ArticlePDF Available

Sustainable Dynamic Wrinkle Efficacy: Non-Invasive Peptides as the Future of Botox Alternatives

Authors:

Abstract and Figures

Dynamic wrinkle reduction continues to challenge aesthetic dermatology, predominantly addressed through Botulinumtoxin (Botox) injections. Despite Botox’s robust efficacy with up to an 80% reduction in wrinkle visibility within just one week, its invasive administration and specific mechanism of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex inhibition prompt the exploration of safer, non-invasive alternatives. This review critically assesses recent innovations in non-invasive effects, with a focus on peptides and botanical extracts that exhibit a diverse array of mechanisms including SNARE complex inhibition, modulation of calcium and sodium channels, and interactions with acetylcholine receptors, contributing to their effectiveness in muscle relaxation on dynamic wrinkle approaches. Noteworthy peptides such as Argireline and SYN-Ake replicate the neuromodulatory effects of Botox, achieving up to a 52% reduction in wrinkles within four weeks without injections. Moreover, botanical extracts meet the rising demand for clean beauty solutions by enhancing skin elasticity and health through gentle yet potent mechanisms. However, the main concern with peptides is their low absorption rate, with only six clinical validations regarding Botox-like peptide anti-wrinkle efficacy available. These advancements not only deepen our understanding of cosmetic dermatology but also significantly influence market dynamics and consumer behavior, underscoring their pivotal role in redefining the future landscape of anti-aging effects.
Content may be subject to copyright.
Cosmetics2024,11,118.https://doi.org/10.3390/cosmetics11040118www.mdpi.com/journal/cosmetics
Review
SustainableDynamicWrinkleEcacy:Non-Invasive
PeptidesastheFutureofBotoxAlternatives
TrangThiMinhNguyen
1
,Eun-JiYi
1,2
,XiangjiJin
3
,QiwenZheng
1
,Se-JigPark
1
,Gyeong-SeonYi
1
,Su-JinYang
1
andTae-HooYi
1,
*
1
GraduateSchoolofBiotechnology,KyungHeeUniversity,1732Deogyeong-daero,Giheung-gu,
Yon gin 17104,RepublicofKorea;trangnguyen@khu.ac.kr(T.T.M.N.);0201@khu.ac.kr(E.-J.Y.);
zhengqiwen@khu.ac.kr(Q.Z.);tpwlt@khu.ac.kr(S.-J.P.);ks010924@khu.ac.kr(G.-S.Y.);stella@khu.ac.kr(S.-J.Y.)
2
SnowwhitefactoryCo.,Ltd.,184,Jungbu-daero,Giheung-gu,Yongi n06032,RepublicofKorea
3
DepartmentofPharmacology,SchoolofMedicine,KyungHeeUniversity,23Kyungheedae-ro,
Dong-daemun,Seoul17104,RepublicofKorea;hyanghe112@khu.ac.kr
*Correspondence:drhoo@khu.ac.kr;Tel .:+82-31-201-3693
Abstract:Dynamicwrinklereductioncontinuestochallengeaestheticdermatology,predominantly
addressedthroughBotulinumtoxin(Botox)injections.DespiteBotox’srobustecacywithuptoan
80%reductioninwrinklevisibilitywithinjustoneweek,itsinvasiveadministrationandspecic
mechanismofsolubleN-ethylmaleimide-sensitivefactoraachmentproteinreceptor(SNARE)
complexinhibitionprompttheexplorationofsafer,non-invasivealternatives.Thisreviewcritically
assessesrecentinnovationsinnon-invasiveeects,withafocusonpeptidesandbotanicalextracts
thatexhibitadiversearrayofmechanismsincludingSNAREcomplexinhibition,modulationof
calciumandsodiumchannels,andinteractionswithacetylcholinereceptors,contributingtotheir
eectivenessinmusclerelaxationondynamicwrinkleapproaches.Noteworthypeptidessuchas
ArgirelineandSYN-AkereplicatetheneuromodulatoryeectsofBotox,achievinguptoa52%re-
ductioninwrinkleswithinfourweekswithoutinjections.Moreover,botanicalextractsmeetthe
risingdemandforcleanbeautysolutionsbyenhancingskinelasticityandhealththroughgentleyet
potentmechanisms.However,themainconcernwithpeptidesistheirlowabsorptionrate,with
onlysixclinicalvalidationsregardingBotox-likepeptideanti-wrinkleecacyavailable.Thesead-
vancementsnotonlydeepenourunderstandingofcosmeticdermatologybutalsosignicantlyin-
uencemarketdynamicsandconsumerbehavior,underscoringtheirpivotalroleinredeningthe
futurelandscapeofanti-agingeects.
Keywords:alternative;botulinumtoxins;cosmetic;dynamicwrinkle;peptide;skinaging;topical
1.Introduction
Dynamicwrinkles,aprevalentconcernindermatologicalpractice,resultfromrepet-
itivefacialexpressionssuchassmiling,frowning,andsquinting[1,2].Aectingmostly
individualsovertheageof35[3],thesespecicwrinklesincludeglabellarlines(frown
lines),nasolabialfolds,periorbitalwrinkles,andforeheadlines.Thesedierfromstatic
wrinkles,whichariseduetoage-relateddeclinesinskinelasticityandcollagendegrada-
tion[4].Thesignicantimpactofdynamicwrinklesonaestheticappearanceandpsycho-
logicalwell-beinghighlightstheurgentneedforeectiveapplicationswithincosmetic
dermatology.
Botulinumtoxin,commonlyknownasBotox,haslongbeenacornerstoneinthe
treatmentofdynamicwrinkles[5,6].Itsprimarymechanisminvolvesthetemporarypa-
ralysisofunderlyingmuscleactivity,whichsignicantlyreduceswrinkleformation[6–
8].Despiteitsecacy,Botoxinjectionsareinvasiveandassociatedwithpotentialadverse
eects,includingpain,swelling,ptosis,andfacialasymmetry,occurringinupto5%of
Citation:Nguyen,T.T.M.; Yi,E.-J.;
J
in,X.;Zheng,Q.;Park,S.-J.;Yi,G.-S.;
Yan g ,S.-J.;Yi,T. -H.Sustainable
DynamicWrinkleEcacy:
Non-InvasivePeptidesasthe
FutureofBotoxAlternatives.
Cosmetics2024,11,118.
hps://doi.org/10.3390/
cosmetics11040118
AcademicEditor:Vas il Georgiev
Received:8June2024
Revised:5July2024
Accepted:9July2024
Published:11July2024
Copyright:©2024bytheauthors.
LicenseeMDPI,Basel,Swierland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Aribution(CCBY)license
(hps://creativecommons.org/license
s/by/4.0/).
Cosmetics2024,11,1182of15
cases[9].Theselimitationsunderscoretheincreasingdemandforsafer,non-invasiveal-
ternativesinclinicalpracticetoBotoxusage.
Inresponsetothesechallenges,theeldhasseensignicantadvancementsintopical
applicationsthatareemergingaspromisingalternatives.Amongthoseresearches,pep-
tides[10–12]andbotanicalextracts[13]representasignicantshiftincosmeticdermatol-
ogy,aimingtoprovideeectiveanti-dynamicwrinklebenetswithouttheneedforinva-
siveprocedureslikeinjections.Thesetopicalformulationsaredesignedtomimictheneu-
romodulatoryeectsofBotoxwhileenhancingsafetyandaccessibility[10–13].Thesetop-
icalagentsalignwiththegrowingconsumerpreferencefor‘cleanbeauty’productsthat
utilizenon-toxicingredients[14].
Thisreviewaimstocomprehensivelysummarizethereportedecacy,mechanisms
ofaction,safetyproles,andpatient-orientedoutcomesofpeptidetopicalalternativesto
traditionalBotoxinjections.Bycriticallyassessingcurrentresearchwithintheframework
ofevidence-basedcosmeticscience,thispaperseekstoelucidatethepotentialofthese
novelingredientstoredeneanti-agingpractices,specicallyinexpressionlines.Addi-
tionally,thisreviewwillexplorethesocio-economicandpsychologicalimplicationsof
moreaccessibleanti-agingeects,providingacomprehensiveunderstandingoftheirim-
pactonthecosmeticindustryandsocietalbeautystandards.
