季节性特征、不同生
位的热融湖变化其主控要素差异、极端气候对热融湖的影响,以及气候变化条件下环
要素与热融湖水文过程的互馈关系的研究与模拟,将是未来热融湖研究的关键所在
此外,北极热融湖的变化过程包括初始形成、中期扩张和晚期萎缩三大阶段,且受
到水量与 热平的双影响,不发展段的热融可交存在相互影响然而
如何将局地尺度的热融湖演化过程应用于更大范围的热融湖变化机制研究,并进一步
化热融湖变化在多年冻土退化、深层融区演化、温室气体排放和生态系统稳定性等方
的作用,仍然是热融湖研究中的重点和难点问题。
致谢:谢中国科学院地理科学与资源研究所李全文博士、究生王文奇,以及郑州大学研究生崔梦珠
数据处理与制图方面提供的帮助特别感谢两位匿名审稿人对本文的修改与完善所给予的宝贵建议。
参考文献(References)
[ 1 ] Xiao Cunde, Su Bo, Dou Tingfeng, et al. Interpretation of lPCC SROCC on polar system changes and their impacts and
adaptations. Climate Change Research, 2020, 16(2): 153-162. [效存德, 苏勃, 窦挺峰, . 极地系统变化及其影响与适
应新认识. 气候变化研究进展, 2020, 16(2): 153-162.]
[ 2 ] Grosse G, Goetz S, McGuire A D, et al. Changing permafrost in a warming world and feedbacks to the Earth system.
Environmental Research Letters, 2016, 11(4): 040201. DOI: 10.1088/1748-9326/11/4/040201.
[ 3 ] Biskaborn B K, Smith S L, Noetzli J, et al. Permafrost is warming at a global scale. Nature Communications, 2019, 10
(1): 264. DOI: 10.1038/s41467-018-08240-4.
[ 4 ] Lim A G, Loiko S V, Kuzmina D M, et al. Dispersed ground ice of permafrost peatlands: Potential unaccounted carbon,
nutrient and metal sources. Chemosphere, 2021, 266: 128953. DOI: 10.1016/j.chemosphere.2020.128953.
[ 5 ] Wang Ping, Huang Qiwei, Liu Shiqi, et al. Arctic runoff changes and their driving mechanisms under rapid warming: A
review. Acta Geographica Sinica, 2023, 78(11): 2718-2734. [王平, 黄其威, 刘诗奇, . 快速升温下的北极径流变化及
其驱动机制综述. 地理学报, 2023, 78(11): 2718-2734.]
[ 6 ] Liu S Q, Wang P, Huang Q W, et al. Seasonal and spatial variations in riverine DOC exports in permafrost-dominated
Arctic river basins. Journal of Hydrology, 2022, 612: 128060. DOI: 10.1016/j.jhydrol.2022.128060.
[ 7 ] Lawrence D M, Slater A G, Romanovsky V E, et al. Sensitivity of a model projection of near surface permafrost
degradation to soil column depth and representation of soil organic matter. Journal of Geophysical Research: Earth
Surface, 2008, 113(F2): F02011. DOI: 10.1029/2007JF000883.
[ 8 ] Lawrence D M, Slater A G. A projection of severe near-surface permafrost degradation during the 21st century.
Geophysical Research Letters, 2005, 32(24): L24401. DOI: 10.1029/2005GL025080.
[ 9 ] In't Zandt M H, Liebner S, Welte C U. Roles of thermokarst lakes in a warming world. Trends in Microbiology, 2020, 28
(9): 769-779.
[10] Abram N, Adler C, Bindoff N L, et al. Summary for policymakers//IPCC. Special Report on the Ocean and Cryosphere
in a Changing Climate. The Second Joint Session of Working Groups I and II of the IPCC and accepted by the 51th
Session of the IPCC, Principality of Monaco, 2019.
[11] Schuur E A G, Mcguire A D, Schädel C, et al. Climate change and the permafrost carbon feedback. Nature, 2015, 520
(7546): 171-179.
[12] Janiec P, Nowosad J, Zwoliński Z. A machine learning method for Arctic lakes detection in the permafrost areas of
Siberia. European Journal of Remote Sensing, 2023, 56(1): 2163923. DOI: 10.1080/22797254.2022.2163923.
[13] Lantz T C, Turner K W. Changes in lake area in response to thermokarst processes and climate in Old Crow Flats,
Yukon. Journal of Geophysical Research: Biogeosciences, 2015, 120(3): 513-524.
[14] Chen M, Rowland J C, Wilson C J, et al. Temporal and spatial pattern of thermokarst lake area changes at Yukon Flats,
Alaska. Hydrological Processes, 2014, 28(3): 837-852.
