Content uploaded by Mahmud M. Evuti
Author content
All content in this area was uploaded by Mahmud M. Evuti on Jul 19, 2024
Content may be subject to copyright.
Phytoremediation in Food Safety
Phytoremediation is the process that uses plants to remove pollutants from soils. These pollutants
are stored in the edible parts of plants and, if they are consumed above a certain level, they become
a health risk for humans and animals. This book is a critical review of phytoremediation, its direct
and indirect effects on food products, and the risks posed by this cost-effective technology in food
safety. It shows how different plants are suited for phytoremediation, explains the role of toxicants
in the environment, and analyzes their effects and risks in the food chain at a global level. It also
reviews the extraction methods of toxicants from plants after they are exposed to phytoremediation.
FEATURES:
• Summarizes the phytoremediation technology for effective remediation
• Describes different types of pollutants in soils that render food products useless
• Identies the role of phytoremediation in the environment and its advantages and
disadvantages
• Explains the roles of phytoexclusion and phytostabilization in foods and food safety
• Includes many case studies to describe the extraction protocols in postharvest for food
safety
This book is intended for practitioners in public and private companies involved in soil remediation
and food production, as well as graduate students and academics, in both developed and developing
countries, who are involved in soil and environmental sciences, the food industry, agriculture, and
biotechnology.
Phytoremediation in Food Safety
Risks and Prospects
Edited by
Sesan Abiodun Aransiola and Naga Raju Maddela
Designed cover image: © Shutterstock Templates
First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431
and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
CRC Press is an imprint of Taylor& Francis Group, LLC
© 2025 selection and editorial matter, Sesan Abiodun Aransiola and Naga Raju
Maddela; individual chapters, the contributors
Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we
may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be
reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying, microlming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not
available on CCC please contact mpkbookspermissions@tandf.co.uk
Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identication and explanation without intent to
infringe.
ISBN: 978-1-032-68374-4 (hbk)
ISBN: 978-1-032-68376-8 (pbk)
ISBN: 978-1-032-68375-1 (ebk)
DOI: 10.1201/9781032683751
Typeset in in Times LT Std
by Apex CoVantage, LLC
v
Contents
Foreword ..........................................................................................................................................xv
Preface ............................................................................................................................................xvii
About the Editors ............................................................................................................................xix
List of Contributors .........................................................................................................................xxi
Acknowledgments .......................................................................................................................... xxv
SECTION 1 Prospects of Phytoremediation for
a Safe Environment and Safe Food
Chapter 1 Phytoremediation Overview and Role in Food Safety .................................................3
Munachimso Odenakachi Victor-Ekwebelem and Simeon Okiki Naphtali
1.1 Introduction ....................................................................................................... 3
1.2 Advantages of Phytoremediation .......................................................................4
1.3 Disadvantages and Limitations of Phytoremediation ........................................ 4
1.4 Phytoremediation and Food Safety ................................................................... 5
1.5 Conclusion .........................................................................................................6
References .................................................................................................................... 7
Chapter 2 Phytoremediation and Its Role in Climate Change for a Safe Environment ..............10
Pabbati Ranjit, Patel Shaifali Ben, D. Rama Prasanna, and
Kondakindi Venkateswar Reddy
2.1 Introduction ..................................................................................................... 10
2.2 Reasons for Climate Change ........................................................................... 10
2.2.1 Greenhouse Gases .............................................................................. 11
2.2.2 Petroleum Industry ............................................................................. 11
2.2.3 Vapor Intrusion ................................................................................... 11
2.2.4 Oil Spills ............................................................................................. 11
2.2.5 Exhaust Emissions.............................................................................. 11
2.2.6 Waste Oil ............................................................................................ 12
2.3 Climate Change and Its Impact on the Environment ...................................... 12
2.4 Climate Change and Safe Environment through Phytoremediation ............... 12
2.4.1 Carbon Sequestration ......................................................................... 13
2.4.2 Soil Health Improvement ...................................................................13
2.5 Phytoremediation of Various Pollutants .......................................................... 14
2.5.1 Phytoremediation of Particulate Matter ............................................. 14
2.5.2 Volatile Organic Compounds ............................................................. 15
2.5.3 Gaseous Pollutants ............................................................................. 16
2.5.4 Removal of Dyes ................................................................................ 16
2.5.5 Removal of Heavy Metals .................................................................. 16
2.6 Conclusion ....................................................................................................... 18
References .................................................................................................................. 18
vi Contents
Chapter 3 Organic and Inorganic Pollutant Uptake Mechanisms by Plants ...............................21
Munachimso Odenakachi Victor-Ekwebelem,
Simeon Okiki Naphtali, and M. M. Yakiimov
3.1 Introduction ..................................................................................................... 21
3.2 Mechanism of Phytoremediation .....................................................................22
3.3 Conclusion .......................................................................................................26
References .................................................................................................................. 27
Chapter 4 Soil Regeneration through Phytoremediation for Safe Foods ....................................30
Innocent Ojeba Musa, Job Oloruntoba Samuel,
Mustahpa Adams, Vivian Nathaniel, Asmau M.
Maude, Mohammed Evuti Mahmud, and Abd’Gafar Tunde Tiamiyu
4.1 Introduction ..................................................................................................... 30
4.2 Phytoremediation Techniques .........................................................................31
4.2.1 Phytoextraction: Extracting Heavy Metals from Soil ........................ 31
4.2.2 Rhizoltration: Soil and Water Purication through Roots ............... 32
4.2.3 Phytostabilization: Immobilizing Contaminants in Soil.................... 32
4.2.4 Phytodegradation: Breaking Down Organic Pollutants ..................... 33
4.2.5 Phytovolatilization: Transforming Contaminants into Gas ...............34
4.3 Plant Species for Phytoremediation ................................................................. 34
4.3.1 Hyperaccumulators: Nature’s Metal Cleaners.................................... 34
4.3.2 Native Plants: Tailoring Remediation to Local Ecosystems .............. 35
4.3.3 Crop Plants: Synergizing Remediation with Agriculture .................. 35
4.4 Factors Inuencing Phytoremediation .............................................................36
4.4.1 Soil Composition and Its Role in Remediation .................................. 36
4.4.2 Types and Levels of Contaminants: Navigating Complexity .............37
4.4.3 Climate and Environmental Variables in Remediation .....................37
4.4.4 Plant-Microbe Interactions: Below-Ground Collaborations .............. 38
4.5 Conclusion ....................................................................................................... 39
References .................................................................................................................. 39
Chapter 5 Environmental Pollution: Causes, Types, Fates, Effects,
and Control Strategies ................................................................................................43
Kingsley Erhons Enerijio, Chidozie Ekene, Saheed Ibrahim Musa,
Comfort Okoji, Nathan Moses, Parisa Ebrahimbabaie, Iboyi Nathaniel
Onuche, and Charles Oluwaseun Adetunji
5.1 Introduction ..................................................................................................... 43
5.2 Types of Environmental Pollution ................................................................... 43
5.2.1 Soil Pollution ......................................................................................44
5.2.2 Air Pollution .......................................................................................44
5.2.3 Water Pollution ................................................................................... 45
5.3 Causes of Pollution in the Food Chain ............................................................ 45
5.3.1 Agricultural Runoff ............................................................................ 45
5.3.2 Industrial Discharges..........................................................................45
5.3.3 Improper Waste Disposal ................................................................... 46
5.3.4 Airborne Deposition ...........................................................................46
5.3.5 Soil Contamination ............................................................................ 46
viiContents
5.4 Entry and Transport of Environmental Pollutants into the Food Chain ......... 46
5.4.1 Water Contamination .........................................................................46
5.4.2 Bioaccumulation in Aquatic Organisms ............................................46
5.4.3 Soil Pollution and Terrestrial Pathways .............................................46
5.4.4 Airborne Pollutants and Atmospheric Deposition ............................. 47
5.5 Fate of Environmental Pollutants in the Food Chain ...................................... 47
5.5.1 Absorption by Primary Producers .....................................................47
5.5.2 Bioaccumulation in Herbivores .......................................................... 47
5.5.3 Transfer to Carnivores/Omnivores ..................................................... 47
5.5.4 Accumulation in Top Predators .......................................................... 47
5.6 Metabolism and Elimination ........................................................................... 47
5.7 Human Exposure ............................................................................................. 48
5.8 Effects of Environmental Pollutants on the Food Chain ................................... 48
5.8.1 Effects on Human Health ................................................................... 48
5.8.2 Effects on Biodiversity ....................................................................... 48
5.8.3 Effects on Plants .................................................................................49
5.9 Prevention of Environmental Pollutants from Entering the Food Chain ........ 50
5.9.1 Avoid Excessive Application of Pesticides ......................................... 50
5.9.2 Waste Management through Composting .......................................... 50
5.9.3 Genetically Modied Crops ............................................................... 51
5.9.4 Integrated Pest Management (IPM) ................................................... 51
5.10 Conclusion .......................................................................................................53
References .................................................................................................................. 54
Chapter 6 Mechanism of Phytoremediation and Plant Uptake of Heavy Metals .......................59
Anjaneyulu Musini, P. Gnana Deepu, Jogipeta Harihara,
Kathuroju Harikrishna, Chittepu Obula Reddy, Bachha Laxmi Dora,
and Bhagyashree Mohakhud
6.1 Introduction to Heavy Metals .......................................................................... 59
6.1.1 Heavy Metals ......................................................................................59
6.1.2 Sources of Heavy Metals ....................................................................59
6.2 Phytoremediation and Its Signicance ............................................................ 61
6.2.1 Phytoremediation ............................................................................... 61
6.2.2 Signicance ........................................................................................ 61
6.2.3 Types and Process of Phytoremediation ............................................62
6.3 Heavy Metal Uptake in the Agricultural System ............................................ 63
6.3.1 Sources of Heavy Metals in Agricultural Soil ................................... 64
6.3.2 Uptake of Heavy Metals in Plants ......................................................64
6.4 Plant and Heavy Metal Interactions ................................................................65
6.4.1 Uptake of Heavy Metals in Roots ...................................................... 65
6.4.2 Heavy Metal Stress and Plant Responses ........................................... 67
6.4.3 Molecular Mechanisms of Heavy Metal Tolerance in Plants ............68
6.5 Factors Affecting Heavy Metals Uptake by Plants ......................................... 68
6.5.1 Metals in Soils .................................................................................... 68
6.6 Phytoremediation Approaches for Different Metals ....................................... 70
6.6.1 Phytostabilization ............................................................................... 70
6.6.2 Phytovolatilization and Phytoextraction ............................................72
6.6.3 Chemical-Assisted Phytoremediation Using
Non-Hyperaccumulator Plants ...........................................................73
viii Contents
6.6.4 Biochar-Assisted Phytoremediation ................................................... 73
6.6.5 Use of Transgenic Plants for Phytoremediation ................................. 73
6.7 Conclusion and Future Perspectives ................................................................ 74
References .................................................................................................................. 74
SECTION2 The Risks of Phytoremediation in Food Safety
Chapter 7 Danger of Contaminants in Foods through Phytoremediation ................................... 83
Kingsley Chijioke Eze, Nnenna Patrick Obasi,
Otobong Anwanabasi Inyang, and Shine Chikaodi Ewa
7.1 Introduction ..................................................................................................... 83
7.2 Contaminant Uptake and Translocation in Plants: Mechanisms,
Pathways, and Inuencing Factors .................................................................. 84
7.2.1 Mechanisms of Contaminant Uptake .................................................84
7.2.2 Translocation Pathways ......................................................................84
7.2.3 Factors Inuencing Contaminant Accumulation ...............................84
7.3 Dangers of Heavy Metals and Other Contaminants on Human Health .......... 86
7.3.1 Cadmium ............................................................................................ 86
7.3.2 Lead .................................................................................................... 86
7.3.3 Mercury .............................................................................................. 86
7.3.4 Arsenic ............................................................................................... 87
7.3.5 Copper ................................................................................................ 87
7.3.6 Chromium .......................................................................................... 88
7.3.7 Nickel .................................................................................................88
7.3.8 Bismuth...............................................................................................88
7.3.9 Cobalt .................................................................................................89
7.4 Factors Inuencing Contaminant Transfer to Food Crops ..............................90
7.4.1 Plant Species Selection .......................................................................90
7.4.2 Soil Conditions ...................................................................................90
7.4.3 Inuence of Contaminant Types ........................................................ 90
7.5 Notable Examples of Phytoremediation Projects; Lessons Learned from
Successes and Failures .................................................................................... 91
7.5.1 Notable Phytoremediation Projects .................................................... 91
7.5.2 Successes and Failures ....................................................................... 91
7.6 Regulatory Gaps and Monitoring Challenges in Phytoremediation ...............92
7.6.1 Existing Regulations on Phytoremediation ........................................ 92
7.6.2 Limitations in Monitoring and Assessment .......................................92
7.6.3 Recommendations for Improved Guidelines ......................................92
7.7 Potential Risks to Human Health in Phytoremediation ..................................92
7.7.1 Chronic Exposure Scenarios .............................................................. 92
7.7.2 Cumulative Effects on Health ............................................................ 93
7.7.3 Vulnerable Populations ......................................................................93
7.8 Mitigation Strategies and Future Directions in Phytoremediation ..................93
7.8.1 Enhancing Plant Selection for Phytoremediation ...............................93
7.8.2 Soil Management Practices ................................................................ 93
7.8.3 Advances in Monitoring Technologies ............................................... 94
7.9 Conclusion .......................................................................................................94
References .................................................................................................................. 94
ixContents
Chapter 8 Microplastics and Nanoplastics in Soil: Plant Uptake
and Impact on Food Insecurity ................................................................................... 99
Innocent Ojeba Musa, Job Oloruntoba Samuel, Mustahpa Adams,
Vivian Nathaniel, Asmau M. Maude, Mohammed Evuti Mahmud,
and Abd’Gafar Tunde Tiamiyu
8.1 Introduction ..................................................................................................... 99
8.2 Microplastics and Nanoplastics in Soil .........................................................100
8.2.1 Sources and Pathways ......................................................................10 0
8.2.2 Persistence and Accumulation of Microplastics and
Nanoplastics in Soil .......................................................................... 101
8.2.3 Factors Inuencing Uptake .............................................................. 102
8.3 Impact of Microplastics and Nanoplastics on Food Insecurity ..................... 103
8.3.1 Crop Contamination by Microplastics and Nanoplastics ................. 103
8.3.2 Impact on Soil Health and Crop Productivity .................................. 103
8.3.3 Crop Health and Productivity........................................................... 104
8.3.4 Ecological Implications of Microplastics and Nanoplastics
Pollution in Soil ................................................................................ 104
8.4 Conclusion ..................................................................................................... 105
References ................................................................................................................ 106
Chapter 9 Environmental Pollution and the Entrance of Toxic Elements
into the Food Chain .................................................................................................. 109
Babafemi Raphael Babaniyi, Isaac Gbolahan Olamide, Damilola Eunice
Fagbamigbe, Joshua Ibukun Adebomi, and Iyabode Felicia Areo
9.1 Introduction ................................................................................................... 109
9.2 Pollution ......................................................................................................... 110
9.3 Toxic Elements .............................................................................................. 112
9.4 Relationship between Pollution and Toxic Elements ..................................... 114
9.5 How Toxic Elements Enter the Food Chain and Their Impacts .................... 114
9.5.1 Natural Processes ............................................................................. 114
9.5.2 Human Activities .............................................................................. 115
9.5.3 Air and Water Pollution .................................................................... 115
9.6 Impacts .......................................................................................................... 116
9.6.1 Accumulation in Plants .................................................................... 116
9.6.2 Bioaccumulation in Animals ............................................................ 117
9.6.3 Human Consumption ....................................................................... 117
9.7 Mediating Measures of These Toxic Elements ............................................. 118
9.7.1 Environmental Monitoring and Risk Assessment ............................ 118
9.7.2 Regulatory Frameworks ................................................................... 119
9.7.3 Phytoremediation ............................................................................. 119
9.7.4 Waste Management .......................................................................... 119
9.7.5 Global Collaboration ........................................................................ 120
9.8 Conclusion ..................................................................................................... 120
References ................................................................................................................ 120
xContents
Chapter 10 Acute and Chronic Effects of Contaminants from Food Crops ...............................125
Pabbati Ranjit, Kathuroju Harikrishna, P. Gnana Deepu, and
Kondakindi Venkateswar Reddy
10.1 Introduction to Food Crop Contamination .................................................... 125
10.2 Types of Contaminants of Food Crops .......................................................... 126
10.2.1 Biological Contaminants .................................................................. 126
10.2.2 Chemical Contaminants ................................................................... 128
10.2.3 Physical Contamination.................................................................... 128
10.3 Acute Effects of Contamination of Food Crops ............................................ 128
10.3.1 Poisoning .......................................................................................... 128
10.3.2 Pesticide Intoxication .......................................................................129
10.3.3 Other Symptoms ...............................................................................129
10.4 Chronic Effects of Contamination of Food Crops ........................................ 129
10.5 Factors Affecting the Contamination of Food Crops .................................... 132
10.6 Challenges and Future Perspectives .............................................................. 133
10.6.1 Challenges ........................................................................................ 133
10.6.2 Future Perspectives ..........................................................................133
10.7 Conclusion .....................................................................................................134
References ................................................................................................................ 134
Chapter 11 Plant Uptake of Emerging Contaminants in Foods: The Extent of Its Effects ......... 138
Srinivasan Kameswaran, Ramesh B. Kasetti, and Bellamkonda Ramesh
11.1 Introduction ................................................................................................... 138
11.2 Heavy Metal Sources in Contaminated Soils ................................................ 139
11.2.1 Natural Sources ................................................................................ 139
11.2.2 Anthropogenic Sources .................................................................... 139
11.2.3 Possible Harmful Effects of Heavy Metals ...................................... 140
11.3 Effects of Heavy Metal Pollution of Agricultural Soils on the
Availability of Food ....................................................................................... 141
11.3.1 Heavy Metals and Agricultural Soils ............................................... 141
11.3.2 Effects of Heavy Metals on Food Security ...................................... 141
11.4 Using Phytoremediation Methods to Remediate Soil Polluted with
Heavy Metals ................................................................................................. 142
11.4.1 Modes of Phytoremediation ............................................................. 142
11.4.2 Plants for Phytoremediation ............................................................. 144
11.5 In Situ, Ex Situ, and Mixed Methods to Phytoremediation Technology
Use in Contaminated Soils ............................................................................ 146
11.6 Using and/or Discarding the By-Products of Phytoremediation ................... 148
11.6.1 Pre-Treatment Methods .................................................................... 148
11.6.2 Solid-Liquid Extraction .................................................................... 150
11.6.3 Direct Disposal ................................................................................. 150
11.6.4 Ashing .............................................................................................. 150
11.7 Lack of Research on Phytoremediation ......................................................... 151
11.8 Conclusions .................................................................................................... 152
References ................................................................................................................ 152
xiContents
Chapter 12 Impact of Contamination of Agricultural Soil on Humans
and the Environment .................................................................................................161
Saheed Ibrahim Musa, Parisa Ebrahimbabaie, Nathan Moses,
Kingsley Erhons Enerijio, Comfort Okoji, Unoka Edith Chinyere,
and Iboyi Nathaniel Onuche
12.1 Introduction ................................................................................................... 161
12.2 Contamination of Agricultural Soil ............................................................... 161
12.2.1 Pesticides and Herbicides ................................................................. 161
12.2.2 Improper Use and Mismanagement of Fertilizer ............................. 162
12.2.3 Manure and Animal Wastes ............................................................. 162
12.2.4 Compost............................................................................................ 163
12.2.5 Wastewater for Irrigation.................................................................. 163
12.2.6 Agricultural Plastic Waste ................................................................ 163
12.2.7 Mulching Films ................................................................................ 163
12.2.8 Greenhouse Film and Protective Netting ......................................... 16 4
12.3 Impacts of Contamination of Agricultural Soil on Humans, Plants, the
Environment, and Biodiversity ...................................................................... 164
12.4 Strategies to Prevent Contamination of Agricultural Soils ........................... 165
12.4.1 Avoid Overuse of Agrochemicals .................................................... 165
12.4.2 Integrated Pest Management ............................................................ 166
12.5 Conclusion .....................................................................................................168
References ................................................................................................................ 168
SECTION3 Bringing Safe Foods Home through
Phytoremediation
Chapter 13 Phytoexclusion and Phytostabilization: Protective Strategy of the Food Chain
from Contamination before Phytoremediation ......................................................... 175
J.S. Ayedun, B.C. Kotun, O.A. Adewara, R. Adeoye, C.O. Iyiola, E.A.
