ArticlePDF Available

Abstract and Figures

Agaves are an outstanding arid‐adapted group of species that provide a unique chance to study the influence of multiple potential factors (i.e., geological and ecological) on plant population structure and diversification in the heterogeneous environment of the Baja California Peninsula. However, relatively little is known about the phylogeography of the endemic agave species of this region. Herein, we used over 10,000 single‐nucleotide polymorphisms (SNPs) and spatial data from the Agave aurea species complex (i.e., A. aurea ssp. aurea, A. aurea ssp. promontorii, and A. aurea var. capensis) to resolve genetic relationships within this complex and uncover fine‐scale population structure, diversity patterns, and their potential underlying drivers. Analyses resolved low genetic structure within this complex, suggesting that A. aurea is more likely to represent several closely related populations than separate species or varieties/subspecies. We found that geographical and historical ecological characteristics—including precipitation, latitude, and past climatic fluctuations—have played an important role in the spatial distribution of diversity and structure in A. aurea. Finally, species distribution modeling results suggested that climate change will become critical in the extinction risk of A. aurea, with the northernmost population being particularly vulnerable. The low population genetic structure found in A. aurea is consistent with agave's life history, and it is probably related to continuity of distribution, relatively low habitat fragmentation, and dispersion by pollinators. Together, these findings have important implications for management and conservation programs in agave, such as creating and evaluating protected areas and translocating and augmentation of particular populations.
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e70027. 
|
1 of 19
https://doi.org/10.1002/ece3.70027
www.ecolevol.org
Received:30January2024 
|
Revised:14June2024 
|
Accepted:7July2024
DOI: 10.1002/ece 3.70 027
RESEARCH ARTICLE
Population genomics and distribution modeling revealed the
history and suggested a possible future of the endemic Agave
aurea (Asparagaceae) complex in the Baja California Peninsula
Anastasia Klimova1,2 | Jesús Gutíerrez- Rivera1| Alfredo Ortega- Rubio1|
Luis E. Eguiarte2
This is an op en access arti cle under the ter ms of the CreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
provide d the original wor k is properly cited.
©2024TheAuthor(s).Eco logy an d EvolutionpublishedbyJohnWiley&SonsLtd.
1Centro de Investigaciones Biológicas del
NoroesteS.C.,LaPaz,Mexico
2Departamento de Ecología Evolutiva,
Instituto de Ecología, Universidad
NacionalAutónomadeMéxico,Ciudadde
México,Mexico
Correspondence
AnastasiaKlimova,Centrode
Investigaciones Biológicas del Noroeste
S.C.,LaPaz,Mexico.
Email: anastasia_aleksandrovna@hotmail.
com
Luis E. Eguiarte, Departamento de
Ecología Evolutiva , Instituto de Eco logía,
UniversidadNacionalAutónomade
México,CiudaddeMéxico,Mexico.
Email: fruns@unam.mx
Funding information
Instituto de Ecología, Universidad
NacionalAutónomadeMéxico,Grant/
AwardNumber:PAPIITIG200122
Abstract
Agaves are an outstanding arid- adapted group of species that provide a unique chance
tostudytheinfluenceofmultiplepotentialfactors(i.e.,geologicalandecological)on
plant population structure and diversification in the heterogeneous environment of
theBajaCaliforniaPeninsula.However,relativelylittleisknownaboutthephyloge-
ography of theendemicagave speciesof thisregion. Herein, we usedover 10,000
single-nucleotidepolymorphisms(SNPs)andspatialdatafromtheAgave aurea species
complex(i.e.,A. aurea ssp. aurea, A. aurea ssp. promontorii, and A. aurea var. capensis)
toresolvegeneticrelationshipswithinthiscomplexanduncoverfine-scalepopulation
structure,diversitypatterns,andtheirpotentialunderlyingdrivers.Analysesresolved
lowgeneticstructure withinthiscomplex,suggestingthatA. aurea is more likely to
representseveralcloselyrelatedpopulationsthanseparatespeciesorvarieties/sub-
species.Wefoundthatgeographicalandhistoricalecologicalcharacteristics—includ-
ingprecipitation,latitude,and past climatic fluctuations—haveplayed animportant
roleinthe spatialdistributionofdiversityand structureinA. aurea. Finally, species
distribu tion modeling resu lts suggested t hat climate change will becom e critical in
theextinction riskofA. aurea,with thenorthernmostpopulationbeing particularly
vulnerable.ThelowpopulationgeneticstructurefoundinA. aurea is consistent with
agave'slifehistory,and it is probably relatedtocontinuityofdistribution,relatively
low habitat fragmentation, and dispersion by pollinators. Together, these findings
have important implications for management and conservation programs in agave,
such as creating and evaluating protected areas and translocating and augmentation
of particular populations.
KEYWORDS
Agavoideae,BajaCaliforniaPeninsula,climatechange,genomicdiversity,pollinators,Sonoran
Desert
TAXONOMY CLASSIFICATION
Populationgenetics
2 of 19 
|
   KLIMOVA et AL.
1 | INTRODUCTION
Arid landsare oneofthe mostwidespread ecosystemsworldwide
(Prăvălie, 2016; Ward, 2016), and due toanthropogenic activities,
theirbordersareexpanding(Liu&Xue,2020;Mirzabaevetal.,2019).
Despite the harsh environment, deserts are known for a large num-
berofendemicspeciesandhighplantfunctionaldiversity(Maestre
et al., 2012, 2021;S cherson et al ., 2020). Moreover, dry lands are
crucial inglobal biogeochemical cycles andEarth's energy balance
(Jickellsetal.,2005; Okin et al., 2004).
Althoughlivingindesertsishighlystressful,someplantgroups
have evolved un ique morpholog ical, physiologi cal, and behavio ral
adaptations,includingcrassulaceanacidmetabolism(CAM)photo-
synthe sis,delayedgerminat ion,clonality,extendedshallowroots ys-
tem, succulence, and production of particular heat- shock proteins,
which allow them to thrive in the harsh conditions of arid and semi-
aridareas(Smith,19 97;Wickens,1998;Ward,2016).Nevertheless,
due to the long generation time of many species, slow plant turn-
over, slow regeneration, and significant reliance on plant–plant inter-
actions(“nurseplants”),desertfloramaybeparticularlysensitiveto
theprojectedincreaseintemperatureandaridity(Brownetal.,2023;
Cody, 2000; Ravi et al., 2021). Moreover, it is quite p ossible that
desert plant species already operate close to their physiological lim-
its (Hantson et al.,2021;Madsen-Heppetal., 2023). For instance,
a recent simu lation stud y suggested t hat climate chan ge will be a
primary cause of cactus extinction risk, with over 60% of species
assessed being negatively impacted (Pillet et al., 2022). Climate
change isalso shifting the balance in plant–soil interactions when
anincrease inaridityreducesplantfungalsymbiontsandsubstan-
tially increases the proportion of fungal pathogens, which negatively
impactsplant'sfitness(Maestreetal.,2021;Pugnaireetal.,2019).
Someoftheiconicspeciesofthedesertsof NorthAmericaare
members of the Agavoideae (Asparagaceae), including agaves and
yuccas (Gentry,1978 , 1982). Agave is a genus of monocotyledons
native to th e arid lands of Nor th America (Egu iarte et al., 2021).
Agaves flourish in arid and semiarid areas, and in many regions,
they are dominant species that provide food and shelter for many
organisms(Gentry,1978 , 1982). The ge nus's great ecolog ical suc-
cesshasbeenlinkedtocrassulaceanacidmetabolism(CAM)andthe
generalistpollinationsystem(Eguiarteetal.,2021).Birds,bees,and
flies pollinate many agave species during the day, and nectar- feeding
bats pol linate them at night ( Rocha et al., 2006). In Mesoamerica
andAridoamerica,thegenusalsohasenormousculturalandeco-
nomic importance (Alducin-Martínez et al., 2022; Gentry, 1982).
Nevertheless, slow growth, low reproductive rates, the importance
ofplant–plantinteractions(i.e.,“nurseplantseffect”),andplant–pol-
linator interactions makeagaves especiallysusceptible toenviron-
mentaldisturbancesandpossiblytoclimatechange(Gómez-Ruiz&
Lacher, 2019;Martínez-Palaciosetal.,1999).
Recently(~7 Myaand~2.5 Mya),agavesexperiencedtwobursts
of evolutionary diversification that resulted in many endemic and
microendemic species, with countless forms of leaves, rosettes, and
inflorescences(Eguiarteetal.,2021;Gentry,1978, 1982;Good-Avila
et al., 2006; Jiménez-Ba rrón et al., 2020). On the B aja California
Peninsula (BCP hereaf ter), for example, a tot al of 23 Agave taxa
arefound,with22ofthembeingendemic(Trelease,1911;Webb&
Star r,2015).Surprisingly,therichdiversityofagavesintheBCPhas
been little studied (Gentry,1978; Webb& Starr,2015).For exam-
ple, almost all AgavetaxainBCPrepresentspecies/subspeciescom-
plexeswithuncleargeographicalboundariesorgeneticrelationships
betweenandwithinthem (Navarro-Quezada et al.,20 03;Webb&
Star r,2015).
The high bio logical diversity and en demism levels of flor a on
theBCParethoughttoarisefromtheprolongedisolation, peculiar
geography of the peninsula, and its high landscape heterogeneit y
(Garcillánetal.,2010;Grismer,2000; Riddle et al., 2000; Riemann
&Ezcurra, 20 07; Van Devender, 1990).The BCPlies betweenthe
Pacific O cean and the Gulf of C alifornia; it is one of t he longest
and the most isolated peninsulas, reaching a length of approxi-
mately1300 km(Dolbyetal.,2015).TheBCPismostly arid (~75%)
and forms part of the Sonoran Desert, with readily recognized
vegetation including different species of agave, columnar cacti
(e.g.,Pachycereus pringlei and Stenocereus thurberi),yuccas,and the
Boojumtree(Fouquieria columnaris)(Riemann&Ezcurra,2007).BCP
desert is relatively young and thought to have originated during
thelateMioceneandthePliocene,5–10millionyearsago,withthe
modernwarm-desertvegetationbecomingextensiveonlyapproxi-
mately6000–12,000 years ago,aftertheendof thelastglacialpe-
riod (A xelrod, 1978; Frenzel , 2005; Raven & Axel rod, 1978). A s a
consequence, a signal of relatively recent northward and southward
expansion from refugiahas been observed along theBCP inarid-
adapted and succulent plant taxa (De laRosa-Conroy et al., 2019;
Garricketal.,2009;Gutiérrez-Floresetal.,2016; Nason et al., 2002).
AmongtheuniquefloristicdiversityofBCP,Agave aurea stands
out(Figure 1).IntheBCP,A. aurea is the only representative of the
Campanifloraesection (Gentry,1978, 1982; Webb & St arr, 2015).
Thespeciesis foundonthewestside oftheSierraLaGiganta,ex-
tending south to theSierraLa Laguna and Cabo SanLucas (Webb
&Starr,2015).It is a relatively largeplant withatall,showyinflo-
rescence thatcan reach 8 meters. Theplant usedto be harvested
by indigeno us people as a so urce of food and fi ber. Nowadays, it
issometimesusedtomakea distilled alcoholicbeverage(a typeof
mezcal) andas an ornamentalplant. Theplantissaidtohavebeen
trialed as a commercial source of fiber, but yields were too low
(Gentr y,1978).
Currently, A. aureaisconsideredtobe a species complex, with
the taxonomic st atus of varieties/subspe cies being under debate
(Webb&Starr,2015).Initially,basedonflowercharacteristics,three
separate species, Agave aurea, Agave capensis, and Agave promon-
torii, were described (see Gentry,1978 , 1982).Recently,Webband
Starr(2015)indicatedthat,duetothesimilarityinvegetativechar-
acteristicsandthedif ferencesmainl yr elatedtosi zeandthepropen-
sityforclonalreproduction,thesethreespeciesshouldbereduced
tothe subspecies or varieties level.No genetic studies have been
donetoclarifytaxonomicuncertaintieswithintheA. aureacomplex,
yet.
   
|
3 of 19
KLIMOVA et AL .
OfthethreevarietiesorsubspeciessensuWebbandStarr(2015),
A. aurea ssp. aureaisthe mos tcommo nanda bundant ,ex ten din gfr om
thewesternslopesoftheSierraLaGigantato the SierraLaLaguna
intheCapeRegion.Itiseasilyrecognizedbythelong,narrowgreen
leaves that a rch to form an ope n rosette and by t he bright yellow
flowers(Figure 1).Agave aurea var. capensis is a smaller plant with nar-
rowerleavesanddiffersfromother varietiesmainlybecause it pro-
liferatesbyaxillary sprouting, creatinglarge groupsof plants.Agave
aurea var. capensishasres trictedgeogr aphicdist ribut ionandcanon ly
befoundonthepeninsula'ssoutherntip.Agave aurea ssp. promonto-
rii,ontheotherhand,isalargeplantrestrictedtothenorthernSierra
La Lag una at elevations of 90 0–1800 m. Th e genetic relation ships
betweenthesevarietiesandtheirexactgeographicboundariesare
unclearandneedfurtherinvestigation(seeWebb&Starr,2015).
In addition to the uncertainty in species delimitation, there is a
growing concern for the conser vation of the flora and fauna of the
BCP(Benavidesetal.,2020;Dávilaetal.,2022;Klimova,Gutiérrez-
Rivera, et al., 2022; Klimova, Mondragón, et al., 2022; Riemann
& Ezcurra , 2005; Vanderplank et al., 2014). Like ot her arid areas
around th e globe, Baja Cali fornia has been heav ily influenced by
anthropogenic disturbances, such as overgrazing by free-roaming
livestock, off- road recreational vehicles, agriculture, and climate
change (Riemann & Ezcurra, 2005; Wehncke et al., 2014). In re-
cent decades, rapid development and human population growth
havegreatlyintensified threats to BCP's ecosystems, especially to
endemicandendangeredspecies (IUCN,2023;SEMARNAT,2010;
Wehnckeetal.,2 014).Amonghuman-inducedbiodiversitythreats,
climate change is predicted to play an increasingly important role
inbiodiversitydecline(Gao et al., 2020; Pinsky & Fredston,2022;
Urban,2015).Moreover,climatechangehasalreadyhadasignificant
negativeimpactonSonoran Desertvegetation,particularly on its
xericportion, leadingtoasubstantial decreaseinvegetationcover
(Hantsonetal.,2021).
Toaddresstheunresolvedissuesdescribedabove,wecombined
genome-wid e SNPs and spe cies distrib ution model ing (SDM) with
a thorough sampling of the Agave aurea complex i n the BCP.T he
datawereanalyzed ontwolevels.First,wetriedtoresolvegenetic
relationshipswithin this complexand,fromthere,delimitthegeo-
graphicboundaries of each group. We then focused on fine-scale
genetic analyses, uncovering the population structure and diver-
sity pat terns of A. aurea and investigating their potential underly-
ingdrivers.Second,wetriedtodeterminehowthefuturepotential
distribution ofthe A. aureacomplex willbealtered underdifferent
climate cha nge scenarios . Our main worki ng hypothese s were: (1)
Weexpected tofind genomic support for at least some currently
recognizedsubspecies/varietieswithinA. aureacomplex.(2)Asbats
are an important mediator of pollen dispersal in agaves, and agaves,
in general, present low genetic differentiation within species, we hy-
pothesizedthatforA. aurea,pollendispersalwouldnotberestricted
withingeographicregions,whichshouldbereflectedinoverallshal-
lowpopulation structure. (3) We expectedthat thedistributionof
genetic diversity and differentiation of A. aureawouldberelatedto
thegeography,ecological,andclimatichistoryofBCP.(4)Duetothe
projectedaridificationofBCP,wehypothesizedthatthefuturepo-
tentialdistributionofA. aureawillbenegativelyaffectedbyclimate
change.
FIGURE 1 MapofthesouthernBaja
CaliforniaPeninsula,Mexico,witha
backgroundrepresentingthetopography
oftheareaandblackdotsrepresenting29
sample site locations of Agave aurea sensu
WebbandStarr(2015).Samplingsite
abbreviationscanbefoundinTable S1;
thesubspeciesofA. aurea var. capensis
and A. aurea ssp. promontorii are coded
andcoloredasSLL_18_C(darkgreen)
andSLL_19_P(darkred),respectively.
Inset at the left corner is a picture of A.
aurea spp. aureacollectedinSierraLa
Giganta.Insetattherightcornerisamap
ofNorthAmerica,withtheBajaCalifornia
Peninsulahighlightedindarkblue.
4 of 19 
|
   KLIMOVA et AL.