[15] Olthof I, Fraser R H, Schmitt C. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal
Plain, Northwest Territories, Canada since 1985. Remote Sensing of Environment, 2015, 168(15): 194-204.
[16] Plug L J, Walls C, Scott B M. Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian
Arctic. Geophysical Research Letters, 2008, 35: L03502. DOI: 10.1029/2007GL032303.
1763
79
[17] Rupp D L, Larsen A S. Surface water area in a changing climate: Differential responses of Alaska's subarctic lakes. Plos
Climate, 2022, 1(6): e0000036. DOI: 10.1371/journal.pclm.0000036.
[18] Arp C D, Drew K A, Bondurant A C. Observation of a rapid lake-drainage event in the Arctic: Set-up and trigger
mechanisms, outburst flood behaviour, and broader fluvial impacts. Earth Surface Processes and Landforms, 2023, 48
(8): 1615-1629.
[19] Pokrovsky O, Manasypov R, Pavlova O, et al. Carbon, nutrient and metal controls on phytoplankton concentration and
biodiversity in thermokarst lakes of latitudinal gradient from isolated to continuous permafrost. Science of the Total
Environment, 2021, 806(P3): 151250. DOI: 10.1016/J.SCITOTENV.2021.151250.
[20] Walter K M, Zimov S A, Chanton J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to
climate warming. Nature, 2006, 443(7107): 71-75.
[21] Kirpotin S N, Polishchuk Y, Bryksina N. Abrupt changes of thermokarst lakes in Western Siberia: Impacts of climatic
warming on permafrost melting. International Journal of Environmental Studies, 2009, 66(4): 423-431.
[22] Farquharson L M, Mann D H, Grosse G, et al. Spatial distribution of thermokarst terrain in Arctic Alaska.
Geomorphology, 2016, 273: 116-133.
[23] Li L, Zhang X D, Li X, et al. Thermokarst lake changes over the past 40 years in the Qinghai-Tibet Plateau, China.
Frontiers in Environmental Science, 2022, 10: 1051086. DOI: 10.3389/fenvs.2022.1051086.
[24] Yang Zhen, Wen Zhi, Niu Fujun, et al. Research on thermokarst lakes in permafrost regions: Present state and prospect.
Journal of Glaciology and Geocryology, 2013, 35(6): 1519-1526. [ , 温智, 牛富俊, . 多年冻土区热融湖研究现
状与展望. 川冻土, 2013, 35(6): 1519-1526.]
[25] Zhao Cenliang, Zhu Wenquan, Guo Hongxiang, et al. The impact of Arctic climatic and terrestrial environmental
changes on primary industry: A review. Acta Geographica Sinica, 2022, 77(11): 2838-2861. [赵涔良, 朱文泉, ,
. 北极气候和陆地环境变化对第一产业影响研究进. 地理学报, 2022, 77(11): 2838-2861.]
[26] Bouchard F, Francus P, Pienitz R, et al. Subarctic thermokarst ponds: Investigating recent landscape evolution and
sediment dynamics in thawed permafrost of Northern Québec (Canada). Arctic, Antarctic, and Alpine Research, 2014,
46(1): 251-271.
[27] Bryksina N A, Polishchuk Y. Studying the distribution of thermokarst lakes areas in arctic zone of Western Siberia and
their dynamics by the ultrahigh resolution satellite images. Bulletin of the Tomsk Polytechnic University: Geo Assets
Engineering, 2016, 327(7): 13-21.
[28] Olefeldt D, Goswami S, Grosse G, et al. Arctic circumpolar distribution and soil carbon of thermokarst landscapes.
ORNL Distributed Active Archive Center, 2015. DOI: 10.3334/ORNLDAAC/1332.
[29] Ran Youhua, Li Xin, Cheng Guodong, et al. High-resolution datasets of permafrost thermal state and hydrothermal
zonation in the Northern Hemisphere (2000-2016). Beijing: National Tibetan Plateau Data Center, DOI: 10.11888/
Geocry.tpdc.271190; CSTR: 18406.11.Geocry.tpdc.271190, 2021. [ 冉有华, 李新 , 程国栋, . 高分辨率北半球多年冻
土数 20002016. : 国家青藏高原科学数据中心. DOI: 10.11888/Geocry.tpdc.271190; CSTR:18406.11.
Geocry.tpdc.271190, 2021.]
[30] Hartmann J, Moosdorf N. Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution). The new global
lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics,
Geosystems, 2012, 13(12): Q12004. DOI: 10.1594/PANGAEA.788537.