Onakoya, A.I. Domavo, and A.A. Soyemi
13.1 Contamination in Food Chains ..................................................................... 175
13.1.1 Sources of Contaminants in Food Chains ........................................ 175
13.1.2 Types of Contaminants in Food Chains ........................................... 176
13.1.3 Importance of Safeguarding Food Chains from Contamination ..... 176
13.1.4 Bioaccumulation of Contaminants in Food Webs ............................177
13.1.5 Health Risks Associated with Contaminated Food ......................... 177
13.1.6 Effects of Contaminants on Food Quality and Safety ..................... 178
13.1.7 Impacts of Contaminants on Crop Yield and Nutritional Value ...... 178
13.2 Phytoexclusion ............................................................................................... 178
13.2.1 Principles of Phytoexclusion ............................................................ 179
13.2.2 Plant Mechanisms for Excluding Uptake of Contaminants ............. 179
13.2.3 Case Studies Demonstrating the Effectiveness of Phytoexclusion .. 179
13.3 Phytostabilization .......................................................................................... 179
13.3.1 Principles of Phytostabilization........................................................ 180
13.3.2 Techniques Employed by Plants in Stabilizing Contaminants in
the Soil .............................................................................................. 180
13.3.3 Environmental Benets of Phytostabilization .................................. 180
xii Contents
13.4 Successful Phytoexclusion and Phytostabilization Projects .......................... 181
13.5 Strategies for Early Detection and Prevention of Contamination ................. 181
13.5.1 Economic Benets and Cost-Effectiveness of Implementing
Protective Strategies .........................................................................182
13.5.2 Sustainable Practices in Food Chain Protection .............................. 183
13.6 Future Directions and Research Areas .......................................................... 183
13.6.1 Emerging Technologies and Research Trends in Contamination
Prevention ......................................................................................... 183
13.6.2 Innovations in Plant-Based Strategies for Food Chain Protection ... 18 4
13.6.3 Collaborative Efforts and International Initiatives for Food Safety 184
13.7 Conclusion and Recommendations ............................................................... 184
References ................................................................................................................ 185
Chapter 14 Phytoremediation: Strategies for Protecting
the Food Chain from Contamination ........................................................................ 188
Haya Fathima, Harshitha Shettigar, Srivasta Udupa, Sachin Ashok Thorat,
Nisha Govender, and Annamalai Muthusamy
14.1 Introduction ................................................................................................... 188
14.2 Phytoremediation Strategies for Treatment of Contamination ...................... 188
14.2.1 Phytoextraction ................................................................................. 189
14.2.2 Phytoaccumulation ........................................................................... 192
14.2.3 Phytostabilization ............................................................................. 192
14.2.4 Phytovolatilization ............................................................................193
14.2.5 Phytodegradation and Rhizodegradation ......................................... 194
14.2.6 Rhizoltration .................................................................................. 194
14.3 Strategies for Protection of Food Chains from Contamination..................... 195
14.4 Improving Food Safety through Risk Assessment ........................................ 195
14.5 Improve Food Chain Value through the Evaluation of Environmental
Changes ......................................................................................................... 196
14.6 Conclusion .....................................................................................................196
14.7 Future Prospects ............................................................................................ 196
14.8 Acknowledgments .........................................................................................197
References ................................................................................................................ 197
Chapter 15 Phytoremediation and Food Safety Case Studies ..................................................... 201
Srinivasan Kameswaran, Ramesh B. Kasetti, and Bellamkonda Ramesh
15.1 Introduction ................................................................................................... 201
15.2 Phytoremediation Mechanisms .....................................................................202
15.3 Eichhornia crassipes, Pistia stratiotes, and Spirodela polyrhiza
Exposed to Acid Mine Drainage: ACase Study ...........................................204
15.4 Constraints on Utilizing Aquatic Vegetation for Phytoremediation .............205
15.5 ACase Study of Sri Lanka and South Africa Concerning Plants
Associated with Phytoextraction and Phytostabilization of
Heavy Metals ................................................................................................. 205
15.6 Mining Tailings Phytoextraction of Metals: ACase Investigation of
Temperate and Arid Environments ...............................................................207
15.7 The Drawbacks of Phytoextraction ...............................................................209
15.8 ACase Study of Temperate and Arid Environments for the
Phytostabilization of Mine Tailings .............................................................. 209
xiiiContents
15.9 The Limits of Mine Tailings Phytostabilization ........................................... 211
15.10 India Case Studies for Phytoremediation ...................................................... 211
15.11 Conclusion ..................................................................................................... 213
References ................................................................................................................ 213
Chapter 16 Phytoremediation: A Comprehensive Review on the Prospective Benets and
Biosafety of Vegetables ............................................................................................ 220
Geethu Krishna Kumar, Srija Sappa, Nikhil Kumar Ramesha, Arya
Kaniyassery, Mutiu A. Alabi, Nisha Govender, and Annamalai Muthusamy
16.1 Introduction ................................................................................................... 220
16.2 Entry of Pollutants into the Food Chain ........................................................ 221
16.3 Phytoremediation ........................................................................................... 221
16.3.1 Phytoltration ................................................................................... 222
16.3.2 Phytoextraction ................................................................................ 222
16.3.3 Phytoimmobilization and Phytostabilization ................................... 222
16.3.4 Rhizoltration and Phtyodegradation .............................................. 222
16.4 Possible Disposal of Phytoremediation Plants ..............................................222
16.5 Enhancement of Phytoremediation Potential of Plants ................................. 224
16.6 Status of Pollutants in Vegetables and Fruits ................................................ 225
16.7 Biosafety of Vegetables and Fruits ................................................................ 227
16.8 Approaches for Detection and Protection of Fruits and Vegetables from
Contaminants ................................................................................................. 228
16.9 Conclusion .....................................................................................................229
16.10 Acknowledgments .........................................................................................229
References ................................................................................................................ 230
Chapter 17 Soil Assessment Policy and Permissible Levels of Contaminants
in Plant Food Products .............................................................................................236
Harshitha Shettigar, Haya Fathima, Manoj Kumar, Harsha K.
Chandrashekar, Nisha Govender, and Annamalai Muthusamy
17.1 Introduction ................................................................................................... 236
17.2 Soil: Types and Proling ............................................................................... 237
17.2.1 Alluvial Soil .....................................................................................237
17.2.2 Red Soil ............................................................................................237
17.2.3 Laterite Soil ...................................................................................... 237
17.2.4 Black Soil .........................................................................................238
17.2.5 Desert Soil ........................................................................................ 238
17.2.6 Mountain Soil ................................................................................... 238
17.2.7 Soil Proling ....................................................................................238
17.3 Soil Contaminants ......................................................................................... 239
17.4 Classication of Contaminants ......................................................................240
17.4.1 Organic Contaminants ..................................................................... 240
17.4.2 Inorganic Contaminants ................................................................... 240
17.5 Soil Assessment .............................................................................................240
17.6 Approaches for Soil Assessment ................................................................... 241
17.6.1 Visual Soil Assessment ....................................................................241
17.6.2 Qualitative Soil Assessment .............................................................242
17.6.3 Biological Soil Assessment ..............................................................242
xiv Contents
17.7 Government Policies in India for Sustainable Soil Health ............................ 242
17.8 Regulatory Bodies of Soil Assessment in India ............................................ 243
17.9 Permissible Levels of Contaminants in Plant Food Products .......................244
17.10 Conclusion .....................................................................................................245
17.11 Acknowledgments .........................................................................................245
References ................................................................................................................ 245
Chapter 18 Plant Uptake of Emerging Contaminants in Foods, Regulatory Considerations,
and Future Directions ............................................................................................... 249
Gundarapu Vidya Sagar Reddy and Bellamkonda Ramesh
18.1 Introduction ................................................................................................... 249
18.2 Accumulation of Contaminants in Food Crops .............................................249
18.2.1 Soil Factors ....................................................................................... 250
18.2.2 Plant Factors ..................................................................................... 251
18.2.3 Environmental Factors ..................................................................... 251
18.3 Contaminants of Emerging Concern in Agricultural Water Reuse ..............252
18.4 Plant Uptake of Emerging Contaminants ...................................................... 252
18.4.1 Uptake of Heavy Metals ................................................................... 253
18.4.2 Uptake of Flame Retardants, Triclocarban, Pesticides, and
Herbicides ......................................................................................... 253
18.5 Emerging Contaminants in Wastewater Treatment Plants ............................254
18.6 Regulatory Considerations ............................................................................254
18.7 Future Directions ........................................................................................... 255
18.8 Conclusions ....................................................................................................255
References ................................................................................................................ 256
Chapter 19 Toxic Metals and Emerging Contaminants in Food: A Global Perspective ............. 259
Deborah O. Aderibigbe, Peter O. Oladoye, Adedayo O. Adeboye,
and Abdur-Rahim A. Giwa
19.1 Introduction ................................................................................................... 259
19.2 Naturally Occurring Toxicants in Foods ....................................................... 259
19.3 Heavy Metals in Raw and Processed Foods ................................................. 259
19.4 Global Trends in Food Contamination (Africa, America, Asia, Europe) .....260
19.5 Regulatory Standards for Food Contamination ............................................263
19.6 Conclusion .....................................................................................................265
References ................................................................................................................ 265
Index .............................................................................................................................................. 269
xv
Foreword
With the increase in anthropogenic activities from agriculture and industry,
as well as the ever-increasing global population, contaminants of inorganic,
organic, and/or chemical origins nd their way into the soil and eventually
enter the food cycle, causing acute and/or chronic damage to living organ-
isms, including humans. This calls for a remediation strategy. However, the
traditional methods to deal with soil contamination, which include chemical
treatment, physical treatment, biological treatment, and heat treatment, are
unfortunately not only costly but also have signicant side effects on the eco-
system. Therefore, phytoremediation is recommended as more effective, economic, and environ-
mental remediation. But this remediation technology can also cause contaminants to enter the food
chain and have serious effects on human health. It is well-known that plants absorb carbon dioxide
and release oxygen through photosynthesis while promoting degradation of contaminants through
interaction with microorganisms in the rhizosphere and absorbing soil contaminants into their body
system. Phytoremediation is the process that uses plants to remove pollutants from the soils. After
removal, they are stored in the plants’ edible parts and sometimes at more than permissible levels.
If the edible parts are consumed, the pollutants will have effects (short/acute or long/chronic) on
human beings. There is now a need to look into and review whether phytoremediation is a blessing
or a curse, and also, what is to be done to make these food crops safer and globally acceptable for
consumption by all.
This book, Phytoremediation in Food Safety: Risks and Prospects, is a good collection of inde-
pendent chapters that presents full insight in the study of phytoremediation technology for the
removal of contaminants from the soil and, of course, analyzing its role in food safety.
I therefore have no doubt that the chapters in this book provide adequate information on phytore-
mediation in food safety and do ll the expected scientic knowledge gaps in this area.
Prof. Ahmed Salihu Dan-Kishiya
Dean, Faculty of Science
University of Abuja, Nigeria
February 17, 2024
xvii
Preface
Food and food products are essential commodities globally and the factors affecting its general
acceptability need to be critically reviewed. Phytoremediation is one of the most cost-effective
remediation options, but as a stand-alone technology, it is often not lucrative enough to make it
appealing for farmers, especially in economically vulnerable regions. Phytoremediation is a cost-
effective and environmentally friendly technology, but if most of its postharvest protocols are not
handled professionally, it could become a threat to food safety. Plants possess the natural ability to
accumulate nutrients and any contaminants present in the soil. However, this technology when used
for remediation processes accumulates the pollutants from the soils through the root and mostly
store these toxicants in the plants’ edible parts. When these are not checked or extracted from
the plants, they pose a danger to human and animal health if they enter the food chain and are
consumed. This book, Phytoremediation in Food Safety: Risks and Prospects, was conceived to
provide in-depth information on the role of phytoremediation in food safety. Generally speaking,
soil is polluted with both organic and inorganic contaminants and there is a need to employ an envi-
ronmentally friendly technology in its remediation processes. Phytoremediation involves the use of
green technology plant to remediate the polluted soils.
The book is divided into three sections. Section1 is titled “Prospects of Phytoremediation for a
Safe Environment and Safe Food,” section 2 is “The Risks of Phytoremediation in Food Safety,” and
section 3 is “Bringing Safe Foods Home through Phytoremediation.”
The chapters were contributed by 68 academicians, scientists, and researchers from nine dif-
ferent countries (the United Kingdom, Hong Kong, Nigeria, India, the United States, Australia,
Canada, Germany and Malaysia) across the world.
Sesan Abiodun Aransiola, Ph.D.
University of Abuja, Nigeria
National Biotechnology Development Agency (NABDA)
Ogbomoso, Nigeria
Naga Raju Maddela, Ph.D.
Universidad Técnica de Manabí, Portoviejo, Ecuador
xix
About the Editors
Sesan Abiodun Aransiola is a Ph.D. holder in environmental microbiology
in the Department of Microbiology, Federal University of Technology,
Minna, Nigeria. He obtained his rst degree (B.Tech) and master degree
(M.Tech) from the same department in 2009 and 2014 respectively. He
has demonstrated his research expert in the production of vermicasts from
vermicoposting (vermitechnology) of organic wastes to assist plants in the
remediation of polluted soil with heavy metals. Currently, he is a Lecturer at
the Department of Microbiology, University of Abuja, Nigeria. His area of
interest is environmental microbiology with research areas in phytoremediation, vermicomposting,
biosorption, and bioremediation of soil contaminated environment. He is an award-winning
researcher and has over 70 publications including book chapters and research and review articles
of good international repute with high impact factor. He has co-edited scientic books of global
interest which include Microbial Biotechnology for Bioenergy (Elsevier); Ecological Interplays
in Microbial Enzymology, Vermitechnology: Economic, Environmental and Agricultural
Sustainability, Prospects for Soil Regeneration and Its Impact on Environmental Protection
(Springer); Microbial Biolms: Applications and Control and Marine Greens: Environmental,
Agricultural, Industrial and Biomedical Applications (both CRC Press), and has many more
in process. Also, he has worked to the rank of assistant chief scientic ofcer at Bioresources
Development Centre, National Biotechnology Development Agency, Nigeria, where he was
involved in the uses of vinasse (a by-product of ethanol) as biofertilizer to reclaim polluted soil
for agricultural purposes. He is a member of the Nigerian Society for Microbiology and American
Society for Microbiology, among others.
Naga Raju Maddela received his M.Sc. (1996–1998) and Ph.D. (2012) in
microbiology from Sri Krishnadevaraya University, Anantapuramu, India.
During his doctoral program in the area of environmental microbiology,
he investigated the effects of industrial efuents/insecticides on soil micro-
organisms and their biological activities. Since 1998 he has worked in the
Faculty in Microbiology, teaching undergraduate and postgraduate students.
He worked as Prometeo Investigator (fellowship received from SENESCYT)
at Universidad Estatal Amazónica, Ecuador during 2013–2015, and he
received a postdoctoral fellowship (2016–2018) from Sun Yat-sen University
in China. He also received external funding from the China Postdoctoral Science Foundation in
2017 and internal funding from Universidad Técnica de Manabí in 2020. He has participated in
national/international conferences and has presented research data in China, Cuba, Ecuador, India,
and Singapore. Currently, he is working as a Full Professor at the Facultad de Ciencias de la Salud,
Universidad Técnica de Manabí, Portoviejo, Ecuador. He has been actively publishing scientic
articles, books (authored and edited) and chapters since 2007. As of now, he has published 70
articles, 12 books, and 40 book chapters.