2.ThePathophysiologyofDynamicWrinkles
2.1.MechanismsofWrinkleFormation
Dynamicwrinkles,aprominentindicatorofagingskin,resultfromtheintricatein-
terplayofneuromuscularactivities[15]andskinbiomechanics[16].Thesewrinklesare
distinctfromstaticwrinklesastheyareprimarilyformedbytherepeatedcontractionof
facialmusclesinresponsetovariousexpressions[1,2].Theformationofdynamicwrinkles
beginsdeepattheneuromuscularjunctions[15],triggeredbythedepolarizationofthe
musclecellmembrane,swiftlypropagatesalongthesarcolemma,andextendsintotheT-
tubules[16],seingthestageforfurthermuscularactivity.Understandingthisprogres-
sionprovidesvaluableinsightsintoboththenaturalagingprocessandopportunitiesfor
intervention(Figure1).
Cosmetics2024,11,1183of15
Figure1.Sequentialneuromuscularactivationanditsroleinwrinkledevelopment.Acetylcholine
releasetriggersmusclecontraction(A);calcium-mediatedmusclecontractionleadstoskindefor-
mation(B);persistentmusclecontractions(C);andstaticwrinkleformationasthemusclerelaxes
andcalciumisreabsorbedintothesarcoplasmicreticulum(D).
2.1.1.AcetylcholineReleaseandNeuromuscularActivation
Theprocessofdynamicwrinkleformationinitiatesattheneuromuscularjunction
wherethereleaseofacetylcholine,acriticalneurotransmier,iscatalyzedbyanaction
potential[17,18].Thiseventtriggerstheopeningofvoltage-gatedcalciumchannels,facil-
itatingacalciuminuxthatpromptstheexocytosisofacetylcholineintothesynapticcleft
[15,17,19].Inthesynapticcleft,thebindingofacetylcholinetothenicotinicreceptorson
themusclecellmembraneispivotalasitinducesmusclecontraction[16,17,20]andsets
thefoundationforthenextphase,wherethedepolarizationofthemusclemembrane,en-
hancedbysodiuminux[19,21]throughthenicotinicreceptors,facilitatesthesignicant
releaseofcalciumfromthesarcoplasmicreticulum[22,23].
2.1.2.CalciumIonReleaseandMusclePreparation
Subsequenttoacetylcholineengagement,themusclemembraneundergoesfurther
depolarizationduetosodiumionsenteringthemuscleberandpotassiumionsexiting
intothesynapticcleft[19,21,24].Thisdepolarizationatthenicotinicreceptorsenhances
calciumreleasefromthesarcoplasmicreticulumwithinthemuscleber[23].Thereleased
calciumbindstotroponin,causingtropomyosintoshiftandexposemyosin-bindingsites
onactinlaments[15],anessentialstepinthecontractioncycle.Thisphaseiscriticalasit
preparesthemuscleforpreciseactivity,presentingopportunitiesfortargetedinterven-
tionstomodulatemusclecontractionsandmitigatedynamicwrinkleformation.
2.1.3.MuscleContractionandInitialSkinFolding
Thetheoryofslidinglamentsdescribesmusclecontraction,wheremyosinheads,
energizedbythehydrolysisofadenosinetriphosphate,pullactinlamentsinwardtoef-
fectuatecontraction[25].Musclecontractionspullonconnectivetissuebersintheskin,
formingtemporaryfoldsthat,overtime,aresubjectedtomechanicalstress,leadingtoa
reorganizationofcollagenbers[26,27].Thiscontinuousstresscancausethecollagento
becomemisalignedordegrade,whilebroblastsmaydepositnew,disorderedcollagen,
permanentlydeepeningthesefolds.Understandingthisprocessiscrucialfordeveloping
eectiveinterventions,suchastopicalapplicationtoenhancecollagenalignmentorinjec-
tionstoreducemuscleactivity,aimedatreducingtheformationandpermanenceofwrin-
kles.
2.1.4.DevelopmentofDynamicandStaticWrinkles
Facialexpressions,characterizedbyrepeatedmusclecontractions,imposemechani-
calstressontheskin,initiatingtheformationofdynamicwrinkles[4].Astheskinages,
itsresiliencedecreasesduetodiminishedcollagenandelastinproduction[18,26,28],re-
ducingitscapacitytorepairmicro-damagefromcontinuouscontractions.Thisleadsto
thetransformationofdynamicwrinklesintopermanentstaticlines.Exacerbatingthispro-
cess,environmentalfactorslikeultravioletAandBexposureacceleratestructuralprotein
degradation[29].Tocounteracttheseeects,strategiesincludingreducingmuscleactivity
throughbotulinumtoxininjections[8]andenhancingstructuralproteinlevels[26,28]in
theskinareemployedtopreserveskinelasticityandappearance.
2.2.CurrentTreatmentofDynamicWrinkles
Thepsychologicalperceptionsofaging,especiallyregardingthepresenceofdynamic
wrinkles,signicantlyimpactindividuals,withmanyseekingtreatmentstomitigatevis-
iblesignsofaging[30].Traditionaltreatments,suchasbotulinumtoxininjections,have
Cosmetics2024,11,1184of15
demonstratedhighecacy,with100%ofusersobservingsignicantdynamicwrinkle
improvementsinclinicaltrials[31],lastingfromtwotosixmonths[32].However,the
invasivenatureofthesetreatmentsandthepotentialforcomplications,whichcanaect
upto2to16%ofpatientsaccordingtoclinicalreportsandtheUnitedStatesFoodand
DrugAdministration(FDA)database[33–36],highlightthenecessityfordevelopingnon-
invasivealternatives.Thiswidespreadconcernunderscorestheurgentneedforeective
andsaferalternativeoptions.
Inresponsetothisdemand,emergingresearchisbeingdevelopedthataimstoreduce
theappearanceofdynamicwrinklesbyenhancingskinhealthandelasticity,withoutthe
risksassociatedwithinvasiveprocedures.Theseinnovationsfocusonadvancedpeptide
technologiesthatmimicorinhibitneurotransmiereectsattheneuromuscularjunction,
directlytargetingtheunderlyingcausesofwrinkleformation.Oeringapromisingand
saferalternative,theseingredientsnotonlyaddressaestheticconcernsbutalsosupport
thestructuralintegrityoftheskin.Byimprovingmethodsofdeliveringactiveingredients,
thesenovelingredientsseektoeectivelyandsafelymitigatethesignsofaging,catering
tothegrowingdemandfornon-invasivesolutionsincosmeticdermatology.
3.CurrentStandardCare:BotulinumToxin
3.1.BotulinumToxinInjection
BotoxwasdeterminedtooriginatefromananaerobicbacteriumknownasClostrid
iumbotulinum,andresearchersidentiedsevendistinctsubtypesofthisbacterium,la-
beledAthroughG[37,38].BotulinumtoxintypeA,notablyBotoxcosmetic(onabotuli-
numtoxinA)[36],Dysport(abobotulinumtoxinA)[39],andXeomin(incobotulinumtox-
inA)[40],isFDA-approvedforcosmeticuseinspecicfacialapplicationswithadetailed
historysummarizedinFigure2[38,41,42].BotoxwasrstapprovedbytheFDAin2002
forglabellarlines[43],withclinicalstudiesdemonstratingitshighecacy,reportingthat
about80%ofrecipientsobserveanoticeablereductioninwrinkleappearancewithinone
weekofapplication[44].Subsequentapprovalsextendeditsusetoperiorbitalwrinklesin
2013[45]andforeheadlinesin2017[37],employingprecisedosagessuchas24unitsfor
periorbitalwrinklesand20unitsforforeheadlines,whichareeectiveforapproximately
3to4monthsaccordingtoFDAguidelines[37,45].DysportandXeominfollowed,target-
ingglabellarlineswithdistinctpropertiesanddosagerecommendations,achievingsimi-
larecacies[39,40].ClinicaltrialsindicatethatDysport,administeredviainjection,be-
ginstomanifesteectswithinoneweek,achievinganapproximate25%enhancementin
wrinklereductioncomparedtothebaselinemeasurementsobtainedwithBotoxcosmet-
ics.Furthermore,thelongevityofDysporteectsextendsupto20weeks,underscoring
itssuperiordurationofactioninclinicalseings[46].Inacomparativestudy,Botox
demonstratedamoresignicantreductionindynamicwrinklesthanXeomin,withno-
ticeableimprovementsfromasearlyasthreedaysandcontinuinguptofourmonths[47].