[31] FAO, IIASA, ISRIC, et al. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg,
Austria. 2012.
[32] Brown J, Ferrians O J, Heginbottom J A, et al. Circum-Arctic map of permafrost and ground-ice conditions, version 2.
National Snow and Ice Data Center, 2002. DOI: 10.7265/SKBG-KF16.
[33] Muñoz S J. ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S)
Climate Data Store (CDS), 2019. DOI: 10.24381/cds.68d2bb30.
[34] Linke S, Lehner B, Ouellet Dallaire C, et al. Global hydro-environmental sub-basin and river reach characteristics at
high spatial resolution. Scientific Data, 2019, 6(1): 283. DOI: 10.1038/s41597-019-0300-6.
[35] Kokelj S V, Jorgenson M T. Advances in thermokarst research. Permafrost and Periglacial Processes, 2013, 24(2):
108-119.
[36] Wang R, Guo L L, Yang Y T, et al. Thermokarst lake susceptibility assessment using machine learning models in
permafrost landscapes of the Arctic. Science of the Total Environment, 2023, 900: 165709. DOI: 10.1016/J.
scitotenv.2023.165709.
[37] Morgenstern A, Ulrich M, Günther F, et al. Evolution of thermokarst in East Siberian ice-rich permafrost: A case study.
1764
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
Geomorphology, 2013, 201(4): 363-379.
[38] Hinkel K M, Sheng Y W, Lenters J D, et al. Thermokarst lakes on the Arctic Coastal Plain of Alaska: Geomorphic
controls on bathymetry. Permafrost and Periglacial Processes, 2012, 23(3): 218-230.
[39] Jones B M, Grosse G, Arp C D, et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern
Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 2011, 116(G2): G00M03. DOI: 10.1029/
2011JG001666.
[40] Hinkel K M, Jones B M, Eisner W R, et al. Methods to assess natural and anthropogenic thaw lake drainage on the
western Arctic coastal plain of northern Alaska. Journal of Geophysical Research: Earth Surface, 2007, 112(F2):
F02S16. DOI: 10.1029/2006JF000584.
[41] Grosse G, Schirrmeister L, Kunitsky V V, et al. The use of CORONA images in remote sensing of periglacial
geomorphology: An illustration from the NE Siberian coast. Permafrost and Periglacial Processes, 2005, 16(2): 163-172.
[42] Bryksina N A, Polishchuk Y M. Analysis of changes in the number of thermokarst lakes in permafrost of West Siberia
on the basis of satellite images (in Russian). Earth's Cryosphere, 2015, 19(2): 100-105.
[43] Veremeeva A, Nitze I, Günther F, et al. Geomorphological and climatic drivers of thermokarst lake area increase trend
(1999-2018) in the Kolyma Lowland Yedoma Region, North-Eastern Siberia. Remote Sensing, 2021, 13(2): 178. DOI:
10.3390/RS13020178.
[44] Smith L C, Sheng Y, Macdonald G M, et al. Disappearing Arctic Lakes. Science, 2005, 308(5727): 1429. DOI: 10.1126/
science.1108142.
[45] Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nature
Communications, 2016, 7(1): 13043. DOI: 10.1038/ncomms13043.
[46] Webb E E, Liljedahl A K. Diminishing lake area across the northern permafrost zone. Nature Geoscience, 2023, 16(3):
202-209.
[47] Zhu X, Gao Z J, Chen T, et al. Study on the thermophysical properties and influencing factors of regional surface
shallow rock and soil in China. Frontiers in Earth Science, 2022, 10: 864548. DOI: 10.3389/FEART.2022.864548.
[48] Watanabe K, Kito T, Wake T, et al. Freezing experiments on unsaturated sand, loam and silt loam. Annals of Glaciology,
2011, 52(58): 37-43.
[49] Morgenstern A, Grosse G, Schirrmeister L. Genetic, morphological, and statistical characterization of lakes in the
permafrost-dominated Lena Delta. Proceedings of the 9th International Conference on Permafrost, 2008: 1239-1244.
[50] Morgenstern A, Grosse G, Günther F, et al. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of
the Lena Delta. The Cryosphere, 2011, 5(4): 849-867.
[51] Kaufman D S, Ager T A, Anderson N J, et al. Holocene thermal maximum in the western Arctic (0-180°W). Quaternary
Science Reviews, 2004, 23(5/6): 529-560.
[52] Mann D H, Peteet D M, Reanier R E, et al. Responses of an Arctic landscape to Lateglacial and early Holocene climatic
changes: The importance of moisture. Quaternary Science Reviews, 2002, 21(8-9): 997-1021.