xxi
Contributors
Mustahpa Adams
Department of Microbiology
Federal University of Technology
Minna, Nigeria
Joshua Ibukun Adebomi
Department of Biological and Chemical
Engineering
University of Saskatchewan
Saskatoon, Canada
Adedayo O. Adeboye
Department of Food Science and Technology
Osun State University
Osogbo, Nigeria
R. Adeoye
School of Pharmacy and Biomolecular Sciences
John Moores University
Liverpool, UK
Deborah O. Aderibigbe
School of Basic Sciences
Nigeria Maritime University
Warri, Nigeria
Charles Oluwaseun Adetunji
Department of Microbiology
Edo State University
Uzairue, Nigeria
O. A. Adewara
Department of Biological Sciences and
Biotechnology
Caleb University
Imota, Nigeria
Mutiu A. Alabi
Medical Biochemistry and Pharmacology
Department
Kwara State University
Malete, Nigeria
Iyabode Felicia Areo
School of Health and Life Sciences
Teesside University
Middlesbrough, UK
J. S. Ayedun
Department of Biological Sciences and Biotechnology
Caleb University
Imota, Nigeria
Babafemi Raphael Babaniyi
Bioresources Development Center
National Biotechnology Development Agency
Abuja, Nigeria
Patel Shaifali Ben
Centre for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
Harsha K. Chandrashekar
Department of Plant Sciences
Manipal Academy of Higher Education
Manipal, India
Unoka Edith Chinyere
Department of Chemical Sciences
Dennis Osadebay University
Asaba, Nigeria
P. Gnana Deepu
Centre for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
A. I. Domavo
Department of Chemistry and Biochemistry
Caleb University
Imota, Nigeria
Bachha Laxmi Dora
Centre for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
Parisa Ebrahimbabaie
Department of Environmental Biology
Bethune-Cookman University
Daytona Beach, FL
xxii Contributors
Chidozie Ekene
Department of Biology and Forensic
Science
Admiralty University of Nigeria
Ibusa, Nigeria
Kingsley Erhons Enerijio
Department of Biological Sciences
Glorious Vision University
Ogwa, Nigeria
Shine Chikaodi Ewa
Department of Public Health and Tropical
Medicine
James Cook University
Townsville, Australia
Kingsley Chijioke Eze
Medical Department, Aquatic Bioresources
Training Centre
National Biotechnology Development
Agency
Cross River State, Nigeria
Damilola Eunice Fagbamigbe
Department of Chemistry
Federal University of Technology
Akure, Nigeria
Haya Fathima
Manipal School of Life Sciences
Manipal Academy of Higher Education
Manipal, India
Abdur-Rahim A. Giwa
Department of Pure and Applied
Chemistry
Ladoke Akintola University of Technology
Ogbomoso, Nigeria
Nisha Govender
Institute of Systems Biology
Universiti Kebangsaan Malaysia
Bangi, Malaysia
Kathuroju Harikrishna
Centre for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
Jogipeta Harihara
Center for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
Otobong Anwanabasi Inyang
Information Technology Department, Aquatic
Bioresources Training Centre
National Biotechnology Development
Agency
Cross River State, Nigeria
C. O. Iyiola
Department of Biological Sciences and
Biotechnology
Caleb University
Imota, Nigeria
Srinivasan Kameswaran
Department of Botany
Vikrama Simhapuri University College
Kavali, India
Arya Kaniyassery
Department of Plant Sciences
Manipal Academy of Higher Education
Manipal, India
Ramesh B. Kasetti
North Texas Eye Research Institute
University of North Texas Health Science
Center
Fort Worth, TX
B. C. Kotun
Department of Biological Sciences and
Biotechnology
Caleb University
Imota, Nigeria
Geethu Krishna Kumar
Manipal School of Life Sciences
Manipal Academy of Higher Education
Manipal, India
Manoj Kumar
Department of Plant Sciences
Manipal Academy of Higher Education
Manipal, India
xxiiiContributors
Mohammed Evuti Mahmud
College of Nursing Science
Bida, Nigeria
Asmau M. Maude
Department of Microbiology
Federal University of Technology
Minna, Nigeria
Bhagyashree Mohakhud
Centre for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
Nathan Moses
Department of Biology and Forensic Science
Admiralty University of Nigeria
Ibusa, Nigeria
Innocent Ojeba Musa
Department of Microbiology
Skyline University Nigeria
Kano, Nigeria
Saheed Ibrahim Musa
Department of Biology and Forensic Science
Admiralty University of Nigeria
Ibusa, Nigeria
Anjaneyulu Musini
Center for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
Annamalai Muthusamy
Department of Plant Sciences
Manipal Academy of Higher Education
Manipal, India
Simeon Okiki Naphtali
Obafemi Awolowo University
Department of Microbiology
Ile-Ife, Nigeria
Vivian Nathaniel
Department of Microbiology
Federal University of Technology
Minna, Nigeria
Nnenna Patrick Obasi
Department of Bio-entrepreneurship,
Aquatic Bioresources Training Centre
National Biotechnology Development Agency
Cross River State, Nigeria
Comfort Okoji
Department of Biology and Forensic
Science
Admiralty University of Nigeria
Ibusa, Nigeria
Peter O. Oladoye
Department of Chemistry and Biochemistry
Florida International University
Miami, FL
Isaac Gbolahan Olamide
Department of Chemistry
Federal University of Technology
Akure, Nigeria
E. A. Onakoya
Department of Chemistry and
Biochemistry
Caleb University
Imota, Nigeria
Iboyi Nathaniel Onuche
Department of Biology and Forensic
Science
Admiralty University of Nigeria
Ibusa, Nigeria
D. Rama Prasanna
Centre for Bio-Technology
University College of Engineering Science and
Technolog y
Hyderabad, India
Bellamkonda Ramesh
Department of Biochemistry and Molecular
Biology
University of Nebraska Medical Center
Omaha, NE
Nikhil Kumar Ramesha
Department of Plant Sciences
Manipal Academy of Higher Education
Manipal, India
xxiv Contributors
Pabbati Ranjit
Centre for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
Chittepu Obula Reddy
Department of Biotechnology
Chaitanya Bharati Institute of Technology
Hyderabad, India
Kondakindi Venkateswar Reddy
Centre for Biotechnology
University College of Engineering Science and
Technolog y
Hyderabad, India
G. Vidya Sagar Reddy
Department of Biotechnology
Vikrama Simhapuri University
Nellore, India
Job Oloruntoba Samuel
Department of Microbiology
Federal University of Technology
Minna, Nigeria
Srija Sappa
Manipal Academy of Higher Education
Manipal, India
Harshitha Shettigar
Manipal School of Life Sciences
Manipal Academy of Higher Education
Manipal, India
A. A. Soyemi
Department of Biological Sciences and
Biotechnology
Caleb University
Imota, Nigeria
Sachin Ashok Thorat
Department of Plant Sciences
Manipal Academy of Higher Education
Manipal, India
Abd’Gafar Tunde Tiamiyu
Department of Mathematics
Chinese University of Hong Kong
Hong Kong
Srivasta Udupa
Department of Plant Sciences
Manipal Academy of Higher Education
Manipal, India
Munachimso Odenakachi Victor-Ekwebelem
Department of Microbiology
Alex Ekwueme Federal University
Ndufu-Alike Ikwo, Nigeria
M. M. Yakiimov
Department of Microbiology
German Research Centre for Biotechnology
Braunschweig, Germany
xxv
Acknowledgments
With great honor, we acknowledge the support of the contributors to each chapter for their valu-
able contribution and timely responses leading to the success of this volume. All contributors are
immensely appreciated for their eagerness and strong support for this volume to be ready in the
scheduled time; we therefore appreciate their teamwork and partnership. We also thank anonymous
reviewers for their constructive criticism, which helped us in improving the quality of this book
by inviting the experts to contribute the additional chapters. We greatly acknowledge the Taylor&
Francis Group Editorial and Production team for their respected support; without their guidelines,
this project would not be nished on time. It is an honor and privilege to work with them all. Finally,
yet importantly, we are very much thankful to the management and colleagues at University of
Abuja (Nigeria), National Biotechnology Development Agency (Nigeria), and Universidad Técnica
de Manabí (Ecuador) for their unrestricted backing and for the establishment of treasured proposi-
tions at the time of book proposal and nal book preparation.
Sesan Abiodun Aransiola, Ph.D.
University of Abuja, Nigeria
National Biotechnology Development Agency (NABDA)
Ogbomoso, Nigeria
Naga Raju Maddela, Ph.D.
Universidad Técnica de Manabí
Portoviejo, Ecuador
Section1
Prospects of Phytoremediation for a
Safe Environment and Safe Food
DOI: 10.1201/9781032683751-2 3
1Phytoremediation Overview
and Role in Food Safety
Munachimso Odenakachi Victor-Ekwebelem
and Simeon Okiki Naphtali
1.1 INTRODUCTION
The Greek word phyto, which means “plant,” and the Latin sufx remedium, which means “to clean
up or mend,” are combined to form the term phytoremediation. The term covers a broad spectrum of
plant-based remedies that use genetically modied or naturally occurring plants to clean up polluted
environments (Flathman and Lanza, 1998). It refers to a group of technologies that use plants for
waste extraction, containment, and destruction. Using vegetation, soil amendments, and agronomic
techniques, phytoremediation – also referred to as green remediation, botano-remediation, agrore-
mediation, or vegetative remediation – is considered an environmentally friendly (green) remedia-
tion technique that helps eliminate, contain, or render heavy metals in the soil harmless (Aransiola
etal., 2022). It is an emerging method that employs different plants to break down, extract, contain,
or immobilize pollutants like metals, herbicides, hydrocarbons, and chlorinated solvents from soil
and water (Helmisaari etal., 2007; Abioye etal., 2017). Although the rst case of plants being used
to remove heavy metals was recorded in 1983 and this concept has been implemented more than 300
years ago on wastewater discharge (Blaylock, 2008), this technology has received unusual attention
and limelight very recently. The buildup of heavy metals in soil and water is one of the main issues
brought on by inorganic pollutants. Their signicant presence in soils has had a major negative inu-
ence on both human health and food security. Phytoremediation techniques have been determined
to be environmentally benign and safe among the several physicochemical strategies available for
remediating heavy metal–polluted locations (Aransiola etal., 2013; Oladoye etal., 2022).
The population, activities, and processes of soil microbes are impacted by the buildup of heavy
metals in the soil. The types of heavy metals and their chemical afnity determine how they affect
enzymatic activity and alterations in microbial populations (Karaca etal., 2010). For instance, lead
(Pb) affects catalases, ureases, invertases, and acid phosphatases (Belyaeva etal., 2005); arsenic (As)
affects sulfatase and phosphatase (Speir etal., 1999); and copper (Cu) inhibits b-glucosidase (Geiger
etal., 1998). Cadmium (Cd) affects ureases, proteases, and basic phosphatases (Lorenz etal., 2006;
Elemba and Ijah, 2016). High chromium(VI) concentration in soil demonstrates different toxicity
properties generating detrimental effects in soil microbial cell metabolism (Huang etal., 2009).
Human and animal health may be at risk when heavy metal–contaminated food crops are consumed
because they can cause heavy metals to bioaccumulate and then grow as they move up the food
chain’s trophic levels (Singh and Kalamdhad, 2011). The accumulation of heavy metals in the human
body can lead to severe health complications, including itai-itai disease caused by chronic exposure
to Cd; kidney dysfunction and anemia caused by zinc (Zn); mucosa corrosion, hepatic system failure
and central nervous system damage caused by Cu; skin irritation and nervous system complications
caused by nickel (Ni); cardiovascular issues; and damage to the nervous system caused by Pb (Kae
etal., 2022). Athalatine, dieldrin, hexachlorobenzene, dichlorodiphenyltrichloroethane (DDT), and
1,2,4-trichlorobenzene are among the pesticides that frequently contaminate soils (Kae etal., 2022).
Due to their toxicity and extended half-life in the soil, these pollutants have a signicant negative
4Phytoremediation in Food Safety
impact on the availability of mineral nutrients, soil biota, and soil productivity. Water resources
have been tainted by various pollutants, much like soils. The majority of the variables contributing
to water contamination are caused by the release of toxic heavy metals through sewage, runoff, and
efuents from urbanization and industry (Masindi and Muedi, 2018; Parveen etal., 2020; Saleem
etal., 2020b). Water resources are often contaminated by Cu, Ni, Pb, Cd, Cr, uranium (U), and Zn,
among other metals (Prasad and Freitas, 2005). Due to heavy metal buildup in the food chain, the
heavy metals deteriorate water quality and may cause health risks associated with drinking water
(Wongsasuluk etal., 2014). In addition to heavy metals, other organic pollutants that contaminate
water resources include petroleum hydrocarbons, explosives, polychlorinated biphenyls (PCBs),
polycyclic aromatic hydrocarbons (PAHs), pyrene, and trinitrotoluene (TNT). These pollutants can
also come from seepage, erosion, sludge and efuents from industries and municipal waste, as well
as runoff from mining and agricultural practices (Kae etal., 2022). Over time, these pollutants have
the potential to accumulate and have detrimental effects on both terrestrial and aquatic ecosystems.
Remediation of water and soil pollution is one of the main issues facing our civilization today
in order to maintain ecosystem processes and functioning. Numerous physical, chemical, and bio-
logical methods have been used to clean up environmental pollution; however, their applications
are restricted because of the risks to ecosystems, labor costs, and safety concerns (Ali etal., 2013;
Babaniyi etal., 2023). Phytoremediation is an alternate approach that is becoming more and more
accepted and used. It has the potential to be a useful treatment. In order to reduce the effects of
heavy metal ingestion from such food crops, this tends to address the usage of ornamental plants as
opposed to food crops for phytoremediation.
1.2 ADVANTAGES OF PHYTOREMEDIATION
1. When used appropriately, phytoremediation is a green technology that is both environmen-
tally benign and visually acceptable to the general public (Raskin and Ensley, 2000). It is a
green technology that can be used to reduce various organic and inorganic pollutants while
also improving the environment’s aesthetics (Ghosh and Singh, 2005). For broad areas
where other methods would be costly and ineffectual, this green technology is appropriate
(Prasad and Freitas, 2005; Aransiola etal., 2013).
2. The technique of phytoremediation can be used to a wide range of organic and inorganic
chemicals. Both in situ and ex situ applications of phytoremediation are possible (USEPA,
2000; Raskin and Ensley, 2000). Because in situ applications limit disturbance of the soil
and surrounding ecosystem and lessen the spread of contamination from airborne and
watery pollutants, they are often taken into consideration.
3. Phytoremediation is reasonably simple to apply and doesn’t require costly equipment or
highly skilled workers.
4. Phytoremediation’s low cost when compared to traditional clean-up procedures is its big-
gest benet (USEPA, 2000; Raskin and Ensley, 2000).
5. It is more aesthetically pleasing than traditional methods, making it more accepted by the public.
6. The risk of spreading the contamination is reduced since excavation and transport of pol-
luted media is not necessary.
7. Sites polluted with more than one type of pollutant can be treated at the same time.
8. It helps to prevent leaching and soil erosion that may result from water activity and wind, which
in turn helps to reduce the expansion of contaminants to water and air (Ghosh and Singh, 2005).
1.3 DISADVANTAGES AND LIMITATIONS OF PHYTOREMEDIATION
1. It is limited to remediative plants’ root depth.
2. Remediation with plants is a time-consuming procedure: cleaning up a hazardous waste site
might take years or more, and the pollution might not be completely removed (Rajakaruna
etal., 2006).
5Phytoremediation Overview and Role in Food Safety
3. Using non-native, invasive plants may impact biodiversity.
4. The consumption of contaminated plants by wildlife is also of concern. Harvested plant
biomass produced from the process of phytoextraction may be classied as hazardous
waste by the Resource Conservation and Recovery Act (RCRA), therefore subject to proper
handling and disposal.
1.4 PHYTOREMEDIATION AND FOOD SAFETY
Plants absorb pollutants through their roots, most of which are water soluble, and move them
through different plant tissues where they can be volatilized, digested, or sequestered (Greenberg
et al., 2006; Abhilash, 2007; Doty et al., 2007). According to reports, some 400 plant species
from at least 45 plant families hyperaccumulate metals (Ghosh and Singh, 2005). Brassicaceae,
Fabaceae, Euphorbiaceae, Asteraceae, Lamiaceae, and Scrophulariaceae are a few of the fami-
lies (Dushenkov, 2003). Very high bioaccumulation potential for Cd/Zn, Cu, cobalt (Co), selenium
(Se), and Ni is present in crops such as Alpine pennycress (Thlaspi caerulescens), Ipomea alpine,
Haumaniastrum robertii, Astragalus racemosus, and Sebertia acuminata (Lasat, 2002). The rst
plant species known to accumulate signicant amounts of metals in its leaves was T. caerulescens
(Baumann, 1885). Rascio (1977) conducted follow-up research on T. caerulescens and found toler-
ance and substantial Zn buildup in the plant’s shoots. There have been reports of high uptake and
resistance to heavy metals in sunower (Helianthus annuus), maize (Zea mays), Indian mustard
(Brassica juncea L.), willow (Salix viminalis), and sunower (Schmidt, 2003). B. juncea is one of
the plants in the Brassica species that merits special attention due to the numerous experiments that
have proved its signicance to the phytoextraction process of heavy metals from soil. Research has
shown that B. juncea has a signicant propensity to retain Cd, primarily in the shoots, where a Cd
level of 1450 μg Cd/g dry wt was discovered.
Furthermore, according to Salt etal. (1998), this plant has a high removal effectiveness for vari-
ous metals, including Pb (28% reduction) and Se (reduced between 13% and 48%). It also removes
zinc from soil more successfully than T. caerulescens, a renowned zinc hyperaccumulator. Rather
than in the roots, tobacco (Nicotiana tabacum) accumulates large levels of Cd in the leaves. It has
been discovered that sunower may remove Pb, U, cesium (Cs), and strontium (Sr) from hydroponic
solutions, and Indian mustard roots are useful in removing Cd, Cr, Cu, Ni, Pb, and Zn (Lone etal.,
2008). Indian mustard and sunower plants have increased their uptake of copper, according to
Tang etal. (2003).
In Zhao and Huang’s 2018 work on Cd phytoremediation, rice was identied as one of the main
edible sources that exposes the human population in south China to rising levels of Cd. It builds up
in the grains of rice, which are subsequently cooked and eventually eaten. Supported by research
by Clemens et al. (2013), who found that food accounts for 90% of the total amount of dietary
consumption of Cd in non-smokers, and Song etal. (2017), who found that rice accounts for 56%
and 65%, respectively, of the total dietary consumption of Cd in the general Chinese population
and the population in south China. This is a concerning nding and gure because Cd is a well-
known toxin that affects humans and causes phytotoxicity as well as illnesses including cancer,
osteoporosis, and renal failure. Eating rice that has been produced in soil contaminated with Cd
over an extended period of time can lead to chronic exposure to Cd, which causes renal tubular
osteomalacia, the most well-known Cd-induced illness. The consumption of rice as food should be
done so with caution because rice will accumulate a signicant amount of Cd in its grains, which
is the edible portion of the plant, and because there is no discernible difference between rice that
has been exposed to heavy metals and rice that has not, the use of rice for phytoremediation is
extremely worrisome.
Numerous academics have looked into jute, an indigenous ber leafy crop, because of its
capacity to remove various heavy metals from the environment. Jute is a good plant for phytore-
mediation of heavy metals like Cd, but Saleem etal. (2020a) concluded in their review of the
6Phytoremediation in Food Safety
plant as a potential candidate for metal phytoremediation that it tends to lead to metal accumula-
tion in the plant, which is a major source of concern as well as a reduction in plant productivity
and yield. Concerns increase when jute use is broken down. Jute is the least expensive ber for
mass use, mostly glass ber, and China imports a lot of it and its products from Bangladesh,
India, and other nations.
There are two varieties of jute: Corchorus olitorius, also called Tosaa jute, which is native
to South Asia, and Corchorus capsularis, also known as white jute, which comes from the
impoverished peasant population in India (Faruk etal., 2012; Choudhary etal., 2013). Nearly
all African nations regularly use C. olitorius as a vegetable; its leaves are also grown for their
brous qualities and are used in soups (Saleem etal., 2019). This is quite concerning since
the buildup of heavy metals that are toxic in the jute leaves and shoots indicates that these
metals will eventually enter human systems, regardless of how hazardous they are. Natural
contaminated soil from the Mymensingh district of Bangladesh (As-contaminated soil) and
Bhalukaupazila, Bangladesh (Pb-contaminated soil), respectively, was utilized in studies by
Nizam etal. (2019) and Uddin etal. (2019) to develop various jute types. According to their
ndings, heavy metals were deposited in signicant levels by all brous crops, and the above-
ground portions of the plants exhibited higher concentrations of these harmful pollutants than
the below-ground parts. This indicates that the portion of jute that may be harvested and con-
sumed has a higher concentration of these metals (Pb, Cd, Cr, Cu, iron [Fe], and Zn) than the
portion that is typically unnecessary.
Bandiera etal. (2016) in their study “Phytoremediation Opportunities with Alimurgic Species
in Metal-Contaminated Environments,” investigated the food safety of wild edible plants grown
on contaminated soil as well as their multifunctional roles in metal uptake for phytoremediation.