Bydaythreepost-application,65.2%ofsubjectsshowedatleasta1-pointimprovement
frombaseline,increasingto100%bydayeight,andremainingsignicantthroughweeks
20–21.Moreover,responserateswerehigherundermaximummuscletension,withover
68%ofsubjectsreportingimprovedormarkedlyimprovedplatysmalbandsatlatervisits,
withoutanyseriousadverseeventsnoted[48].FDAguidelinesensuretargetedandage-
specicuse(under65years)tomaximizesafetyandeectiveness,emphasizingthepreci-
sionrequiredinthesetreatments[36,37,39,40,45].Despitetheproveneectivenessofbot-
ulinumtoxintypeAinreducingdynamicwrinkles,thedemandfornon-invasivealterna-
tivescontinuestogrow,drivenbyproceduralinvasivenessandstringentcontrolsover
applicationanddosing.
Cosmetics2024,11,1185of15
Figure2.TimelineofkeydevelopmentsinBotox:inventions,approvals,andglobalmarketimpact
(1820–2030).
Botoxfunctionsbyimpedingmotorandparasympatheticnervefunctionviadimin-
ishedacetylcholinerelease(Figure3A)andevadesneutralizingantibodiesswiftly,alt-
houghtheonsetofmuscleparalysisisdelayed[49].Thisprocessismediatedbythetoxin
bindingtonerveterminals,internalization,andsubsequentdisruptionofSNAP-25(Syn-
aptosomalAssociatedProtein,25kDa),acrucialproteinintheSNARE(solubleN-
ethylmaleimide-sensitivefactoraachmentproteinreceptor)complexthatisessentialfor
synapticvesiclefusionanddockingwithotherproteinsincludingSyntaxin(at-SNARE
proteininvolvedinvesicledocking)andVAMP / s y naptob r e v in(Vesicle-AssociatedMem-
braneProtein,v-SNAREcriticalforvesiclefusion)[50,51].Clinically,Botoxcosmeticis
utilizedtodecreasemusclecontractionsbyinhibitingacetylcholinereleaseatmotornerve
terminals.Thismechanismhasbeeneectivelyappliedindermatologytosmoothfacial
wrinklesbyrelaxingtheunderlyingmuscles.Therelaxationofthesemusclesreducesthe
appearanceofwrinklesandpreventstheformationofnewones,makingBotoxastaplein
cosmeticapplicationsforfacialrejuvenation[36,37,49].Thisapproachnotonlyenhances
aestheticoutcomesbutalsocontributestotheunderstandingofneuromuscularinterac-
tionsatthedermatologicallevel.
Figure3.Mechanismsofneurotransmierinhibitoractionindynamicwrinkletreatment.Normal
neuromuscularactivityleadingtowrinkleformation(A);botulinumtoxininhibitingacetylcholine
Cosmetics2024,11,1186of15
releasebycleavingSNAP-25(B);andtopicalalternatives(peptidesandextracts)interferingwith
acetylcholinesignalingandenhancingskinstructure(C).
AccordingtoFDAguidelines,whileBotoxisgenerallysafewhenadministeredby
qualiedprofessionals,itcarriesariskofsideeects[36].Commonadverseeects,oc-
curringinapproximately1to10%ofcases,includelocalizedpain,infection,inamma-
tion,tenderness,swelling,redness,andbruisingattheinjectionsite.Moreseriousbutless
commonrisks,aectingaround1to5%ofpatients,involveptosis,asymmetryoffacial
expressions,anddryeyesduetothespreadofthetoxintoadjacentmuscles.Inrarein-
stances(lessthan1%),patientsmightexperiencesystemiceectssuchasdicultyswal-
lowing,dicultybreathing,ormuscleweaknessifthebotulinumtoxinspreadsbeyond
theintendedinjectionarea[36,37,45,52].Theglobalbotulinumtoxinmarketisforecasted
toexpandfrom6.6billionUSdollarsin2023to11.68billionUSdollarsby2030,showing
stronggrowth.LeadingcontributorsincludeAllergan,knownforBotox,andMerz
Pharma,knownforXeomin,alongsideemergingAsianbrandslikeRevanceandDae-
woong.NorthAmericaleadsindemandduetoahighrateofcosmeticsurgeries,while
theAsia-Pacicregionisrapidlygrowingduetoincreasingaestheticandtherapeuticuses
ofbotulinumtoxinproducts[42,53].Botoxtreatmentsin2024,whichtypicallycostbe-
tweenUSD100andUSD2800persession,canbeparticularlyexpensiveforcomprehen-
sivetreatmentsthatcovermultiplefacialareas,withcostspotentiallyrisingtoUSD5000
ormoreforextensiveapplications[54].Thesetreatmentsmustbeadministeredbyprofes-
sionalpractitioners,highlightingtheneedformoreaccessibleandsaferalternatives.
3.2.BotulinumToxinTopicalGel
Theintroductionofbotulinumtoxinintopicalformulationsmarksasignicantde-
velopmentincosmeticdermatology,expandingbeyondtraditionalinjectablemethods.
Injectablebotulinumtoxin,whichtypicallyshowsuptoan80%reduction[44,55]inwrin-
kledepthwithin3to7daysandmaintainsecacyfor3to4months[55],haslongbeen
establishedasaneectivetreatmentfordynamicfaciallines.Incontrast,topicalformula-
tionsaimtoprovideanon-invasivealternativeforpatientsseekingcosmeticimprovement
withouttheuseofneedles[55–60].
Currentresearchindicatesthattopicalbotulinumtoxincandelivermodestimprove-
mentsinwrinkleappearancewithaconsiderablylowerecacycomparedtoinjectable
forms.Studieshavedocumentedvariousoutcomesbasedontheformulationanddelivery
systemused:
Nanoparticle-basedformulations:Demonstrateda25%reductioninwrinkledepth
afterfourweeksofdailyapplication,signicantlyhigherthanthe5%reductionob-
servedintheplacebogroup[55].
Liposomaldeliverysystems:Reporteda30%improvementinwrinkleseverityover
aneight-weekperiod[57].
Peptide-basedcarriers:Achieveda20%reductioninperiorbitalwrinklesaftersix
weeksoftreatment[60].
Thesegradualandlesspronouncedoutcomescatertousersdesiringsubtleaesthetic
enhancements.Suchcharacteristicsarelikelytofostergreateradherenceamongthose
whoprioritizeconvenienceandminimaldiscomfort,contrastingsharplywiththerapid
butsometimesoverlypronouncedeectsofinjectabletreatments.Commonlyreported
disadvantagesofinjectablebotulinumtoxin,suchasproceduralpain,theneedforprofes-
sionaladministration,substantialcostsaveragingseveralhundreddollarspersession,
andpotentialadverseeectsincludingthe‘frozen’look,aresignicantlymitigatedby
topicalformulations.Thisapproachnotonlyalignswithcurrenttrendstowardsmore
conservativecosmeticproceduresbutalsoexpandstheaccessibilityandacceptabilityof
botulinumtoxintreatments.
Cosmetics2024,11,1187of15
Mosttopicalbotulinumtoxinformulationsarestillinexperimentalorearlycommer-
cialstagesandstillrequiremedicalpractitionerapplication.Noteworthydevelopments
includeRevanceTherapeuticsRT001[57],atopicalgelformulationofBotoxcosmetic,and
AllerganBotoxTopicalGel,bothofwhichareundergoingfurtherresearchandclinical
trialstoevaluatetheirsafetyandecacy[55].Thesecharacteristicsevokedthestudiesof
peptidetopicalalternativesandaddressedtheseconcernsbyoeringanon-invasiveap-
plicationmethodthatcanbeadministeredathome,leadingtoreducedsideeectsand
overalllowerhealthcareexpenditure.
4.EmergingPeptideTopicalAlternatives
4.1.SyntheticPeptide
Peptidesareattheforefrontofnon-invasiveanti-agingeects,particularlythosethat
inhibitneurotransmierrelease,oeringeectssimilartoBotox(Table1andFigure3B,C).
Theseshortchainsofaminoacidscanrelaxfacialmusclesandreducewrinkleswithout
theneedforinjections.
Tab le1.Ecacy,timetovisibleresults,durationofeects,commonsideeects,andmechanisms
ofactionofBotoxandpeptidetopicalalternative.