2 | MATERIALS AND METHODS
2.1  | Sample collection
Fresh leave tissue samples were collected from 29 geographic loca-
tionsacrossthesouthernpartof theBCPthatrepresentthe com-
pletedistributionrangeofAgave aureasensuWebbandStarr(2015)
(Figure 1, Table S1).Allthreerecognizedsubspecies(Gentry,1978;
Webb&Starr,2015)wereincludedintheanalysis.ForAgave aurea
va r. capensis, besides a ty pe localit y,seve ral more sites e xtracte d
fromtheGlobalBiodiversityInformationFacility(GBIF,2023)were
visited, butonly plants morphologicallysimilartoAgave aurea ssp.
aurea were found (rel atively large plan ts that did not form c lonal
clusters).Plants were assigned to subspecies based on their morphologi-
cal characteristics and the geographic locality where they were collected
(Gentr y,1978;Webb&Starr,2015).
Uponcollection,sampleswerepreservedinpaperbagsandkept
awayfromheatandsunlight;onceatthelaborator y,samples were
kept at −20°C until D NA extract ion. All the spec imens were col-
lected during fieldwork performed in 2023.
2.2  | DNA extraction and RADSeq
GenomicDNAfrom98individualsofAgave aureasensuWebband
Starr (2015) was extracted using a modified hexadecyltrimeth-
ylammonium bromide (CTAB) protocol from the frozen leaf tis-
sue disrupted with liquid nitrogen (Doyle & Doyle, 19 87; Klimova,
Gutiér rez-Rivera, et al., 2022; K limova, Mondrag ón, et al., 2022).
TheDNAqualitywascheckedona1%agarosegel.Samplesofade-
quatequalityandquantityweresenttotheUniversityofWisconsin
Gene CoreforRAD-Seqlibrary preparation(Andrewset al., 2016;
Elshire et al., 2011)usingtwomethylation-sensitiverestrictionen-
zymes(PstI/MspI)andsequencingontheIlluminaNovaSeq2 × 150
platform(Illumina,SanDiego,CA,USA).
The resulting paired- end reads were assessed for quality
usingFastQC (Andrews,2010)andfilteredusingthefastp(Chen
et al., 2018).Weremovedadapters,sequencesshorterthan55 bp,
reads with over five N, low- quality sequences, and trimmed
poly G and p oly X tails. We also f iltered low-complex ity reads,
where the complexity wasdefined as the percentage ofa base
that is different from its next base (base[i]! = base[i+ 1]) (Chen
et al., 2018).Filteredreadsweredemultiplexedusingtheprocess_
radtagsfunctioninSTACKSv1.41(Catchenetal.,2013; Rochette
et al., 2019) and mapped to the Agave tequilana transcriptome
(GAHU00000000.1;Grossetal.,2013) using Burrows-Wheeler
Aligner(BWA)v0.7.13(Li&Durbin,2009).TheresultingSequence
AlignmentMap (SAM) files were converted to Binary Alignment
Map (BAM) format, sorted by coordinates, and indexed using
SAMtools(Daneceketal.,2021).SNPswerecalledusingbcftools
(Daneceketal.,2021).
The raw genotypes were filtered using VCFtools v0.1.16
(Daneceketal.,2 011).WeremovedSNPswithaminorallelecount
of <8,agenotypingrateoflessthan90%,amaximummeandepthof
150,aminimummeandepthof10,andamaximumnumberofalleles
of2.WeremovedlocithatdeviatedfromHardy–Weinbergequilib-
rium(p< .05,after Bonferronicorrection). Finally,we removed loci
in linkage disequilibrium (r2> 0.2) using PL INK v1.90b6. 21(C hang
et al., 2015).
2.3  | Population structure
To investigate population structure and to understand the relation-
ships within the A. aureacomplexsensuWebbandStarr(2015), we
usedseveralcomplementaryapproaches.Weconductedaprincipal
component analysis (PCA) using the R package SNPRelate (Zheng
et al., 2012). We estimated individual admixture propor tions using
ADMIXTURE (Alexander et al., 20 09; Alexander & Lange, 2011).
Admix t urerun swe rep erfo rmedforancestr yclu ste rs(K)rangin gfr om
1 to 10, with 10 runs for each Kvalue.Theoptimalnumberofclusters
wasidentifiedbasedonthelowestcross-validationerror andvisual-
izedusing R. Wealso used fineRADstructure,aBayesianclustering
approachthatutilizeshaplotypelinkageinformationandsearchesthe
mostrecentcoalescence(commonancestry)amongthesampledindi-
viduals(Malinskyetal.,2018).A“coancestrymatrix”ofA. aurea speci-
mens was gen erated using STACKS's ‘po pulation’ modul e (Catchen
et al., 2013).Wesubsequentlyused10,000,000MarkovchainMonte
Carlo (MCMC) iterations witha burn-inof 5,000,000 and sampling
occurring every 10,000 iterations. A tree was constructed with
100,000hill-climbingiterations,andtheresultswerevisualizedusing
thescriptFINER ADSTRUCTUREPLOT.R,whichisavailableatht tp s : //
g i t h u b . c o m / m i l l a n e k / f i n e R A D s t r u c t u r e . We also reconstructed
the genealogical relationships among A. aurea individuals using an
neighbor-joining (NJ) tree estimated using the bitwise.dist func tion
wit hintheRpackagepopprandabootfu nction,using1000boots trap
replicates (Kamvar et al., 2015). The unrootedNJ tree among sam-
plingsitesbasedontheNeigeneticdistancewasestimatedwiththe
RpackagesStAMPP(StatisticalAnalysisofMixed-PloidyPopulations)
andape(Paradis&Schliep,2018;Pembletonetal.,2013).Finally,we
estimated pairwise genetic differentiation among subspecies, sam-
plingsites,andgeographicregions,usingWeirandCockerhamFST val-
uescalculated(Weir&Cockerham,198 4)intheRpackageStAMPP.
Confidence inter vals and p- valu eswerees tim atedb ase do nbo ots trap
resampling of individuals 100 times.
2.4  | Landscape genetics
Geographicisolationanddispersalbarriersareknowntocontribute
to the geographic structuring of genetic variation in many organisms
(Bradb urd et al., 2013; Lovel ess & Hamrick, 1984; Wright, 1949).
Therefore, we examined the relationship between genetic and
geographic distance between all pairs of sampling sites. Genetic
distance was based on pairwise FSTobtained using the R package
StAMPP.Geographicgreat-circledistanceamongsamplingsiteswas
   
|
5 of 19
KLIMOVA et AL .
calculatedusingtheGeographicDistanceMatrixGeneratorversion
1.2.3 (Ersts,2013).The significanceofgenetic and geographicdis-
tanceassociationwascalculatedusingManteltestswiththeRpack-
ageade4(Dray&Dufour,2007)accordingtothemethodproposed
byRousset(1997 ),whichisbasedontheFST/(1 − FST)andthenatu-
rallogarithmofgeographicdistance(ln).
Thedivergencecanalsobeexplainedbylocaladaptationthatwill
show a corre lation betwee n genetic and envir onmental dist ances
(Frankhametal.,20 02).WeusedMantelandpartialManteltestsas
implementedintheRpackageVEGAN2.4-0(Oksanenetal.,2014)to
testforcorrelationsbetween geneticandenvironmentaldistances,
thelatterbeinggeneratedusingthe“dist”functioninRfromallthe
19bioclimatic variables downloaded from WorldClim v.2 (Hijmans
et al., 2005) as asetofrasterlayers.Mantel testswere performed
betweeneachgeneticandenvironmentaldistancematrix,andthese
analyseswere alsorepeatedas partial Mantel tests controlling for
geographic distance. Statistical significance was determined using
Pearson'stestsbasedon10,000permutations.Toavoidcollinearity
among eco logical var iables, we per formed a Ma ntel test bet ween
theclimaticvariablessignificantlycorrelatedwithgeneticdifferenti-
ationandusedonlythosevariablesthatdidnotcorrelatewitheach
other.Betweenhighly correlated variables,wechose one withthe
highest r- statistic and the lowest p-value(Table S3).
Finally,weusedtheclusteringmethodimplementedinTESS3R
that considers genetic and geographic data to determine the
most probable number ofclusters (K) ina geographic space (Caye
et al., 2015).WetestedK= 1to10with30replicatesofeachK and
keptthemostsupportedmodel(i.e.,“best,”basedoncross-entropy
scores)withineachofthe30replicates.Locationsonthemapwere
colored according to the resulting dominant ancestry cluster.
2.5  | Genome- wide diversity
To assess levels of genetic diversity within A. aureasensuWebband
Starr(2015),weestimatedmultilocusheterozygosity(MLH)usingthe
RpackageinbreedR(Stoffeletal.,2016)andtheinbreedingindicesFIS
and Fhat3usingPLINK2.0(Changetal.,2015).Thesediversitymetrics
werecalculatedattheindividuallevel.Tobetter understandthespa-
tialdistributionofgeneticdiversity,weplottedthediversityestimates
onamapusingtheRpackageggplot2(Wickham,2009).Wethenex-
ploredwhethergeographicalvariables(i.e.,elevationand latitude as
predictivevariables)wererelatedtothelevelsofgeneticdiversityby
usin gsimp leandqua dratic linearmo dels(LMs)i nt heRpackages tat s(R
Core Team, 2021).Wealsoestimatedthenumberofprivateallelesfor
eachsubspecies/geographicregionusingtheRpackagepoppr.
2.6  | Species distribution modeling (SDM)
Occurrence data for A. aureasensuWebbandStarr(2015) were
downloaded from the Global Biodiversity Information Facility
(GBIF,2021)andsupplementedwithourfieldsurveys.Weexcluded
locations that fell into the ocean or in human settlements, old
data (older than 1970), and coordinates with an uncertainty of
over200 m; data werealso filtered within theBIOMOD2package
(Thuiller,2003; Thuiller et al., 2009)usingthefilter.rasterfunction.
In total, 128 occurrence points were retained.
Weused the currentclimatic variablesataspatialresolutionof
30arc-sfromtheWorldClimtoestimatethecurrentpotentialdistri-
butionofA. aureasensuWebban dStarr(2015).Toavoidcollinearity
amongbioclimaticvariables,weusedPearson'scorrelationanalysis
tochoose onlyone variablefrom each pair of strongly associated
variables(i.e.,r> 0.75or−0.75).Atotalof10variableswereretained
aftercorrelationanalysis(Table S2).
For predictingthe future potentialdistributionof A. aurea, we
usedtheCoupledModelIntercomparisonProject(CMIP6)toaccess
theclimate modelsbasedontworepresentativeshared socioeco-
nomicpathways(SSP245andSSP585)foratimeperiodfrom2061
to 2080. Future climate models rely on diverse sets of codes and
are para meterized with slig htly differe nt conditions; the refore, as
sugges ted by Knutti e t al. (2013) and S anderson et a l. (2015), we
selectedthreedissimilarmodels(AustralianCommunityClimateand
EarthSystemSimulator-EarthSystemModel1.5(ACCESS-ESM1-5),
Model for Interdisciplinary Research on Climate, sixth version
(MIROC6), and Max-Planck Ins titute-Earth System Mod el version
1.2low resolution (MPI-ESM1-2-LR)).All climaticdata weredown-
loaded using R package geodata(RCoreTeam,2021).Thesameset
ofenvironmentalvariablesusedtoestimatethecurrentdistribution
of A. aureasensuWebbandStarr(2015)wasalsousedtopredictits
futurepotentialdistribution.
We performed the ensemble distribution modeling using
GeneralizedBoostedModels(GBM)(Ridgeway,1999)and Random
Forest (R F) (Breiman , 2001) algorit hms. The dist ribution mo deling
requiresthepresenceandabsenceofdata;we,therefore,randomly
generated 1000 pseudo-absence points and five pseudo-absence
data sets (Guisan et al., 2017).We built themodels using 80% of
the data (training set) and evaluated the model performance with
therestofthe20%ofthedata(evaluationset).Weraneachofthe
models10times.Weusedtwoevaluationmetricstodeterminethe
accuracyofthemodels:theareaunderthecurve(AUC)ofreceiver
operatingcharacteristics(ROC)andtrueskillsstatistics(TSS)(Khan
&Verma, 2022; Rather et al., 2022).Tovisualize andmeasurethe
range change for A. aureasensuWebbandStarr(2015)underfuture
climaticconditions,weusedtherange–sizefunctionimplementedin
theBIOMOD2package.
We also used SDM to predict climatically suitable areas for
A. aureasensuWebbandStarr(2015) under two different past
time periods (Mid-Holocene (MH) and Last Glacial Maximum
(LGM)). The ra ster layers were dow nloaded fro m WorldClim (Fick
& Hijmans, 2 017 ) and t wo different cli matic models wer e chosen
(Community Climate System Model, vers ion 4 (CCSM4) and Max
Planck Institute for Meteorology (MPI-M)-Earth System Model-P
Model(MPI-ESM-P)).Wegotaresolutionof30arc-secondsforMid-
Holocenedata,whereasforLGM,itwas2.5 min.TheSDMforpast
conditionswasimplemented,asdescribedabove.
6 of 19 
|
   KLIMOVA et AL.
3 | RESULTS
We generated R ADSeq data for 98 A. aurea sensu Webb and
Starr (2015)individuals collectedfrom 29 locationsthat represent
the complete distribution range of the species. We included the
three subspecies/varieties recognized by Webb and Starr (2015)
(Figure 1, Table S1).ForA. aurea ssp. aurea, we included 87 samples,
comprising27samplingsitesfromtheCapeRegiontotheSierraLa
Giganta.ForA. aurea ssp. promontorii(n= 5),weincludedonesiteat
SierraLaLaguna,andforA. aurea va r. capensis(n= 6),onesampling
siteatthetypelocality CerrodelaZetaat theCapeRegion ofthe
BCP.
Fromatotalof547,875rawSNPscalledusingtheSamtools,after
filteringwithVCFtools,10,765high-qualitySNPsacrossallsubspe-
cies were retained. The mean individual depth among 98 individuals
was57.5(SD11.4).Theaveragemissingnessonaper-individualbasis
was1.4%.
3.1  | Population structure
To investigate population differentiation within A. aurea, we used
several complementary approaches: principal component analysis,
NJtree, ADMIXTURE, pairwise FST, and Bayesian clustering in fin-
eradstructure.Theoveralldivergencebetweenvarietieswaslow:A.
aurea ssp. aurea vs. A. aurea var. capensis, FST= 0.09; A. aurea ssp.
aurea vs. A. aurea ssp. promontorii, FST= 0.03;andA. aurea ssp. prom-
ontorii vs. A. aurea var. capensis, FST= 0.14;each estimate was sig-
nificant(p< .001).Althoughwithdifferentsensitivities,allmethods
agreed that the mor phologically de scribed varieties present very
shallowgeneticdivergenceamongthem(Figures 2–5).Forexample,
it was hard to identify any particular separated genetic group within
the individual-based NJ tree (Figure 2b). There were indications
that samples of A. aurea var. capensis were slightly differentiated
fromtherestofthespecimens,whichwasalsoconfirmedbyPCA.
However,thefirsttwoprincipalcomponentsexplainedonly6.65%
ofthevariance(Figure 2a).
The PCA further uncovered previously unrecognized regional
structuringrelatedtothegeologyandgeography ofthe BCP,sam-
ples clustered according to the mountain range: southern samples
collectedonandaroundSierraLaLagunavs.northernsamplescol-
lectedonSierraLaGiganta(Figure 2).Nevertheless,thegeneticdif-
ferentiationbetweenmountainrangesw asrelativelyl ow(FST= 0.03,
p< .01).These findings werealso visibleonanindividual-basedNJ
tree(Figure 2) and were more pronouncedwhen the tree was re-
constr ucted using th e populations (s ampling sites in stead of each
specimen, Figure 3).
ADMIXTURE'scross-validationerror(CVE)indicatedthatthebest
K value for A. aureasampleswas2(Figure S1).When the individual
ancestrieswereplotted(Figure 4),atthebestKvalue(K= 2),wefound
a north–south clinal clustering of the samples, with clear geographic
structuringintonorthern(SierraLa Giganta) andsouthern(SierraLa
LagunaandCapeRegion)groups.Furtherpartitioningofthesamples,
K= 3,indicatedthatthethreesouthernmostsamplingsites(including
the A. aurea var. capensis, SLL_18) had different genomic ancestry.
Moreover,severalnorthernmostsitesalsohaddifferentancestry,with
samples in the middle of the sampled region having mixed ancestry
(Figure 4).ADMIXTURE results were confirmed by the among sam-
pling sites FSTestimation(Figure S2);thevaluesrangedfromFST= 0.03
(between SLL_13 and SLL_11, separated by ~20 km) to FST= 0.26
(SLL_17andSLL_3,separatedby~141 km).