The responses of a few tap-rooted perennial species, including Rumex acetosa, Cichorium intybus,
Sonchus oleraceus, Taraxacum ofcinale, Tragopogon porrifolius, and others, were examined in
their cultivation in critical open environments (i.e., landlls, ditch sediments, and the sides of heav-
ily trafcked roads) and in an articially induced environment containing high levels of soil con-
taminated with Cd, Co, Cu, Pb, and Zn in a pot-scale trial. The study’s objectives were to ascertain
whether germination would take place and to demonstrate the food safety of the items derived from
these plants. Even though the majority of the plants’ germination was unaffected by the rise in tissue
metal rate, they came to the conclusion that eating the plants is not advised because the study’s nd-
ings indicate that the plants’ excessive uptake of Pb and Cd in their leaves may surpass EU safety
thresholds (Bandiera etal., 2016).
The study’s ndings indicate that zinc was mostly well translocated and reached a high leaf
concentration, particularly in T. ofcinale (~ 60 0 mg / kg−1 dry weight, DW), one of the plants.
Given that this plant’s leaves are used as food, its use for phytoremediation should be reduced.
The increased Cd translocation also indicated potential uses for phytoextraction, especially with
C. intybus, where leaf Cd levels reached around 16 mg/kg−1 DW. In no-tillage systems, a gener-
ally high root retention of Pb and Cu may allow for their phytostabilization in the medium term,
along with notable reductions in metal leaching when compared to bare soil. However, this could
be concerning if the roots of some of the study’s plants are used for food or anything leading to
consumption by humans.
Additionally, it has been noted that cereal crops (Table1.1) such as alfalfa (Medicago sativa), sor-
ghum (Sorghum bicolor), and maize (Z. mays L.) have a high capacity to accumulate heavy metals.
If the biomass and metal content of such plants are sufcient to nish remediation in an acceptable
amount of time, they can be successfully employed to clean up heavy metal–polluted soils Kae
etal., 2022).
1.5 CONCLUSION
Although cash crops and edible plants may effectively remove heavy metals from the environ-
ment, their usage has been restricted due to concerns about potential health risks to humans. As a
7Phytoremediation Overview and Role in Food Safety
result, a more suitable substitute is required. It has been demonstrated that using ornamentals and
beautiful plants is safer and preferable. These ornamental plants are highly resistant to the harmful
effects of heavy metals and pose no harm to human health. It has been demonstrated that plants
such as Indian mustard, white willow, poplar, Indian grass, and sunower can remove two or more
contaminants within a polluted site while also becoming more aesthetically pleasing and provide
no risk to human health.
REFERENCES
Abhilash, P.C. (2007). Phytoremediation: An innovative technique for ecosystem clean up. Our Earth. 4: 7–12.
Abioye, O.P., Ijah, U.J.J., and Aransiola S.A. (2017). Phytoremediation of soil contaminants by biodiesel plant
Jatropha curcas. In Chapter4 of K. Bauddh etal. (eds.), Phytoremediation Potential of Bioenergy Plants,
DOI 10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd. https://link.springer.com/book
/10.1007%2F978-981-10-3084-0.
Ali, H., Khan, E., and Sajad, M.A. (2013). Phytoremediation of heavy metals—concepts and applications.
Chemosphere 91: 869–881.
Aransiola, S.A., Ijah, U.J.J., and Abioye, O.P. (2013). Phytoremediation of lead polluted soil by glycine max
L. Appl. Environ. Soil Sci. Article ID 631619. http://dx.doi.org/10.1155/2013/631619, https://www.
hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S.A., Ijah, U.J.J., Abioye, O.P., and Bala, J.D. (2022). Vermicompost-assisted phytoremediation of
toxic trace element-contaminated soil in Madaka, Nigeria using Melissa ofcinalis L and Sida acuta.
IJEST. http://dx.doi.org/10.1007/s13762-022-04105-y
Babaniyi, B.R., Ogundele, O.D., Bisi-omotosho, A., Babaniyi, E.E., and Aransiola, S.A. (2023). Remediation
approaches in environmental sustainability. In N.R. Maddela, L.K. Winkelstroter Eller, and R. Prasad (eds.),
TABLE1.1
Plants That Can Conduct Phytoremediation and Possible Contaminates Remediated
Food Crop/Cash Crop Possible Contaminants Compartment of Accumulation
Thlaspi caerulescens Cd, Zn Leaves
Maize (Zea mays) Pb, Cd Grain
Sorghum (Sorghum bicolor) Cd Grain
Ipomea alpine Cu Leaves
Haumaniastrum robertii Co Roots
Astragalus racemosus Se Roots
Sebertia Ni Shoots
Cabbage (Brassica oleracea) Cd Leaves
Lettuce (Lactuca sativa) Cd Leaves
Indian mustard Pb, Cr, Zn, Cd, Ni, Cu Roots
Rice Cd Grain
Jute Cd Leaves
Wheat (Nicotiana glauca) Cd, Pb Grain
Alfalfa (Medicago sativa) Pb Grain
Arabidopsis thaliana Cd, Pb
Pteris vittate As Shoots
Warnstorfia uitans As Aerial parts/roots
Puccinellia frigida B Shoots
Brassica napus Zn Shoots
Helianthus annuus Cr Shoots
Phalaris arundinacea Cr Aerial parts/roots
Pennisetum annuus Co Shoots
Brachiaria decumbens Cu Shoots
Pisum sativum Pb Shoots
8Phytoremediation in Food Safety
Microbiology for Cleaner Production and Environmental Sustainability. CRC Press. ISBN: 9781032496061.
https://www.routledge.com/Microbiology-for-Cleaner-Production-and-Environmental-Sustainability/
Maddela-Eller-Prasad/p/book/9781032496061
Bandiera, M., Dal Cortivo, C., Barion, G., Mosca, G., and Vamerali, T. (2016). Phytoremediation opportunities
with alimurgic species in metal-contaminated environments. Sustainability. 8(4): 357.
Baumann, A. (1885). Das Verhalten von Zinksatzen gegen Panzen und im Boden. Landwirtsch. Vers.-Statn.
31: 1–53.
Belyaeva, O., Haynes, R., and Birukova, O. (2005). Barley yield and soil microbial and enzyme activities as
affected by contamination of two soils with lead, zinc or copper. Biol. Fertil. Soils. 41: 85–94.
Blaylock, M. (2008). Phytoremediation of Contaminated Soil and Water: Field Demonstration of
Phytoremediation of Lead Contaminated Soils. Lewis Publishers.
Choudhary, S.B., Sharma, H.K., Karmakar, P.G., Kumar, A., Saha, A.R., Hazra, P., and Mahapatra, B.S. (2013).
Nutritional prole of cultivated and wild jute (‘Corchorus’) species. Aust. J. Crop Sci. 2013(7): 1973.
Clemens, S., Aarts, M.G., Thomine, S., and Verbruggen, N. (2013). Plant science: The key to preventing slow
cadmium poisoning. Trends Plant Sci. 18: 92–99.
Doty, S.L., Shang, Q.T., Wilson, A.M., Moore, A.L., Newman, L.A., and Strand, S.E. (2007). Enhanced metab-
olism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natl Acad
Sci USA. 97: 6287–6291.
Dushenkov, D. (2003). Trends in phytoremediation of radionuclides. Plant Soil. 249: 167–175.
Elemba, O.M., and Ijah, U.J.J. (2016). Removal of lead and chromium from soil using biosurfactants pro-
duced by bacterial isolates from spent lubricating oil contaminated soil. Int. J. Adv. Res. 4(5): 201–211
(IMPACT FACTOR 5.388).
Faruk, O., Bledzki, A.K., Fink, H.-P., and Sain, M. 2012. Biocomposites reinforced with natural bers: 2000–
2010. Prog. Polym. Sci. 37: 1552–1596.
Flathman, P.E., and Lanza, G.R. (1998). Phytoremediation: Current views on an emerging green technology. J.
Soil Contam. 7(4): 415–432.
Geiger, G., Brandl, H., Furrer, G., and Schulin, R. (1998). The effect of copper on the activity of cellulase
and β-glucosidase in the presence of montmorillonite or Al-montmorillonite. Soil. Biol. Biochem. 30:
1537–1544.
Ghosh, M., and Singh, S.P. (2005). Areview on phytoremediation of heavy metals and utilization of it’s by
products. Appl. Ecol. Environ. Res. 3(1): 1–18.
Greenberg, B.M., Hunag, X.D., Gurska, Y., Gerhardt, K.E., Wang, W., and Lampi, M.A. (2006). Successful
eld tests of a multi-process phytoremediation system for decontamination of persistent petroleum and
organic contaminants. Proceedings of the twenty-ninth Artic and Marine Oil Spill Program (AMOP).
Technical Seminar Vol. 1. Environment Canada, pp.389–400
Helmisaari, H.S., Salemaa, M., Derome, J., Kiikkila, O., Uhlig, C., and Nieminen, T.M. (2007). Remediation of
heavy metal-contaminated forest soil using recycled organic matter and native woody plants. J. Environ.
Qual. 36: 1145–1153.
Huang, S.-H., Bing, P., Yang, Z.-H., Chai, L.-Y., and Zhou, L.-C. (2009). Chromium accumulation, microor-
ganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy
factory. Transact. Nonferr. Metal. Soc. China. 19: 241–248.
Kae, A., Timilsina, A., Asmita, G., Adhikari, K., Bhattara, A., and Niroj, A. (2022). Phytoremediation:
Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8(2022):
100–203.
Karaca, A., Cetin, S.C., Turgay, O.C., and Kizilkaya, R. (2010). Effects of Heavy Metals on Soil Enzyme
Activities. Soil Heavy Metals. Springer, pp.237–262.
Lasat, M.M. (2002). Phytoextraction of toxic metals: Areview of biological mechanisms. J. Environ. Qual.
31: 109–120.
Lone, M.I., Zhen-Li, H., Stoffella, P.J., and Xiao, Y. (2008). Phytoremediation of heavy metal polluted soils and
water: Progresses and perspectives. Journal of Zhejiang University Sci B. 9: 210–220.
Lorenz, N., Hintemann, T., Kramarewa, T., Katayama, A., Yasuta, T., Marschner, P., and Kandeler, E. (2006).
Response of microbial activity and microbial community composition in soils to long-term arsenic and
cadmium exposure. Soil Biol. Biochem. 38: 1430–1437.
Masindi, V., Muedi, K.L., 2018. Environmental contamination by heavy metals. J. Heavy Metal. 10: 115–132.
Nizam, M.U., Zaman, M.W., and Rahman, M.M. (2019). Lead toxicity tolerance of jute, kenaf and Mesta at
germination phase.Bangladesh J. Seed Sci. Technol. 18: 37–44.
Oladoye, P.O., Olumayowa, M.O., and Olowe, M.D.A. (2022). Phytoremediation technology and food security
impacts of heavy metal contaminated soils: Areview of literature. J. Chemosphere. 288(Pt 2): 132555.
9Phytoremediation Overview and Role in Food Safety
Parveen, A., Saleem, M.H., Kamran, M., Haider, M.Z., Chen, J.-T., Malik, Z., Rana, M.S., Hassan, A., Hur, G.,
Javed, M.T., 2020. Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoreme-
diation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules. 10: 592.
Prasad, M., and Freitas, H. (2005). Metal-tolerant plants: Biodiversity prospecting for phytoremediation tech-
nology. Trace Elements in the Environment. CRC Press, pp.501–524.
Rajakaruna, N., Tompkins, K.M., and Pavicevic, P.G. (2006). Phytoremediation: An affordable green technol-
ogy for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon J. Sci. (Biological Sciences). 35:
25–39.
Rascio, W. (1977). Metal accumulation by some plants growing on Zn mine deposits. OIKOS. 29: 250–253.
Raskin, I., and Ensley, B.D. (2000). Phytoremediation of Toxic Metals: Using Plants to Clean Up the
Environment. John Wiley& Sons, Inc. Publishing, p.304.
Saleem, M.H., Ali, S., Kamran, M., Iqbal, N., Azeem, M., Tariq Javed, M., . . . Rizwan, M. (2020a).
Ethylenediaminetetraacetic acid (EDTA) mitigates the toxic effect of excessive copper concentrations on
growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper
accumulation capabilities. Plants. 9: 756.
Saleem, M.H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., ... Qari, S.H. (2020b). Jute:
Apotential candidate for phytoremediation of metals – Areview. Plants. 9(2): 258.
Saleem, M.H., Fahad, S., Khan, S.U., Din, M., Ullah, A., Sabagh, A.E., Hossain, A., Llanes, A., and Liu, L.
(2019). Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of ax
(Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ. Sci.
Pollut. Res. 8(2): 545.
Salt, D.E., Smith, R.D., and Raskin, I. (1998). Phytoremediation. Ann. Rev. Plant Physiol. 49: 643–668. https://
doi.org/10.1146/annurev.arplant.49.1.643.
Schmidt, U. (2003). Enhancing phytoextraction: The effects of chemical soil manipulation on mobility, plant
accumulation, and leaching of heavy metals. J. Environ. Qual. 32: 1939–1954.
Singh, J., and Kalamdhad, A.S. (2011). Effects of heavy metals on soil, plants, human health and aquatic life.
Int. Res. Chem. Environ. 1: 15–21.
Song, Y., Wang, Y., Mao, W., Sui, H., Yong, L., Yang, D., Jiang, D., Zhang, L., and Gong, Y. (2017). Dietary
cadmium exposure assessment among the Chinese population. PLoS One. 12: e0177978.
Speir, T., Kettles, H., Parshotam, A., Searle, P., and Vlaar, L. (1999). Simple kinetic approach to determine the
toxicity of As [V] to soil biological properties. Soil Biol. Biochem. 31: 705–713.
Tang, S., Xi, L., Zheng, J., and Li, H. (2003). Response to elevated CO2 of Indian mustard and sunower grow-
ing on copper contaminated soil. Bull. Environ. Contam. Toxicol. 71: 988–997.
Uddin, M.N., Mokhlesur Rahman, M., and Kim, J.E. (2019). Phytoremediation potential of kenaf (Hibiscus can-
nabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated
Soil. Korean J. Environ. Agric. 35: 111–120.
United States Environmental Protection Agency (USEPA). (2000). Introduction to Phytoremediation. USEPA.
Vidali, M. (2001). Bioremediation. An overview. Pure Appl. Chem. 73(7): 1163–1172.
Wongsasuluk, P., Chotpantarat, S., Siriwong, W., and Robson, M. (2014). Heavy metal contamination and
human health risk assessment in drinking water from shallow groundwater wells in an agricultural area
in Ubon Ratchathani province. Thai. Environ. Geo. Health. 36: 169–182.
Zhao, F.J. and Huang, X.Y. (2018). Cadmium phytoremediation: Call rice CAL1. Molecular Plant. 11(5):
640–642.
Phytoremediation Overview and Role in Food Safety
Abhilash, P.C. (2007). Phytoremediation: An innovative technique for ecosystem clean up. Our Earth. 4: 7–12.
Abioye, O.P. , Ijah, U.J.J. , and Aransiola S.A. (2017). Phytoremediation of soil contaminants by biodiesel plant
Jatropha curcas. In Chapter 4 of K. Bauddh et al. (eds.), Phytoremediation Potential of Bioenergy Plants, DOI
10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd.
https://link.springer.com/book/10.1007%2F978-981-10-3084-0.
Ali, H. , Khan, E. , and Sajad, M.A. (2013). Phytoremediation of heavy metals—concepts and applications.
Chemosphere 91: 869–881.
Aransiola, S.A. , Ijah, U.J.J. , and Abioye, O.P. (2013). Phytoremediation of lead polluted soil by glycine max L.
Appl. Environ. Soil Sci. Article ID 631619. http://dx.doi.org/10.1155/2013/631619,
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S.A. , Ijah, U.J.J. , Abioye, O.P. , and Bala, J.D. (2022). Vermicompost-assisted phytoremediation of
toxic trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta. IJEST.
http://dx.doi.org/10.1007/s13762-022-04105-y
Babaniyi, B.R. , Ogundele, O.D. , Bisiomotosho, A. , Babaniyi, E.E. , and Aransiola, S.A. (2023). Remediation
approaches in environmental sustainability. In N.R. Maddela , L.K. Winkelstroter Eller , and R. Prasad (eds.),
Microbiology for Cleaner Production and Environmental Sustainability. CRC Press. ISBN: 9781032496061.
https://www.routledge.com/Microbiology-for-Cleaner-Production-and-Environmental-Sustainability/Maddela-
Eller-Prasad/p/book/9781032496061
Bandiera, M. , Dal Cortivo, C. , Barion, G. , Mosca, G. , and Vamerali, T. (2016). Phytoremediation
opportunities with alimurgic species in metal-contaminated environments. Sustainability. 8(4): 357.
Baumann, A. (1885). Das Verhalten von Zinksatzen gegen Pflanzen und im Boden. Landwirtsch. Vers.-Statn.
31: 1–53.
Belyaeva, O. , Haynes, R. , and Birukova, O. (2005). Barley yield and soil microbial and enzyme activities as
affected by contamination of two soils with lead, zinc or copper. Biol. Fertil. Soils. 41: 85–94.
Blaylock, M. (2008). Phytoremediation of Contaminated Soil and Water: Field Demonstration of
Phytoremediation of Lead Contaminated Soils. Lewis Publishers.
Choudhary, S.B. , Sharma, H.K. , Karmakar, P.G. , Kumar, A. , Saha, A.R. , Hazra, P. , and Mahapatra, B.S.
(2013). Nutritional profile of cultivated and wild jute (‘Corchorus’) species. Aust. J. Crop Sci. 2013(7): 1973.
Clemens, S. , Aarts, M.G. , Thomine, S. , and Verbruggen, N. (2013). Plant science: The key to preventing slow
cadmium poisoning. Trends Plant Sci. 18: 92–99.
Doty, S.L. , Shang, Q.T. , Wilson, A.M. , Moore, A.L. , Newman, L.A. , and Strand, S.E. (2007). Enhanced
metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natl Acad
Sci USA. 97: 6287–6291.
Dushenkov, D. (2003). Trends in phytoremediation of radionuclides. Plant Soil. 249: 167–175.
Elemba, O.M. , and Ijah, U.J.J. (2016). Removal of lead and chromium from soil using biosurfactants produced
by bacterial isolates from spent lubricating oil contaminated soil. Int. J. Adv. Res. 4(5): 201–211 (IMPACT
FACTOR 5.388).
Faruk, O. , Bledzki, A.K. , Fink, H.-P. , and Sain, M. 2012. Biocomposites reinforced with natural fibers:
2000–2010. Prog. Polym. Sci. 37: 1552–1596.
Flathman, P.E. , and Lanza, G.R. (1998). Phytoremediation: Current views on an emerging green technology.
J. Soil Contam. 7(4): 415–432.
Geiger, G. , Brandl, H. , Furrer, G. , and Schulin, R. (1998). The effect of copper on the activity of cellulase and
β-glucosidase in the presence of montmorillonite or Al-montmorillonite. Soil. Biol. Biochem. 30: 1537–1544.
Ghosh, M. , and Singh, S.P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by
products. Appl. Ecol. Environ. Res. 3(1): 1–18.