[53] Kravtsova V, Bystrova A G. Changes in thermokarst lake size in different regions of Russia for the last 30 years. Earth's
Cryosphere, 2009, 13(2): 16-26.
[54] Ulrich M, Matthes H, Schirrmeister L, et al. Differences in behavior and distribution of permafrost-related lakes in
Central Yakutia and their response to climatic drivers. Water Resources Research, 2017, 53(2): 1167-1188.
[55] Boike J, Grau T, Heim B, et al. Satellite-derived changes in the permafrost landscape of central Yakutia, 2000-2011:
Wetting, drying, and fires. Global and Planetary Change, 2016, 139: 116-127.
[56] Nitze I, Grosse G, Jones B M, et al. Remote sensing quantifies widespread abundance of permafrost region disturbances
across the Arctic and Subarctic. Nature Communications, 2018, 9(1): 5423. DOI: 10.1038/s41467-018-07663-3.
[57] Kravtsova V I, Rodinova T V. Variations in size and number of thermokarst lakes in different permafrost regions:
Spaceborne evidence. Earth's Cryosphere, 2016, 20(1): 75-81.
[58] Czerniawska J, Chlachula J. Climate-change induced permafrost degradation in Yakutia, East Siberia. Arctic, 2020, 73
(4): 509-528.
[59] Nitze I, Grosse G, Jones B M, et al. Landsat-based trend analysis of lake dynamics across northern permafrost regions.
Remote Sensing, 2017, 9(7): 640. DOI: 10.3390/rs9070640.
[60] Carroll M L, Loboda T V. Multi-decadal surface water dynamics in North American tundra. Remote Sensing, 2017, 9
(5): 497. DOI: 10.3390/rs9050497.
[61] Andresen C G, Lougheed V L. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained
thaw lake basins over a 65 year period (1948-2013). Journal of Geophysical Research: Biogeosciences, 2015, 120(3):
1765
79
466-479..
[62] Riordan B, Verbyla D, McGuire A D. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images.
Journal of Geophysical Research: Biogeosciences, 2006, 111(G4): G04002. DOI: 10.1029/2005JG000150.
[63] Polishchuk Y M, Kupriyanov M A. Studying the dynamics of thermokarst lakes in the West Siberian Arctic based on the
analysis of time series of satellite measurements. Yugra State University Bulletin, 2022, 18(3): 137-144.
[64] Jia Lin, Fan Chengyan, Mu Mei, et al. Studies of thermokarst and its effects on ecosystem carbon cycle in the Third
Polar regions and the Arctic. Journal of Glaciology and Geocryology, 2020, 42(1): 157-169. [, 范成彦, 母梅, .
第三极到北: 热喀斯特及其对碳循环影响研究进展. 冰川冻土, 2020, 42(1): 157-169.]
[65] Burn C R. Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Canadian Journal of Earth
Sciences, 2002, 39(8): 1281-1298.
[66] Grosse G, Romanovsky V, Walter K, et al. Distribution of thermokarst lakes and ponds at three Yedoma sites in Siberia.
Ninth International Conference on Permafrost, 2008: 551-556.
[67] Everett K, Research A. Glossary of permafrost and related ground-ice terms. Arctic and alpine research, 1989, 21(2):
213. DOI: 10.2307/1551636.
[68] Sannel A B K, Kuhry P. Warming-induced destabilization of peat plateau/thermokarst lake complexes. Journal of
Geophysical Research, 2011, 116, G03035. DOI: 10.1029/2010JG001635.
[69] Farquharson L, Anthony K W, Bigelow N, et al. Facies analysis of yedoma thermokarst lakes on the northern Seward
Peninsula, Alaska. Sedimentary Geology, 2016, 340: 25-37.
[70] Coulombe S, Fortier D, Bouchard, F, et al. Contrasted geomorphological and limnological properties of thermokarst
lakes formed in buried glacier ice and ice-wedge polygon terrain. The Cryosphere, 2022, 16(7): 2837-2857.
[71] Burn C R. Thermokarst lakes. Canadian Geographies/Géographies Canadiennes, 1992, 36(1): 81-85.
[72] Liu A B, Chen Y T, Cheng X. Monitoring thermokarst lake drainage dynamics in Northeast Siberian Coastal Tundra.
Remote Sensing, 2023, 15(18): 4396. DOI: 10.3390/rs15184396.
[73] Baisheva I, Pestryakova L, Levina S, et al. Permafrost-thaw lake development in Central Yakutia: Sedimentary ancient
DNA and element analyses from a Holocene sediment record. Journal of Paleolimnology, 2023, 70(2): 95-112.