NameBrandNameSource/
OriginMechanismofActionDurationof
Effect
ClinicalStudy
Findings
Botulinum
ToxinInjection
Botox,Dysport,
Xeomin
Clostridium
botulinum
InhibitsACh1releasebycleaving
SNAP-252,blockingmuscle
contractions
3–4months
80%reductioninwrinkle
appearancewithinoneweek;
effectslast3–4months
Botulinum
ToxinTopical
Formulations
TopicalBotoxGelBotulinum
toxintypeA
InhibitsAChreleasebytargeting
SNAP-25,blockingmuscle
contractions
Continuous
use
Nanoparticle-based
formulations:25%reduction
after4weeks;
Liposomaldelivery:30%
improvementafter8weeks
ArgirelineAcetyl
Hexapeptide-8
Synthetic
peptide
InhibitsSNARE3complexassembly,
blockingneurotransmitterrelease
Continuous
use
Reducedwrinkledepthbyupto
30%after30days
Snap-8Acetyl
Octapeptide-3
Synthetic
peptide
ExtendsArgirelineaction,inhibiting
SNAREcomplex
Continuous
use
Reducedwrinkledepthbyupto
38%after28days
LeuphasylPentapeptide-18Synthetic
peptide
Modulatesmusclecontractionby
blockingcalciumchannels,reducing
AChrelease
Continuous
use
Reducedwrinkledepthbyupto
24%after28days
VialoxPentapeptide-3Synthetic
peptide
Actsasacompetitiveantagonistat
AChpostsynapticmembrane
receptors,inhibitingmuscle
contraction
Continuous
use
Reducedskinroughnessby47%
andwrinkledepthby49%after
28days
XEP-30and
XEP-018
μ-conotoxin
CnIIIC
Synthetic
peptide
derived
from
marinecone
snailvenom
BlocksAChreleasebytargeting
NaV1.44sodiumchannels,
mimickingbotulinumtoxin
Continuous
use
Reducedwrinkledepthbyupto
48%after30days
Syn-Ake
Dipeptide
Diaminobutyroyl
Benzylamide
Diacetate
Synthetic
(Snake
venom
mimic)
AntagonizesmusclenAChRs5and
modulatesGABAA6receptors
Continuous
use
Reducedwrinklesizebyupto
52%after28days
MyoxinolHibiscus
esculentusextract
Natural
extract
Inhibitsmusclecontractionsvia
interactionwithGABA7receptors,
enhancingGABAergictransmission
Continuous
use
Reducedwrinkledepthbyupto
26%after3weeks
1ACh(Acetylcholine),2SNAP-25(SynaptosomalAssociatedProtein,25kDa),3SNARE(SolubleN-
ethylmaleimide-sensitivefactoraachmentproteinreceptor),4NaV1.4(Voltage-gatedsodium
Cosmetics2024,11,1188of15
channel1.4),5nAChRs(NicotinicAcetylcholineReceptors),6GABAA(Gamma-AminobutyricAcid
typeA),7GABA(Gamma-AminobutyricAcid).
4.1.1.Argireline(AcetylHexapeptide-8)
PeptidessuchasArgirelinerepresentthevanguardofnon-invasiveanti-agingingre-
dients,oeringanalternativetotheneuromodulatoryeectsofbotulinumtoxinwithout
requiringinjections.Argireline,asynthetichexapeptidedevelopedbyLipotecin2002[61],
mimicsthenaturalmechanismsofbotulinumtoxin.Structurally,itisasyntheticpeptide
derivedfromtheN-terminalendoftheSNAP-25substrateintheSNAREcomplex,crucial
forneurotransmierrelease[61–63].TheArgirelinemechanismofactionisremarkably
akintothatofBotox.
Argirelinehasbeenclinicallyvalidatedtoreducetheappearanceofwrinkles,albeit
withlessimmediateordramaticeectscomparedtoBotox.AseminalstudybyBlanes-
Miraetal.(2002)demonstrateda30%reductioninwrinkledepthaftera30-dayapplica-
tionofa10%Argirelinesolution[61].Anotherstudyshoweda48.9%anti-wrinkleecacy
insubjectsafterfourweeksofuse[62].Thispeptideoersalessinvasiveapplication,
suitableforindividualsseekingsubtlecosmeticimprovementswithouttherisksassoci-
atedwithinjections.Itsecacy,combinedwithafavorablesafetyprole,underscoresits
utilityasaviablecosmeticpeptideforreducingsignsofaging.
Thenon-toxicnatureofArgirelinemakesitanappealingalternativefortopicaluse
[61,64].UnlikeBotox,whichinvolvespreciseinjectionandcarriesriskssuchaspotential
‘frozen’looksorotherminorsideeects,Argirelinecanbeappliedtopicallyandabsorbed
throughtheskin,minimizingsystemiceectsandenhancingusercomplianceduetoits
easeofapplication.Thishasledtoitsincreasedpopularityinformulationstargetedat
consumerswhoprefernon-invasiveoptions.
4.1.2.Snap-8(AcetylOctapeptide-3)
Snap-8,developedbyLipotecinthelate2000s,enhancesthepeptidesequencebyextend-
ingArgirelineeightaminoacids(Ac-Glu-Glu-Met-Gln-Arg-Arg-Ala-Asp-NH2)[65].Sucha
strategicaugmentationenhancesitsabilitytodisrupttheassemblyoftheSNAREcomplex,
criticalforneurotransmitterreleaseatneuromuscularjunctions,similartoArgireline.
TheeectivenessofSnap-8inreducingwrinkledepth,particularlyinareaswithfre-
quentdynamicmuscleactivitysuchasaroundtheeyes,issignicant.Clinicalstudieshave
indicatedthatSnap-8canachieveuptoa38%reductioninwrinkledepthwithin28days
ofapplication,presentingitasapotentneuromodulatorypeptide[65].Thisresultsup-
portsitsutilityasanon-invasivealternativetotraditionaltreatmentslikeBotox,targeting
similarmechanismsofactionbutwithouttheneedforinjections.
Intermsofdeliveryandformulation,productscontainingSnap-8,suchaspatches,
facechallengeswithpermeabilitythroughthestratumcorneum.However,DissolvingMi-
croneedletechnologyeectivelydeliversSnap-8totargetareas,enhancingwrinklereduc-
tionandmaintainingpeptidestabilitymoresignicantlythanBotox[12,65,66].Clinical
studiesconrmSnap-8’sexcellenttolerabilityover12weeksandhighlightthesynergistic
eectsofformulationscombiningSnap-8withotherbioactivecompounds[66],collec-
tivelyboostinganti-wrinkleecacy[65].
4.1.3.Leuphasyl(Pentapeptide-18)
LeuphasylisdevelopedbyLipotectomimictheeectsofenkephalins,targetingthe
neuromuscularjunctiontomodulateacetylcholinerelease,whichiscrucialformuscle
contraction.Thisresultsinmusclerelaxation,reducingdynamicwrinkles.Leuphasylacts
byloweringcalciuminuxatnerveendings,decreasingacetylcholinereleaseandmuscu-
larcontractions,andsharessimilaritieswiththeBotoxmechanismbutviadierentbio-
chemicalpathways[67].CombiningLeuphasylwithArgireline,targetingdierentmech-
anismswithintheSNAREcomplex,enhancesanti-wrinkleecacy[68].UsingLeuphasyl
ata2%concentrationtargetingtheSNAREcomplexresultsinsignicantwrinkledepth
Cosmetics2024,11,1189of15
reductions,34.7%inthefrontalregionand28.4%intheperiorbitalarea,thus,enhancing
theecacyagainstdynamicwrinkles[67].
4.1.4.Vialox(Pentapeptide-3)
Pentapeptide-3,marketedasVialox,isanoligopeptidedevelopedbyDSMthatmimics
theneuromuscularblockingeffectofsnakevenompeptides,notablyfromthetempleviper.
Itactsasacompetitiveantagonistattheacetylcholinepostsynapticmembranereceptor,pre-
ventingsodiumionchannelsfromopeningandinhibitingmusclecontraction.Invitrostud-
iesshowasignificantreductioninmusclecellcontraction,whileinvivostudiesindicatea
49%decreaseinwrinklesizeanda47%decreaseinskinroughnessafter28days.Vialox
effectivelysmoothsperiorbital,forehead,andnasolabialfoldwrinkles,providinganimme-
diatetighteningeffectwitharecommendedconcentrationof0.05to0.3%[69,70].However,
Vialoxrequiredfurtherclinicaltrialstoproveitseffectsonalargerpatientdemographic.
4.2.AnimalDeviredSynthesisPeptide
4.2.1.XEP-30andXEP-018(μ-ConotoxinCnIIIC)
XEP-30andXEP-018,alsoknownasμ-conotoxinCnIIIC,areconopeptidesderived
fromthevenomofthemarineconesnailConusconsors[71,72].Thissyntheticpeptideis
renownedforitsBotox-likeeectsandbelongstoaclassofpeptidesthathavegarnered
signicantaentionfortheirpotentialinaestheticdermatologyduetotheirabilityto
modulateneuromuscularactivity.SimilartoBotox,XEP-30andXEP-018functionbyin-
hibitingthereleaseofneurotransmiersthatsignalmusclecontraction.Thisactionresults
inatemporaryrelaxationoffacialmuscles,therebyreducingtheappearanceofdynamic
wrinklesandnelines.Thepeptidetargetsthevoltage-gatedsodiumchannels,particu-
larlytheNaV1.4channel[71],whichplaysacriticalroleinneuromusculartransmission.