These patterns were reinforced with the fineradstructure anal-
ysis, which pointed to the presence of three main genetic clusters
(Figure 5). The fir st group comprised samples collected in Sierra
La Giga nta; the second g roup comprise d samples of A. aurea va r.
capensis and samples of A. aurea ssp. aurea(SLL_3, SLL_4,SLL_12,
SLL_15, an d SLL_14) collected i n the souther nmost part of S ierra
La Laguna; finally, the third cluster comprised samples of A. aurea
FIGURE 2 Populationgenetic
structure of Agave aureasensuWebb
andStarr(2015)fromBajaCalifornia
Peninsula,Mexico,basedon10,765
genome-wideSNPs.(a)Principal
componentanalysis(PCA)ofthe
individuals of A. aurea.(b)Neighbor-
joining(NJ)networkof98individualsof
A. aurea.PCAandNJtreetipsarecolored
accordingtothethreesubspeciesofA.
aureasensuWebbandStarr(2015),green
A. aurea ssp. aurea,brown–A. aurea
ssp. promontorii,andblue–A. aurea var.
capensis.ShapesonPCAandNJtreetips
correspond to the mountain ranges from
where samples were collected, such as the
circleSierraLaLagunaandthetriangle
SierraLaGiganta.
(a) (b)
   
|
7 of 19
KLIMOVA et AL .
ssp. promontorii and A. aurea ssp. aurea collected roughly on the cen-
tral and northern parts of theSierra LaLaguna(Figure 5). The co-
ancestrymatrixalsoshowedhighwithin-siterelatedness(Figure 5).
3.2  | Spatial structure
The cross- validation criterion recovered for A. aurea samples using
TESS3R did not exhibit a minimum value or ap lateau(Figure S3),
probably reflecting low differentiation within agave populations.
Therefore, we plotted the results of different Kvalues(fromK 2 to
3; Figure S4).AtK= 2,sampleswerepartitionedintogroupslocated
approximatelysouthandnorthoflatitude23°N,withsamplesofA.
aurea var. capensis (SLL _18)an d one site from A. aurea ssp. aurea
(SLL_3)beingtheonlysampleswithanancestryofover99%;therest
ofthesampleshadmixedancestry(Figure S4a,c).AtK= 3,wefound
supportforthedifferentiationbetweensouthernandnorthern(cor-
respondingtothe geologicalbreak between Sierra La Giganta and
Sierr aL aL agunamountainranges)samples,similartothere sult sob-
servedwithPCAandADMIXTURE(Figure S4b,d).Nevertheless,all
thesamplespresentedsomedegreeof mixedancestry(Figure S4).
ThethirdclustercomprisedonlythespecimensbelongingtoA. aurea
va r. capensis(SLL_18)(Figure S4b,d).
Surprisingly, wefoun da low relationship between genetic FST
and geogr aphic distance ( Mantel's r= 0.17, p= .04). Par tial Mantel
tests revealed significant associations between genetic distance
andseveralenvironmentalvariables relatedto temperature(BIO2,
BIO4,BIO6,andBIO7).Nevertheless,allthesevariablesalsopre-
sentedahighcorrelationwitheachother.Wedecidedtokeeponly
thevariablewiththehighestr- statistic and lower p-value(Table S3).
Specifically, BIO 4 (Temperature Seasonality (standard deviation
× 100)) correlated significantly with genetic distance in A. aurea
sensuWebbandStarr(2015),evenafter controlling by geographic
distanceamongsamples(PartialManteltest,r= 0.33,p= .002).
Takingtogether allthe abovepopulation genetic structureand
spatial analyses, we can conclude that within A. aureasensuWebb
andStarr(2015),thereare three maingeneticclusters,albeitwith
low diverge nce among them: (i ) samples of A. aurea var. capensis,
along with several samples of A. aurea ssp. aurea, restricted to the
southernmostregionoftheBajaCaliforniaPeninsula;(ii)samplesof
A. aurea ssp. aurea,withanaffinitytoSierraLaLaguna,andsamples
of A. aurea ssp. promontorii;and (iii)samplesofA. aurea ssp. aurea
distributedattheSierraLaGiganta.
3.3  | Diversity landscape across subspecies and
populations
Toexplorehowpopulationstructure,geography,andecologicalhis-
tory of th e BCP have influenc ed the genome-wid e variation in A.
aureasensuWebbandStarr(2015),wecomparedindividual mul-
tilocusheterozygosityand inbreeding indicesbetween subspecies,
populations(mountainranges),andsamplingsites.TheoverallMLH
was 0.21 (SD 0 .01), with the lowes t values (MLH = 0.17) fou nd in
individualsfromthesamplingsitesSM_8andSLL_16andthe high-
estvalue(MLH = 0.24)inSLL_13(Figure 6, Tables S4 and S5).There
was a signif icant (p< .005) d ifference in MLH b etween mounta in
ranges,withlowerheterozygosityfoundinSierraLaLaguna,i.e.,the
FIGURE 3 Populationgeneticstructure
of A. aureafromBajaCaliforniaPeninsula,
Mexico,basedon10,765genome-wide
SNPs,representedbyaNeighbor-joining
(NJ)networkof29samplingsites.NJtree
tips are colored according to the mountain
range:Blue–SierraLaLagunaand
brown–SierraLaGiganta.Samplingsite
abbreviationscanbefoundinTable S1.
8 of 19 
|
   KLIMOVA et AL.
southernsamples (Figure 6, Table S5). Although F hat3 and FIS in-
breedingindiceswerecalculateddifferently,wefoundsimilarresults
forboth inbreedingestimates, withlowtomoderateinbreeding in
almost all individuals of A. aurea. Themean species-wideinbreed-
ingindex (Fhat3)was0.14(SD 0.05),withthe lowestvalues found
in samples from SLL_13 (0.05) and the highest inbreeding value
found inan individualfrom SM_8 (0.39). No significant difference
wasfoundfortheFhat3inbreedingindexbetweenmountainranges
(Table S6).Wealsofoundconsiderablelevelsofinbreedingmeasures
byFIS; the mean FIS was 0.14, ranging from FIS= 0.05inasamplefrom
theSLL_13toFIS= 0.31intheSM_8.TheinbreedingFIS was signifi-
cantlydifferentbetweenmountainranges,beinghigherintheSierra
LaLaguna,i.e.,thesouthernsamples(p< .001)(Table S6).
Wefurtherexploredtherelationshipsbetween the geneticdi-
versity of A. aureasensuWebbandStarr(2015) populatio ns and
BCP'sgeographyandecologicalhistory(Figure 6).Thegenomicdi-
versitychanged significantly withlatitude,both in their levels(i.e.,
MLHvs.latitudeR2= .46,p< .0001)andininbreeding(Fhatvs.lati-
tude R2= .3,p= .003;FIS vs. latitude R2= .46,p< .001).Thecorrela-
tionswerenotlinear,aslowerheterozygosityandhigherinbreeding
werefoundattheextremesofspeciesdistributionlimits.Noeffect
ofe levat iononMLH(R2= −.02,p= .61)oroninbreedingestimatedas
Fhat(R2= −.01,p= .41)wasfound.
Wedid notfindprivatealleles in A. aurea ssp. promontorii, and
only one private allele was found in A. aurea va r. capensis, whereas
2781 private alleles were found in A. aurea ssp. aurea.Whensamples
were partitioned according to the mountain range, we found within
each sampled mountain range a considerable number of unique
alleles:290 private alleles were found forsamples from Sierra La
Laguna, and 239 alleles were found for samples from Sierra La
Giganta(Tables S4 and S6).Noprivatealleleswerefoundatthesite
level. These findings aligned with the detected population structure
andgeographypatternsoftheBajaCaliforniaPeninsula.
3.4  | Species distribution modeling
ThefinalensemblemodelshadanAUCof0.94andaTSSof0.99
on average. These scores indicate that our final model had high
accuracy in predicting the A. aureasensuWebbandStarr(2015)
distribution.Theimportanceoftheselectedbioclimaticvariables
varied between thealgorithms (Table S7).Forinstance, themain
variable explaining the distribution of A. aurea sensu Webband
Starr (2015) w as BIO-15 (Pre cipitation sea sonality), with im por-
tance scoresranging from0.18(in the caseofRF)to0.24(inthe
caseofGBM).Thesecondandthirdbestvariablesvariedbetween
models; forthe RF,it was BIO-16(Precipitationof wettest quar-
ter)andBIO-18(Precipitationof warmest quarter), and for GBM,
itwasBIO-10(Meantemperatureofwarmestquarter)andBIO-03
(Isothermality).Nevertheless,thethreemost influentialvariables
FIGURE 4 Populationgeneticstructureofthe98A. aureasamplescollectedintheBajaCaliforniaPeninsula,Mexico,basedon10,765
SNPs.Barplotsoftheindividualassignmentprobabilities(verticalaxis)forthenumberofgeneticclustersfromK= 2(a)toK= 3(b)inferred
usingtheprogramADMIXTURE.Sampleswereclusteredaccordingtosamplingsitesandarrangedfromthesouthernmostsamplingsite
(left)tothenorthernmostsites(right).AboveeachBarplot,theADMIXTUREQ- values represented as pie charts for each sampling site, for
the clustering of K= 2(c)andK= 3(d),plottedonastudyareamap.PopulationcodesasgiveninTable S1.
(a) (b)
(c) (d)
   
|
9 of 19
KLIMOVA et AL .
contributed only 44% (GBM) and 35% (RF) to the explanatory
power of the model, indicating that we may have missed some im-
portant predictors of A . aureadistribution.
The final model revealed that under the current climate, the
areas havi ng suitable an d optimal cond itions for the g rowth of A.
aurea are the majority of the Cape Region, par ticularly the north-
ernendofSierraLaLaguna,aswellasthePacificcoastoftheCape
Region(Figure 7a).Theseresultsarecompatiblewiththerealdistri-
butionofthespecies(Webb&Starr,2015).
In general, the predictions of the ensemble models showed
that ther e would be a decreas e in the habitat suit ability for A .
aureasensuWebbandStarr(2015)underfutureclimaticscenar-
ios.However,therewereconsiderabledifferencesbetweenmod-
elsandSSPsinthepercentageofhabitatchange(Figures 7 and 8).
The ACCESS-ESM1-5 model produced themost catastrophic re-
su l t s , w iththeh i g hesthabi t a t l oss,wh e r e a sMIRO C 6 (SSP245)a n d
MPI-ESM1-2-LR(SSP245)projectedaslightgaininavailablehabi-
tat for A. aureasensuWebbandStarr(2015).Theresultsindicated
FIGURE 5 FineRADstructureanalysisofhaplotypesimilarityamongA. aureaspecimens.Aco-ancestrymatrixwasreconstructed
using10,765SNPs.Colorsindicatethescaleofrelatednessbetweenindividuals,withyellowrepresentinglowrelatednessandblue/black
indicatinghighrelatedness.Coloredboxesoverthephylogramcorrespondtothetwomaingeographicregions(SierraLaLagunainblueand
SierraLaGigantainbrown).SamplesarecodedasgiveninTable S1.
10 of 19 
|
   KLIMOVA et AL.
thatby2061–2080,A. aureasensuWebbandStarr(2015)willun-
dergosignificantrangechangesfromashighas−42.5%underSSP
245(ACCESS-ESM1-5)toa slightgainintherange(+9.7%)under
SSP 245(MIROC6)(Figures 7 and 8). Except for the MPI-ESM1-
2-LRandMIROC6underthemediumpathway(SSP245),allmod-
elsagreedthattherewouldbeareductioninsuitableareasforA.
aureasensuWebbandStarr(2015)from −16.7to−42.5% when
comparedtocurrentlysuitablehabitat(Figures 7 and 8).Theob-
serveddiscrepanciesamongclimatemodelsareexpectedandre-
sult from different initial conditions, different parameterizations of
inter actionsbetweenE arth'sla nd,oce an,cryosphere,atmospher e
systems, anthropogenic activities, and different future emissions
assumptions(Merrifieldetal.,2023;Sandersonetal.,2015).
All models agreed that the areas likely to b ecome unsuitable
in the fut ure include a significant part of Sier ra La Giganta (that
currentlyhas genetically unique populations) and, to some extent,
thePacificcoastoftheCapeRegion(Figures 7 and 8). In contrast,
onlyatinyportionofthecurrentlyunsuitableareaswillbecomein-
creasinglysuitablecomparedtocurrenthabitatsuitability.Theseex-
pandingsuitableareaswouldincludeaportionoftheupperpartof
SierraLaLaguna,indicatingthatthespecieswouldprobablymigrate
upward(Figure 7).
Dur ingtheMid-Holocene(about6k ya),thepredictedgeograph-
ical dis tribution of A. aurea was narrower than the contemporary
distribution, with favorable habitatssituatedprimarily in theCape
Region, especially along the Gulf of California coast (Figure S5).
Furthe r back in time, dur ing the Last G lacial Maxim um (about 22
kya), A. aurea appears to have experienced poor ecological con-
ditions,as BIOMOD2 identified very low habitat suitability in the
studyareaforthisspecies(Figure S5).
FIGURE 6 Spatialdistributionofindividual-baseddiversityofA. aureasamples.(a)Multilocusheterozygosityand(c)Fhat3inbreedingindex.
(b)Relationship(quadraticregression)betweenMLHandlatitude(R2= .46,p< .0001)and(d)betweenFhat3andlatitude(R2= .3,p< .003).
(a) (b)
(c) (d)
   
|
11 of 19
KLIMOVA et AL .
4 | DISCUSSION
4.1  | Relationships within A. aurea sensu Webb and
Starr (2015) complex
Thefirstaimofourstudywastoanalyze,usinggenomicmarkers,the
relationships among A. aureasubspecies.Wefound mixedsupport
for currently recognized taxonomic groups, withgenerally shallow
geneticdifferentiationamongmorphologicallyrecognizedvarieties.
For A. aurea var. capensis, there was a disagreement among the anal-
yses we conducted; some(i.e., TESS and PCA) indicated that only
thesamplescollectedattypelocalityCerrodelaZeta(SLL_18)had
unique genetic makeup and were differentiated from other sampling
sites. In co ntrast, AD MIXTURE , finerads tructure , and the NJ tree
groupedothersouthernmostsamplingsites(e.g.,SLL_3andSLL_4)
with A. aurea var. capensis,buteachmethodgroupedadifferentset
of sites. Independent of clustering, the divergence of A. aurea var.
capensis from other varieties was low, with only one private allele.
Thelownumberofprivateallelesmayalsobeexplainedbytherela-
tivelylowsamplesizeforA. aurea va r. capensis.
Furthermore, we found no evidence of divergence between
A. aurea ssp. promontorii and A. aurea ssp. aurea: all methods clus-
tered A. aurea ssp. promontorii with samples collected in and around
SierraLaLaguna.Nevertheless,onlyonepopulationofA. aurea ssp.
promontoriiwassampled,and itisnotimpossiblethatnonsampled
FIGURE 7 Current(a)andfuture(b–g)speciesdistributionmodels(SDMs)andtherespectivespatialshiftsforAgave aurea under
differentclimatechangescenariosandsharedsocioeconomicpathways(SSP245andSSP585).(b,c)SDMforA. aurea under future climate
scenariobasedontheACCESS-ESM1-5modelunderSSP245(b)andSSP585(c)intheyears2060–2080.(d,e)SDMforA. aurea under
futureclimatescenariobasedontheMIROC6modelunderSSP245(d)andSSP585(e)intheyears2060–2080.(f,g)SDMforA. aurea
underfutureclimatescenariobasedontheMPI-ESM1-2-LRmodelunderSSP245(f)andSSP585(g)intheyears2060–2080.Colors
correspondtothehighprobabilityofspeciespresence(orangeandred)tothelowprobability(darkblueandblue).
12 of 19 
|
   KLIMOVA et AL.
individuals located at higher elevations may present a different ge-
neticcomposition.However,samplescollectedatlowerelevations
around the mountain rangeof SierraLaLagunaweremainly found
withinoratthebordersofarroyos(drystreams)andmayrepresent
plants whose seeds were dispersedby water pulses from higher
elevations. Alth ough the seed dispersion me chanisms in A. aurea
are still unknown, water pulses are important for seed dispersion
ofotherBCPplants(suchasBrahea armata)andmayhaveastrong
effect(Wehnckeetal.,2009).
Our data, therefore, lead us to conclude that A. aurea is more likely
to represent several closely related genetic populations than separate
speciesorvarieties/subspecies.Our resultsagreewith the studyon
the Agave deser ticomplex,wherea lowcorrelationbetweencurrent
taxono my and genetic diffe rentiation was foun d (Navarro-Quez ada
et al., 2003). Moreover, our gen etic data alig n with a previous m or-
phological revision of A. aureabyWebbandStarr(2015),whofound
thatthesesubspecies wereverysimilarinvegetative characteristics,
differing primarily in size and propensity to offset or remain soli-
tary.Additionally,thehybridizationbetweensubspeciesseemstobe
common, particularly in the southern part of the distributionrange
(Gentr y,1978).Nevertheless,furtherstudiesthatwouldincludemore
samples of A. aurea ssp. promontoriifromhigherelevationswillbe
neededtodecideonthetaxonomicstatuswithinA. aurea conclusively.