Greenberg, B.M. , Hunag, X.D. , Gurska, Y. , Gerhardt, K.E. , Wang, W. , and Lampi, M.A. (2006). Successful
field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic
contaminants. Proceedings of the twenty-ninth Artic and Marine Oil Spill Program (AMOP). Technical Seminar
Vol. 1. Environment Canada, pp. 389–400
Helmisaari, H.S. , Salemaa, M. , Derome, J. , Kiikkila, O. , Uhlig, C. , and Nieminen, T.M. (2007). Remediation
of heavy metal-contaminated forest soil using recycled organic matter and native woody plants. J. Environ.
Qual. 36: 1145–1153.
Huang, S.-H. , Bing, P. , Yang, Z.-H. , Chai, L.-Y. , and Zhou, L.-C. (2009). Chromium accumulation,
microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy
factory. Transact. Nonferr. Metal. Soc. China. 19: 241–248.
Kafle, A. , Timilsina, A. , Asmita, G. , Adhikari, K. , Bhattara, A. , and Niroj, A. (2022). Phytoremediation:
Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8(2022):
100–203.
Karaca, A. , Cetin, S.C. , Turgay, O.C. , and Kizilkaya, R. (2010). Effects of Heavy Metals on Soil Enzyme
Activities. Soil Heavy Metals. Springer, pp. 237–262.
Lasat, M.M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual. 31:
109–120.
Lone, M.I. , Zhen-Li, H. , Stoffella, P.J. , and Xiao, Y. (2008). Phytoremediation of heavy metal polluted soils
and water: Progresses and perspectives. Journal of Zhejiang University Sci B. 9: 210–220.
Lorenz, N. , Hintemann, T. , Kramarewa, T. , Katayama, A. , Yasuta, T. , Marschner, P. , and Kandeler, E.
(2006). Response of microbial activity and microbial community composition in soils to long-term arsenic and
cadmium exposure. Soil Biol. Biochem. 38: 1430–1437.
Masindi, V. , Muedi, K.L. , 2018. Environmental contamination by heavy metals. J. Heavy Metal . 10: 115–132.
Nizam, M.U. , Zaman, M.W. , and Rahman, M.M. (2019). Lead toxicity tolerance of jute, kenaf and Mesta at
germination phase. Bangladesh J. Seed Sci. Technol. 18: 37–44.
Oladoye, P.O. , Olumayowa, M.O. , and Olowe, M.D.A. (2022). Phytoremediation technology and food security
impacts of heavy metal contaminated soils: A review of literature. J. Chemosphere. 288(Pt 2): 132555.
Parveen, A. , Saleem, M.H. , Kamran, M. , Haider, M.Z. , Chen, J.-T. , Malik, Z. , Rana, M.S. , Hassan, A. , Hur,
G. , Javed, M.T. , 2020. Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and
phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules.
10: 592.
Prasad, M. , and Freitas, H. (2005). Metal-tolerant plants: Biodiversity prospecting for phytoremediation
technology. Trace Elements in the Environment. CRC Press, pp. 501–524.
Rajakaruna, N. , Tompkins, K.M. , and Pavicevic, P.G. (2006). Phytoremediation: An affordable green
technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon J. Sci. (Biological Sciences). 35:
25–39.
Rascio, W. (1977). Metal accumulation by some plants growing on Zn mine deposits. OIKOS. 29: 250–253.
Raskin, I. , and Ensley, B.D. (2000). Phytoremediation of Toxic Metals: Using Plants to Clean Up the
Environment. John Wiley & Sons, Inc. Publishing, p. 304.
Saleem, M.H. , Ali, S. , Kamran, M. , Iqbal, N. , Azeem, M. , Tariq Javed, M. , … Rizwan, M. (2020a).
Ethylenediaminetetraacetic acid (EDTA) mitigates the toxic effect of excessive copper concentrations on
growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper
accumulation capabilities. Plants. 9: 756.
Saleem, M.H. , Ali, S. , Rehman, M. , Hasanuzzaman, M. , Rizwan, M. , Irshad, S. , … Qari, S.H. (2020b). Jute:
A potential candidate for phytoremediation of metals – A review. Plants. 9(2): 258.
Saleem, M.H. , Fahad, S. , Khan, S.U. , Din, M. , Ullah, A. , Sabagh, A.E. , Hossain, A. , Llanes, A. , and Liu, L.
(2019). Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum
usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ. Sci. Pollut. Res.
8(2): 545.
Salt, D.E. , Smith, R.D. , and Raskin, I. (1998). Phytoremediation. Ann. Rev. Plant Physiol. 49: 643–668.
https://doi.org/10.1146/annurev.arplant.49.1.643.
Schmidt, U. (2003). Enhancing phytoextraction: The effects of chemical soil manipulation on mobility, plant
accumulation, and leaching of heavy metals. J. Environ. Qual. 32: 1939–1954.
Singh, J. , and Kalamdhad, A.S. (2011). Effects of heavy metals on soil, plants, human health and aquatic life.
Int. Res. Chem. Environ. 1: 15–21.
Song, Y. , Wang, Y. , Mao, W. , Sui, H. , Yong, L. , Yang, D. , Jiang, D. , Zhang, L. , and Gong, Y. (2017).
Dietary cadmium exposure assessment among the Chinese population. PLoS One. 12: e0177978.
Speir, T. , Kettles, H. , Parshotam, A. , Searle, P. , and Vlaar, L. (1999). Simple kinetic approach to determine
the toxicity of As [V] to soil biological properties. Soil Biol. Biochem. 31: 705–713.
Tang, S. , Xi, L. , Zheng, J. , and Li, H. (2003). Response to elevated CO2 of Indian mustard and sunflower
growing on copper contaminated soil. Bull. Environ. Contam. Toxicol. 71: 988–997.
Uddin, M.N. , Mokhlesur Rahman, M. , and Kim, J.E. (2019). Phytoremediation potential of kenaf (Hibiscus
cannabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated
Soil. Korean J. Environ. Agric. 35: 111–120.
United States Environmental Protection Agency (USEPA) . (2000). Introduction to Phytoremediation. USEPA.
Vidali, M. (2001). Bioremediation. An overview. Pure Appl. Chem. 73(7): 1163–1172.
Wongsasuluk, P. , Chotpantarat, S. , Siriwong, W. , and Robson, M. (2014). Heavy metal contamination and
human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon
Ratchathani province. Thai. Environ. Geo. Health. 36: 169–182.
Zhao, F.J. and Huang, X.Y. (2018). Cadmium phytoremediation: Call rice CAL1. Molecular Plant. 11(5):
640–642.
Phytoremediation and its Role in Climate Change for a Safe Environment
“Consequences for potential vapour intrusion hazards” The Ministry of Health in Hawaii. Checked back on 8
December 2012.
Abbass, Aamir , Adnan M. Al-Amer , Tahar Laoui , Mohammed J. Al-Marri , Mustafa S. Nasser , Majeda
Khraisheh , and Muataz Ali Atieh . “Heavy metal removal from aqueous solution by advanced carbon
nanotubes: Critical review of adsorption applications.” Separation and Purification Technology 157 (2016):
141–161. https://doi.org/10.1016/j.seppur.2015.11.039
Abioye, O. P. , U. J. J. Ijah , S. A. Aransiola , S. H. Auta , and M. I. Ojeba . “Bioremediation of toxic pesticides in
soil using microbial products.” In R. Prasad , S. C. Nayak , R. N. Kharwar , and N. K. Dubey (eds.),
Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-54422-5_1.
Agarwal, Prerita , Mangaldeep Sarkar , Binayak Chakraborty , and Tirthankar Banerjee . “Phytoremediation of
air pollutants: Prospects and challenges.” Phytomanagement of Polluted Sites (2019): 221–241.
Alalwan, Hayder A. , Mohammed A. Kadhom , and Alaa H. Alminshid . “Removal of heavy metals from
wastewater using agricultural byproducts.” Journal of Water Supply: Research and Technology – AQUA 69, no.
2 (2020): 99–112. https://doi.org/10.2166/aqua.2020.133
Al-Baldawi, Israa Abdulwahab , Siti Rozaimah Sheikh Abdullah , Asia Fadhile Almansoory , Nur'Izzati Ismail ,
Hassimi Abu Hasan , and Nurina Anuar . “Role of Salvinia molesta in biodecolorization of methyl orange dye
from water.” Scientific reports 10, no. 1 (2020): 13980.
Ali, Shafaqat , Zohaib Abbas , Muhammad Rizwan , Ihsan Elahi Zaheer , İlkay Yavaş , Aydın Ünay , Mohamed
M. Abdel-Daim , May Bin-Jumah , Mirza Hasanuzzaman , and Dimitris Kalderis . “Application of floating aquatic
plants in phytoremediation of heavy metals polluted water: A review.” Sustainability 12, no. 5 (2020): 1927.
https://doi.org/10.3390/su12051927
Aljeboree, Aseel M. “Adsorption of methylene blue dye by using modified Fe/Attapulgite clay.” Research
Journal of Pharmaceutical Biological and Chemical Sciences 6, no. 4 (2015): 778–788.
Aransiola, S.A. , U. J. J. Ijah , and O. P. Abioye . (2013). “Phytoremediation of lead polluted soil by Glycine max
L.” Applied and Environmental Soil Science 2013, Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S.A. , U. J. J. Ijah , O. P. Abioye , and J. D. Bala . “Microbial-aided phytoremediation of heavy metals
contaminated soil: A review.” European Journal of Biological Research 9, no. 2 (2019): 104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Arthur, Ellen L. , Pamela J. Rice , Patricia J. Rice , Todd A. Anderson , Sadika M. Baladi , Keri LD Henderson ,
and Joel R. Coats . “Phytoremediation – an overview.” Critical Reviews in Plant Sciences 24, no. 2 (2005):
109–122.
Asgari Lajayer, Behnam , Nader Khadem Moghadam , Mohammad Reza Maghsoodi , Mansour Ghorbanpour ,
and Khalil Kariman . “Phytoextraction of heavy metals from contaminated soil, water and atmosphere using
ornamental plants: Mechanisms and efficiency improvement strategies.” Environmental Science and Pollution
Research 26 (2019): 8468–8484. https://doi.org/10.1007/s11356-019-04241-y
Ashish, Patre Rajat , Rohan Vashistha , Rakesh Singh , and Krishnan Thakur . “Petroleum industry and its
effect on climate.” In AIP Conference Proceedings, vol. 2978, no. 1. AIP Publishing, 2024.
Cunningham, Scott D. , and David W. Ow . “Promises and prospects of phytoremediation.” Plant Physiology
110, no. 3 (1996): 715.
Doty, Sharon L. , C. Andrew James , Allison L. Moore , Azra Vajzovic , Glenda L. Singleton , Caiping Ma ,
Zareen Khan et al. “Enhanced phytoremediation of volatile environmental pollutants with transgenic trees.”
Proceedings of the National Academy of Sciences 104, no. 43 (2007): 16816–16821.
https://doi.org/10.1073/pnas.0703276104
Eapen, Susan , and S. F. D'Souza . “Prospects of genetic engineering of plants for phytoremediation of toxic
metals.” Biotechnology advances 23, no. 2 (2005): 97–114. https://doi.org/10.1016/j.biotechadv.2004.10.001
Etim, E. E. “Phytoremediation and its mechanisms: A review.” International Journal of Environment and
Bioenergy 2, no. 3 (2012): 120–136.
Farr, Charlotte . Indoor Air Quality: Causes, Controls and Consequences. Lancaster University Press, 2021.
Farraji, Hossein , Nastaein Q. Zaman , R. Tajuddin , and Hamed Faraji . “Advantages and disadvantages of
phytoremediation: A concise review.” International Journal of Environmental Science 2 (2016): 69–75.
Favas, Paulo J. C. , João Pratas , Mayank Varun , Rohan D'Souza , and Manoj S. Paul . “Phytoremediation of
soils contaminated with metals and metalloids at mining areas: Potential of native flora.” Environmental Risk
Assessment of Soil Contamination 3 (2014): 485–516.
Ferreira, Fernanda and Jesse Kroll (2023). https://climate.mit.edu/ask-mit/how-can-such-small-amount-carbon-
dioxide-atmosphere-only-around-420-parts-million-cause-
so#:~:text=In%20June%202023%2C%20the%20National,parts%20per%20million%20(ppm).&text=This%20me
ans%20that%20of%20every,atmosphere%2C%20424%20are%20CO2
Frontczak, Monika , Rune Vinther Andersen , and Pawel Wargocki . “Questionnaire survey on factors
influencing comfort with indoor environmental quality in Danish housing.” Building and Environment 50 (2012):
56–64.
Govindaraju, M. , J. Fowmitha Banu , S. Senthamil Selvi , and Malti Goel . “CO 2 Sequestration through
phytoremediation techniques with special emphasis on urban forestry to mitigate climate change impact.”
Climate Change and Green Chemistry of CO2 Sequestration (2021): 263–271.
Gul, Iram , Maria Manzoor , Imran Hashmi , Muhammad Faraz Bhatti , Jean Kallerhoff , and Muhammad
Arshad . “Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals
(Cd and Pb).” Journal of Environmental Management 249 (2019): 109408.
https://doi.org/10.1016/j.jenvman.2019.109408
Holkar, Chandrakant R. , Ananda J. Jadhav , Dipak V. Pinjari , Naresh M. Mahamuni , and Aniruddha B. Pandit
. “A critical review on textile wastewater treatments: Possible approaches.” Journal of Environmental
Management 182 (2016): 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090
Hu, Hao , Qi Zhou , Xiang Li , Wei Lou , Cheng Du , Qing Teng , Dongmei Zhang , Hongyu Liu , Yuanyuan
Zhong , and Chunping Yang . “Phytoremediation of anaerobically digested swine wastewater contaminated by
oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways.”
Bioresource Technology 291 (2019): 121853. https://doi.org/10.1016/j.biortech.2019.121853
Joseph, Lesley , Byung-Moon Jun , Joseph R. V. Flora , Chang Min Park , and Yeomin Yoon . “Removal of
heavy metals from water sources in the developing world using low-cost materials: A review.” Chemosphere
229 (2019): 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198
Kandisa, Ravi Vital , K.V. Narayana Saibaba , Khasim Beebi Shaik , and R. Gopinath . “Dye removal by
adsorption: A review.” Journal of bioremediation and Biodegradation 7, no. 6 (2016).
https://climate.ec.europa.eu/climate-change/causes-climate-change_en
Karaghool, Haneen A. Kh. “The Employment of Endophytic Bacteria for Phytodegradation of Pyridine.” In IOP
Conference Series: Earth and Environmental Science, vol. 961, no. 1, p. 012021. IOP Publishing, 2022. doi:
10.1088/1755–1315/961/1/012021
Kelly, Frank J. , and Julia C. Fussell . “Air pollution and public health: Emerging hazards and improved
understanding of risk.” Environmental Geochemistry and Health 37 (2015): 631–649.
Khandare, Rahul V. , and Sanjay P. Govindwar . “Phytoremediation of textile dyes and effluents: Current
scenario and future prospects.” Biotechnology Advances 33, no. 8 (2015): 1697–1714.
https://doi.org/10.1016/j.biotechadv.2015.09.003
Kim, K. J. , H. J. Kim , M. Khalekuzzaman , E. H. Yoo , H. H. Jung , and H. S. Jang . “Removal ratio of gaseous
toluene and xylene transported from air to root zone via the stem by indoor plants.” Environmental Science and
Pollution Research 23 (2016): 6149–6158. https://doi.org/10.1007/s11356-016-6065-y
Krishnasamy, Selvanayaki , Ramkumar Lakshmanan , and Mythili Ravichandran . “Phytoremediatiation of metal
and metalloid pollutants from farmland: An in-situ soil conservation.” In Biodegradation Technology of Organic
and Inorganic Pollutants. IntechOpen, 2021.
Kumar, Kundan , Akshay Shinde , Varad Aeron , Aanchal Verma , and Naseera Sayed Arif . “Genetic
engineering of plants for phytoremediation: Advances and challenges.” Journal of Plant Biochemistry and
Biotechnology 32, no. 1 (2023): 12–30. https://doi.org/10.1007/s13562-022-00776-3
Mac Dowell, Niall , Paul S. Fennell , Nilay Shah , and Geoffrey C. Maitland . “The role of CO2 capture and
utilization in mitigating climate change.” Nature Climate Change 7, no. 4 (2017): 243–249.
Mikkonen, Anu , Tao Li , Mari Vesala , Jatta Saarenheimo , Viivi Ahonen , Sirpa Kärenlampi , James D. Blande
, Marja Tiirola , and Arja Tervahauta . “Biofiltration of airborne VOC s with green wall systems – Microbial and
chemical dynamics.” Indoor Air 28, no. 5 (2018): 697–707. https://doi.org/10.1111/ina.12473
Morikawa, Hiromichi , and Özgür Cem Erkin . “Basic processes in phytoremediation and some applications to
air pollution control.” Chemosphere 52, no. 9 (2003): 1553–1558. https://doi.org/10.1016/S0045-
6535(03)00495-8
Mousavi, Afsaneh , Latifeh Pourakbar , Sina Siavash Moghaddam , and Jelena Popović-Djordjević . “The effect
of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium
phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress.” Journal of Environmental
Chemical Engineering 9, no. 4 (2021): 105456. https://doi.org/10.1016/j.jece.2021.105456
Naseer, Ayesha , Anum Jamshaid , Almas Hamid , Nawshad Muhammad , Moinuddin Ghauri , Jibran Iqbal ,
Sikander Rafiq , Shahzad Khuram , and Noor Samad Shah . “Lignin and lignin based materials for the removal
of heavy metals from waste water-an overview.” Zeitschrift für Physikalische Chemie 233, no. 3 (2019):
315–345. https://doi.org/10.1515/zpch-2018-1209
Pandey, Vimal Chandra , and Omesh Bajpai . “Phytoremediation: From theory toward practice.” In
Phytomanagement of Polluted Sites, pp. 1–49. Elsevier, 2019. https://doi.org/10.1016/B978-0-12-813912-
7.00001-6
Pilon-Smits, Elizabeth . “Phytoremediation.” Annual Review of Plant Biology 56, no. 1 (April 29, 2005): 15–39.
doi:10.1146/annurev.arplant.56.032604.144214. ISSN 1543-5008. PMID 15862088.
Rebecca Lindsey and Luann Dahlmal (2024). https://www.nrdc.org/stories/what-are-effects-climate-
change#environment.
Roupsard, Pierre , Muriel Amielh , Didier Maro , Alexis Coppalle , Hubert Branger , Olivier Connan , P.