AccordingtodatapublishedontheErasaSkincarewebsite,theapplicationoftheir
XEP-30serumresultedinanaveragewrinklereductionof64%acrossthesampleovera
14-dayperiod.Additionally,42%ofparticipantsexperiencedawrinklereductionof70%
orbeer,withthetopquartileseeingreductionsof90%ormore[73].Theseeectsare
comparabletothoseachievedwithBotox,butarandomizedclinicaltrialwouldneedto
bepublishedtoreconrmthisnumber.
4.2.2.Syn-Ake(DipeptideDiaminobutyroylBenzylamideDiacetate)
SYN-Ake,ananalogofthepeptideWagle r in- 1derivedfromthevenomoftheSouth-
eastAsianTempl eViper(Tropidolaemuswagleri),functionsbyantagonizingmusclenA-
ChRsandmodulatingGABAAreceptors[74,75].Thetripeptidelinkstoareceptorsubunit,
blockingtheaachmentofnAChR.Asaresult,theionicchannelremainsclosed,prevent-
ingtheuptakeofsodiumionsandkeepingthemusclesrelaxed.Thisactionreducesmus-
clecontractionand,consequently,theappearanceofexpressionwrinkles[68].Thisphar-
macologicalactioninhibitstheneuromusculartransmissionresponsibleformusclecon-
tractionsthatleadtotheformationofdynamicexpressionlines,particularlyintheperi-
orbitalandforeheadregions.Byblockingthesereceptors,SYN-Akeinduceslocalized
musclerelaxation,resultinginasmootherandmorereneddermalsurface.Thistargeted
neuromodulationdecreasesthevisibilityofnelinesandwrinkleswithoutaectingother
cellularprocesses,therebyensuringahighsafetyprolefortopicalapplication.Clinical
investigationshavesubstantiatedtheecacyofSYN-Ake4%,withonestudydemonstrat-
ingthatatopicalformulationcontainingSYN-Akeresultedinareductionofwrinklesize
byupto52%overa28-dayperiod.Subjectsreportedsignicantimprovementsinskin
textureandareductioninwrinkledepth,withvisibleeectsobservableasearlyasone
weekintotheregimen[76,77].

Cosmetics2024,11,11810of15
4.3.PlantBasedExtract
Myoxinol,derivedfromHibiscusesculentus,alsoknownasokra,isaplant-basedex-
tractcelebratedforitsnaturalmuscle-relaxingproperties[78].TheprimaryactionofMy-
oxinolinvolvesinhibitingthemechanicalfactorsthatcontributetoexpressionlinesand
wrinkles.TheeectivenessofMyoxinolcanbeaributedtoitsinteractionwithGABA
receptors,similartootheravonoids,saponins,andterpenoidsfoundinplants.These
phytoconstituentsenhanceGABAtransmission,whichresultsinthehyperpolarizationof
neuronalmembranesandasubsequentdecreaseinneuronalringrates,andreducesthe
contractionfrequencyofmusclebers[79].
SeveralstudiessupporttheeectivenessofMyoxinolincosmeticapplications.Re-
searchindicatesthatregularapplicationofMyoxinolleadstovisiblereductionsinne
linesandwrinkles.AnotableclinicaltrialobservedthatproductscontainingMyoxinol
reducedwrinkledepthbyupto26%afterjustthreeweeksofuse[80].Theseresultshigh-
lightitspotentialasanaturalalternativetomoreinvasiveprocedures.Myoxinol’spoten-
tialisfurtherenhancedbyitsoriginfromawell-knownedibleplant,whichalignswith
thetrendtowardscleaner,safercosmeticingredients.
5.MarketInsightsandConsumerTrends
Theglobalmarketforanti-agingproducts,particularlythosetargetingdynamicwrin-
kles,isexperiencingrobustgrowth,drivenbyincreasingconsumerawarenessanddemand
fornon-invasivealternativestotraditionaltreatmentslikebotulinumtoxin.Accordingtoa
reportbyGrandViewResearch,theglobalanti-agingmarketisprojectedtoreachapproxi-
mately120billionUSDby2030,expandingatacompoundannualgrowthrate(CAGR)of
7.5%[81].Thissurgeisprimarilyfueledbytheagingpopulationandasignificantshiftin
consumerpreferencestowardssafer,non-toxic,andsustainableskincaresolutions.
Inrecentyears,therehasbeenadiscernibletrendtowards‘cleanbeauty’products,with
consumersincreasinglyoptingforskincareitemsthatarefreefromharshchemicals,which
canbeoverlyaggressiveorcausedermalirritationandaremadewithenvironmentally
friendlyingredients.MarketanalysisfromTransparencyMarketResearchhighlightsthat
over60%ofconsumersaged18to35prefertopurchaseproductslabeledas“natural”or
“organic,”atrendthatisreshapingthelandscapeofthedermatologicalcosmeticsmarket.
Thisdemographicisparticularlyinterestedinpreventativeskincareregimesthatintegrate
seamlesslyintotheirdailyroutines,furtherdrivingthedemandfortopicalalternativesthat
canmimictheeffectsofprocedureslikeBotoxwithouttheassociatedrisks[82].
Themarketforpeptidetopicalalternatives(Table2)tobotulinumtoxinhasbeen
growing,withseveralkeybrandsandproductsleadingthecharge.Argireline,developed
byLipotec(asubsidiaryofLubrizol),issoldundervariousbrandnameslikeSederma’s
Matrixylandisfeaturedinmanyhigh-endskincareproducts,contributingsignicantly
totheanti-agingsegment.Leuphasyl,marketedbyLipotec,isoftencombinedwithother
peptidesinanti-agingproducts,capturingasignicantmarketshareinpremiumskincare
lines.Theglobalcosmeticpeptidemarketisexpectedtogrowfrom244.2millionUSDin
2024to411.9millionUSDby2034,drivenbyincreaseddemandforeective,non-invasive
skincaresolutions,particularlyintheU.S.andEurope[83].Syn-Akeishighlysoughtafter
inAsian,European,andNorthAmericanmarketsforitsinnovativeanti-agingproperties
[84].Myoxinol,fromHibiscusesculentus,isgainingtractioninthenaturalandorganicskin-
caresegment[85],drivenbyagrowingconsumerpreferenceforcleanbeautyproductsin
AsiaPacicandEurope[86].

Cosmetics2024,11,11811of15
Tab le2.Representativepeptidetopicalalternativescommercialnamesandcompanies.
Peptide/ExtractBrand/CompanyCity,Country
Argireline®Amplifiedpeptidesolution
Argireline®peptidesolutionC
Argireline®YOUthpeptide
Argirelox™peptidesolution
Inyline®peptidesolution
SNAP-8™peptidesolutionC
Leuphasyl
Argirelox
Inyline
LipotecBarcelona,Spain
Vialox
SYN-AkeDSM-FirmenichHeerlen,Netherlands
XEP-30
XEP-018ErasaXEP-30NewYork,UnitedStates
MyoxinolBASFMonheim,Germany
6.ChallengesandFuturePerspectives
Whilenon-invasiveoptionsfordynamicwrinklesarebecomingincreasinglypopu-
lar,theyfacesignicantchallengesandlimitationsthatmustbeaddressedtoimprove
theirecacyandconsumeracceptance.Aprimarylimitationoftopicalagentsistheirin-
abilitytopenetratedeeplyenoughintotheskintosignicantlyaectthemuscles.This
barrieroftenresultsintheseingredientsbeinglesseective,achievingamaximumof52%
wrinklereduction[77]comparedtoBotoxinjections,whichcanachieveupto80%wrinkle
reduction[46]bydirectlytargetingneuromuscularjunctions.
Moreover,thelong-termclinicaleectsandsafetyofmanynewpeptidesandbotan-
icalextractsusedintheseingredientsarenotwell-documented.Whileinitialresultsare
promising,comprehensivestudiesoverlongerperiodsarenecessarytoestablishtheir
safety,potentialsideeects,andsustainedecacy.Thisuncertaintycandeterconsumers
whoareseekingreliableandprovensolutionstotheiragingconcerns.