4.2  | Patterns of fine- scale population
genetic structure
Agaves are an intriguing arid- adapted group of species that provide
a unique opportunity to study the influence of multiple potential
factors(i.e.,geologicalandecological)onplantpopulationstruc-
ture and diversification in the heterogeneous environment of the
BCP (Eguia rte et al., 2021; Gentr y,1978; Web b & Starr, 2015).
Nevertheless, only one previous genetic study was carried out
onBCP'sagaves,anditwasmainlyfocusedonunravelingphylo-
genetic relationships within A. deser tispeciescomplex(Navarro-
Quezadaetal.,2003).Here,wegeneratedover10 Kgenome-wide
SNPs for A. aureasensuWebbandStarr(2015), which allowed
usto uncover,in some cases, unexpected patterns of fine-scale
differentiation.
We found evidence for three main genetic groups within
A. aureasensuWebbandStarr(2015), with previ ously unre-
ported genetic separation between the two main mountain
rangesintheregion,i.e.,SierraLaLagunavs.SierraLaGiganta.
Nevertheless, the genetic divergence among the identified
groups was relatively low (FST= 0.03), consistent with the
generally shallow population genetic structure found in other
Agavoideae(Eguiarteetal.,2013).Forexample,Yucca schidig-
erapopulationsintheBCP(FST= 0.067),aswellastheendemic
Yucca capensis(FST= 0.02) (De la Rosa-Conroy et al., 2019;
Luna-Ort iz et al., 2021). Moreover, two subspe cies of Aga ve
cerulatafromthenorthoftheBCPalsoshowedlowgenetic
differentiation (FST= 0.098; Navarro-Quezada et al., 2003), as
did populations of Agave palmeriinArizona(FST= 0.04;Lindsay
et al., 2018),A gave angustifolia, in the Sonora stateofMexico
(FST= 0.076;Klimova,Gutiérrez-Rivera,etal.,2022),andA gave
potatorum in southern Mexico (FST= 0.08; Ruiz-Mondragón
et al., 2023).
The shallow genetic differentiation found within A. aurea
sensuWebb& Starr(1985)coincideswiththeA gave life history:
FIGURE 8 Thepercentageof
distributionrangechangeinAgave aurea
sensuWebbandStarr(2015)under
future climate change in 2060–2080 and
different climate scenarios.
   
|
13 of 19
KLIMOVA et AL .
outcrossingbreedingsystem,longgenerationtime,possibilityof
clonal reproduction, and involvement of long- distance pollinators
(batsandbirds)(Eguiarteetal.,2013, 2021).Apparently,nothing
is known yet a bout seed and p ollen disper sal in A. aurea sensu
WebbandSt arr(2015).Nevertheless,withintherangeofA. aurea,
the nectar-feeding bat Leptonycteris yerbabuenaecanbefound
(Arteagaetal.,2018).Thisbatspeciesisregardedasthemostim-
portant pollinator for the majorit y of Agaves(Fensteretal.,2004;
Flores-Abreu e t al., 2019; Trejo-Salazar etal., 2023), and it i s a
possiblepollinator of A. aurea.Moreover, L. yerbabuenae on the
BCPrepresents onepanmictic population (Arteaga et al.,2018),
suggesting that individuals can move over long distances, carr y-
ing polle n, homogenizing p opulations, a nd reducing the e ffects
of genetic drift and selection in agaves. Nevertheless, studies on
pollenandseeddispersalinagavesonBCPwillbeneededtoun-
derstandbetterthedrivers behindtheobservedpopulation ge-
netic structure.
Interestingly, several animal species display a genetic split
roughlynorthofLaPazcity(Dolbyetal.,2015; Riddle et al., 2000),
similar to the one found in A. aureasensuWebbandStarr(2015).
Thisgeneticsplithasbeenexplainedbyoneofthemajorvicariance
eventsontheBCP,thetemporary isolationofsouthernBaja(Cape
Region)fromtherestofthePeninsula,owingtooceanicinundation
oftheIsthmusofLaPazca.3 Ma(Riddleetal.,2000).Nevertheless,
the distribution patterns of many plant species do not agree with
thishypothesis(Arteagaetal.,2020;Garricketal.,2009;Gutiérrez-
Flores et al., 2016; Klimova e t al., 2018), sugges ting more recent
ecologicaleventsrelatedtoQuaternaryclimatefluctuations(Araya-
Donoso et al., 2022).Due to the low divergence between A. aurea
sensuWebbandStar r(2015)oneachmountainrange,wearguethat
thesplitisunlikelytohavebeencausedbythemillion-year-oldinun-
dationoftheIsthmusofLaPaz.
The divergence in A. aureasensuWebbandStarr(2015)may
have resulted from more recent climatic conditions on and around
each mountain range. Based on biotic characteristics, Sierra La
GigantaandtheCapeRegion(i.e.,SierraLaLagunaandsurround-
ing areas) are considered two different ecoregions (De La Luz
et al., 2008;González-Abrahametal.,2010),eachwithcharacter-
istic flora and climatic conditions.Moreover,Sierra La Gigantais
surroundedbyextremelyaridsandylow-elevationdesertareasof
theMagdalenaPlains,whichmay actas abarriertothedispersal
ofgenesandfortheestablishmentofseedlings.PopulationsofA.
aureasensuWebbandStarr(2015)inSierraLaGigantaarescat-
teredand canonlybe foundathilltops or neararroyos (Author's
observation), which may further preclude connectivity among
geographic regions. We alsofou nda signific antrelationship be-
tweengeneticdistanceandtemperature(particularlytemperature
seasonality), which suggests divergence among samples on each
mountain range and local adaptation. Further studies should delve
into the genomic divergence among the A. aurea populations and
searchfortheparticularlocithatmaycontributetotheobserved
differentiation pattern.
4.3  | Genomic diversity and possible route of
range expansion
Quaternary glacial–interglacial climate cycles with significant
temperature and precipitation changes have resulted in species
distributionshiftsacrosstheglobe(Hewitt,2000, 2004).Thisises-
peciallytrue forplants, giventhat their distributions, phenologies,
and physio logical tolera nces can be stron gly tied to precipi tation
or the frequency and severi ty of winter frost s (McAuliffe & Van
Devender, 1998; Van Devender, 2021).
InBCP,adramaticchangeinfloralcompositionhappenedsince
theLastGlacialMaximum(LGM;ca.21kya)(Butterfieldetal.,20 19;
Dolby et al.,2015; Van Devender, 1977 ), when a cooler and wet-
terenvironmentbegantotransitiontowarmeranddrierconditions,
and species once wid espread in the lowlands followed favorable
habitat , moved up in elevatio n and latitude, or sh eltered in scat-
tered oases (Butterfield et al., 2019; Grismer & McGuire, 1993;
Klimovaetal.,2017;McAuliffe&VanDevender,1998).Novelarid-
adapted communities replaced mesic woodland vegetation (Van
Devender, 1977 ). Mid-Holocene range shifts of Sonoran Desert
communitiesrecognizable from plant macrofossils in packratmid-
dens (Van Devender etal., 1994), and genetic dataofdesert plant
species p rovide stron g evidence of sout hward and nor thward ex-
pansion from refugia(Clark-Tapia & Molina-Freaner, 2003; De La
Rosa- Conroy et al., 2019;Garricketal.,2009; Nason et al., 2002).
Range exp ansions are usually d escribed by found er effects ,
whereafewindividuals(thefounders)leaveasourcepopulation,
colonizeanewneighboringarea,expand,andsendfurtherfound-
ers. This repeated process leads to reduced genetic diversity along
theexpansionaxis(Austerlitzetal.,1997;Slatkin&Excoffier,2012).
OurSNPdata forA. aureasensuWebbandStarr(2015)suppor t
theassumptionthatrangeexpansionhasplayedanimportantrole
inshapingspatialpatternsofintraspecificdiversity.However,the
northward expansion along the BCPinferred for two columnar
cacti(Clark-Tapia&Molina-Freaner,2003; Nason et al., 2002)was
not seen in A. aureasensuWebbandStarr(2015),nordidweob-
servetwoexpansionevent sfromdi fferentr efugia,aswasinfer red
for the desert Euphorbia lomelii(Garricketal.,2009).Thedecrease
indiversitywithincreasinganddecreasinglatitudesuggestsboth
southwardandnorthwardexpansionsofA. aureasensuWebband
Starr (2015) f rom a single refugium , located presuma bly in the
northern par t of the Cape Region, an area with high genetic diver-
sity,lowinbreeding,andsuitableecologicalconditionsaccording
to SDM. Th e best model exp laining diversi ty distribu tion (MLH
and inbreeding index) in A. aureasensuWebbandStarr(2015)
was a quadratic model with the highest diversit y and the lowest
inbreedingconcentratedapproximatelybetweenlatitudes24and
25. From there, the diversity steadily decreased toward the north
and south.
Furthersupportfortheabovescenariocomesfromthespecies
distributionmodelinganalysis.Theobservedreductioningeneticdi-
versityislocatedwithinanareawhereavailablesuitablehabitathas
14 of 19 
|
   KLIMOVA et AL.
increased since the LGM (22 ka) andMid-Holocene (~ 6kya). Both
linesofevidence,geneticandclimatic,suggestarecentbidirectional
rangeexpansionofA. aurea.
4.4  | Climatic future for A. aurea sensu Webb and
Starr (2015) and conservation implications
Climate change is expectedto shift plantdistributionasspecies
expand to newlyfavorableareasanddeclineinincreasinglyhos-
tile locations. Ecosystemswhose functioning is mainly drivenby
precipitationshouldbe particularlyvulnerabletoclimatechange
(Tompkins&Adger,2004).Aridregionsrepresentthebestexam-
pleof highlyvulnerable ecosystemsbecause warming may drive
plant species to their physiological limits, and a decrease in pre-
cipitationwillaggravatesucheffects.Indeed,globalassessments
have ranked deserts and semideserts at the forefront of vulner-
abilitytoglobalclimatechange(Salaetal.,2000;Mirzabaevetal.,
2019).
Although authors like Tielbörger and Salguero-mez (2013)
argue that adaptations to lack of water and high temperatures com-
monly found in desert plants may result in the resilience of dryland
species to climate change, the current evidence of the Sonoran
Desertvegetationistellingacontrastingstory(Hantsonetal.,2021).
AsignificantdeclineintheNormalizedDifferenceVegetationIndex
(NDVI),vegetationcover,communitychanges,andspeciesdistribu-
tionshiftshavebeenobserved,withthemoststrikingchangesbeing
recordedinthelowlanddesertarea(Hantsonetal.,2021;Madsen-
Hepp et al., 2023). Moreover,other drivers of global change, such
asovergrazingbyfree-roaminglivestock,mismanagementpractices
in agriculture, and man- induced desertification, continuously in-
creasethepressureonaridecosystemsandmayleadtoirreversible
degradation(Carbonietal.,2023;Oswald&Harris,2023; Reynolds
et al., 20 07; Thornton et al., 2009).
Underalmostallclimatechangescenariosanalyzed,thesuitable
habitat forA. aureasensuWebbandStarr(2015)isexpectedtobe
reduced; this trend is particularlynotable under the high-end SSP
585. There we re exceptions in SDM re lated to particu lar models
(MPI-ESM1-2-LRandMIROC6)andtherelativelyoptimisticSSP245,
where A. aureawe r e s lightlygainin g n e w h a b it a t(~8%).Nevertheless,
wepredicted that, on average, by 2070, A. aurea would lose over
20%ofitscurrentlyavailablehabitat.Ourresultsareconsistentwith
the proposed hypothesis that warming temperatures and increased
water limitation negatively affect desert-adapted species (Bombi
et al., 2021;Hantsonetal.,2021;Vale&Brito,2015).
Moreover, climatechange isalso predicted to alterplant–plant
and plant–pollinator interactions, which are essential for agaves
(Bloisetal.,2013; Creech et al., 2023;Gómez-Ruiz&Lacher,2019).
Nurse plants are crucial for the establishment of agave species
(Rangel-Landa et al., 2015), with germination, growth, and sur-
vival pos itively affe cted by the pre sence of a nurse pl ant (Franco
&Nobel, 1988; Rangel- Landa et al., 2015).Meanwhile, thedisrup-
tion of plant–pollinator interactions may have a negative effect on
the sexu al reproduct ion, genetic var iability, and diff erentiation of
A. aureasensuWebbandStarr(2015),increasing its vulnerability
(Gómez-Ruiz&Lacher,2019).
Currently,agavesexperienceadiverserangeofthreats.Inmany
areas,thepredominantdangeristhedirecthumanextractionofwild
agavesusedasrawmaterialforalcoholicbeverage(mezcal)produc-
tion.Moreover,habitat degradation,landusechange, and agricul-
ture are con siderable th reats to agaves , affecti ng species in lar ge
partsofMexico(Delgado-Lemusetal.,2 014; Tetreault et al., 2021;
Valiente- Banuet, 2023).Onthe BCP,due to historically low popu-
lation density, agaves used to enjoy relatively low anthropogenic
pressure. Nevertheless, our results showed that future climates of
hotter and more arid conditions would not appear to favor Agave
aureasensuWebbandStarr(2015)asaconsiderablepartofth espe-
cies’currentlyfavorablehabitatisprojectedtodisappear.
Our study provides the first report on the population genom-
icsandspeciesdistribution modelinginformation inA. aurea sensu
Webb and Starr (2015), which may be used in conservation and
management.Wepropose toconsiderthe threeidentifiedgenetic
groups as separated genetic units or management units: the south-
ernmostpopulations,theplantsfromSierraLaGiganta,andplants
from the Cape Regiondistributed onandaroundSierraLa Laguna
(Moritz, 2004). This information is particularly important for the
southernmost and northernmost populations. First, these groups
have lower geneticdiver sity and increased inbreeding. Moreover,
the southernmost populations are under the heaviest anthropo-
genicimpact,asthey are located in an areaof fasturban develop-
ment. On the other hand, the northernmost populations are less
abundantand,basedonourdata,arevulnerabletoclimatechange.
Considering how lit tle is known about A . aurea sensu Webb and
Starr (2015), c onservati on actions are u rgently need ed to protect
thisspecies.Additionally,moreresearchisnecessarytounderstand
isolationbarriersandfactorsgoverningthisspecies'genomicstruc-
tureanddiversity.Forexample,anoutlieranalysismaypointtothe
genomic regions involved in the observed pattern of geographic
structuringandisolation-by-environment(IBE).
AUTHOR CONTRIBUTIONS
Anastasia Klimova:Conceptualization(equal);datacuration(equal);
formal analysis (lead); investigation (equal); methodology (equal);
software(equal);visualization(equal);writing–originaldraft(lead);
writing – r eview and editi ng (equal). Jesús Gutíerrez- Rivera: Data
curation (equal); methodology (equal); resources (equal); writing
– review and editing (equal). Alfredo Ortega- Rubio: Funding ac-
quisition(supporting); resources (equal); validation (equal); writing
– review and editing (equal). Luis E. Eguiarte: Conceptualization
(equal); funding acquisition (lead); project administration (equal);
resources(equal);supervision(equal);visualization(equal);writing–
reviewandediting(equal).
ACKNOWLEDGMENTS
TheauthorsaregratefultoAlfonsoMedelNarváezfromCentrode
InvestigacionesBiológicasdelNoroeste(CIBNOR)forcontributingto
   
|
15 of 19
KLIMOVA et AL .
thecollectionoftheagavesamples.WethankErikaAguirre-Planter
for logistic support in processing and sequencing the samples.
FUNDING INFORMATION
ThisworkwasfundedinpartbyprojectPAPIITIG200122,UNAM,
toLuisE.EguiarteandRafaelLiraandbytheoperativebudgetofthe
InstitutodeEcología,UNAM.
CONFLICT OF INTEREST STATEMENT
None declared.
DATA AVAIL AB ILI T Y STAT E MEN T
All of the genotypes are available from Dryad (DOI: 10 .50 61/
dryad.0cfxpnw8t). Private access to download the data files URL:
h t t p s : / / d a t a d r y a d . o r g / s t a s h / s h a r e / C z a R Q Z l C 9 y C x l _ 7 M F J M o 2 W I l
a O u Z h 9 x 2 r r d P A P q 8 a A g .
BENEFIT SHARING
Benefits from this research accrue from the sharing of our data and
resultsonpublicdatabasesasdescribedabove.