Laguionie , D. Hébert , and M. Talbaut . “Measurement in a wind tunnel of dry deposition velocities of
submicron aerosol with associated turbulence onto rough and smooth urban surfaces.” Journal of Aerosol
Science 55 (2013): 12–24. https://doi.org/10.1016/j.jaerosci.2012.07.006
Shafiq, M. , A. A. Alazba , and M. T. Amin . “Removal of heavy metals from wastewater using date palm as a
biosorbent: A comparative review.” Sains Malaysiana 47, no. 1 (2018): 35–49 http://dx.doi.org/10.17576/jsm-
2018-4701-05
Tewes, Lisa Johanna , Clemens Stolpe , Aylin Kerim , Ute Krämer , and Caroline Müller . “Metal
hyperaccumulation in the Brassicaceae species Arabidopsis halleri reduces camalexin induction after fungal
pathogen attack.” Environmental and Experimental Botany 153 (2018): 120–126.
https://doi.org/10.1016/j.envexpbot.2018.05.015
Thakur, Sveta , Lakhveer Singh , Zularisam Ab Wahid , Muhammad Faisal Siddiqui , Samson Mekbib Atnaw ,
and Mohd Fadhil Md Din . “Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance
mechanism, challenges, and future perspectives.” Environmental Monitoring and Assessment 188 (2016):
1–11.
Toome, Merje , Pille Randjärv , Lucian Copolovici , Ülo Niinemets , Katrin Heinsoo , Anne Luik , and Steffen M.
Noe . “Leaf rust induced volatile organic compounds signalling in willow during the infection.” Planta 232 (2010):
235–243.
Vadim, Sergey N. Shabala , Katherine B. Coutts , Mark A. Tester , and Julia M. Davies . “Free oxygen radicals
regulate plasma membrane Ca2+-and K+-permeable channels in plant root cells.” Journal of Cell Science 116,
no. 1 (2003): 81–88.
Weber, Frauke , Ingo Kowarik , and Ina Säumel . “Herbaceous plants as filters: Immobilization of particulates
along urban street corridors.” Environmental Pollution 186 (2014): 234–240.
Zhang, Ying , Paul J. Beggs , Alice McGushin , Hilary Bambrick , Stefan Trueck , Ivan C. Hanigan , Geoffrey G.
Morgan et al. “The 2020 special report of the MJA–Lancet Countdown on health and climate change: Lessons
learnt from Australia’s ‘Black Summer’.” Medical Journal of Australia 213, no. 11 (2020): 490–492.
https://doi.org/10.5694/mja2.50869 52.
Organic and Inorganic Pollutant Uptake Mechanisms by Plants
Abioye, O.P. , Ijah, U.J.J. , Aransiola, S.A. , 2017. Phytoremediation of soil contaminants by biodiesel plant
Jatropha curcas. In Chapter 4 of K. Bauddh et al. (eds.), Phytoremediation Potential of Bioenergy Plants, DOI
10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd.
https://link.springer.com/book/10.1007%2F978-981-10-3084-0.
Adesodun, J.K. , Atayese, M.O. , Agbaje, T. , Osadiaye, B.A. , Mafe, O. , Soretire, A.A. , 2010.
Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils
contaminated with zinc and lead nitrates. Water Air Soil Pollut. 207, 195–201.
Afzal, M. , Khan, Q.M. , Sessitsch, A. , 2014. Endophytic bacteria: Prospects and applications for the
phytoremediation of organic pollutants. Chemosphere 117, 232–242.
Aransiola, S.A. , Afolabi, F. , Joseph, F. , Maddela, N.R. , 2023. Soil Enzymes: Distribution, interactions and
influencing factors. In P. Jeschke , E.B. Starikov (eds.), Agricultural Biocatalysis: Enzymes in Agriculture and
Industry (1st ed.). Jenny Stanford Publishing , pp. 303–333. ISBN 9789814968478.
https://www.routledge.com/Agricultural-Biocatalysis-Enzymes-in-Agriculture-and-Industry/Jeschke-
Starikov/p/book/9789814968478
Aransiola, S.A. , Ijah, U.J.J. , Abioye, O.P. , 2013. Phytoremediation of lead polluted soil by Glycine max L.
Appl. Environ. Soil Sci. 2013, Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S.A. , Ijah, U.J.J. , Abioye, O.P. , Bala, J.D. , 2019. Microbial-aided phytoremediation of heavy
metals contaminated soil: A review. Eur. J. Biol. Res. 9(2), 104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Aransiola, S.A. , Ijah, U.J.J. , Abioye, O.P. , Bala, J.D. , 2022. Vermicompost-assisted phytoremediation of toxic
trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta. IJEST.
http://dx.doi.org/10.1007/s13762-022-04105-y
Argun, M.E. , Dursun, S. , Ozdemir, C. , Karatas, M. , 2007. Heavy metal adsorption by modified oak sawdust:
Thermodynamics and kinetics. J. Hazard . Mater. 141, 77–85.
Belyaeva, O. , Haynes, R. , Birukova, O. , 2005. Barley yield and soil microbial and enzyme activities as
affected by contamination of two soils with lead, zinc or copper. Biol. Fertil. Soils. 41, 85–94.
Connor, R. , Renata, A. , Ortigara, C. , Koncagül, E. , Uhlenbrook, S. , Lamizana-Diallo, B.M. , Zadeh, S.M. ,
Qadir, M. , Kjellén, M. , Sjödin, J. , 2017. The United Nations world water development report 2017.
Wastewater: The untapped resource. Unit. Nat. World Water Dev. Report. deFontenoy, Paris, France.
Druruibe, J.O. , Ogwuegbu, M. , Egwurugwu, J. , 2007. Heavy metal pollution and human biotoxic effects. Int. J.
Phys. Sci. 2, 112–118.
Elemba, O.M. , Ijah, U.J.J. , 2016. Removal of lead and chromium from soil using biosurfactants produced by
bacterial isolates from spent lubricating oil contaminated soil. Int J Adv Res. 4(5), 201–211 (IMPACT FACTOR
5.388).
EPA , 2000. A Citizen’s Guide to Phytoremediation. EPA 542-F-98-011. United States Environmental Protection
Agency, p. 6. http://www.bugsatwork.com/XYCLONYX/EPA_GUIDES/PHYTO.PD
González, H. , Fernández-Fuego, D. , Bertrand, A. , González, A. , 2019. Effect of pH and citric acid on the
growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for
phytostabilization. Environ. Sci. Pollut. Res. 26, 26242–26253.
Huang, S.-H. , Bing, P. , Yang, Z.-H. , Chai, L.-Y. , Zhou, L.-C. , 2009. Chromium accumulation, microorganism
population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Transact.
Nonferr. Metal. Soc. China. 19, 241–248.
Kafle, A. , Timilsina, A. , Asmita, G. , Adhikari, K. , Bhattara, A. , Niroj, A. , 2022. Phytoremediation:
Mechanisms, plant selection and enhancement by natural and synthetic agents Environ. Adv. 8(2022),
100–203.
Kamran, M. , Danish, M. , Saleem, M.H. , Malik, Z. , Parveen, A. , Abbasi, G.H. , Jamil, M. , Ali, S. , Afzal, S. ,
Riaz, M. , 2021. Application of abscisic acid and 6-benzylamino-purine modulated morpho-physiological and
antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake.
Chemosphere 263, 128169.
Karaca, A. , Cetin, S.C. , Turgay, O.C. , Kizilkaya, R. , 2010. Effects of Heavy Metals on Soil Enzyme Activities.
Soil Heavy Metals. Springer, pp. 237–262.
Kazemipour, M. , Ansari, M. , Tajrobehkar, S. , Majdzadeh, M. , Kermani, H.R. , 2008. Removal of lead,
cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond,
pistachio shell, and apricot stone. J. Hazard. Mater. 150, 322–327.
Li, X. , Zhang, X. , Wang, X. , Cui, Z. , 2019. Phytoremediation of multi-metal contaminated mine tailings with
Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol. Environ. Saf. 180, 517–525.
Liu, Y. , Zeng, G. , Zhong, H. , Wang, Z. , Liu, Z. , Cheng, M. , Liu, G. , Yang, X. , Liu, S. , 2017b. Effect of
rhamnolipid solubilization on hexadecane bioavailability: Enhancement or reduction? J. Hazard. Mater. 322,
394–401.
Lorenz, N. , Hintemann, T. , Kramarewa, T. , Katayama, A. , Yasuta, T. , Marschner, P. , Kandeler, E. , 2006.
Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium
exposure. Soil Biol. Biochem. 38, 1430–1437.
Masindi, V. , Muedi, K.L. , 2018. Environmental contamination by heavy metals. Heavy Metal. 10, 115–132.
Pan, J. , Plant, J.A. , Voulvoulis, N. Oates, C.J. , Ihlenfeld, C. 2010. Cadmium levels in Europe: implications for
human health. Environ. Geochem. Health. 32, 1–12. https://doi.org/10.1007/s10653-009-9273-2.
Parveen, A. , Saleem, M.H. , Kamran, M. , Haider, M.Z. , Chen, J.-T. , Malik, Z. , Rana, M.S. , Hassan, A. , Hur,
G. , Javed, M.T. , 2020. Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and
phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules.
10, 592.
Paz-Ferreiro, J. , Lu, H. , Fu, S. , Méndez, A. , Gascó, G. , 2014. Use of phytoremediation and biochar to
remediate heavy metal polluted soils: A review. Solid Earth 5, 65.
Prasad, M. , Freitas, H. , 2005. Metal-tolerant Plants: Biodiversity Prospecting for Phytoremediation
Technology. Trace Elements in the Environment. CRC Press, pp. 501–524.
Saleem, M.H. , Ali, S. , Kamran, M. , Iqbal, N. , Azeem, M. , Tariq Javed, M. , Ali, Q. , Zulqurnain Haider , M.,
Irshad, S. , Rizwan, M. , 2020a. Ethylenediaminetetraacetic acid (EDTA) mitigates the toxic effect of excessive
copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L.
and improves copper accumulation capabilities. Plants. 9, 756.
Saleem, M.H. , Ali, S. , Rehman, M. , Rana, M.S. , Rizwan, M. , Kamran, M. , Imran, M. , Riaz, M. , Soliman,
M.H. , Elkelish, A. , 2020c. Influence of phosphorus on copper phytoextraction via modulating cellular
organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province,
China. Chemosphere 248, 126032.
Saleh, H.M. , 2012. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with
cesium and cobalt radionuclides. Nucl. Eng. Des. 242, 425–432.
https://doi.org/10.1016/j.nucengdes.2011.10.023.
Shabani, N. , Sayadi, M. , 2012. Evaluation of heavy metals accumulation by two emergent macrophytes from
the polluted soil: An experimental study. Environment. 32, 91–98.
Shahid, M. , Austruy, A. , Echevarria, G. , Arshad, M. , Sanaullah, M. , Aslam, M. , Nadeem, M. , Nasim, W. ,
Dumat, C. , 2014. EDTA-enhanced phytoremediation of heavy metals: A review. Soil and Sedim. Contam. 23,
389–416.
Singh, J. , Kalamdhad, A.S. , 2011. Effects of heavy metals on soil, plants, human health and aquatic life. Int.
Res. Chem. Environ. 1, 15–21.
Song, B. , Zeng, G. , Gong, J. , Zhang, P. , Deng, J. , Deng, C. , Yan, J. , Xu, P. , Lai, C. , Zhang, C. , 2017.
Effect of multi-walled carbon nanotubes on phytotoxicity of sediments contaminated by phenanthrene and
cadmium. Chemosphere. 172, 449–458.
UNEP, Undated . Phytoremediation: An environmentally sound technology for pollution prevention, control and
remediation. An Introductory Guide to Decision-Makers. Newsletter and Technical Publications Freshwater
Management Series No. 2, United Nations Environment Programme Division of Technology, Industry, and
Economics.
United States Environmental Protection Agency (USEPA) . (2000). Introduction to phytoremediation. EPA
600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development Cincinnati, OH.
Victor-Ekwebelem, M.O. , Ijah, J.J. , Abioye, O.P. , Alkali, Y.B. , 2020. Physicochemical and microbiological
properties of soil in Ahoko: A Suspected Petroleum Bearing Site (SPBS). Sci. Res. J. (SCIRJ). VIII(V), 15–31.
Wongsasuluk, P. , Chotpantarat, S. , Siriwong, W. , Robson, M. , 2014. Heavy metal contamination and human
health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon
Ratchathani province. Thai. Environ. Geochem. Health. 36, 169–182.
Yang, W. , Yang, Y. , Ding, Z. , Yang, X. , Zhao, F. , Zhu, Z. , 2019. Uptake and accumulation of cadmium in
flooded versus non-flooded Salix genotypes: Implications for phytoremediation. Ecol. Eng. 136, 79–88.
Zaheer, I.E. , Ali, S. , Saleem, M.H. , Imran, M. , Alnusairi, G.S. , Alharbi, B.M. , Riaz, M. , Abbas, Z. , Rizwan,
M. , Soliman, M.H. , 2020. Role of iron–lysine on morpho-physiological traits and combating chromium toxicity
in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Plant Physiol.
Biochem. 155, 70–84.
Zamani, J. , Hajabbasi, M.A. , Mosaddeghi, M.R. , Soleimani, M. , Shirvani, M. , Schulin, R. , 2018.
Experimentation on degradation of petroleum in contaminated soils in the root zone of maize (Zea Mays L.)
inoculated with Piriformospora indica. Soil and Sedim. Contam. 27, 13–30.
Zhang, H. , Zheng, L.C. , Yi, X.Y. , 2009. Remediation of soil co-contaminated with pyrene and cadmium by
growing maize (Zea mays L.). Int. J. Environ. Sci. Tech. 6, 249–258.
Zhou, M. , Ghnaya, T. , Dailly, H. , Cui, G. , Vanpee, B. , Han, R. , Lutts, S. , 2019. The cytokinin trans-zeatine
riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the
absence but not in the presence of NaCl. Chemosphere. 233, 954–965.
Zhuang, P. , Ye, Z.H. , Lan, C.Y. , Xie, Z.W. , Hsu, W.S. , 2005. Chemically assisted phytoextraction of heavy
metal contaminated soils using three plant species. Plant Soil. 276, 153–162.
Zohdi, H. , Emami, M. , Shahverdi, H.R. , 2012. Galvanic corrosion behavior of dental alloys. In Environmental
and Industrial Corrosion-Practical and Theoretical Aspects. IntechOpen.
Soil Regeneration through Phytoremediation for Safe Foods
Aadil, M. , Kousar, T. , Hussain, M. , Somaily, H. H. , Abdulla, A. K. , Muhammad, E. R. , & Ansari, M. Z. (2023).
Generation of mesoporous npn (ZnO–CuO–CeO2) heterojunction for highly efficient photodegradation of micro-
organic pollutants. Ceramics International, 49(3), 4846–4854.
Abdullah, S. R. S. , Al-Baldawi, I. A. , Almansoory, A. F. , Purwanti, I. F. , Al-Sbani, N. H. , & Sharuddin, S. S. N.
(2020). Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and
opportunities. Chemosphere, 247, 125932.
Abioye, O.P. , Ijah, U.J.J. , & Aransiola, S.A. (2017). Phytoremediation of soil contaminants by biodiesel plant
Jatropha curcas. In Chapter 4 of K. Bauddh et al. (eds.), Phytoremediation Potential of Bioenergy Plants, DOI
10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd.
https://link.springer.com/book/10.1007%2F978-981-10-3084-0.
Afridi, M. S. , Ali, S. , Salam, A. , César Terra, W. , Hafeez, A. , Sumaira, A. , & Karunakaran, R. (2022). Plant
microbiome engineering: Hopes or hypes. Biology, 11(12), 1782.
Ahmad, I. , Malik, S. A. , Saeed, S. , Rehman, A. U. , & Munir, T. M. (2021). Phytoextraction of heavy metals by
various vegetable crops cultivated on different textured soils irrigated with City Wastewater. Soil Systems, 5(2),
35.
Akimbekov, N. S. , Digel, I. , Tastambek, K. T. , Sherelkhan, D. K. , Jussupova, D. B. , & Altynbay, N. P. (2021).
Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture,
11(12), 1261.
Allouzi, M. M. A. , Tang, D. Y. Y. , Chew, K. W. , Rinklebe, J. , Bolan, N. , Allouzi, S. M. A. , & Show, P. L.
(2021). Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science
of the Total Environment, 788, 147815.
Aransiola, S. A. , Ijah, U. J. J. , & Abioye, O. P. (2013). Phytoremediation of lead polluted soil by glycine max L.
Applied and Environmental Soil Science, Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. , & Bala, J. D. (2022). Vermicompost-assisted phytoremediation of
toxic trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta.
International Journal of Environmental Science and Technology. http://dx.doi.org/10.1007/s13762-022-04105-y
Ashraf, S. , Ali, Q. , Zahir, Z. A. , Ashraf, S. , & Asghar, H. N. (2019). Phytoremediation: Environmentally
sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174,
714–727.
Aziz, I. , & Mujeeb, A. (2022). Halophytes for phytoremediation of hazardous metal (loid) s: A terse review on
metal tolerance, bio-indication and hyperaccumulation. Journal of Hazardous Materials, 424, 127309.
Bhalla, G. , Bhalla, B. , Kumar, V. , & Sharma, A. (2022). Bioremediation and phytoremediation of pesticides
residues from contaminated water: A novel approach. In Pesticides Remediation Technologies from Water and
Wastewater (pp. 339–363). Elsevier.
Bhat, S. A. , Bashir, O. , Haq, S. A. U. , Amin, T. , Rafiq, A. , Ali, M. , & Sher, F. (2022). Phytoremediation of
heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303,
134788.
Burges, A. , Alkorta, I. , Epelde, L. , & Garbisu, C. (2018). From phytoremediation of soil contaminants to
phytomanagement of ecosystem services in metal contaminated sites. International Journal of
Phytoremediation, 20(4), 384–397.
Castle, S. , Rejmánková, E. , Foley, J. , & Parmenter, S. (2019). Hydrologic alterations impact plant litter decay
rate and ecosystem resilience in Mojave wetlands. Restoration Ecology, 27(5), 1094–1104.
Chen, B. , Stein, A. F. , Castell, N. , Gonzalez-Castanedo, Y. , De La Campa, A. S. , & De La Rosa, J. D.
(2016). Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-
smelter. Science of the Total Environment, 539, 17–25.
Chen, W. , Hou, X. , Mao, X. , Jiao, S. , Wei, L. , Wang, Y. , … Jiang, G. (2022). Biotic and abiotic
transformation pathways of a short-chain chlorinated paraffin congener, 1, 2, 5, 6, 9, 10-C10H16Cl6, in a rice
seedling hydroponic exposure system. Environmental Science & Technology, 56(13), 9486–9496.
Clay, L. , & Pichtel, J. (2019). Treatment of simulated oil and gas produced water via pilot-scale rhizofiltration
and constructed wetlands. International Journal of Environmental Research, 13, 185–198.
Constable, D. J. , Jiménez-González, C. , & Matlin, S. A. (2019). Navigating complexity using systems thinking
in chemistry, with implications for chemistry education. Journal of Chemical Education, 96(12), 2689–2699.
DalCorso, G. , Fasani, E. , Manara, A. , Visioli, G. , & Furini, A. (2019). Heavy metal pollutions: State of the art
and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14), 3412.
Dhanwal, P. , Kumar, A. , Dudeja, S. , Chhokar, V. , & Beniwal, V. (2017). Recent advances in
phytoremediation technology. Advances in Environmental Biotechnology, 227–241.
Enebe, M. C. , & Babalola, O. O. (2021). Soil fertilization affects the abundance and distribution of carbon and
nitrogen cycling genes in the maize rhizosphere. AMB Express, 11(1), 1–10.