[74] Zhou G H, Liu W H, Xie C W, et al. Accelerating thermokarst lake changes on the Qinghai-Tibetan Plateau. Scientific
Reports, 2024, 14(1): 2985. DOI: 10.1038/s41598-024-52558-7.
[75] Law A C, Nobajas A, Sangonzalo R. Heterogeneous changes in the surface area of lakes in the Kangerlussuaq area of
southwestern Greenland between 1995 and 2017. Arctic, Antarctic, and Alpine Research, 2018, 50(1): S100027. DOI:
10.1080/15230430.2018.1487744.
[76] Nitze I, Cooley S W, Duguay C R, et al. The catastrophic thermokarst lake drainage events of 2018 in northwestern
Alaska: Fast-forward into the future. The Cryosphere, 2020, 14(12): 4279-4297.
[77] Oleg D T, Pavel Y K, Vladimir V S, et al. The influence of climate warming on the hydrological regime of thermokarst
lakes in the Subarctic (Chukotka, Russia). Environmental Sciences, 2024. DOI: 10.5772/intechopen.111959.
[78] Yoshikawa K, Hinzman L D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near
council, Alaska. Permafrost and Periglacial Processes, 2003, 14(2): 151-160.
[79] Jepsen S M, Voss C I, Walvoord M A, et al. Linkages between lake shrinkage/expansion and sublacustrine permafrost
distribution determined from remote sensing of interior Alaska, USA. Geophysical Research Letters, 2013, 40(5):
882-887.
[80] Sakai T, Matsunaga T, Maksyutov S, et al. Climate-induced extreme hydrologic events in the Arctic. Remote Sensing,
2016, 8(11): 971. DOI: 10.3390/rs8110971.
[81] Zhang Tianyuan, Huang Jixia, Wang Li. Maritime accessibility and navigation cost evolution estimation of Sino-
Russian oil and gas resources from 2030 to 2070. Acta Geographica Sinica, 2021, 76(5): 1122-1135. [ 张天媛, ,
王利. 20302070年中俄油气资源海运可达性与通航成本演变预估. 地理学报, 2021, 76(5): 1122-1135.]
[82] Huang Jixia, Zhang Tianyuan, Cao Yunfeng, et al. The evolution of navigation performance of Northeast Passage under
the scenario of Arctic sea ice melting. Acta Geographica Sinica, 2021, 76(5): 1051-1064. [黄季夏, 张天媛, 曹云 , .
北极海冰消融情景下东北航道通航性能演变分析. 地理学报, 2021, 76(5): 1051-1064.]
1766
7 刘诗奇 等: 北极地区热融湖分布特征及变化机制研究
Distribution charactieristics and change mechanisms
of thermokarst lakes in the Arctic
LIU Shiqi1, WANG Ping1, 2 , YU Jingjie1, 2, CAI Hongyan3,
YANG Linsheng2, 4, MU Cuicui5, LIU Changming1
(1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and
Natural Resources Research, CAS, Beijing 100101, China; 2. University of Chinese Academy of Sciences,
Beijing 100049, China; 3. State Key Laboratory of Resources and Environmental Information System,
Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
4. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and
Natural Resources Research, CAS, Beijing 100101, China; 5. Key Laboratory of Western China's
Environmental Systems Ministry of Education, College of Earth and Environmental Sciences,
Lanzhou University, Lanzhou 730000, China)
Abstract: Thermokarst lakes, as prominent thermokarst landscapes in permafrost regions,
significantly influence ecological vegetation, hydrological processes, and carbon cycling in the
Arctic. However, the current understanding of the distribution characteristics and change
mechanisms of Arctic thermokarst lakes remains limited. To address this gap, this study
employs meta-analysis and mathematical statistical methods to investigate the distribution
patterns and dynamics of thermokarst lakes. The results reveal a pronounced spatio-temporal
heterogeneity in the distribution and changes of Arctic thermokarst lakes. These variations are
closely associated with permafrost conditions, lithology, soil types, subterranean ice content,
and soil temperatures. Most Arctic thermokarst lakes are located in continuous permafrost area,
where subterranean ice content exceeds 10%, average soil temperatures are above - C, and
there are specific vertical soil temperature gradients. The change trends of thermokarst lakes
differ under various environmental conditions. Generally, the development of thermokarst lakes
follows three stages: initial formation, mid-term expansion, and late-stage contraction, all
influenced by hydrological and thermohydrological balances. As critical indicators of
permafrost degradation and climatic environmental changes, thermokarst lakes profoundly
impact carbon cycling, hydrological processes, and ecological environmental changes within
the Arctic ecosystem.