ORCID
Anastasia Klimova https://orcid.org/0000-0002-1502-2910
REFERENCES
Alducin-Martínez,C., Mondragón,K.Y.R.,Jiménez-Barrón,O.,Aguirre-
Planter,E.,Gasca-Pineda,J.,Eguiarte,L.E.,&Medellín,R.A.(2022).
Uses, knowledge and extinction risk faced by agave species in
Mexico.Plants, 12(1),124.https:// doi. org/ 10. 3390/ plant s1201 0124
Alexander,D.H.,&Lange,K.(2011).EnhancementstotheADMIXTURE
algorithm for individual ancestry estimation. BMC Bioinformatics,
12(1),246.ht tps:// doi. or g/ 10 . 1186/ 1471- 2105- 12- 246
Alexan der, D. H., Novembr e, J., & Lange , K. (200 9).Fas t model-ba sed
estimation of ancestr y in unrelated individuals. Genome Research,
19(9),1655–1664.https:// doi. org / 10. 1101/ gr. 094 052. 109
Andrews,S.(2010).FastQC:AQualityControlToolforHighThroughput
SequenceData [Online]. h t t p : / / w w w . b i o i n f o r m a t i c s . b a b r a h a m . a c .
uk/ proje cts/ fastqc/
Andrews,K.R.,Good,J.M.,Miller,M.R.,Luikart,G.,&Hohenlohe,P.A.
(2016).HarnessingthepowerofR ADseqforecologicalandevolu-
tionary genomics. Nature Reviews. Genetics, 17(2), 81–92.h tt p s ://
doi. org/ 10. 1038/ nrg. 2015. 28
Araya-D onoso, R. , Baty, S. M., Al onso-Alon so, P.,Sa nín, M. J., Wi lder,
B.T.,Munguía-Vega,A .,&Dolby,G.A.(2022).Implicationsofbar-
rier ephemerality in geogenomic research. Journal of Biogeography,
49(11),2050–2063.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j b i . 1 4 4 8 7
Arteaga,M.C.,Bello-Bedoy,R.,&Gasca-Pineda,J.(2020).Hybridization
betweenyuccasfromBajaCalifornia:Genomic and environmen-
tal patterns. Frontiers in Plant Science, 11, 685. https:// doi. org/ 10.
3389/ fpls. 2020. 00685
Arteaga, M. C.,Medellín, R. A.,Luna-Ortíz,P.A., Heady,P.A., & Frick,
W.F. (2018). Geneticdiversity distribution among seasonalcolo-
niesof anectar-feedingbat(Leptonycteris yerbabuenae)intheBaja
California peninsula. Mammalian Biology, 92, 78–85. ht tps: // d o i .
o r g / 1 0 . 1 0 1 6 / j . m a m b i o . 2 0 1 8 . 0 4 . 0 0 8
Austerlitz,F.,Jung-Muller,B.,Godelle,B.,&Gouyon,P.(1997).Evolution
of coalescence times, genetic diversity and structure during colo-
nization.Theoretical Population Biology, 51(2),148–164.h t t p s : // d o i .
o r g / 1 0 . 1 0 0 6 / t p b i . 1 9 9 7 . 1 3 0 2
Axelrod,D.I.(1978).Theoriginofcoastalsagevegetation,AltaandBaja
California. American Journal of Botany, 65(10),1117.https:// doi. org/
10. 2307/ 2442330
Benavides, E., Breceda, A., &Anadón,J.D.(2020). Winners andlosers
in the predicted impact of climate change on cacti species in B aja
California. Plant Ecology, 222(1), 29–44. https:// doi. org/ 10. 10 07/
s1125 8- 020- 01085 - 2
Blois, J. L ., Zarnet ske, P. L., Fit zpatrick, M . C., & Finneg an, S. (2013).
Climatechangeandthepast,present,andfutureofbioticinterac-
tions. Science, 3 41(6145), 499–504. https:// doi. org/ 10. 1126/ scien
ce. 1237184
Bombi,P.,Salvi,D.,Shuuya,T.,Vignoli,L.,&Wassenaar,T.(2021).Climate
change ef fects on de sert ecosy stems: A case s tudy on the key-
stonespeciesoftheNamibDesertWelwitschiamirabilis.PLoS One,
16(11),e0259767.https:// doi. org/ 10. 1371/ journ al. pone. 0259767
Bradburd,G.S.,Ralph,P.L.,&Coop,G.(2013).Disentanglingtheeffects
of geographic and ecologic al isolation on genetic dif ferentiation.
Evolution, 67(11),3258–3273.https:// doi. org/ 10. 1111/ evo. 12193
Breiman, L. (20 01). Random forests. Machine Learning, 45(1), 5–32.
htt ps:// doi. org/ 10. 10 23/a: 10109 33 40 4324
Brown, C ., Rodríguez-Buriticá, S., Goldberg, D. E., Reichenbacher, F.,
Venab le,D.L .,We bb,R. H.,&Wilde r,B .T.(2 02 3).O nehundredand
sixyears ofchangein a Sonoran Desert plantcommunit y: Impact
of climate anomalies and trends in species sensitivities. Ecology,
105(3),e4194.https:// doi. o rg / 10. 1002/ ec y. 4194
Butterfield, B. J.,Anderson, R.S., Holmgren,C. A., & Betancour t, J. L.
(2019).Extinctiondebtanddelayedcolonizationhavehadcompa-
rablebutuniqueeffectsonplantcommunity–climatelagssincethe
lastglacialmaximum.Global Ecology and Biogeography, 28(8),1067–
10 7 7. h t t p s : / /d o i . o r g / 1 0 . 1 1 1 1 / g e b . 1 2 9 1 5
Carboni,L.J.,Yahdjian,L.,&Oñatibia,G. R. (2023).Effects oflivestock
grazing intensificatio n on plant communities of Patagonian dry-
lands increase with increasing aridity. Applied Vegetation Science,
26(4),e12754.htt ps:// doi. org/ 10 . 1111/ av sc . 12754
Catche n, J. M., Hohenl ohe, P.A ., Bassham , S., Amores, A ., & Cresko,
W. A. (2013). Sta cks: An ana lysis tool set f or populat ion genom-
ics. Molecular Ecology, 22(11),3124–3140.ht tps:// doi . org/ 10. 1111/
mec. 12354
Caye,K., Deist, T.M.,Martins,H., Michel,O.,&Ochsenbein, F.(2015).
TESS3:Fastinferenceofspatialpopulationstructureandgenome
scans for selection. Molecular Ecology Resources, 16(2),540–548.
htt ps:// doi. org / 10. 1111/ 1755- 09 98. 12471
Chang, C ., Chow, C. C ., Tellier, L., Vattik uti, S., Purc ell, S., & Lee , J. J.
(2015).Second-generationPLINK:Risingtothechallengeoflarger
and richer datasets. GigaScience, 4(1), 7.https:// doi. org/ 10. 1186/
s1374 2- 015- 0047- 8
Chen,S.,Zhou,Y.,Chen,Y.,&Gu,J.(2018).Fastp:Anultra-fastall-in-one
FASTQpreprocessor.Bioinformatics, 34(17),i88 4–i890.h t t p s : // doi.
o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / b t y 5 6 0
Clark-Tapia,R.,&Molina-Freaner,F.(2003).The genetic structureofa
columnarcactuswithadisjunctdistribution:Stenocereus gummosus
intheSonorandesert.Heredity, 90(6),443–450.https:// doi. org/ 10.
103 8/ sj. hd y. 6 80 0 252
Cody,M.L.(20 00).Slow-motionpopulationdynamicsinMojaveDesert
perennial plants. Journal of Vegetation Science, 11 (3), 351–358.
https:// doi. org/ 10. 2307/ 3236627
Creech,T.G.,Williamson,M. A.,Sesnie,S.E.,Rubin,E.S.,Cayan,D.R.,
&Fleishman, E. (2023).Effects of changing climate extremes and
vegetation phenology on wildlife associated with grasslands in the
southwesternUnitedStates.Environmental Research Letters, 18(10),
104028. h t t p s : / / d o i . o r g / 1 0 . 1 0 8 8 / 1 7 4 8 - 9 3 2 6 / a c f 8 d b
Danecek,P.,Auton,A.,Abecasis,G.R.,Albers,C.A.,Banks,E.,DePristo,
M.A.,Handsaker,R.E.,Lunter,G.,Mar th,G.,Sherr y,S.T.,McVean,
G., & Durbin, R. (2011). The variant call format and VCFtools.
Bioinformatics, 27(15), 2156–2158. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / b i o i n
f o r m a t i c s / b t r 3 3 0
16 of 19 
|
   KLIMOVA et AL.
Danecek,P.,Bonfield,J.K.,Liddle,J.,Marshall,J.,Ohan,V.,Pollard,M.,
Whitwham, A.,Keane, T.M.,McCarthy,S., Davies,R. M., & Li, H.
(2021).TwelveyearsofSAMtoolsandBCFtools.GigaScience, 10 (2),
giab008.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / g i g a s c i e n c e / g i a b 0 0 8
Dávila, P., Soto-Trejo, F., Rodríguez-Arévalo, I., Ponce, A ., Arias, S.,
Escalante, A.E., Téllez-Valdés, O., & Ponce, A.(2022). Wild plant
conservation in Mexico in the 21st century. Botanical Sciences,
100 (Special),S175–S197.h t t p s : / / d o i . o r g / 1 0 . 1 7 1 2 9 / b o t s c i . 3 0 6 6
De La Luz, J. L. L.,Rebman, J. P.,Domínguez-León, M., &Domínguez-
Cadena,R.(2008).Thevascularflora and floristicrelationshipsof
theSierradeLaGigantainBajaCaliforniaSur,MexicoLafloravas-
cular ylasrelaciones florísticasdelasierradeLaGigantadeBaja
Califo rnia Sur, México. DOAJ Journals, 79(1), 29–65. https:// doaj.
o r g / a r t i c l e / 0 2 8 f e 5 b a 1 a 1 4 4 c 3 f 9 d 2 8 9 4 f c 8 1 4 d 2 a 0 e
De La Ros a-Conroy, L., Ga sca-Pineda , J., Bello-Be doy,R ., Eguiar te, L.
E.,&Arteaga,M.C.(2019).Geneticpatternsandchangesinavail-
abilityofsuitablehabitatsupportacolonisationhistoryofanorth
Americanperennialplant.Plant Biology, 22(2),233–242.ht t p s :// d o i .
o r g / 1 0 . 1 1 1 1 / p l b . 1 3 0 5 3
Delgado-Lemus,A.,Torres,I.,Blancas,J.,&Casas,A.(2014).Vulnerability
and risk management of Agave species in the Tehuacán Valley,
México. Journal of Ethnobiology and Ethnomedicine, 10(1), 53.
htt ps:// doi. org / 10. 1186/ 1746- 4269- 10- 5 3
Dolby,G.A.,Bennett,S.,Lira-Noriega,A.,Wilder,B.T.,&Munguía-Vega,
A.(2015).Assessingthegeologicalandclimaticforcingofbiodiver-
sityandevolutionsurroundingtheGulfofCalifornia.Journal of the
Southwest, 57(2–3), 391–455. https:// doi. org/ 10. 1353/ jsw. 2015.
0005
Doyle, J. J.,& Doyle,J. L. (1987).A rapid DNAisolation procedure for
small quantities of fresh leaf tissue. Phytochemical Bulletin, 19,
11–1 5 .
Dray,S.,&Dufour,A. (2007). TheADE4Package: Implementing the du-
ality diagram for ecologists. Journal of Statistical Software, 22(4),
1–20 . https:// doi. org/ 10. 18637/ jss. v022. i04
Eguiarte,L.E.,Aguirre-Planter,E.,A guirre,X.,Colín,R.P.,González,A .,
Rocha, M ., Scheinvar, E., Trejo, L ., & Souza, V. (2013). From iso -
zymestogenomics:Populationgeneticsandconservationofagave
inMéxico.The Botanical Review, 79(4),483–506.https:// doi. org/ 10.
1 0 0 7 /s 1 2 2 2 9 - 0 1 3 - 9 1 2 3 - x
Eguiarte,L. E., Barrón, O.,Aguirre-Planter,E.,Scheinvar,E.,Gámez, N.,
Gasca-Pineda, J., Castellanos-Morales, G., Moreno-Letelier, A.,
& Souza, V. (2021). Evolutionary ecology of agave: Distribution
patterns, phylogeny, and coevolution (an homage to Howard S.
Gentry). American Journal of Botany, 108 (2), 216–235.h t t p s : // d o i .
o r g / 1 0 . 1 0 0 2 / a j b 2 . 1 6 0 9
Elshire,R.J.,Glaubitz,J.C.,Sun,Q.,Poland,J.A.,Kawamoto,K.,Buckler,
E. S., & Mitchell, S. E. (2011). A robust, simple Genotyping-by-
Sequen cing (GBS) app roach for hig h diversit y species. PLoS One,
6(5),e19379.https:// doi. org/ 10. 1371/ journ al. pone. 0019379
Ersts,P.(2013). Geographic dis tance matrix Generatos (v.1.2.3).American
Museum of Natural History, Center for Biodiversity and
Conservation. h t t p s : / / b i o d i v e r s i t y i n f o r m a t i c s . a m n h . o r g / o p e n _
source/ gdmg/
Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., &
Thomson,J. D.(2004).Pollinationsyndromesandfloral special-
ization.Annual Review of Ecolog y, Evolution, and Systematic s, 35(1),
375–403. https:// doi. org/ 10. 1146/ annur ev. ecols ys. 34. 011802.
132347
Fick ,S.E.,&Hijma ns,R.J.(20 17 ). WorldClim2:New 1-kms patia lr eso -
lutionclimatesurfacesforgloballandareas.International Journal
of Climatology, 37(12), 4302–4315. https:// doi. org/ 10. 1002/ joc.
5086
Flores-Abreu, I., Trejo-Salazar, R., Sánchez-Reyes, L . L., Good, S. V.,
Magallón,S.,García-Mendoza,A.,&Eguiarte,L.E.(2019).Tempoand
mode in co evolution of Agave sensu lato(Agavoideae,Asparagaceae)
anditsbatpollinators,Glossophaginae(Phyllostomidae).Molecular
Phylogenetics and Evolution, 133, 176–188. https:// doi. org/ 10.
1016/j. ympev. 2019. 01. 004
Franco, A . C.,&Nobel, P.S.(1988).Interactionsbetween seedlingsof
agave deserti and the nur se plant Hilaria rigida. Ecology, 69(6),1731–
1740. https :// doi. org/ 10. 2307/ 1941151
Frankham, R., Ballou, J. D., Briscoe, D. A., & McInnes, K. H. (2002).
Introduction to conservation genetics. htt ps:// doi. org / 10. 1017/
cbo9780511808999
Frenzel, B . (2005). Histo ry of flora an d vegetation du ring the quate r-
naryNorthAmerica.InProgress in botany(pp.409–440).Springer.
htt ps:// doi. org / 10. 1007/ 3- 540- 270 43 - 4_ 17
Ga o, J. ,Liu,H.,Wang ,N. ,Yang,J.,&Zha ng,X.(20 20).P lantexti nct ion ex-
celsplantspeciationintheAnthropocene.BMC Plant Biology, 20(1),
430. https:// doi. org/ 10. 1186/ s1287 0- 020- 02646 - 3
Garcillán,P.P.,González-Abraham,C. E., & Ezcurra, E. (2010).Thecar-
tographers of life: Two centuries of mapping the natural his- tory of
Baja California. Journal of the Southwest, 52, 1– 4 0.
Garrick,R.C.,Nason,J.D.,Meadows,C.A.,&Dyer,R.J.(2009).Notjust
vicariance:PhylogeographyofaSonoranDeserteuphorbindicates
amajorroleofrangeexpansionalongtheBajapeninsula.Molecular
Ecology, 18(9), 1916–1931. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 9 4 x .
2 0 0 9 . 0 4 1 4 8 . x
GBIF.org.(2023).GBIFHomePage.h t t p s : // w w w . g b i f . o r g
Gentry,H.S.(1978).The agaves of Baja California.CaliforniaAcademyof
Sciences.
Gentry,H.S. (1982).Agaves of continental North America. Univer sity of
ArizonaPress.
Gómez-Ruiz, E. P.,&Lacher,T.E. (2019).Climate change, range shifts,
andthedisruptionofapollinator-plantcomplex.Scientific Reports,
9(1),14048.https:// doi. org / 10. 1038/ s4159 8- 019- 50 059 - 6
González-Abraham, C. E., Garcillán, P. P., & Ezcurra, E. (2010).
Ecorregiones de la p enínsula de Baja C alifornia: Una síntesis.