Farooq, M. , Rehman, A. , & Pisante, M. (2019). Sustainable agriculture and food security. Innovations in
Sustainable Agriculture, 3–24.
Fasani, E. , Manara, A. , Martini, F. , Furini, A. , & DalCorso, G. (2018). The potential of genetic engineering of
plants for the remediation of soils contaminated with heavy metals. Plant, Cell & Environment, 41(5),
1201–1232.
Fletcher, J. , Willby, N. , Oliver, D. M. , & Quilliam, R. S. (2022). Resource recovery and freshwater ecosystem
restoration – prospecting for phytoremediation potential in wild macrophyte stands. Resources, Environment
and Sustainability, 7, 100050.
Fu, X. , Zheng, Z. , Sha, Z. , Cao, H. , Yuan, Q. , Yu, H. , & Li, Q. (2022). Biorefining waste into
nanobiotechnologies can revolutionize sustainable agriculture. Trends in Biotechnology, 40(12), 1503–1518.
doi: 10.1016/j.tibtech.2022.09.013. PMID: 36270903.
Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in
Biotechnology, 74, 21–31.
Gerhardt, K. E. , Gerwing, P. D. , & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven
technology to accepted practice. Plant Science, 256, 170–185.
Gondal, A. H. , & Tayyiba, L. (2022). Prospects of using nanotechnology in agricultural growth, environment
and industrial food products. Reviews in Agricultural Science, 10, 68–81.
Grifoni, M. , Franchi, E. , Fusini, D. , Vocciante, M. , Barbafieri, M. , Pedron, F. , & Petruzzelli, G. (2022). Soil
remediation: Towards a resilient and adaptive approach to deal with the ever-changing environmental
challenges. Environments, 9(2), 18.
Grifoni, M. , Pedron, F. , Barbafieri, M. , Rosellini, I. , Petruzzelli, G. , & Franchi, E. (2021). Sustainable
valorization of biomass: From assisted phytoremediation to green energy production. In Handbook of assisted
and amendment: Enhanced sustainable remediation technology (pp. 29–51). Wiley.
Hamzah, A. , Hapsari, R. I. , & Wisnubroto, E. I. (2016). Phytoremediation of cadmium-contaminated
agricultural land using indigenous plants. International Journal of Environmental & Agriculture Research, 2(1),
8–14.
Hasan, M. M. , Uddin, M. N. , Ara-Sharmeen, I. F. , Alharby, H. , Alzahrani, Y. , Hakeem, K. R. , & Zhang, L.
(2019). Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8(9), 295.
Hassan, N. S. , & Jalil, A. A. (2022). A review on self-modification of zirconium dioxide nanocatalysts with
enhanced visible-light-driven photodegradation of organic pollutants. Journal of Hazardous Materials, 423,
126996.
Honvault, N. , Houben, D. , Firmin, S. , Meglouli, H. , Laruelle, F. , Fontaine, J. , & Faucon, M. P. (2021).
Interactions between belowground traits and rhizosheath fungal and bacterial communities for phosphorus
acquisition. Functional Ecology, 35(7), 1603–1619.
Huang, R. , Cui, X. , Luo, X. , Mao, P. , Zhuang, P. , Li, Y. , & Li, Z. (2021). Effects of plant growth regulator and
chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial
community. Environmental Pollution, 283, 117159.
Jacob, J. M. , Karthik, C. , Saratale, R. G. , Kumar, S. S. , Prabakar, D. , Kadirvelu, K. , & Pugazhendhi, A.
(2018). Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental
Management, 217, 56–70.
Javed, M. T. , Tanwir, K. , Akram, M. S. , Shahid, M. , Niazi, N. K. , & Lindberg, S. (2019). Phytoremediation of
cadmium-polluted water/sediment by aquatic macrophytes: Role of plant-induced pH changes. In Cadmium
toxicity and tolerance in plants (pp. 495–529). Academic Press.
Kaur, K. , Badru, R. , Singh, P. P. , & Kaushal, S. (2020). Photodegradation of organic pollutants using
heterojunctions: A review. Journal of Environmental Chemical Engineering, 8(2), 103666.
Kishore, S. , Malik, S. , Shah, M. P. , Bora, J. , Chaudhary, V. , Kumar, L. , & Ranjan, A. (2022). A
comprehensive review on removal of pollutants from wastewater through microbial nanobiotechnology-based
solutions. Biotechnology and Genetic Engineering Reviews, 1–26.
Lapan, O. V. , Mikhyeyev, A. N. , & Madzhd, S. M. (2019). Development of a new method of rhizofiltration
purification of water objects of Zn (II) and Cd (II). Journal of water Chemistry and Technology, 41, 52–56.
Lebrun, M. , Michel, C. , Joulian, C. , Morabito, D. , & Bourgerie, S. (2021). Rehabilitation of mine soils by
phytostabilization: Does soil inoculation with microbial consortia stimulate Agrostis growth and metal (loid)
immobilization?. Science of the Total Environment, 791, 148400.
Lee, B. X. Y. , Hadibarata, T. , & Yuniarto, A. (2020). Phytoremediation mechanisms in air pollution control: A
review. Water, Air, & Soil Pollution, 231(8), 437.
Li, J. , Chen, Q. , Li, Q. , Zhao, C. , & Feng, Y. (2021). Influence of plants and environmental variables on the
diversity of soil microbial communities in the Yellow River Delta Wetland, China. Chemosphere, 274, 129967.
Liu, J. , Zhao, L. , Liu, Q. , Li, J. , Qiao, Z. , Sun, P. , & Yang, Y. (2021). A critical review on soil washing during
soil remediation for heavy metals and organic pollutants. International Journal of Environmental Science and
Technology, 1–24.
Liu, K. , Fang, L. , Li, F. , Hou, D. , Liu, C. , Song, Y. , & Dou, F. (2022). Sustainability assessment and carbon
budget of chemical stabilization based multi-objective remediation of Cd contaminated paddy field. Science of
the Total Environment, 819, 152022.
Masoudi, F. , Shirvani, M. , Shariatmadari, H. , & Sabzalian, M. R. (2020). Performance of new biodegradable
chelants in enhancing phytoextraction of heavy metals from a contaminated calcareous soil. Journal of
Environmental Health Science and Engineering, 18, 655–664.
Mensah, A. K. , Marschner, B. , Antoniadis, V. , Stemn, E. , Shaheen, S. M. , & Rinklebe, J. (2021). Human
health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an
abandoned mine spoil in Ghana. Science of the Total Environment, 798, 149272.
Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil
Science, 2019, 1–9.
Odelade, K. A. , & Babalola, O. O. (2019). Bacteria, fungi and archaea domains in rhizospheric soil and their
effects in enhancing agricultural productivity. International Journal of Environmental Research and Public
Health, 16(20), 3873.
Parveen, S. , Bhat, I. U. , Khanam, Z. , Rak, A. E. , Yusoff, H. M. , & Akhter, M. S. (2022). Phytoremediation: In
situ alternative for pollutant removal from contaminated natural media: A brief review. Biointerface Research in
Applied Chemistry. doi: 10.33263/BRIAC124.49454960. ISSN: 20695837.
Pichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and
Environmental Soil Science. doi: 10.1155/2016/2707989.
Qi, K. , Ye, Y. , Wei, B. , Li, M. , Lun, Y. , Xie, X. , & Xie, H. (2022). N-CQDs from reed straw enriching charge
over BiO2− x/BiOCl pn heterojunction for improved visible-light-driven photodegradation of organic pollutants.
Journal of Hazardous Materials, 432, 128759.
Radziemska, M. , Bęś, A. , Gusiatin, Z. M. , Cerdà, A. , Jeznach, J. , Mazur, Z. , & Brtnický, M. (2020). Assisted
phytostabilization of soil from a former military area with mineral amendments. Ecotoxicology and
Environmental Safety, 188, 109934.
Radziemska, M. , Gusiatin, Z. M. , Cydzik-Kwiatkowska, A. , Cerdà, A. , Pecina, V. , Bęś, A. , & Brtnický, M.
(2021). Insight into metal immobilization and microbial community structure in soil from a steel disposal dump
phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere, 272, 129576.
Rafique, N. , & Tariq, S. R. (2016). Distribution and source apportionment studies of heavy metals in soil of
cotton/wheat fields. Environmental Monitoring and Assessment, 188, 1–10.
Ravaoarinorotsihoarana, L. A. , Ratefinjanahary, I. , Aina, C. , Rakotomahazo, C. , Glass, L. , Ranivoarivelo, L. ,
& Lavitra, T. (2023). Combining traditional ecological knowledge and scientific observations to support
mangrove restoration in Madagascar. Forests, 14(7), 1368.
Redmile-Gordon, M. , Gregory, A. S. , White, R. P. , & Watts, C. W. (2020). Soil organic carbon, extracellular
polymeric substances (EPS), and soil structural stability as affected by previous and current land-use.
Geoderma, 363, 114143.
Rehman, M. Z. , Rizwan, M. , Ali, S. , Ok, Y. S. , Ishaque, W. , Nawaz, M. F. , … Waqar, M. (2017).
Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotoxicology and
Environmental Safety, 143, 236–248.
Rezania, S. , Taib, S. M. , Din, M. F. M. , Dahalan, F. A. , & Kamyab, H. (2016). Comprehensive review on
phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of
Hazardous Materials, 318, 587–599.
Shen, X. , Dai, M. , Yang, J. , Sun, L. , Tan, X. , Peng, C. , & Naz, I. (2022). A critical review on the
phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 291,
132979.
Shen, X. , Ge, M. , Handel, S. N. , Wang, W. , Jin, Z. , & Kirkwood, N. G. (2023). Advancing environmental
design with phytoremediation of brownfield soils using spontaneous invasive plants. Science of the Total
Environment, 883, 163635.
Shivaraju, H. P. , Yashas, S. R. , & Harini, R. (2020). Application of Mg-doped TiO2 coated buoyant clay
hollow-spheres for photodegradation of organic pollutants in wastewater. Materials Today: Proceedings, 27,
1369–1374.
Shrivastava, M. , Khandelwal, A. , & Srivastava, S. (2019). Heavy metal hyperaccumulator plants: The resource
to understand the extreme adaptations of plants towards heavy metals. Plant-metal Interactions, 79–97.
Skuza, L. , Szućko-Kociuba, I. , Filip, E. , & Bożek, I. (2022). Natural molecular mechanisms of plant
hyperaccumulation and hypertolerance towards heavy metals. International Journal of Molecular Sciences,
23(16), 9335.
Suman, J. , Uhlik, O. , Viktorova, J. , & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for
clean-up of polluted environment? Frontiers in Plant Science, 9, 1476.
Sun, Y. , Xiong, X. , He, M. , Xu, Z. , Hou, D. , Zhang, W. & Tsang, D. C. (2021). Roles of biochar-derived
dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical
Engineering Journal, 424, 130387.
Sytar, O. , Ghosh, S. , Malinska, H. , Zivcak, M. , & Brestic, M. (2021). Physiological and molecular
mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum, 173(1), 148–166.
Thakur, S. , Singh, L. , Wahid, Z. A. , Siddiqui, M. F. , Atnaw, S. M. , & Din, M. F. M. (2016). Plant-driven
removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future
perspectives. Environmental Monitoring and Assessment, 188, 1–11.
Valliere, J. M. , Wong, W. S. , Nevill, P. G. , Zhong, H. , & Dixon, K. W. (2020). Preparing for the worst: Utilizing
stresstolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecological Solutions
and Evidence, 1(2), e12027.
Visconti, D. , Álvarez-Robles, M. J. , Fiorentino, N. , Fagnano, M. , & Clemente, R. (2020). Use of Brassica
juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar.
Chemosphere, 260, 127661.
Xiang, L. , Harindintwali, J. D. , Wang, F. , Redmile-Gordon, M. , Chang, S. X. , Fu, Y. , … Xing, B. (2022).
Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic
pollutants. Environmental Science & Technology, 56(23), 16546–16566.
Zakari, S. , Jiang, X. , Zhu, X. , Liu, W. , Allakonon, M. G. B. , Singh, A. K. , … Yang, B. (2021). Influence of
sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: A meta-analysis.
Environmental Pollution, 288, 117820.
Zhao, X. , Joo, J. C. , Du, D. , Li, G. , & Kim, J. Y. (2023). Modelling heavy-metal phytoextraction capacities of
Helianthus annuus L. and Brassica napus L. Chemosphere, 139341.
Zhu, Q. , Ji, J. , Tang, X. , Wang, C. , & Sun, H. (2023). Bioavailability assessment of heavy metals and organic
pollutants in water and soil using DGT: A review. Applied Sciences, 13(17), 9760.
Environmental Pollution
Abdel-Mallek, A. Y. , Moharram, A. M. , Abdel-Kader, M. I. and Omar, S. A. (1994). Effect of soil treatment with
the organophosphorus insecticide Profenfos on the fungal flora and some microbial activities. Microbiol. Res.
149(2): 167–171.
Ajuzie, C. U. , Atuanya, E. I. and Enerijiofi, K. E. (2015). Biodegradation potentials of microorganisms isolated
from Eleme petrochemical industrial effluent. NISEB Journal, 15 (4): 128–136.
Alam, P. and Ahmade, K. (2013). Impact of solid waste on health and the environment. Int. J. Sustain. Dev.
Green Econ. 2: 165–168.
Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability.
Springer Science & Business Media.
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. and Victor-Ekwebelem, M. O. (2021). ANAMMOX in wastewater
treatment. In N. R. Maddela , L. C. García Cruzatty , and S. Chakraborty (eds.), Advances in the domain of
environmental biotechnology. Environmental and microbial biotechnology. Springer.
https://doi.org/10.1007/978-981-15-8999-7_15
Aruna, G. , Kavitha, B. , Subashini, N. and Indira, S. (2018). An observational study on practices of disposal of
waste Garbage in Kamakshi Nagar at Nellore. Int. J. Appl. Res. 4: 392–394.
Asante, S. K. , Tamo, M. and Jackai, L. E. N. (2001). Integrated management of cowpea insect pests using elite
cultivars, date of planting and minimum insecticide application. Afr. Crop Sci. J. 9: 655–665.
Bai, J. , et al. (2014). Multivariate geostatistical analysis and source identification of heavy metals in the urban
soils of Hangzhou, China. Environ. Pollut. 184: 492–499.
Bai, J. , Shen, H. and Dong, S. (2010). Study on eco-utilization and treatments of highway greening waste.
Proc. Environ. Sci. 2: 25–31.
Bhowmik, D. , Chetri, S. , Enerijiofi, K. E. , Naha, A. , Kanungo, T. D. , Shah, M. P. and Nath, S. (2023).
Multitudinous approaches, challenges and opportunities of bioelectrochemical systems in conversion of wastes
to energy from wastewater treatment plants. J CLCB-Elsevier. 4: 100040.
Cai, Q.-Y. , Mo, C.-H. , Wu, Q.-T. , Zeng, Q.-Y. and Katsoyiannis, A. (2007). Concentration and speciation of
heavy metals in six different sewage sludge-composts. J. Hazard. Mater. 147: 1063–1072.
Carpenter, S. R. , et al. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl.
8(3): 559–568.
Curl, E. A. (1963). Control of plant diseases by crop rotation. The Bot. Rev. 29: 413–479.
Dara, S. K. , Peck, D. and Murray, D. (2018). Chemical and non-chemical options for managing twospotted
spider mite, western tarnished plant bug and other arthropod pests in strawberries. Insects. 9: 156.
Dara, S. K. , Sandoval-Solis, S. and Peck, D. (2016). Improving strawberry irrigation with micro- sprinklers and
their impact on pest management. Agr. Sci. 7: 859–868.
Dara, S. K. (2019). The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag.
10(1): 12, 1–9.
Davis, J. L. , Armengaud, P. , Larson, T. R. , Graham, I. A. , White, P. J. , Newton, A. C. and Amtmann, A.
(2018). Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects
on two fungal pathogens with different sensitivities to jasmonic acid. Plant. Cell Environ. 41: 2357–2372.
Devi, P. I. , Manjula, M. and Bhavani, R. V. (2022). Agrochemicals, environment, and human health. Annu. Rev.
Environ. Resour. 47:399–421.
Dodia, D. A. , Patel, I. S. and Patel, G. M. (2010). Botanical pesticides for pest management. Scientific
Publishers (India).
Dong, L. Q. and Zhang, K. Q. (2006). Microbial control of plant-parasitic nematodes: A five-party interaction.
Plant Soil. 288: 31–45.
Dosdall, L. M. , Herbut, M. J. , Cowle, N. T. and Micklich, T. M. (1996). The effect of seeding date and plant
density on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola. Can. J. Plant Sci. 76:
169–177.
El-Sayed, A. M. , Suckling, D. M. , Byers, J. A. , Jang, E. B. and Wearing, C. H. (2009). Potential of “lure and
kill” in long-term pest management and eradication of invasive species. J. Econ. Entomol. 102: 815–835.
Enerijiofi, K. E. and Ajuzie, C. U. (2012). Health impact of some heavy metals resistance in microbes isolated
from Ikhueniro refuse dumpsite, Benin City. NJM. 26: 2593–2599.
Enerijiofi, K. E. and Ekhaise, F. O. (2019). Physicochemical and microbiological characterisation of Edaiken
and Santana markets open solid waste dumpsites soils in Benin City, Nigeria. FULafia J. Sci. Technol. 5(2):
136–149.
Enerijiofi, K. E. and Ekhaise, F. O. (2022). Achieving ecofriendly environment through sustainable management
of solid wastes in the ecosystem. In T. Aftab (ed.), Sustainable Management of Environmental Contaminants:
Eco-friendly Remediation Approaches. Springer, Cham, pp. 451–470. https://doi.org/10.1007/978-3-031-08446-
1_17
Enerijiofi, K. E. and Ikhajiagbe, B. (2021). Plant-microbe interaction in attenuation of toxic waste in ecosystem.
In V. Kumar , R. Prasad , and M. Kumar (eds.), Rhizobiont in Bioremediation of Hazardous Waste. Springer,
Singapore, pp. 291–315. https://doi.org/10.1007/978-981-16-0602-1_13
Enerijiofi, K. E. , Fakeye, O. D. and Oziegbe, O. S. (2018b). Physicochemical and microbial assessment of
sewage from Ogwa and Ebelle communities of Esan land, Edo state. Bayero J Pure Appl Sci. 11(1): 202–207.
http://dx.doi.org/10.4314/bajopas.v11i1.35
Enerijiofi, K. E. , Musa, S. I. , Okolafor, F. I. , Igiebor, F. I. , Odozi, E. B. and Ikhajiagbe, B. (2023). Sustainable
approaches for the remediation of agrochemicals in the environment. In M. C. Ogwu and S. C. Izah (eds.), One
Health Implications of Agrochemicals and their Sustainable Alternative. Springer Nature, Switzerland, pp.
511–543. https://doi.org/10.1007/978-981-99-3439-3_19
Enerijiofi, K. E. , Okuguni, N. N. and Ajayi, A. V. (2022). Physicochemical composition and heavy metals
tolerance of bacterial isolates in leachate from Solid waste dumpsites in Delta North Senatorial District, Delta
State. J. Environ. Earth Sci – Elsevier. 13(1): 48–52.