Keywords: thermokarst lakes; permafrost; soil; lithology; ground ice; Arctic
1767
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
As significant evidence of ice-rich permafrost degradation due to climate warming, thermokarst lake was developing and undergoing substantial changes. Thermokarst lake was an essential ecosystem component, which significantly impacted the global carbon cycle, hydrology process and the stability of the Qinghai–Tibet Engineering Corridor. In this paper, based on Sentinel-2 (2021) and Landsat (1988–2020) images, thermokarst lakes within a 5000 m range along both sides of Qinghai–Tibet Highway were extracted to analyse the spatio-temporal variations. The results showed that the number and area of thermokarst lake in 2021 were 3965 and 4038.6 ha (1 ha = 10,000 m22^{2}), with an average size of 1.0186 ha. Small thermokarst lakes (<<<\,1 ha) accounted for 85.65% of the entire lake count, and large thermokarst lakes (>>>\,10 ha) occupied for 44.92% of the whole lake area. In all sub-regions, the number of small lake far exceeds 75% of the total lake number in each sub-region. R1 sub-region (around Wudaoliang region) had the maximum number density of thermokarst lakes with 0.0071, and R6 sub-region (around Anduo region) had the minimum number density with 0.0032. Thermokarst lakes were mainly distributed within elevation range of 4300 m–5000 m a.s.l. (94.27% and 97.13% of the total number and size), on flat terrain with slopes less than 3∘^\circ (99.17% and 98.47% of the total number and surface) and in the north, south, and southeast aspects (51.98% and 50.00% of the total number and area). Thermokarst lakes were significantly developed in warm permafrost region with mean annual ground temperature (MAGT) > − 1.5 ∘^\circC, accounting for 47.39% and 54.38% of the total count and coverage, respectively. From 1988 to 2020, in spite of shrinkage or even drain of small portion of thermokarst lake, there was a general expansion trend of thermokarst lake with increase in number of 195 (8.58%) and area of 1160.19 ha (41.36%), which decreased during 1988–1995 (− 702 each year and − 706.27 ha/yr) and then increased during 1995–2020 (184.96–702 each year and 360.82 ha/yr). This significant expansion was attributed to ground ice melting as rising air temperature at a rate of 0.03–0.04 ∘^\circC/yr. Followed by the increasing precipitation (1.76–3.07 mm/yr) that accelerated the injection of water into lake.
Article
Full-text available
Thermokarst lakes in permafrost regions are highly dynamic due to drainage events triggered by climate warming. This study focused on mapping lake drainage events across the Northeast Siberian coastal tundra from 2000 to 2020 and identifying influential factors. An object-based lake analysis method was developed to detect 238 drained lakes using a well-established surface water dynamics product. The LandTrendr change detection algorithm, combined with continuous Landsat satellite imagery, precisely dated lake drainage years with 83.2% accuracy validated against manual interpretation. Spatial analysis revealed the clustering of drained lakes along rivers and in subsidence-prone Yedoma regions. The statistical analysis showed significant warming aligned with broader trends but no evident temporal pattern in lake drainage events. Our machine learning model identified lake area, soil temperature, summer evaporation, and summer precipitation as the top predictors of lake drainage. As these climatic parameters increase or surpass specific thresholds, the likelihood of lake drainage notably increases. Overall, this study enhanced the understanding of thermokarst lake drainage patterns and environmental controls in vulnerable permafrost regions. Spatial and temporal dynamics of lake drainage events were governed by complex climatic, topographic, and permafrost interactions. Integrating remote sensing with field studies and modeling will help project lake stability and greenhouse gas emissions under climate change.
Chapter
Full-text available
Using remote methods and materials for meteorological observations, climate changes and the area of 36 thermokarst lakes located in the Anadyr lowland in Chukotka over a 65-year period were analyzed. More than 20 lakes were studied by field methods. With an increase in the average annual air temperature by 1.8°C and an increase in the amount of annual precipitation by 135 mm, the total area of the lakes mirror decreased by 24%. Cryogenic processes have had a significant impact on the decrease in the water quantity of lakes. Thermal erosion in drainage channels has led to multiple discharges of water in abnormally warm years. The heaving of permafrost in the coastal zone affected the reduction of the lake catchment area. If the trends of climate change continue, further drainage of large lakes and an increase in the number of small sag pond is expected in the next 25 years.