Botanical Sciences, 87, 69–82. h t t p s : / / d o i . o r g / 1 0 . 1 7 1 2 9 / b o t s c i . 3 0 2
Good-Avila,S.V.,Souza, V.,Gaut,B.S.,& Eguiarte,L.E. (2006).Timing
and rate of speciation in agave (Agavaceae). Proceedings of the
National A cademy of Science s of the United States of Am erica, 103(24),
9124–9129. https:// doi. org/ 10. 1073/ pnas. 06033 12103
Grismer, L. L. (2000). Evolutionary biogeography on Mexico's Baja
Californiapeninsula: Asynthesisofmoleculesand historicalgeol-
og y. Proceedings of the National Academy of Sciences of the United
States of America, 97(26) , 14017–14018 . http s:// doi. org / 10. 1073/
pnas . 26 050 9697
Grismer, L. L., & McGuire, J. A. (1993). The oases of central Baja
California, Mexico. PartI. A preliminaryaccountofthe relictme-
sophilic herpetofauna and the st atus of the oases. Bulletin of the
Southern California Academy of Sciences, 92, 2–24.
Gross, S.,Martin,J. A.,Simpson,J.,Abraham-Juárez, M. J.,Wang, Z., &
Visel,A.(2013).Denovotranscriptomeassemblyofdroughttoler-
antCAMplants,Agave deserti and Agave tequilana. BMC Genomics,
14(1),563.htt ps:// doi. org/ 10. 1186/ 1471- 216 4- 14- 563
Guisan,A.,Thuiller,W.,&Zimmermann,N.E.(2017).HabitatSuitability
andDistributionModels.https:// doi. org/ 10. 1017/ 97811 39028271
Gutiérrez-Flores,C.,DeLeón,F.J.G.,DeLaLuz,J.L.L.,&Cota-Sánchez,
J.H.(2016).Microsatellitegeneticdiversityandmatingsystemsin
the columnar cactus Pachycereus pringlei(Cactaceae).Perspectives
in Plant Ecology, Evolution a nd Systematics, 22, 1–10. https:// doi. org/
10. 1016/j. ppees. 2016. 06. 003
Hantson,S.,Huxman,T.E.,Kimball,S.,Randerson,J. T.,& Goulden, M.
L. (2021). War ming as a drive r of vegetatio n loss in the So noran
deser t of California. Journal of Geophysical Research Biogeosciences,
126(6),e2020JG0 05942.https:// doi. org/ 10. 1029/ 2020j g005942
Hewit t, G. M. (200 0). The genet ic legacy of th e quaternar y ice ages.
Nature, 405(6789),907–913.htt ps:// doi. or g/ 10. 1038/ 35016 00 0
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in
the quaternary. Philosophical Transactions of the Royal Society B,
359(1442),183–195.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 8 / r s t b . 2 0 0 3 . 1 3 8 8
   
|
17 of 19
KLIMOVA et AL .
Hijmans,R.J.,Cameron,S.E.,Parra,J.L.,Jones,P.G.,&Jarvis,A.(2005).
Very high resolution interpolatedclimatesurfaces for global land
areas. International Journal of Climatology, 25(15), 1965–1978.
https:// doi. org/ 10. 1002/ joc. 1276
IUCN. (2 023). The IUCN Red List of Threatened Species. Version 2023- 1.
https:// www. iucnr edlist. org
Jickells,T.D.,An,Z.,Andersen,K.H.,Baker,A.R.,Bergametti,G.,Brooks,
N., Cao,J., Boyd, P.W.,Duce, R.A.,Hunter, K. A ., Kawahata,H.,
Kubilay,N.,LaRoche,J.,Liss,P.S.,Mahowald,N.M.,Prospero,J.M.,
Ridgwell,A.,Tegen,I.,&Torres,R.(2005).Globalironconnections
betweendesertdust,oceanbiogeochemistry,andclimate.Science,
308(5718),67–71.https:// doi. org/ 10. 1126/ scien ce. 1105959
Jiménez-Barrón,O.,García-Sandoval,R.,Magallón,S.,García-Mendoza,
A., Nie to-Sotelo, J., Agu irre-Planter, E., & Eg uiarte, L. E . (2020).
Phylogeny,diversificationrate,anddivergencetimeofAgavesensu
lato(Asparagaceae),aGroupofRecentOriginintheprocessofdi-
versification. Frontiers in Plant Science, 11, 536135. https:// doi. org/
10. 3389/ fpls. 2020. 536135
Kamvar,Z.N.,Brooks,J.C.,&Grünwald, N.J.(2015).NovelRtools for
analysis of genome- wide population genetic data with emphasis
on clonality. Frontiers in Genetics, 6, 208. ht tps:// doi. org/ 10. 3389/
fgene. 2015. 00208
Khan,S.A.,&Verma,S.(2022).Ensemblemodelingtopredictt heimpact
offutureclimatechangeontheglobaldistributionofOlea europaea
subsp.cuspidata.Frontiers in Forests and Global Change, 5, 997691.
https:// doi. org/ 10. 3389/ ffgc. 2022. 977691
Klimova,A.,Gutiérrez-Rivera,J.N.,Sánchez-Sotomayor,V.,&Hoffman,
J.I .(2022).T hegene ti cconsequ en ce sofcaptivebreeding ,environ-
mentalchangeandhumanexploitationintheendangeredpeninsu-
lar pronghorn. Scientific Reports, 12(1),11253. https:// doi. org/ 10.
1038/ s 4159 8- 022- 14468 - 4
Klimova , A., Hof fman, J. I., G utiérrez-R ivera, J. N., D e La Luz, J. L ., &
Ortega-Rubio, A . (2017). Molecular genetic analysis of two na-
tive desert palm genera, Washingtonia and Brahea, from the Baja
Califo rnia Peninsu la and Guad alupe Islan d. Ecology and Evolution,
7(13),4919–4935.https :// doi. o rg/ 10. 1002/ ece3. 303 6
Klimova,A.,Mondragón,K .Y.R.,Molina-Freaner,F.,Aguirre-Planter,E.,
&Eguiar te, L.E. (2022). Genomic analyses ofwild andcultivated
Bacanoraagave( Agave angustifolia va r. pacifica)revealinbreeding,
few signs of cultivation history and shallow population structure.
Plants, 11(11),1426.htt ps:// doi. or g/ 10 . 3 390/ plant s1111 1426
Klimova,A.,Ortega-Rubio,A.,Vendrami,D.L.J.,&Hoffman,J.I.(2018).
Genotypingbysequencingrevealscontrastingpatternsofpopula-
tion structure, ecologically mediated divergence, and long- distance
dispersal in north American palms. Ecology and Evolution, 8(11),
5873–5890. https: // doi. or g/ 10. 1002/ ece3 . 4125
Knutti,R.,Masson,D.,&Gettelman,A.(2013).Climatemodelgenealogy:
Generation CMI P5 and how we got there. Geophysical Research
Letter s, 40(6),1194–1199.https:// doi. org/ 10. 1002/ grl. 50256
Li,H.,&Durbin,R.(2009). Fastandaccurateshortreadalignmentwith
burrows-wheeler transform. Bioinformatics, 25(14), 1754–1760.
h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / b t p 3 2 4
Lindsay,D.L., Swift,J.F.,Lance,R. F.,& Edwards, C. E. (2018). A com-
parison of patter ns of genetic structure in two co- occurring agave
species(Asparagaceae) that differ in the patchiness of their geo-
graphicaldistributionsandcultivationhistories.Botanical Journal of
the Linnean Society, 186(3),361–373.h t t p s : // d o i . o r g / 1 0 . 1 0 9 3 / b o t l i
nnean/box099
Liu,Y.,&Xue,Y.(2020).ExpansionoftheSaharaDesertandshrinkingof
frozenlandoftheArctic.Scientific Reports, 10(1),4109.ht t p s :// d o i .
org / 10. 103 8/ s4159 8- 0 20- 61085 - 0
Loveless,M.D.,& Hamrick, J. L.(1984). Ecological determinantsofge-
netic structure in plant populations. Annual Review of Ecology and
Systematics, 15(1), 65–95. https:// doi. org/ 10. 1146/ annur ev. es. 15.
110184. 000433
Luna-Ortiz, A., Ar teaga, M. C., Bello-Bedoy, R., Gasca-Pineda, J., De
La Luz, J. L . L., Domínguez-Cadena, R., & Narváez, A . M.(2021).
Highgeneticdiversityand low structureinanendemiclong-lived
tree, Yucca capensis(Asparagaceae).Plant Biology, 24(1),185–191.
h t t p s : // d o i . o r g / 1 0 . 1 1 1 1 / p l b . 1 3 3 4 6
Madsen-Hepp, T. R., Franklin, J., McFaul,S., Schauer,L., & Spasojevic,
M.J.(2023).Plantfunctionaltraitspredictheterogeneousdistribu-
tional shifts in response to climate change. Functional Ecology, 37(5),
1449–1462. https:// doi . org/ 10. 1111/ 1365 - 2435. 1430 8
Maestre, F. T., Benito, B. M., Berdugo, M., Concostrina-Zubiri, L.,
Delgado-Baquerizo,M.,Eldridge,D.J.,Guirado,E.,Gross,N.,Kéfi,
S.,Bagousse-Pinguet,Y.L.,Ochoa-Hueso,R.,&Soliveres,S.(2021).
Biogeographyofglobaldrylands.New Phytologist, 231(2),540–558.
https :// doi. or g/ 10. 1111/ n ph . 17395
Maestre,F.T.,Quero,J.L.,Gotelli,N.J.,Escudero,A.,Ochoa,V.,Delgado-
Baquerizo, M., García-Gómez, M., Bowker, M. A., Soliveres, S.,
Escolar,C.,García-Palacios,P.,Berdugo,M.,Valencia,E.,Gozalo,B.,
Gallardo,A.,Aguilera,L.E.,Arredondo,T.,Blones,J.,Boeken,B.,…
Zaady,E.(2012). Plant species richness and ecosystem multifunc-
tionalityinglobaldrylands. Science, 335(6065), 214–218. h tt p s ://
doi. org/ 10. 1126/ scien ce. 1215442
Malinsky,M.,Trucchi,E.,Lawson,D.J.,&Falush,D.(2018).R ADpainter
and fine RADstru cture: Populat ion inference from RADs eq data.
Molecular Biolog y and Evolution, 35(5),1284–1290.https:// doi. org/
1 0 . 1 0 9 3 / m o l b e v / m s y 0 2 3
Martí nez-Palacios, A , Eguiarte , L. E., & Furnier, G. R . (1999). Geneti c
diversity of the endangered endemic Agave victoriae—Reginae
(Agavaceae)intheChihuahuanDesert.American Journal of Botany,
86(8),1093–1098.
McAuliffe, J. R., & Van Devender, T. R. (1998). A 22,00 0-year re-
cord of veget ation change in th e north-cent ral Sonoran De sert.
Palaeogeography, Palaeoclimatology, Palaeoecology, 141(3–4), 253–
275. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / s 0 0 3 1 - 0 1 8 2 ( 9 8 ) 0 0 0 5 4 - 6
Merrifield,A.,Brunner,L.,Lorenz,R.,Humphrey,V.,&Knutti,R.(2023).
Climate model selection by Independence, performance, and
spread (ClimSIPS v1.0.1) for regional applications. Geoscientific
Model Development, 16(16), 4715–4747. https:// doi. org/ 10. 5194/
gmd- 16- 4715- 2023
Mirzabaev,A.,Wu,J., Evans,J., García-Oliva,F.,Hussein,I.A .G.,Iqbal,
M. H., Ki mutai, J., Kn owles, T., Meza, F., Nedj raoui, D., Tena, F.,
Türkeş, M.,Vázquez,R. J., & Weltz, M. (2019).Desertification.In
P. R. Shukla, J. S kea, E. C. Buend ia, V. Masson-D elmotte, H.-O.
Pörtner,D.C.Roberts,P.Zhai,R.Slade,S.Connors,R.vanDiemen,
M.Ferrat, E.Haughey,S.Luz, S.Neogi,M. Pathak,J.Petzold,J.P.
Pereira , P.Vyas , E. Huntley, … J. Mal ley (Eds.), Desertification. In:
Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management,
food security, and greenhouse gas fluxes in terrestrial ecosystems.
CambridgeUniversity.
Moritz,C.(2004).Conservationunitsandtranslocations:Strategiesfor
conserving evolutionary processes. Hereditas, 130(3), 217–228.
h t t p s : / / d o i . o r g / 1 0 . 11 1 1 / j . 1 6 0 1 - 5 2 2 3 . 1 9 9 9 . 0 0 2 1 7 . x
Nason, J. D. , Hamrick, J. L ., & Fleming , T.H. ( 2002). Histo rical vic ari-
ance and postglacial colonization effects on the evolution of ge-
neticstructureinLophocereus,aSonoranDesertcolumnarcactus.
Evolution, 56(11), 2214–2226. http s:// doi . o rg / 10. 1111 /j. 0 014-
3 8 2 0 . 2 0 0 2 . t b 0 0 1 4 6 . x
Navarro-Quezada, A., González-Chauvet, R., Molina-Freaner, F., &
Eguiarte, L.E.(2003).Genetic differentiation in theAgave deserti
(Agavaceae)complexoftheSonorandesert.Heredity, 90(3),220–
22 7. https:// doi. org/ 10. 1038/ sj. hdy. 6800216
Okin, G . S., Mahowald, N . M., Chadwick, O. A., & Ar taxo, P. (2004).
Impac t of desert dus t on the biogeoc hemistry of p hosphorus i n
terrestrial ecosyste ms. Global Biogeochemical Cycles, 18 , GB2005.
h t t p s : / /d o i . o r g / 1 0 . 1 0 2 9/ 2 0 0 3 G B 0 0 2 1 4 5
18 of 19 
|
   KLIMOVA et AL.
Oksan en, J., Blanch et, F.G ., Kindt, R ., Legendre, P., Minchi n, P. R.,
O'Har a, R. B., Simpso n, G. L., Solymos, P., Stevens, M. H. H.,
& Wagner, H. (2014). Vegan: Communit y Ecolog y Package. R
Package Version 2.2-0. h t t p : // C R A N . R p r o j e c t . o r g / p a c k a g e =
vegan
Oswald,J.D.,&Harris,S.E.(2023).Desertification(pp.369–393).Elsevier
eBooks. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / b 9 7 8 - 0 - 1 2 - 8 2 0 5 0 9 - 9 . 0 0 0 2 3 - x
Paradis, E., &Schliep, K. (2018). Ape5.0: An environmentfor modern
phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3),
526–528. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / b t y 6 3 3
Pembleton,L.W.,Cogan,N.O.I.,&Forster,J.W.(2013).StAMPP:AnR
package for calculation of genetic differentiation and structure of
mixed-ploidylevelpopulations.Molecular Ecology Resources, 13(5),
946 –952. https:// doi. org/ 10. 1111/ 1755- 0998. 12129
Pillet,M.,Goettsch,B., Merow, C.,Maitner,B.,Feng, X.,Roehrdanz,P.
R., & Enquist, B.J. (2022).Elevated extinction risk of cacti under
climate change. Nature Plants, 8(4), 366–372. https:// doi. org/ 10.
1038/ s4147 7- 022- 01130 - 0
Pinsky,M.L.,&Fredston,A.(2022).Astarkfutureforoceanlife.Science,
376 (6592),452–453.h t t p s : / /d o i . o r g / 1 0 . 1 1 2 6 / s c i e n c e . a b o 4 2 5 9
Prăvălie,R.(2016).Drylands extentandenvironmentalissues.A global
approach. Earth- Science Reviews, 161, 259–278. https:// doi. org/ 10.
1016/j. earsc irev. 2016. 08. 003
Pugnaire, F.I., Morillo, J. A ., Peñuelas, J., Reich, P.B.,Bardgett, R. D.,
Gaxiola,A.,Wardle,D.A.,&VanDerPutten,W.H.(2019).Climate
changeeff ect sonplant-soilfeedback sandconsequencesforbi od i-
versity and functioning of terrestrial ecosystems. Science Advances,
5,eaaz1834.h t t p s : / / d o i . o r g / 1 0 . 1 1 2 6 / s c i a d v . a a z 1 8 3 4
RCoreTeam.(2021).R: A language and environment for statistical comput-
ing.RFoundation forStatisticalComputing. https:// www. R- proje
ct. org/
Rangel-Landa,S.,Casas,A.,&Dávila,P.(2015).FacilitationofAgave po-
tatorum:Anecological approach for assisted population recovery.
Forest Ecology and Management, 347, 57–74. https:// doi. org/ 10.