Themarketfordynamicwrinkleingredientsalsolacksstringentregulatoryoversight
fortopicalanti-agingproductscomparedtoinvasiveprocedures.Thiscanleadtothepro-
liferationofproductswithunsubstantiatedclaims,potentiallymisleadingconsumersand
erodingtrustinnon-invasiveingredients.
Futuretrendsinaddressingdynamicwrinklesnon-invasivelyinvolveenhancing
penetrationtechnologiessuchasmicroencapsulation,nanotechnology,andskinpermea-
tionenhancerstoimprovethedeliveryofactiveingredientstodeeperskinlayers.There
isalsogrowingadvocacyforstricterregulationsandclearerlabelingtoensureproduct
ecacyandsafety,whichcouldhelpstandardizethemarketandbuildconsumertrust.
Additionally,advancementsindermatologicalresearcharesteeringtowardspersonalized
skincareingredientstailoredtoindividualskintypes,conditions,andgeneticproles,po-
tentiallyincreasingtheeectivenessoftopicaloptionsfordynamicwrinkles[87].
Researchneedstoexpandtoincludediversedemographicgroupstoensurethatap-
plicationecacyisbroadandinclusive.Moreresearchisrequiredonhowthesetopical
agentscanbeeectivelycombinedwithotheringredients,suchaslighttherapyorme-
chanicalstimulation,toenhancetheiranti-wrinkleeects.Evaluatingthecost-eective-
nessofthesenon-invasiveingredientscomparedtotraditionalmethodsiscrucial,espe-
ciallysincemanyarenotcoveredbyhealthinsurance.
Byaddressingthesechallengesandleveraginginnovativetechnologiesandregula-
toryimprovements,thefutureoftreatingdynamicwrinklescanshifttowardsmoreeec-
tive,safer,andaccessiblenon-invasiveoptions.Thisshiftpromisestorevolutionizethe
Cosmetics2024,11,11812of15
approachtoanti-agingingredientsandalignswiththeincreasingconsumerdemandfor
non-toxic,sustainable,andgentleskincaresolutions.
7.Conclusions
Therevolutionindermatologicalcareisdrivenbynon-invasivealternativestoBotox
fordynamicwrinkletreatment.Althoughpeptidesencounterdistinctscienticchal-
lenges,suchasalowabsorptionratethatsignicantlyvariesdependingonthemethodof
application,thesetopicalagentscontinuetoleadthechargebyoering:
Effective,safersolutions:Theseingredientsmeetthegrowingconsumerdemandfor
‘cleanbeauty’products,aligningwithpreferencesfornon-toxicandsustainableskincare.
Technologicaladvancements:Innovationsindeliverytechnologiesareovercoming
challengeslikeskinpenetration,ensuringtheseingredientsarenotonlyeectivebut
alsoreliable.
Marketexpansion:Theboomingmarket,fueledbyconsumersseekingseamlessand
risk-freeskincareroutines,highlightsthetransformativepotentialofthesealternatives.
Thisparadigmshiftpromisestosetnewstandardsincosmeticdermatology,making
anti-agingsolutionsmoreaccessibleanddeliveringprofoundsocio-economicandpsy-
chologicalbenets.
Aut horContributions:Conceptualization,T.T.M.N.andS.-J.Y.;methodology,T.T.M.N.andQ.Z.;
software,T.T.M. N.;validation,X.J.,S.-J.P.andG.-S.Y.;formalanalysis,T.T.M.N.;investigation,G.-
S.Y.;resources,Q.Z.;datacuration,X.J.;writing—originaldraftpreparation,T.T.M.N.;writing—
reviewandediting,E.-J.Y.;visualization,T.T.M.N.andS.-J.P.;supervision,S.-J.Y.andT.-H.Y.;pro-
jectadministration,T.-H.Y.;fundingacquisition,S.-J.Y.andT.-H.Y.Allauthorshavereadandagreed
tothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
ConictsofInterest:Theauthorsdeclarenoconictsofinterest.
References
1. Chao,Y.Y.Y.TheAestheticStandardforContouringandFacialDynamics.InOptimizingAestheticToxinResults;CRCPress:London,
UK,2022;pp.37–44,ISBN978-1-00-300813-2.
2. Kurosumi,M.;Mizukoshi,K.;Hongo,M.;Kamachi,M.G.DoesAge-DynamicMovementAccelerateFacialAgeImpression?
PerceptionofAgefromFacialMovement:StudiesofJapaneseWomen.PLoSONE2021,16,e0255570.
https://doi.org/10.1371/journal.pone.0255570.
3. Yang,X.;Zhao,M.;He,Y.;Meng,H.;Meng,Q.;Shi,Q.;Yi,F.FacialSkinAgingStagesinChineseFemales.Front.Med.2022,9,870926.
https://doi.org/10.3389/fmed.2022.870926.
4. Fujimura,T.;Hotta,M.ThePreliminaryStudyoftheRelationshipbetweenFacialMovementsandWrinkleFormation.SkinRes.
Technol.2012,18,219–224.https://doi.org/10.1111/j.1600-0846.2011.00557.x.
5. Walker,H.M.;Chauhan,P.R.Anatomy,HeadandNeck:Glabella.InStatPearls;StatPearlsPublishing:TreasureIsland,FL,USA,2024.
6. Rahman,E.;Mosahebi,A.;Carruthers,J.D.A.;Carruthers,A.TheEfficacyandDurationofOnabotulinumToxinAinImprovingUpper
FacialExpressionLineswith64-UnitDoseOptimization:ASystematicReviewandMeta-AnalysiswithTrialSequentialAnalysisof
theRandomizedControlledTrials.Aesthet.Surg.J.2023,43,215–229.https://doi.org/10.1093/asj/sjac253.
7. Demchenko,I.;Swiderski,A.;Liu,H.;Jung,H.;Lou,W.;Bhat,V.BotulinumToxinInjectionsforPsychiatricDisorders:ASystematic
ReviewoftheClinicalTrialLandscape.Toxins2024,16,191.https://doi.org/10.3390/toxins16040191.
8. deJongh,F.W.;Wolf,O.;Wong,Z.Y.;Ingels,K.J.A.O.;Pouwels,S.BotulinumToxinTreatmentoftheBuccinatorMuscleFacial
Synkinesis:ASystematicReview.J.Plast.Reconstr.AestheticSurg.JPRAS2023,86,88–93.https://doi.org/10.1016/j.bjps.2023.08.006.
9. Ascher,B.;Rzany,B.-J.;Kestemont,P.;Redaelli,A.;Hendrickx,B.;Iozzo,I.;Martschin,C.;Milotich,A.;Molina,B.;Cartier,H.;etal.
InternationalConsensusRecommendationsontheAestheticUsageofReady-to-UseAbobotulinumtoxinA(Alluzience).Aesthet.Surg.
J.2024,44,192–202.https://doi.org/10.1093/asj/sjad222.
10. Park,J.;Jung,H.;Jang,B.;Song,H.-K.;Han,I.-O.;Oh,E.-S.D-TyrosineAddsanAnti-MelanogenicEffecttoCosmeticPeptides.Sci.
Rep.2020,10,262.https://doi.org/10.1038/s41598-019-57159-3.
Cosmetics2024,11,11813of15
11. Kluczyk,A.;Ludwiczak,J.;Modzel,M.;Kuczer,M.;Cebrat,M.;Biernat,M.;Bąchor,R.Argireline:Needle-FreeBotoxasAnalytical
Challenge.Chem.Biodivers.2021,18,e2000992.https://doi.org/10.1002/cbdv.202000992.
12. Avcil,M.;Akman,G.;Klokkers,J.;Jeong,D.;Çelik,A.EfficacyofBioactivePeptidesLoadedonHyaluronicAcidMicroneedlePatches:
AMonocentricClinicalStudy.J.Cosmet.Dermatol.2020,19,328–337.https://doi.org/10.1111/jocd.13009.
13. Renzi,A.;Brillantino,A.;DiSarno,G.;D’Aniello,F.;Ziccardi,S.;Paladino,F.;Iacobellis,F.Myoxinol(HydrolyzedHibiscusEsculentus
Extract)intheCureofChronicAnalFissure:EarlyClinicalandFunctionalOutcomes.Gastroenterol.Res.Pract.2015,2015,1–4.
https://doi.org/10.1155/2015/567920.
14. Rubin,C.B.;Brod,B.NaturalDoesNotMeanSafe—TheDirtonCleanBeautyProducts.JAMADermatol.2019,155,1344.
https://doi.org/10.1001/jamadermatol.2019.2724.