Article
Full-text available
In Central Yakutia (Siberia) livelihoods of local communities depend on alaas (thermokarst depression) landscapes and the lakes within. Development and dynamics of these alaas lakes are closely connected to climate change, permafrost thawing, catchment conditions, and land use. To reconstruct lake development throughout the Holocene we analyze sedimentary ancient DNA (sedaDNA) and biogeochemistry from a sediment core from Lake Satagay, spanning the last c. 10,800 calibrated years before present (cal yrs BP). SedaDNA of diatoms and macrophytes and microfossil diatom analysis reveal lake formation earlier than 10,700 cal yrs BP. The sedaDNA approach detected 42 amplicon sequence variants (ASVs) of diatom taxa, one ASV of Eustigmatophyceae (Nannochloropsis), and 12 ASVs of macrophytes. We relate diatom and macrophyte community changes to climate-driven shifts in water level and mineral and organic input, which result in variable water conductivity, in-lake productivity, and sediment deposition. We detect a higher lake level and water conductivity in the Early Holocene (c. 10,700–7000 cal yrs BP) compared to other periods, supported by the dominance of Stephanodiscus sp. and Stuckenia pectinata. Further climate warming towards the Mid-Holocene (7000–4700 cal yrs BP) led to a shallowing of Lake Satagay, an increase of the submerged macrophyte Ceratophyllum, and a decline of planktonic diatoms. In the Late Holocene (c. 4700 cal yrs BP–present) stable shallow water conditions are confirmed by small fragilarioid and staurosiroid diatoms dominating the lake. Lake Satagay has not yet reached the final stage of alaas development, but satellite imagery shows an intensification of anthropogenic land use, which in combination with future warming will likely result in a rapid desiccation of the lake.
Article
Full-text available
Lakes set in arctic permafrost landscapes can be susceptible to rapid drainage and downstream flood generation. Of many thousands of lakes in northern Alaska, hundreds have been identified as having high drainage potential directly to river systems and 18 such drainage events have been documented since 1955. In 2018 we began monitoring a large lake with high drainage potential as part of a long‐term hydrological observation network designed to evaluate impacts of land use and climate change. In early June 2022, surface water was observed flowing over a 30‐m wide bluff, with active headward erosion of ice‐rich permafrost soils apparent by late June. This overflow point breached rapidly in early July, draining almost the entire lake within 12 h and generating a 191 m³/s flood to a downstream creek. Water level and turbidity sensors and time‐lapse cameras captured this rapid lake‐drainage event at high resolution. A wind‐driven surface seiche and warming waters following ice‐out helped trigger the initial thermomechanical breach. We estimate at least 600 MT of lake sediment was eroded, mobilized, and transported downstream. A flood wave peaking at 42 m³/s arrived 14 h after the initial breach at a river gauge 9‐km downstream. Comparing this event with three other quantified arctic lake‐drainage floods suggests that lake surface area coupled with drainage gradient height can predict outburst flood magnitude. Using this relationship we estimated future flood hazards from the 146 lakes in the Arctic Coastal Plain of northern Alaska (ACP) with high drainage potential, of which 20% are expected to generate outburst floods exceeding 100 m³/s to downstream rivers. This fortunate and detailed drainage‐event observation adds to a growing body of research on the impact of lakes on arctic hydrology, hazard forecasting in a region with an increasing human footprint, and broader processes of landscape evolution in arctic lowlands.
Article
Full-text available
Thermokarst lakes are the main components of the vast Arctic and subarctic landscapes. These lakes can serve as geoindicators of permafrost degradation; therefore, proper lake distribution assessment methods are necessary. In this study, we compared four machine learning methods to improve existing lake detection systems. The northern part of Yakutia was selected as the study area owing to its complex environment. We used data from Landsat 8 and spectral indices to take into account the spectral characteristics of the lakes, and MERIT DEM data to take into account the topography. The lowest accuracy was found for the classification and regression trees (CART) method (overall accuracy = 81%). On the other hand, the random forests (RF) classification provided the best results (overall accuracy = 92%), and only this classification coped well in all problematic areas, such as shaded and humid areas, near steep slopes, burn scars, and rivers. The altitude and bands SWIR1 (Short wave infrared 1), SWIR2 (Short wave infrared 2), and Green were the most important. Spectral indices did not have significant impact on the classification results in the specific conditions of the thermokarst lakes environment. 17,700 lakes were identified with the total area of 271.43 km².