1016/j. foreco. 2015. 03. 003
Rather,Z.A.,Ahmad,R.,Dar,T.U.H.,&Khuroo,A.A .(2022).Ensemble
modelling enablesidentification of suitable sites forhabitat res-
toration of threatened biodiversity under climate change: Acase
study of Himalayan trilliu m. Ecological Engineering, 176, 106534.
https:// doi. org/ 10. 1016/j. ecole ng. 2021. 106534
Raven, P. H., & Axelrod, D. I. (1978). Origin and relationships of the
California flora.University of CaliforniaPublications in Botany72,
UniversityofCaliforniaPress.
Ravi, S., Law, D. J., Caplan, J. S., Barron-Gafford, G. A., Dontsova,
K., Es peleta, J. F., Vill egas, J. C. , Okin, G. S ., Breshear s, D. D., &
Huxman,T.E.(2021).Biologicalinvasions and climatechangeam-
plify each other's effects on dryland degradation. Global Change
Biology, 28(1),285–295.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / g c b . 1 5 9 1 9
Reyn olds ,J .F.,Sm ith ,M. S., Lam bin,É.F.,Turne r,B.L., Mor t imo re, M.,
Batterbury,S.,Downing, T.E., Dowlatabadi, H., Fernández, R.,
Her rick,J.E.,Huber-Sannw ald,E.,Jiang ,H.,Lee mans,R.,Lynam,
T., Maestre ,F. T., Ayarza , M. A., & Walker, B. (2007 ). Global
desertification: Building a science for dryland development.
Science, 316 (5826), 847–851. https:// doi. org/ 10. 1126/ scien ce.
113163 4
Riddle,B.R.,Hafner,D.J.,Alexander,L.F.,&Jaeger,J.R.(2000).Cryptic
vicarianceinthehistoricalassemblyofaBajaCaliforniaPeninsular
Desertbiota.Proceedings of the National Academy of Sciences of the
United States of America, 97(26),14438–14443.https:// doi. org/ 10.
1073/ pnas. 25041 3397
Ridgeway,G.(1999).Thestateofboosting.Computer Sc ience and Statisti c,
31, 172–181.
Riemann, H., & Ezcurra, E. (2005). Plant endemism and natural pro-
tected areasinthepeninsulaof BajaCalifornia,Mexico.Biological
Conservation, 122(1), 141150. h t t p s : // d o i . o r g / 1 0 . 1 0 1 6 / j . b i o c o n .
2004. 07. 008
Riemann,H.,&Ezcurra,E.(2007).Endemicregionsofthevascularflora
of the pen insula of Baja C alifornia, M exico. Journal of Vegetation
Science, 18(3), 327–336. htt ps:// doi. or g/ 10 . 1111/j. 1654- 1103.
2 0 0 7 . t b 0 2 5 4 4 . x
Rocha, M., Good-Ávila, S., Molina-Freaner, F., Arita, H., Castillo, A .,
García- M endoza, A., S ilva-Montella no, A., Gaut , B., Souza, V., &
Eguiar te, L. (20 06). Pollinatio n biology and a daptive radi ation of
agavaceae,withspecialemphasisonthegenusAgave.Aliso, 22(1),
329–3 44 . https:// doi. org/ 10. 5642/ aliso. 20062 201. 27
Rochette,N.C., Rivera-Colón, A. G.,& Catchen,J. M. (2019).Stacks2:
Analy tical met hods for pair ed-end sequ encing imp rove RADse q-
basedpopulationgenomics.Molecular Ecology, 28(21),4737–4754.
https :// doi. or g/ 10. 1111/ m ec . 152 53
Rousset,F.(1997).Geneticdifferentiation and estimationofgene flow
fromf-statisticsunderisolationbydistance.Genetics, 145(4) ,1219–
1228. https:// doi. org/ 10. 1093/ genet ics/ 145.4. 1219
Ruiz-Mondragón, K. Y. R., Klimova, A., Aguirre-Planter, E., Valiente-
Banuet, A., Lira, R., La Vega, G. S., & Eguiarte, L. E. (2023).
Dif fe rencesinthegenomi cdiversity,structure,andinbreedingpat-
terns in wild and managed populations of Agave potatorumZucc.
UsedintheproductionofTobalámezcalinsouthernMexico.PLoS
One, 18 (11), e0294534. https:// doi. org/ 10. 1371/ journ al. pone.
0294534
Sala,O.E.,Chapin,F.S.,Armestó,J.J.,Berlow,E.L.,Bloomfield,J.,Dirzo,
R.,Huber-Sanwald,E.,Huenneke,L.F.,Jackson,R.B.,Kinzig,A .P.,
Leemans,R.,Lodge,D.M.,Mooney,H.A.,Oesterheld,M.,Poff,N.
L.,Sykes,M.T.,Walker,B.,Walker,M.,&Wall,D.H.(2000).Global
biodiversityscenariosfortheyear2100.Science, 287(5459),1770
1774 . https:// doi. org/ 10. 1126/ scien ce. 287. 5459. 1770
Sanderson,B.M.,Knutti,R.,&Caldwell,P.(2015).Arepresentativede-
mocracy to reduce interdependency in a multimodel ensemble.
Journal of Climate, 28(13),5171–5194. https:// doi. org/ 10. 1175/ jcli-
d- 14- 00362. 1
Scher son, R. A. , Luebert , F., Pliscof f,P., & Fuente s-Castillo , T. (2020).
Floraofthehotdeserts:emergingpatternsfromphylogeny-based
diversity studies. American Journal of Botany, 107(11 ), 1467–1469.
h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / a j b 2 . 1 5 5 5
SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010.
(2010 ). Protección ambiental– Especies nativas de México de flora y
fauna silvestres–Categorías de riesgo y especificaciones para su in-
clusión, exclusión o cambio–Lis ta de especies en rie sgo. Diario O ficial
de la Federación.
Slatkin,M.,&Excoffier,L.(2012).Serialfounderef fectsduringrangeex-
pansion:Aspatialanalogofgeneticdrift.Genetics, 191(1),171–181.
https:// doi. org/ 10. 1534/ genet ics. 112. 139022
Smith, S. D.(1997).Physiological ecology of north American desert plants.
AdaptationsofDesertOrganisms.ht tp s:// doi. org / 10. 10 07/ 978- 3-
642- 59212 - 6
Stoffel,M., Esser,M., Kardos,M., Humble, E., Nichols, H.J., David, P.,
& Hoffm an, J. I. (2016). inbr eedR: An R pa ckage for the a nalysis
of inbree ding based on gen etic markers. Methods in Ecology and
Evolution, 7(11), 1331–1339. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / 2 0 4 1 - 2 1 0 x .
12588
Tetreault, D., McCulligh, C., & Lucio, C. (2021). Distilling agro-
extractivism:Agave and tequila production in Mexico. Journal of
Agrarian Change, 21(2), 219–241. https:// doi. org/ 10. 1111/ joac.
12402
Thornton,P.K.,Van DeSteeg, J., Notenbaert, A.M. O., & Herrero, M.
(2009). The impactsof climate change on livestockand livestock
systemsin developing countries: A review of what we know and
what we need to know. Agricultural Systems, 101(3), 113–127.
https:// doi. org/ 10. 1016/j. agsy. 2009. 05. 002
Thuiller,W.(2003).BIOMOD–Optimizingpredictionsofspeciesdistri-
butionsandprojectingpotentialfutureshiftsunderglobalchange.
Global Change Biology, 9(10),1353–1362.https:// doi. org / 10. 10 46/ j.
1 3 6 5 -2 4 8 6 . 2 0 0 3 . 0 0 6 6 6 . x
   
|
19 of 19
KLIMOVA et AL .
Thuiller,W.,Lafourcade,B.,Engler,R.,&Araújo,M.B.(20 09).BIOMOD
– A platform for ensemble forecasting of species distributions.
Ecography, 32(3), 369–373. htt ps :// doi. or g/ 10. 1111/ j. 16 0 0- 05 87.
2 0 0 8 . 0 5 7 4 2 . x
Tielbörger,K.,&Salguero-mez,R.(2014).Somelikeithot:Aredesert
plantsindifferenttoclimatechange?InU.Lüttge,W.Beyschlag,&
J.Cushman(Eds.),Progress in botany(Vol.75).Springer.ht t p s:// d o i .
org/ 10. 10 07/ 978-3- 642- 38797-5_ 12
Tompkins, E. L., & Adger, W.N.(2004). Doesadaptivemanagement of
natural resources enhan ce resilience to clim ate change? Ecology and
Society, 9(2),art10.https:// doi. org/ 10. 5751/ es- 00667 - 090210
Trejo-Salazar,R.,Gámez,N.,Escalona-Prado,E.,Scheinvar,E.,Medellín,
R. A., Moreno-Letelier, A., Aguirre-Planter, E., & Eguiarte, L. E.
(2023). His torical, tem poral and geo graphic dyn amism of the in-
terac tion between a gave and Leptonyct eris nectar-feedin g bats.
American Journal of Botany, 110, e16222. ht tp s:// doi. org / 10. 10 02/
ajb2.16222
Trelease, W. (1911). The agaves of lowe r Californ ia. Missouri Botanical
Gardens Annual Report, 22, 37– 65.
Urban, M. C.(2015). Accelerating extinction risk from climate change.
Science, 348(6234), 571–573. https:// doi. org/ 10. 1126/ scien ce.
aaa4984
Vale,C.G.,&Brito,J.C.(2015).Desert-adaptedspeciesarevulnerableto
climate change: Insights from the warmest region on earth. Global
Ecology and Conservation, 4, 369–379. https:// doi. org/ 10. 1016/j.
gecco. 2015. 07. 012
Valiente-Banuet,A. (2023).Mezcal boom and extinction debts(pp.303
318). Springe r eBooks. https:// doi. org/ 10. 10 07/ 978- 3- 031- 17277
- 9_ 14
VanDevender,T.R. (1977). Holocene woodlands in the southwestern
deserts. Science, 198 (4313), 189–192. https:// doi. org/ 10. 1126/
scien ce. 198. 4313. 189
VanDevender,T. R.(1990).Late quaternary vegetationand climate of
theSonoranDesert,UnitedStatesandMexico.InJ.L.Betancourt,
T. R. Van Devender, & P. S. Martin (Eds.), Packrat Middens. The
last 40,000 years of biotic change(pp.134–164).The Universityof
ArizonaPress.
VanDevender,T.R. (2021). Environmental history of the Sonoran Desert
(pp. 3–24).University of Arizona Press. https:// doi. org/ 10. 2307/j.
ctv23 khmrw. 6
VanDevender,T.R., Burgess,T.L.,Piper, J. C.,&Turner,R . M. (1994).
Paleoclimatic implications of holocene plant remains from the
SierraBacha,Sonora,Mexico.Quaternary Research, 41(1),99–108.
htt ps:// doi. or g/ 10. 100 6/ qres. 1994. 1011
Vanderp lank, S. E. , Ezcurra, E ., Delgadi llo, J., Felger, R. S ., & McDade,
L. A. (2014). Conser vation challenges in a threatened hotspot:
AgricultureandplantbiodiversitylossesinBajaCalifornia,Mexico.
Biodiversity and Conservation, 23(9),2173–2182.https:// doi. org/ 10.
10 07/ s1 05 3 1- 0 14 - 0711- 9
Ward,D.(2016).Thebiolog yofdesert s.https:// doi. org/ 10. 1093/ acprof:
oso/ 97801 98732 75 4. 0 01. 0 001
Webb, R. H ., & Starr, G. (2015). Gen try revisited : The Agaves of the
Peninsula of Baja California, México. Haseltonia, 20, 64–108.
https:// doi. org/ 10. 2985/ 026. 020. 0101
Wehncke,E.V.,Lara-Lara,J.R.,Ávlarez-Borrego,S.,&Ezcurra,E.(2014).
Conservation science in Mexico's northwest. Ecosystem status and
trends in the Gulf of California (p. 550). University of California
Institute for Mexico and the United States (UC MEXUS) and
InstitutoNacionaldeEcologíayCambioClimático(INECC).h tt p s ://
d o i . o r g / 1 0 . 1 3 0 2 2 / M 3 Q G 6 0
Wehncke, E. , Medellín , X., & Ezcur ra, E. (20 09). Pattern s of frugivor y,
seed dis persal and pre dation of blue fan p alms (Brahea ar mata)
in oases of northern Baja C alifornia. Journal of Arid Environments,
73(9),773–783.https:// doi. org/ 10. 1016/j. jarid env. 2009. 03. 007
Weir, B. S., & Cocke rham, C. C . (1984). Estimati ng F-statis tics for the
analysis of population structure. Evolution, 38(6),1358.h t t p s : // d o i .
org/ 10. 2307/ 2408641
Wickens,G.E.(1998).Ecophysiology of economic plants in arid and semi-
arid lands. Adaptations of Desert Organisms. https:// doi. org/ 10.
1007/ 978- 3- 662- 03700 - 3
Wickham, H. (2009). ggplot2. Springer eBooks. https :// doi. org/ 10. 1007/
978-0 - 387- 98141- 3
Wright, S. (1949). The Genetical structure of populations. Annals of
Eugenics, 15(1), 323–354. ht tps:// doi . org / 10. 1111 /j. 1469- 18 09.
1 9 4 9 . t b 0 2 4 5 1 . x
Zheng,X.,Levine,D.,Shen,J.,Gogarten,S.M.,Laurie,C.C.,&Weir,B.S.
(2012).Ahigh-per formancecomputingtoolsetforrelatednessand
princi pal compone nt analysis of S NP data. Bioinformatics, 28(24),
3326–3328. h t t p s : // d o i . o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / b t s 6 0 6
SUPPORTING INFORMATION
Additional supporting information can be found online in the
SupportingInformationsectionattheendofthisarticle.
How to cite this article: Klimova,A.,Gutíerrez-Rivera,J.,
Ortega-Rubio,A.,&Eguiarte,L.E.(2024).Populationgenomics
anddistributionmodelingrevealedthehistoryandsuggested
apossiblefutureoftheendemicAgave aurea(Asparagaceae)
complexintheBajaCaliforniaPeninsula.Ecology and Evolution,
14, e70027. https://doi.org/10.1002/ece3.70027
... For example, early Holocene aridification of the BCP was responsible for a marked distribution shift, where pinyonjuniper woodland/chaparral vegetation was pushed to relict sky islands and replaced with desert scrub (Rhode, 2002;Bullock et al., 2008;Dolby et al., 2015;Monroy-Gamboa et al., 2021). The genetic evidence for post-glacial range expansions in desertadapted species such as columnar cactus species (Nason et al., 2002;Clark-Tapia and Molina-Freaner, 2003;Gutiérrez-Flores et al., 2016), a desert succulent (Euphorbia lomelii; Garrick et al., 2009), Yucca schidigera (De la Rosa-Conroy et al., 2019) and agave (Agave aurea; Klimova et al., 2024) has recently been investigated. However, relict plant species with temperate or tropical affinities have mostly been overlooked, and their population dynamics on the peninsula have been poorly documented (Wehncke and López-Medellín, 2014;Klimova et al., 2017;Villanueva-Almanza et al., 2021;Wilder et al., 2022). ...
... Several plant species show latitudinal changes in genetic diversity, which have been linked to postglacial range shifts, such as northward expansion along the BCP and mainland Sonora in columnar cacti (Nason et al., 2002;Clark-Tapia and Molina-Freaner, 2003;Sanderson et al., 2022), whereas southward directionality during colonization was found in Yucca schidigera (De la Rosa-Conroy et al., 2019). Other species present more complex scenarios, such as several expansion events from different refugia for Euphorbia lomelii (Garrick et al., 2009) and Encelia farinosa (Fehlberg and Ranker, 2009) or both southward and northward expansion from a single refugium for Agave aurea (Klimova et al., 2024). Yet, other species, such as the temperate-affiliated Canotia holacantha, present a general contraction northward and to the edge of the upper Sonoran Desert (Wilder et al., 2022). ...
Article
Background and Aims Understanding spatial patterns of neutral and adaptive genetic variation and linking them to future climate change have become crucial in assessing the genetic vulnerability of species and developing conservation strategies. Using a combination of genomic approaches, this study aimed to explain the demographic history, predict the adaptive potential in Washingtonia palm populations on the Baja California Peninsula (BCP) and southern California and determine the geographic areas where climate change will have the most drastic effects. Methods We used over 5000 SNPs from 155 individuals across 18 populations spanning the entire distribution range of Washingtonia palms on the BCP and southern California. We examined past and current genetic diversity distribution patterns and identified outliers using genetic differentiation and genotype-environment association methods. Genetic vulnerability was predicted, and species distribution modeling was done to the geographic regions that will be at risk under future climate scenarios. Key Results Demographic modeling supported a bottleneck related to the Wisconsin glaciation, which was stronger and longer in northern Washingtonia populations. Genomic diversity presented a strong relationship to geography and provided evidence for range expansions from several refugia. Gradient Forest Analysis revealed that the genetic variation was primarily shaped by variables related to latitude and temperature during the coldest quarter, indicating adaptation to local thermal environments. We found limited adaptive potential and high levels of genetic vulnerability in lowland southern and central populations. Accordingly, species distribution modeling found that the southern distribution range will be affected by climate change, particularly under the high-emission scenario. Conclusions Our findings include a history of population bottleneck related to postglacial range expansion, population divergence with limited gene flow, and probable future changes in distribution under changing conditions. Under long-term climate change, Washingtonia's southern and central lowland populations will experience harsher climate conditions and strong genomic offset.