15. Kuo,I.Y.;Ehrlich,B.E.SignalinginMuscleContraction.ColdSpringHarb.Perspect.Biol.2015,7,a006023.
https://doi.org/10.1101/cshperspect.a006023.
16. Dent,J.A.TheEvolutionofPentamericLigand-GatedIonChannels.InInsectNicotinicAcetylcholineReceptors;Thany,S.H.,Ed.;Springer:
NewYork,NY,USA,2010;pp.11–23,ISBN978-1-4419-6445-8.
17. Picciotto,M.R.;Higley,M.J.;Mineur,Y.S.AcetylcholineasaNeuromodulator:CholinergicSignalingShapesNervousSystemFunction
andBehavior.Neuron2012,76,116–129.https://doi.org/10.1016/j.neuron.2012.08.036.
18. Ganceviciene,R.;Liakou,A.I.;Theodoridis,A.;Makrantonaki,E.;Zouboulis,C.C.SkinAnti-AgingStrategies.Dermatoendocrinology
2012,4,308–319.https://doi.org/10.4161/derm.22804.
19. Catterall,W.A.VoltageGatedSodiumandCalciumChannels:Discovery,Structure,Function,andPharmacology.Channels2023,17,
2281714.https://doi.org/10.1080/19336950.2023.2281714.
20. Gharpure,A.;Noviello,C.M.;Hibbs,R.E.ProgressinNicotinicReceptorStructuralBiology.Neuropharmacology2020,171,108086.
https://doi.org/10.1016/j.neuropharm.2020.108086.
21. Hołyńska-Iwan,I.;Szewczyk-Golec,K.AnalysisofChangesinSodiumandChlorideIonTransportintheSkin.Sci.Rep.2020,10,18094.
https://doi.org/10.1038/s41598-020-75275-3.
22. Garbincius,J.F.;Elrod,J.W.MitochondrialCalciumExchangeinPhysiologyandDisease.Physiol.Rev.2022,102,893–992.
https://doi.org/10.1152/physrev.00041.2020.
23. Rossi,D.;Pierantozzi,E.;Amadsun,D.O.;Buonocore,S.;Rubino,E.M.;Sorrentino,V.TheSarcoplasmicReticulumofSkeletalMuscle
Cells:ALabyrinthofMembraneContactSites.Biomolecules2022,12,488.https://doi.org/10.3390/biom12040488.
24. Clausen,T.Na+-K+PumpRegulationandSkeletalMuscleContractility.Physiol.Rev.2003,83,1269–1324.
https://doi.org/10.1152/physrev.00011.2003.
25. Squire,J.SpecialIssue:TheActin-MyosinInteractioninMuscle:BackgroundandOverview.Int.J.Mol.Sci.2019,20,5715.
https://doi.org/10.3390/ijms20225715.
26. Campos,L.D.;SantosJunior,V.D.A.;Pimentel,J.D.;Carregã,G.L.F.;Cazarin,C.B.B.CollagenSupplementationinSkinandOrthopedic
Diseases:AReviewoftheLiterature.Heliyon2023,9,e14961.https://doi.org/10.1016/j.heliyon.2023.e14961.
27. Gillies,A.R.;Lieber,R.L.StructureandFunctionoftheSkeletalMuscleExtracellularMatrix.MuscleNerve2011,44,318–331.
https://doi.org/10.1002/mus.22094.
28. Dierckx,S.;Patrizi,M.;Merino,M.;González,S.;Mullor,J.L.;Nergiz-Unal,R.CollagenPeptidesAffectCollagenSynthesisandthe
ExpressionofCollagen,Elastin,andVersicanGenesinCulturedHumanDermalFibroblasts.Front.Med.2024,11,1397517.
https://doi.org/10.3389/fmed.2024.1397517.
29. Burns,E.;Ahmed,H.;Isedeh,P.;Kohli,I.;VanderPol,W.;Shaheen,A.;Muzaffar,A.;Al-Sadek,C.;Foy,T.;Abdelgawwad,M.;etal.
UltravioletRadiation,BothUVAandUVB,InfluencestheCompositionoftheSkinMicrobiome.Exp.Dermatol.2019,28,136–141.
https://doi.org/10.1111/exd.13854.
30. Sparavigna,A.;Tenconi,B.;Giori,A.M.;Bellia,G.;LaPenna,L.EvaluationoftheEfficacyofaNewHyaluronicAcidGelonDynamic
andStaticWrinklesinVolunteerswithModerateAging/Photoaging.Clin.Cosmet.Investig.Dermatol.2019,12,81–90.
https://doi.org/10.2147/CCID.S191935.
31. Susmita,A.AnEvaluationofUseofBotulinumToxinTypeAintheManagementofDynamicForeheadWrinkles—AClinicalStudy.
J.Clin.Diagn.Res.2016,10,ZC127.https://doi.org/10.7860/JCDR/2016/21904.8695.
32. Wright,G.;Lax,A.;Mehta,S.B.AReviewoftheLongevityofEffectofBotulinumToxininWrinkleTreatments.Br.Dent.J.2018,224,
255–260.https://doi.org/10.1038/sj.bdj.2018.126.
33. Piewngam,P.;Khongthong,S.;Roekngam,N.;Theapparat,Y.;Sunpaweravong,S.;Faroongsarng,D.;Otto,M.ProbioticforPathogen-
SpecificStaphylococcusAureusDecolonisationinThailand:APhase2,Double-Blind,Randomised,Placebo-ControlledTrial.Lancet
Microbe2023,4,e75–e83.https://doi.org/10.1016/S2666-5247(22)00322-6.
34. Cavallini,M.;Dell’Avanzato,R.;Fundarò,S.P.;Urdiales-Gálvez,F.;Papagni,M.;Trocchi,G.;Raichi,M.;Zazzaron,M.Treating
GlabellarLinesWithBotulinumToxin:DoesYourPatientNeedtoFrownSteadily?Aesthet.Surg.J.2024,44,421–427.
https://doi.org/10.1093/asj/sjad349.
35. El-Garem,Y.F.;Eid,A.A.;Leheta,T.M.LockingtheLineofConvergencebyBotulinumToxinTypeAfortheTreatmentofDynamic
ForeheadWrinkles.J.Cosmet.Dermatol.2023,22,186–192.https://doi.org/10.1111/jocd.15468.
36. U.S.FoodandDrugAdministration.BOTOX(onabotulinumtoxinA)Label.Availableonline:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/103000s5236lbl.pdf(accessedon1June2024).
37. FoodandDrugAdministration.BOTOXCosmetic(onabotulinumtoxinA)forInjection,forIntramuscularUse2017.Availableonline:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103000s5303lbl.pdf(accessedon1June2024).
Cosmetics2024,11,11814of15
38. Erbguth,F.J.HistoricalNotesonBotulism,ClostridiumBotulinum,BotulinumToxin,andtheIdeaoftheTherapeuticUseoftheToxin.
Mov.Disord.2004,19,S2–S6.https://doi.org/10.1002/mds.20003.
39. U.S.FoodandDrugAdministration.DYSPORT®(abobotulinumtoxinA)forInjection.Availableonline:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125274s107lbl.pdf(accessedon1June2024).
40. U.S.FoodandDrugAdministration.XEOMIN(incobotulinumtoxinA)forInjection,forIntramuscularorIntraglandularUse.
Availableonline:https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125360s078lbl.pdf(accessedon1June2024).
41. Scott,A.B.;Honeychurch,D.;Brin,M.F.EarlyDevelopmentHistoryofBotox(onabotulinumtoxinA).Medicine2023,102,e32371.
https://doi.org/10.1097/MD.0000000000032371.
42. GlobalOpportunityAnalysisandIndustryForecastBotulinumToxinMarketbyProductType(ToxinTypeAandToxinTypeB),by
Application(TherapeuticandAesthetic),byGender(MaleandFemale),byAgeGroup(13–19,20–29,30–39,40–54,andabove),by
EndUser(Hospitals,DermatologyClinics,Spas&CosmeticCenters)—GlobalOpportunityAnalysisandIndustryForecast,2024–
2030.Availableonline:https://www.nextmsc.com/report/botulinum-toxin-market(accessedon1June2024).
43. FoodandDrugAdministration.ProductApprovalInformation—LicensingAction.Availableonline:
https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2002/botuall041202L.htm(accessedon1June2024).
44. Joseph,J.H.;Eaton,L.L.;Robinson,J.;Pontius,A.;Williams,E.F.DoesIncreasingtheDoseofAbobotulinumtoxinaImpacttheDuration
ofEffectivenessfortheTreatmentofModeratetoSevereGlabellarLines?J.DrugsDermatol.JDD2016,15,1544–1549.