Article
Full-text available
A thermokarst lake is generally defined as a lake that occupies a closed basin and is created by the massive melting of ground ice in ice-rich permafrost regions, which has a great impact on regional hydro-ecological equilibrium and permafrost-engineering infrastructure facilities. Global warming and increasing human activities have been accompanied by permafrost degradation and glacier retreat in the Qinghai–Tibet Plateau (QTP). The QTP, source of many international rivers in Asia, is known as the “Asian Water Tower.” The number and area of lakes in the QTP have increased in the past 40 years; however, lakes with areas of less than 1 km² have been overlooked when calculating the water storage. To address the evolution of thermokarst lakes in the QTP, visual interpretation and the Modified Normalized Difference Water Index were applied to extract the water area based on Landsat data from the 1980s to 2020. The results indicate that thermokarst lake area was reduced from 932.5 km² to 799.25 km² from the 1980s to 1990. From 1990 to 2020, the number and area of lakes grew substantially, with the number increasing from 66506 to 120374 and the area increasing by 113.14% (932.5 km² in 1980s and 1703.56 km² in 2020). As heat carriers, thermokarst lakes transfer heat vertically and horizontally. The temperature of the surrounding permafrost rises as the number and area of lakes increase and when permafrost is extensively degraded. Longtime carbon stocks are also released into atmosphere during lake formation, which affects the regional carbon cycle.
Article
Full-text available
Subject of research: article is the time series of changes in the area of thermokarst lakes in the Arctic under the conditions of modern climatic changes. Purpose of research: to analyze the time series of satellite measurements of lake areas for studying the dynamics of lakes in the West Siberian Arctic. Methods and objects of research: we present the results of formation and analysis of time series of lake areas intended for studying the dynamics of thermokarst lakes in the Arctic zone of Western Siberia over a 36-year period. The time series were obtained based on the results of remote measurements of the lake areas on the territory of 627 thousand km2 using 688 Landsat satellite images, sampled in the period 1985-2021. The study area was divided into three ecoregions to analyze the territorial features of the vast Arctic zone of Western Siberia. The analysis of the time series showed that the change in the average lake area in the territory of the Arctic zone of Western Siberia exhibits a marked negative linear trend. Main results of research: based on the comparison of the trends in the time series of lake areas in the territories of the three ecoregions of the West Siberian Arctic, it was found that the thermokarst lakes of Yamal exhibit the highest rate of change in the areas compared to the other Arctic ecoregions.
Article
Ice-rich permafrost thaws in response to rapid Arctic warming, and ground subsidence facilitates the formation of thermokarst lakes. Thermokarst lakes transform the surface energy balance of permafrost, affecting geomorphology, hydrology, ecology, and infrastructure stability, which can further contribute to greenhouse gas emissions. Currently, the spatial distribution of thermokarst lakes at large scales remains a challenging task. Based on multiple high-resolution environmental factors and thermokarst lake inventories, we used machine learning methods to estimate the spatial distributions of present and future thermokarst lake susceptibility (TLS) maps. We also identified key environmental factors of the TLS map. At 1.8 × 106 km2, high and very high susceptible regions were estimated to cover about 10.4 % of the region poleward of 60°N, which were mainly distributed in permafrost-dominated lowland regions. At least 23.9 % of the area of TLS maps was projected to disappear under representative concentration pathway scenarios (RCPs), with increased susceptibility levels in northern Canada. The slope was the key conditioning factor for the occurrence of thermokarst lakes in Arctic permafrost regions. Compared with similar studies, the reliability of the TLS map was further evaluated using probability calibration curve and coefficient of variation (CV). Our results provide a means for assessing the spatial distribution of thermokarst lakes at the circum-Arctic scale but also improve the understanding of their dynamics in response to the climate system.
Article
Rapid warming in the Arctic is driving permafrost thaw and lake area changes, with implications for wildlife, subsistence living and climate feedbacks. Models suggest that initial permafrost thaw will result in increased lake area, with continued warming and advanced thaw eventually leading to decreased lake area after ~60–150 years. Here, we review data from 139 sites in 57 publications tracking the direction of lake area change. In the discontinuous permafrost zone, the majority of sites exhibit decreasing lake area, whereas in the continuous zone, the number of sites with increasing lake area is similar to the number with decreasing lake area. These trends suggest that lake drainage due to permafrost thaw is occurring sooner than anticipated. Across the northern permafrost zone, lake area trends are unrelated to precipitation trends and, in most regions, lake area change is heterogeneous. Together, these results indicate that the primary driver of lake area change is permafrost thaw, rather than changes in precipitation and/or evapotranspiration. The observed emergence of lake area trends projected to occur no earlier than the mid-twenty-first century indicates that current models do not adequately represent the processes driving permafrost thaw and associated lake drainage. Lake drainage due to permafrost thaw in the northern permafrost zone is occurring sooner than anticipated.