... This is consistent with the disease resistance introgression from A. americana and similar to the genetic differentiation of A. angustifolia populations (0.3747 and 0.24) according to previous studies [29,31]. In contrast, population genomics suggests extremely low genetic differentiation in A. tequilana (0.0044), A. potatorum (0.0796), and A. aurea (0.087) [30,32,33]. The findings indicate that interspecific crosses might be an efficient way to increase genetic diversity for agave species, which emphasizes the importance of protecting the diversity of agave species. ...
Article
Full-text available
Agave hybrid cultivar 11,648 has been planted for sisal fiber production in China since the 1960s. However, little is known about the population structure and genetic diversity of agave germplasms in China. Therefore, we developed a group of core SNP markers to evaluate the population structure and genetic diversity of 125 agave germplasms in China, including 20 cultivars, 14 breeding lines, and 89 transplanted resources from different areas. Cost-effective amplicon sequencing technology was used to identify genetic variants. The results grouped most cultivars and breeding lines together, which indicated that local agave breeding programs aimed to improve fiber and disease-resistance traits. These breeding programs have reduced genetic diversity, even with the gene flows from other Agave species. The neighbor-joining phylogenetic tree revealed the relationships between A. H11648 and its parents. The phylogenetic relationship between A. sisalana and A. amanuensis is doubtful, even if they are considered heterotypic synonyms. The 11 agave germplasms introduced from Mexico suggest the abundant diversity of agave germplasms in Mexico, which is also the source of agave germplasms in China. This study provides a sketch map for agave germplasms in China, which will benefit future studies related to population genetics and breeding works of agave.
Article
Full-text available
Drylands cover a vast area, and biodiversity conservation in these regions represents a major challenge. A bibliometric study of published research highlighted several key aspects, including publication types, research fields, years of publication, contributing countries, institutions, languages, journals, publishers, authors, and frequently used keywords. The analysis also included plants related to biodiversity conservation in arid areas, animals related to biodiversity conservation in arid areas, and causes of biodiversity decline in arid regions, effects of biodiversity loss in these regions, and restoration methods aimed at improving biodiversity conservation in arid areas. A total of 947 publications were identified, starting from 1994, authored by researchers from 99 countries, primarily from Australia, the USA, China, Spain, and South Africa, and published in 345 journals, with the most prominent being Journal of Arid Environments, Biodiversity and Conservation, and Biological Conservation. The most commonly appearing keywords included biodiversity, conservation, diversity, vegetation, and patterns, with recent years showing an increased use of terms related to the causes and effects of aridification: climate change, land use, and ecosystem services. The causes of biodiversity loss in drylands are primarily linked to human activities and climatic changes, while the effects impact the entire ecosystem. Methods to improve biodiversity include traditional agroforestry systems, tree plantations and other plant species, grazing management, and other approaches. Combined actions among stakeholders and ecologically appropriate nature-based solutions are also recommended. Improvements in conservation biodiversity in arid areas are very important also for achieving the sustainability goals in these areas. However, numerous aspects of this topic remain to be studied in greater detail.
Article
Full-text available
Agave potatorum Zucc. locally known as Tobalá, is an important species for mezcal production. It is a perennial species that takes 10 to 15 years to reach reproductive age. Because of high demand of Tobalá mezcal and the slow maturation of the plants, its wild populations have been under intense anthropogenic pressure. The main objective of this study was to estimate the genome-wide diversity in A. potatorum and determine if the type of management has had any effect on its diversity, inbreeding and structure. We analyzed 174 individuals (105 wild, 42 cultivated and 27 from nurseries) from 34 sites with a reduced representation genomic method (ddRADseq), using 14,875 SNPs. The diversity measured as expected heterozygosity was higher in the nursery and wild plants than in cultivated samples. We did not find private alleles in the cultivated and nursery plants, which indicates that the individuals under management recently derived from wild populations, which was supported by higher gene flow estimated from wild populations to the managed plants. We found low but positive levels of inbreeding (FIS = 0.082), probably related to isolation of the populations. We detected low genetic differentiation among populations (FST = 0.0796), with positive and significant isolation by distance. The population genetic structure in the species seems to be related to elevation and ecology, with higher gene flow among populations in less fragmented areas. We detected an outlier locus related to the recognition of pollen, which is also relevant to self-incompatibility protein (SI). Due to seed harvest and long generation time, the loss of diversity in A. potatorum has been gradual and artificial selection and incipient management have not yet caused drastic differences between cultivated and wild plants. Also, we described an agroecological alternative to the uncontrolled extraction of wild individuals.
Article
Full-text available
A major restriction in predicting plant community response to future climate change is a lack of long‐term data needed to properly assess species and community response to climate and identify a baseline to detect climate anomalies. Here, we use a 106‐year dataset on a Sonoran Desert plant community to test the role of extreme temperature and precipitation anomalies on community dynamics at the decadal scale and over time. Additionally, we tested the climate sensitivity of 39 desert plant species and whether sensitivity was associated with growth form, longevity, geographic range, or local dominance. We found that desert plant communities had shifted directionally over the 106 years, but the climate had little influence on this directional change primarily due to nonlinear shifts in precipitation anomalies. Decadal‐scale climate had the largest impact on species richness, species relative density, and total plant cover, explaining up to 26%, 45%, and 55% of the variance in each, respectively. Drought and the interaction between the frequency of freeze events and above‐average summer precipitation were among the most influential climate factors. Increased drought frequency and wetter periods with frequent freeze events led to larger reductions in total plant cover, species richness, and the relative densities of dominant subshrubs Ambrosia deltoidea and Encelia farinosa. More than 80% of the tested species were sensitive to climate, but sensitivity was not associated with a species' local dominance, longevity, geographic range, or growth form. Some species appear to exhibit demographic buffering, where when they have a higher sensitivity to drought, they also tend to have a higher sensitivity to favorable (i.e., wetter and hotter) conditions. Overall, our results suggest that, while decadal‐scale climate variation substantially impacts these desert plant communities, directional change in temperature over the last century has had little impact due to the relative importance of precipitation and drought. With projections of increased drought in this region, we may see reductions in total vegetation cover and species richness due to the loss of species, possibly through a breakdown in their ability to demographically buffer climatic variation, potentially changing community dynamics through a change in facilitative and competitive processes.
Article
Full-text available
Assessments of the potential responses of animal species to climate change often rely on correlations between long-term average temperature or precipitation and species’ occurrence or abundance. Such assessments do not account for the potential predictive capacity of either climate extremes and variability or the indirect effects of climate as mediated by plant phenology. By contrast, we projected responses of wildlife in desert grasslands of the southwestern United States to future climate means, extremes, and variability and changes in the timing and magnitude of primary productivity. We used historical climate data and remotely sensed phenology metrics to develop predictive models of climate-phenology relations and to project phenology given anticipated future climate. We used wildlife survey data to develop models of wildlife-climate and wildlife-phenology relations. Then, on the basis of the modeled relations between climate and phenology variables, and expectations of future climate change, we projected the occurrence or density of four species of management interest associated with these grasslands: Gambel’s Quail (Callipepla gambelii), Scaled Quail (C. squamat), Gunnison’s prairie dog (Cynomys gunnisoni), and American pronghorn (Antilocapra americana). Our results illustrated that climate extremes and plant phenology may contribute more to projecting wildlife responses to climate change than climate means. Monthly climate extremes and phenology variables were influential predictors of population measures of all four species. For three species, models that included climate extremes as predictors outperformed models that did not include extremes. The most important predictors, and months in which the predictors were most relevant to wildlife occurrence or density, varied among species. Our results highlighted that spatial and temporal variability in climate, phenology, and population measures may limit the utility of climate averages-based bioclimatic niche models for informing wildlife management actions, and may suggest priorities for sustained data collection and continued analysis.
Article
Full-text available
As the number of models in Coupled Model Intercomparison Project (CMIP) archives increase from generation to generation, there is a pressing need for guidance on how to interpret and best use the abundance of newly available climate information. Users of the latest CMIP6 seeking to draw conclusions about model agreement must contend with an “ensemble of opportunity” containing similar models that appear under different names. Those who used the previous CMIP5 as a basis for downstream applications must filter through hundreds of new CMIP6 simulations to find several best suited to their region, season, and climate horizon of interest. Here we present methods to address both issues, model dependence and model subselection, to help users previously anchored in CMIP5 to navigate CMIP6 and multi-model ensembles in general. In Part I, we refine a definition of model dependence based on climate output, initially employed in Climate model Weighting by Independence and Performance (ClimWIP), to designate discrete model families within CMIP5 and CMIP6. We show that the increased presence of model families in CMIP6 bolsters the upper mode of the ensemble's bimodal effective equilibrium climate sensitivity (ECS) distribution. Accounting for the mismatch in representation between model families and individual model runs shifts the CMIP6 ECS median and 75th percentile down by 0.43 ∘C, achieving better alignment with CMIP5's ECS distribution. In Part II, we present a new approach to model subselection based on cost function minimization, Climate model Selection by Independence, Performance, and Spread (ClimSIPS). ClimSIPS selects sets of CMIP models based on the relative importance a user ascribes to model independence (as defined in Part I), model performance, and ensemble spread in projected climate outcome. We demonstrate ClimSIPS by selecting sets of three to five models from CMIP6 for European applications, evaluating the performance from the agreement with the observed mean climate and the spread in outcome from the projected mid-century change in surface air temperature and precipitation. To accommodate different use cases, we explore two ways to represent models with multiple members in ClimSIPS, first, by ensemble mean and, second, by an individual ensemble member that maximizes mid-century change diversity within the CMIP overall. Because different combinations of models are selected by the cost function for different balances of independence, performance, and spread priority, we present all selected subsets in ternary contour “subselection triangles” and guide users with recommendations based on further qualitative selection standards. ClimSIPS represents a novel framework to select models in an informed, efficient, and transparent manner and addresses the growing need for guidance and simple tools, so those seeking climate services can navigate the increasingly complex CMIP landscape.
Article
Full-text available
Premise: The interaction between ecological and evolutionary processes has been recognized as an important factor shaping the evolutionary history of species. Some authors have proposed different ecological and evolutionary hypotheses concerning the relationships between plants and their pollinators, and a special case is the interaction and suspected coevolution among Agave species and their main pollinators, the Leptonycteris bats. Agave species have in general a pollination syndrome compatible with chiropterophily, including floral shape and size, nocturnal nectar production, and nectar quality and sugar concentration. Our goal was to analyze the interaction Agave-Leptonycteris and its dynamics during three different climate scenarios. Methods: We modeled the Agave-Leptonycteris interaction in its spatial and temporal components during Pleistocene, we used Ecological Niche Models (ENMs) and three climate scenarios: Current, Last Glacial Maximum (LGM), and Last InterGlacial (LIG). Further, we analyzed the geographic correlation between 96 Agave species and two the Mexicans Tequila bats, genus Leptonycteris. Results: We found that Leptonycteris species interact with different Agave species over their migratory routes. We propose an interaction refuge in Metztitlán and Tehuacán-Cuicatlán areas, where Agave- Leptonycteris interaction has probably remained active. During the non-migratory season, both bat species consume nectar of almost the same Agave species, suggesting the possibility of a diffuse coevolution among Agave and Leptonycteris bats. Conclusions: We propose that in the areas related to migratory bat movements, each bat species interacts with different Agave species, whereas in the areas occupied by non-migrant individuals, both bat species consume nectar of almost the same Agave taxa. This article is protected by copyright. All rights reserved.
Article
Full-text available
Climate change is causing the rapid redistribution of vegetation as plant species move to track their climatic optima. Despite a global trend of upward movement in latitude and elevation, there is extensive heterogeneity among species and locations, with few emerging generalizations. Greater generalization may be achieved from considering multidimensional changes in species' distributions as well as incorporating ecologically relevant functional traits into studies of range shifts. To better understand how recent changes in climate are influencing the elevational distribution of plant species and how species' functional traits mediate distributional changes, we resampled a 2438 m elevation transect spanning a distance of 16 km which encompasses desert scrub, pinyon‐juniper woodland, chaparral and coniferous forest plant communities. Over the last 42 years, total perennial cover and species' average cover increased at lower elevations and decreased at higher elevations while average elevational leading‐edge increased 116 m and elevational rear edge decreased 84 m. Notably, these changes were mediated by species' functional traits, where species exhibiting more conservative traits (lower specific leaf area [SLA], greater δ¹³C, larger seed mass) and taller height shifted upward in their leading‐edge range limit, average elevation and trailing edge range limit, while declining in abundance at the median and trailing edge of their range. Species possessing more acquisitive traits (higher SLA, lower δ¹³C, smaller seed mass) and shorter height shifted downward and increased in abundance at their trailing edge, with increases in their total range size. Our results provide clear evidence that heterogeneous range dynamics under recent climate change can be generalized by considering ecologically relevant plant functional traits, and how they respond to localized climate exposure. Furthermore, by documenting changes across a steep elevational gradient comprising a large aridity gradient, we show divergent patterns for plants occupying contrasting positions along the global spectrum of plant form and function, which provides critical insight into how trait‐mediated changes under increasing aridity will impact ecosystem functioning. Read the free Plain Language Summary for this article on the Journal blog.
Article
Full-text available
We compiled an updated database of all Agave species found in Mexico and analyzed it with specific criteria according to their biological parameters to evaluate the conservation and knowledge status of each species. Analyzing the present status of all Agave species not only provides crucial information for each species, but also helps determine which ones require special protection, especially those which are heavily used or cultivated for the production of distilled beverages. We conducted an extensive literature review search and compiled the conservation status of each species using mainstream criteria by IUCN. The information gaps in the database indicate a lack of knowledge and research regarding specific Agave species and it validates the need to conduct more studies on this genus. In total, 168 Agave species were included in our study, from which 89 are in the subgenus Agave and 79 in the subgenus Littaea. Agave lurida and A. nizandensis, in the subgenus Agave and Littaea, respectively, are severely endangered, due to their endemism, lack of knowledge about pollinators and floral visitors, and their endangered status according to the IUCN Red List. Some species are at risk due to the loss of genetic diversity resulting from production practices (i.e., Agave tequilana), and others because of excessive and unchecked overharvesting of wild plants, such as A. guadalajarana, A. victoriae-reginae, A. kristenii, and others. Given the huge economic and ecological importance of plants in the genus Agave, our review will be a milestone to ensure their future and continued provision of ecosystem services for humans, as well as encouraging further research in Agave species in an effort to enhance awareness of their conservation needs and sustainable use, and the implementation of eco-friendly practices in the species management.
Article
Question Livestock grazing affects plant communities in drylands worldwide. However, our current understanding of the Patagonian drylands has primarily been derived from comparing exclosures with grazing conditions or from single‐site grazing gradients. The pending question is: do impacts of grazing intensification on Patagonian plant communities change along aridity gradients? Location Patagonia, Argentina. Methods We surveyed vegetation cover of perennial species in paddocks with different sheep‐grazing pressure (ungrazed, lightly, moderately, and intensively grazed, based on long‐term stocking rates), in three plant communities located along a regional aridity gradient: a semi‐desert (arid), a shrub–grass steppe (semi‐arid), and a grass steppe (dry sub‐humid). In these communities, we analyzed the effects of grazing pressure on the total cover of vegetation, the cover of dominant plant life‐forms (grasses and shrubs), the plant species diversity, and the traits of dominant plant species. Results Intensification of sheep grazing significantly decreased total vegetation cover in the semi‐desert, but not in the steppes. Although grazing decreased the cover of grasses (particularly of the highly preferred ones) in all communities, in the shrub–grass and grass steppes this reduction was offset by an increase in the cover and size of shrubs. Plant diversity was not consistently affected by grazing pressure in these communities. Traits of dominant plant species partially explained community responses to grazing intensification. Conclusions Livestock grazing intensification reduces the forage quantity and quality of Patagonian plant communities, but the severity depends on plant community types. In semi‐deserts (the most arid), grasses were drastically affected, while in the steppes, the grazing effects on grasses were low and partially compensated by an increase in the cover and size of shrubs, which fulfill critical roles other than forage provision. It is fundamental that grazing pressure be adapted to forage resource availability for each community type to achieve sustainable management in the context of climate change.