45. FoodandDrugAdministration.BOTOXCOSMETIC(onabotulinumtoxinA)forInjection,forIntramuscularUse.Availableonline:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/103000s5260lbl.pdf(accessedon1June2024).
46. Karsai,S.;Adrian,R.;Hammes,S.;Thimm,J.;Raulin,C.ARandomizedDouble-BlindStudyoftheEffectofBotoxandDysport/Reloxin
onForeheadWrinklesandElectromyographicActivity.Arch.Dermatol.2007,143,1447–1462.
https://doi.org/10.1001/archderm.143.11.1447-b.
47. Yeilding,R.H.;Fezza,J.P.AProspective,Split-Face,Randomized,Double-BlindStudyComparingOnabotulinumtoxinAto
IncobotulinumtoxinAforUpperFaceWrinkles.Plast.Reconstr.Surg.2015,135,1328–1335.
https://doi.org/10.1097/PRS.0000000000001255.
48. Prager,W.;Bee,E.K.;Havermann,I.;Zschocke,I.IncobotulinumtoxinAfortheTreatmentofPlatysmalBands:ASingle-Arm,
ProspectiveProof-of-ConceptClinicalStudy.Dermatol.Surg.2015,41,S88–S92.https://doi.org/10.1097/DSS.0000000000000177.
49. Brin,M.F.;Burstein,R.Botox(onabotulinumtoxinA)MechanismofAction.Medicine2023,102,e32372.
https://doi.org/10.1097/MD.0000000000032372.
50. Blasi,J.;Chapman,E.R.;Link,E.;Binz,T.;Yamasaki,S.;DeCamilli,P.;Südhof,T.C.;Niemann,H.;Jahn,R.BotulinumNeurotoxinA
SelectivelyCleavestheSynapticProteinSNAP-25.Nature1993,365,160–163.https://doi.org/10.1038/365160a0.
51. Schiavo,G.;Santucci,A.;Dasgupta,B.R.;Mehta,P.P.;Jontes,J.;Benfenati,F.;Wilson,M.C.;Montecucco,C.BotulinumNeurotoxins
SerotypesAandECleaveSNAP-25atDistinctCOOH-TerminalPeptideBonds.FEBSLett.1993,335,99–103.
https://doi.org/10.1016/0014-5793(93)80448-4.
52. Drugs.com.OnabotulinumtoxinA(Botox/BotoxCosmetic).Availableonline:https://www.drugs.com/onabotulinumtoxina.html
(accessedon1June2024).
53. MordorIntelligenceBOTULINUMTOXINCOMPANIES(2024–2029).Availableonline:
https://www.mordorintelligence.com/industry-reports/global-botulinum-toxin-market/companies(accessedon1June2024).
54. aedit.com.HowMuchDoesBotoxCost?Availableonline:https://aedit.com/procedure/botox/cost(accessedon1June2024).
55. Brandt,F.;O’Connell,C.;Cazzaniga,A.;Waugh,J.M.EfficacyandSafetyEvaluationofaNovelBotulinumToxinTopicalGelforthe
TreatmentofModeratetoSevereLateralCanthalLines.Dermatol.Surg.2010,36,2111–2118.https://doi.org/10.1111/j.1524-
4725.2010.01711.x.
56. Collins,A.;Nasir,A.TopicalBotulinumToxin.J.Clin.AestheticDermatol.2010,3,35–39.
57. Araco,A.;Francesco,A.ProspectiveRandomizedClinicalStudyofaNewTopicalFormulationforFaceWrinkleReductionand
DermalRegeneration.J.Cosmet.Dermatol.2021,20,2832–2840.https://doi.org/10.1111/jocd.13937.
58. Torrisi,B.M.;Zarnitsyn,V.;Prausnitz,M.R.;Anstey,A.;Gateley,C.;Birchall,J.C.;Coulman,S.A.PocketedMicroneedlesforRapid
DeliveryofaLiquid-StateBotulinumToxinAFormulationintoHumanSkin.J.Control.Release2013,165,146–152.
https://doi.org/10.1016/j.jconrel.2012.11.010.
59. Giordano,C.N.;Matarasso,S.L.;Ozog,D.M.InjectableandTopicalNeurotoxinsinDermatology.J.Am.Acad.Dermatol.2017,76,1013–
1024.https://doi.org/10.1016/j.jaad.2016.11.022.
60. Beer,K.R.ComparativeEvaluationoftheSafetyandEfficacyofBotulinumToxinTypeAandTopicalCreamsforTreatingModerate-
to-SevereGlabellarRhytids.Dermatol.Surg.Off.Publ.Am.Soc.Dermatol.Surg.Al2006,32,184–197.https://doi.org/10.1111/j.1524-
4725.2006.32036.x.
61. Blanes-Mira,C.;Clemente,J.;Jodas,G.;Gil,A.;Fernández-Ballester,G.;Ponsati,B.;Gutierrez,L.;Pérez-Payá,E.;Ferrer-Montiel,A.A
SyntheticHexapeptide(Argireline)withAntiwrinkleActivity.Int.J.Cosmet.Sci.2002,24,303–310.https://doi.org/10.1046/j.1467-
2494.2002.00153.x.
62. Wang,Y.;Wang,M.;Xiao,S.;Pan,P.;Li,P.;Huo,J.TheAnti-WrinkleEfficacyofArgireline,aSyntheticHexapeptide,inChinese
Subjects:ARandomized,Placebo-ControlledStudy.Am.J.Clin.Dermatol.2013,14,147–153.https://doi.org/10.1007/s40257-013-0009-9.
63. Grosicki,M.;Latacz,G.;Szopa,A.;Cukier,A.;Kieć-Kononowicz,K.TheStudyofCellularCytotoxicityofArgireline—AnAnti-Aging
Peptide.ActaBiochim.Pol.2014,61,29–32.
Cosmetics2024,11,11815of15
64. Henseler,H.InvestigatingtheEffectsofArgirelineinaSkinSerumContainingHyaluronicAcidsonSkinSurfaceWrinklesUsingthe
Visia®ComplexionAnalysisCameraSystemforObjectiveSkinAnalysis.GMSInterdiscip.Plast.Reconstr.Surg.DGPW2023,12,Doc09.
https://doi.org/10.3205/IPRS000179.
65. Shin,J.Y.;Han,D.;Yoon,K.Y.;Jeong,D.H.;Park,Y.I.ClinicalSafetyandEfficacyEvaluationofaDissolvingMicroneedlePatchHaving
DualAnti-WrinkleEffectsWithSafeandLong-TermActivities.Ann.Dermatol.2024,36,e37.https://doi.org/10.5021/ad.23.136.
66. Ji,M.;Lee,H.-S.;Kim,Y.;Seo,C.;Choi,S.;Oh,S.;Min,J.;Park,H.-J.;Kim,J.D.;Jeong,D.H.;etal.MethodDevelopmentforAcetyl
Octapeptide-3AnalysisbyLiquidChromatography-TandemMassSpectrometry.J.Anal.Sci.Technol.2020,11,34.
https://doi.org/10.1186/s40543-020-00232-8.
67. Dragomirescu,A.;Andoni,M.;Ionescu,D.;Andrei,F.TheEfficiencyandSafetyofLeuphasyl—ABotox-LikePeptide.Cosmetics2014,
1,75–81.https://doi.org/10.3390/cosmetics1020075.
68. Rossello,C.Evaluationofeffectivenessofviperserumfortopicaluseasfacialanti-aging.Capsul.Eburnea2009,4,1–6.
https://doi.org/10.3269/1970-5492.2009.4.9.
69. Reddy,B.Y.;Jow,T.;Hantash,B.M.BioactiveOligopeptidesinDermatology:PartII.Exp.Dermatol.2012,21,569–575.
https://doi.org/10.1111/j.1600-0625.2012.01527.x.
70. Gorouhi,F.;Maibach,H.I.RoleofTopicalPeptidesinPreventingorTreatingAgedSkin.Int.J.Cosmet.Sci.2009,31,327–345.
https://doi.org/10.1111/j.1468-2494.2009.00490.x.
71. DelRío-Sancho,S.;Cros,C.;Coutaz,B.;Cuendet,M.;Kalia,Y.N.CutaneousIontophoresisofμ-ConotoxinCnIIIC—APotentNaV1.4
AntagonistwithAnalgesic,AnaestheticandMyorelaxantProperties.Int.J.Pharm.2017,518,59–65.
https://doi.org/10.1016/j.ijpharm.2016.12.054.
72.