Enerijiofi, K. E. , Olatunji, E. O. and Irerua, P. A. (2018a). Effect of human activities on the physicochemical and
bacteriological qualities of Ujiogba river, Ujiogba, Edo State, Nigeria. Journal of Applied Life Sciences
International, 17(1): 1–8. doi: 10.9734/JALSI/2018/40435.
Erickson, M. L. , et al. (2019). Bioaccumulation of polychlorinated biphenyls (PCBs) in fish: A bioenergetics
modeling approach. Ecological Modelling. 408: 108721.
Femi-Ola, T. O. , Orjiakor, P. I. Enerijiofi, K. E. , Oke, I. O. and Fatoyinbo, A. A. (2019). Kinetic properties of
Lipase obtained from Pseudomonas aeruginosa isolated from crude oil contaminated soil. Sci. J. Marit. Univ.
Szc. 59(131): 154–161.
Foster, S. P. , and Harris, M. O. (1997). Behavioral manipulation methods for insect pest-management. Annu.
Rev. Entomol. 42: 123–146. http://66.219.30.210/weekly/science/archive/040214/science13.htm
Gamliel, A. , and Katan, J. (2012). Solarization: Theory and Practice. American Phytopathological Society, St.
Paul, MN.
Gasiński, A. , Kawa-Rygielska, J. , Mikulski, D. , Klosowski, G. and Glowacki, A. (2022). Application of white
grape pomace in the brewing technology and its impact on the concentration of esters and alcohols,
physicochemical parameteres and antioxidative properties of the beer. Food Chem. 367: 130646.
Gogo, E. O. , Saidi, M. , Ochieng, J. M. , Martin, T. , Baird, V. and Ngouajio, M. (2014). Microclimate
modification and insect pest exclusion using agronet improve pod yield and quality of French bean.
HortScience. 49: 1298–1304.
Gonawala, S. S. and Jardosh, H. (2018). Organic waste in composting: A brief review. Int. J. Curr. Eng.
Technol. 8: 36–38.
Grosell, M. , et al. (2007). Cellular and subcellular distribution of accumulated cadmium in the hepatopancreas
of the Caribbean spiny lobster, Panulirus argus. Aquatic Toxicol. 82(2): 99–110.
Hajek, A. E. and Eilenberg, J. (2018). Natural Enemies: An Introduction to Biological Control. Cambridge
University Press, Cambridge.
Hartmann, N. B. , et al. (2019). Are we speaking the same language? Recommendations for a definition and
categorization framework for plastic debris. Environ. Sci. Technol. 53(3), 1039–1047.
Heimpel, G. E. and Cock, M. J. W. (2018). Shifting paradigms in the history of classical biological control.
BioControl. 63: 27–37.
Heinz, K. M. , Parrella, M. P. and Newman, J. P. (1992). Time-efficient use of yellow sticky traps in monitoring
insect populations. J. Econ. Entomol. 85: 2263–2269.
Hladik, M. L. and Kuivila, K. M. (2012). Assessing the occurrence and distribution of pyrethroids in water and
suspended sediments. Environ. Sci. Technol. 46(2): 1118–1125.
Hodson, A. K. and Lampinen, B. D. (2018). Effects of cultivar and leaf traits on the abundance of Pacific spider
mites in almond orchards. Arthropod Plant Interact: 1–11.
Honour, S. L. , Bell, J. , Nigel, B. , Ashenden, T. A. , Cape, J. N. and Power, S. A. (2009). Responses of
herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics. Environ.
Pollut. 157(4): 1279–1286.
Huang, J. , Yu, Z. , Gao, H. , Yan, X. , Chang, J. , Wang, C. , Hu, J. and Zhang, L. (2017). Chemical structures
and characteristics of animal manures and composts during composting and assessment of maturity indices.
PLoS One. 12: e0178110.
Ifi, F. , Enerijiofi, K. E. and Ekhaise, F. O. (2019). Investigation of the physicochemical and bacteriological
qualities of Okokpon River, Edo State, Nigeria for its portability status. FUDMA J. Sci. 3(2): 185–194.
Ikhajiagbe, B. , Enerijiofi, K. E. and Umendu, P. O. (2021). Mycorestoration of an oil polluted soil. Studia UBB
Biologia. 66(1): 73–84.
James C. (2010). Global Status of Commercialized Biotech/GM crops, 2011. Vol. 44. ISAAA, Ithaca, NY.
Javed, M. and Usmani, N. (2019). Accumulation of heavy metals and human health risk assessment via the
consumption of freshwater fish, Tilapia mossambicus, from Al-Hassa, Saudi Arabia. Chemosphere. 214:
692–702.
Jenssen, B. M. , et al. (2019). Polychlorinated biphenyls and their hydroxylated metabolites in top predators
from the Barents Sea. Environ Sci Pollut Res. 26(10): 9674–9684.
Karungi, J. , Adipala, E. , Ogenga-Latigo, M. W. , Kyamanywa, S. and Oyobo, N. (2000). Pest management in
cowpea. Part 1. Influence of planting time and plant density on cowpea field pests infestation in eastern
Uganda. Crop Prot. 19: 231–236.
Katoh, M. , Kitahara, W. and Sato, T. (2014). Sorption of lead in animal manure compost: Contributions of
inorganic and organic fractions. Water Air Soil Pollut. 225: 1828.
Kenis, M. , Hurley, B. P. , Hajek, A. E. and Cock, M. J. W. (2017). Classical biological control of insect pests of
trees: Facts and figures. Biol. Invasions. 19: 3401–3417.
Khan, M. , Chniti, S. and Owaid, M. (2018). An overview on properties and internal characteristics of anaerobic
bioreactors of food waste. J. Nutr. Health Food Eng. 8: 319–322.
Khan, S. I. (2004). Dumping of solid waste: A threat to environment. The Dawn.
Khan, S. , et al. (2021). Pollution status and health risk assessment of heavy metals in soils irrigated with
wastewater in different agricultural zones of Pakistan. Environ. Pollut. 278: 116865.
Khater, E. (2015). Some physical and chemical properties of compost. Int. J. Waste Resour. 5: 1–5.
Kidd, K. A. , et al. (2018). Direct and indirect responses of a freshwater food web to a potent synthetic
oestrogen. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374(1768): 20160081.
Kimani, N. G. (2007). Environmental Pollution and Impacts on Public Health: Implications the Dandora Dumping
Site Municipal in Nairobi. United Nations Environment Programme, pp. 1–31.
http://www.korogocho.org/english/index.php?option=com_docman&task=doc_download&gid=5
Klassen, W. and Curtis, C. F. (2005). History of the sterile insect technique. In V. A. Dyck , J. Hendrichs , and
A. Robinson (eds.), Sterile Insect Technique. Springer, Dordrecht, The Netherlands, pp. 3–36.
Krauss, M. , et al. (2017). Human health risks of polycyclic aromatic hydrocarbons (PAHs) via consumption of
smoked mussel (Mytilus edulis) and whelk (Buccinum undatum) from the Western Baltic Sea. Environ. Sci.
Pollut. Res. 24(20): 17244–17257.
Kunjwal, N. and Srivastava, R. M. (2018). Insect pests of vegetables. In Omkar (ed.), Pests and Their
Management. Springer, Singapore, pp. 163–221.
Lacey, L. A. (2017). Microbial Control of Insect and Mite Pests: From Theory to Practice. Academic Press,
London.
Lankadurai, B. P. , et al. (2016). Accumulation and elimination of polycyclic aromatic hydrocarbons in aquatic
insects: Metamorphosis alters trophic magnification patterns. Environ. Sci. Technol. 50(11): 5675–5682.
Lasaridi, K.-E. , Manios, T. , Stamatiadis, S. , Chroni, C. and Kyriacou, A. (2018). The evaluation of hazards to
man and the environment during the composting of sewage sludge. Sustainability. 10: 2618.
Lasota, J. A. and Dybas, R. A. (1991). Avermectins, a novel class of compounds: Implications for use in
arthropod pest control. Annu. Rev. Entomol. 36: 91–117.
Leach, H. , Moses, J. , Hanson, E. , Fanning, P. and Isaacs, R. (2017). Rapid harvest schedules and fruit
removal as non-chemical approaches for managing spotted wing Drosophila. J. Pest Sci. 91: 219–226.
Li, J. , et al. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and
methods for microplastics detection. Water Res. 137: 362–374.
Liebman, M. and Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecol. Appl.
3: 92–122.
Luo, X. , Liu, G. , Xia, Y. , Chen, L. , Jiang, Z. , Zheng, H. and Wang, Z. J. (2017). Use of biochar-compost to
improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils
Sediments. 17: 780–789.
Mahfooz, Y. , Yasar, A. , Tanveer, R. and Tabinda, A. (2022). Challenges and Solutions for Sustainable Urban
Water Management. In T. Aftab (ed.), Sustainable Management of Environmental Contaminants: Eco-friendly
Remediation Approaches. Springer, Cham, pp. 391–423. https://doi.org/10.1007/978-3-031-08446-1_21
Mankau, R. (1981). Microbial control of nematodes. In B. Zuckerman and R. A. Rohde (eds.), Plant Parasitic
Nematodes, Vol. III. Academic Press, New York, NY, pp. 475–494.
Masiol, M. , & Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions
to ambient air pollution: A review. Atmos. Environ. 95: 409–455.
Mohler, C. L. and Johnson, S. E. (2009). Crop rotation on Organic Farms a Planning Manual. Natural
Resource, Agriculture, and Engineering Service, Ithaca, NY.
Morrison, W. R. , Lee, D.-H. , Short, B. D. , Khrimian, A. and Leskey, T. C. (2016). Establishing the behavioral
basis for an attract-and-kill strategy to manage the invasive Halyomorpha halys in apple orchards. J. Pest Sci.
89: 81–96.
Musa, S. I. and Ikhajiagbe, B. (2021). Screening of bacterial isolates for phosphate solubilizing capability in a
ferruginous ultisol in Benin city, Edo State Nigeria. Bayero J. Pure Appl Sci. 13(2): 94–106.
Nfon, E. R. , et al. (2018). Cadmium and lead in fish from the Great Lakes and evaluation of the health risks of
fish consumption. Environ. Monit. Assess. 190(8): 478.
Nielsen, A. L. , Dively, G. , Pote, J. M. , Zinati, G. and Mathews, C. (2016). Identifying a potential trap crop for a
novel insect pest, Halyomorpha halys (Hemiptera: Pentatomidae), in organic farms. Environ. Entomol. 45:
472–478.
Ogwueleka, T. C. (2009). Municipal solid waste characteristics and management in Nigeria. Iran. J. Environ.
Health Sci. Eng. 6: 173–180.
Pane, C. , Palese, A. M. , Celano, G. and Zaccardelli, M. (2014). Effects of compost tea treatments on the
productivity of lettuce and kohlrabi systems under organic cropping management. Ital. J. Agron. 9: 153–156.
Paulitz, T. C. and Bélanger, R. R. (2001). Biological control in greenhouse systems. Annu. Rev. Phytopathol.
39: 103–133.
Pose-Juan, E. , Igual, J. M. , Sánchez-Martín, M. J. and Rodríguez-Cruz, M. S. (2017). Influence of herbicide
triasulfuron on soil microbial community in an unamended soil and a soil amended with organic residues. Front.
Microbiol. 8: 378.
Pretty, J. and Bharucha, Z. P. (2015). Integrated pest management for sustainable intensification of agriculture
in Asia and Africa. Insects. 6: 152–182.
RodríguezMartín, J. A. , et al. (2019). Assessment of heavy metal pollution in agricultural soils: Insights from
traditional and multimodel geostatistics. Land Degrad. Dev. 30(2): 168–180.
Rygaard, M. , Binning, P. J. and Albrechtsen H. J. (2011). Increasing urban water self-sufficiency: New era,
new challenges. J. Environ Manage. 92(1): 185–194.
Sarfraz, M. , Dosdall, L. M. and Keddie, B. A. (2005). Spinosad: A promising tool for integrated pest
management. Outlooks on Pest Manag. 16: 78–84.
Sarkar, A. , et al. (2020). The impact of microplastics on the tropic transfer of associated contaminants in
marine organisms. Environ. Res. 182: 109114.
Shorey, H. H. , and Gerber, R. G. (1996). Use of puffers for disruption of sex pheromone communication
among navel orangeworm moths (Lepidoptera: Pyralidae) in almonds, pistachios, and walnuts. Environ.
Entomol. 25: 1154–1157.
Silveira, G. L. , Lima, M. G. , Barreto, G. R. , Palmieri, M. J. and Andrade-Vieria, L. F. (2017). Toxic effects of
environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere.
178: 359–367.
Smith, V. H. , et al. (2016). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and
terrestrial ecosystems. Environ. Pollut. 100(1–3): 179–196.
Snoeijers, S. S. , Pérez-García, A. , Joosten, M. H. A. J. and De Wit, P. J. G. M. (2000). The effect of nitrogen
on disease development and gene expression in bacterial and fungal plant pathogens. Eur. J. Plant Pathol.
106: 493–506.
Soares, M. A. , Marto, S. , Quina, M. J. , Gando-Ferreira, L. and Quinta-Ferreira, R. (2016). Evaluation of
eggshell-rich compost as biosorbent for removal of Pb (II) from aqueous solutions. Water Air Soil Pollut. 227:
150.
Suedel, B. C. , et al. (2002). Bioaccumulation of PCBs from sediments to aquatic insects and riparian spiders in
the Upper Hudson River, USA. Environ Toxicol Chem. 21(11): 2187–2197.
Sun, H. , et al. (2017). The transport of airborne persistent toxic substances (PTSs) to the Arctic and potential
effects on human health: A review. Environ. Pollut. 230: 931–941.
Toledo, M. , Siles, J. , Gutiérrez, M. and Martín, M. (2018). Monitoring of the composting process of different
agroindustrial waste: Influence of the operational variables on the odorous impact. Waste Manag. 76: 266–274.
Tsang, D. C. , Yip, A. C. , Olds, W. E. and Weber, P. A. (2014). Arsenic and copper stabilisation in
contaminated soil by coal fly ash and green waste compost. Environ. Sci. Pollut. Res.21: 10194–10204.
Van Lenteren, J. C. (1988). Biological and integrated pest control in greenhouses. Annu. Rev. Entomol. 33:
239–269.
Ventorino, V. , Pascale, A. , Fagnano, M. , Adamo, P. , Faraco, V. , Rocco, C. , Fiorentino, N. and Pepe, O.
(2019). Soil tillage and compost amendment promote bioremediation and biofertility of polluted area. J. Clean.
Prod. 239: 118087.
Vidal-Liñán, L. and Raldúa, D. (2020). Environmental chemicals and metabolic disruption in fish: Insights from
an integrative perspective. Gen. Comp. Endocrinol. 291: 113375.
Vladés, E. M. A. E. , Aldana, L. L. L. , Figueroa, B. R. , Gutiérrez, O. M. , Hernández, R. M. C. and Chavelas,
M. T. (2005). Trapping of Scyphophorus acupunctatus (Coleoptera: Curculionidae) with two natural baits in a
field of Polianthes tuberosa (Liliales: Agavaceae) in the state of Morelos, México. Fla. Entomol. 88: 338–340.
Wang, C. , et al. (2021). Bioaccumulation of heavy metals and human health risk assessment via consumption
of freshwater fish, crustacean, and mollusk in the Yangtze River. Ecotoxicol Environ Saf. 207: 111354.
Wang, X. , et al. (2018). Bioaccumulation of heavy metals in the soil-maize system and associated potential
health risks in Guilin, China. Environ. Monit. Assess. 190(7): 413.
Wania, F. , et al. (2020). Global application of the trophic magnification factor to microplastics in organisms and
implications for human risks. Environ. Sci. Technol. Lett. 7(4): 258–263.
Webb, S. E. and Linda, S. B. (1992). Evaluation of spunbonded polyethylene row covers as a method of
excluding insects and viruses affecting fallgrown squash in Florida. J. Econ. Entomol. 85: 2344–2345
Weber, J. , Tingey, D. and Anderson, C. (2021). Plant Response to Air Pollution. U.S. Environmental Protection
Agency, Washington, DC, EEPA/600/A-93/050(NTIS PB93167260).
Whitman, D. B. (2000). Genetically modified foods: Harmful or helpful? CSA Disc Guide: 1–13.
Wright, R. J. (1984). Evaluation of crop rotation for control of Colorado potato beetles (Coleoptera:
Chrysomelidae) in commercial potato fields on Long Island. J. Econ. Entomol. 77: 1254–1259.
Wright, S. L. and Kelly, F. J. (2017). Plastic and human health: A micro issue? Environ. Sci. Technol. 51(12):
6634–6647.
Wu, J. , et al. (2018). Current status and contamination assessment of soil heavy metals in urban areas of
Beijing, China. J. Geochem. Explor. 194: 193–201.
Yu, H. , Xie, B. , Khan, R. and Shen, G. (2019). The changes in carbon, nitrogen components and humic
substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 271: 228–235.
Zalom, F. G. , Bolda, M. P. , Dara, S. K. and Joseph, S. (2018). UC IPM Pest Management Guidelines:
Strawberry (Insects and Mites). University of California Statewide IPM Program, Oakland, CA, Publication
Number 3468.
Zhang, X. , Wang, H. , He, L. , Lu, K. , Sarmah, A. , Li, J. , Bolan, N. S. , Pei, J. and Huang, H. J. E. S. (2013).
Research, P. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.
Environ. Sci. Pollut. Res. 2013, 20, 8472–8483.
Ziajahromi, S. , et al. (2017). Synthetic fibers as an indicator of land-based microplastic pollution: A review of
methods. Water Research. 115: 162–173.
Mechanism of Phytoremediation and Plant Uptake of Heavy Metals
Adamczyk-Szabela, D. , and W. M. Wolf . “The impact of soil pH on heavy metals uptake and photosynthesis
efficiency in melissa officinalis, taraxacum officinalis, ocimum basilicum.” Molecules (Basel, Switzerland) 27, no.
15 (2022): 4671. https://doi.org/10.3390/molecules27154671
Ali, Hazrat , Ezzat Khan , and Muhammad Anwar Sajad . “Phytoremediation of heavy metals – concepts and
applications.” Chemosphere 91, no. 7 (May 2013): 869–881.
https://doi.org/10.1016/j.chemosphere.2013.01.075.
Angelova, V. , R. Ivanova , G. Pevicharova , K. Ivanov , R. J. Gilkes , and N. Prakongkep . “Effect of organic
amendments on heavy metals uptake by potato plants,” January 1, 2010, 84–87.
https://www.cabdirect.org/abstracts/20113337421.html.
Aransiola, S.A. , U. J. J. Ijah , and O. P. Abioye . “Phytoremediation of lead polluted soil by glycine max L.”
Applied and Environmental Soil Science (2013), Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S.A. , U. J. J. Ijah , O. P. Abioye , and J. D. Bala . “Microbial-aided phytoremediation of heavy metals
contaminated soil: A review.” European Journal of Biological Research 9, no. 2 (2019): 104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Aransiola, S. A. , U. J. J. Ijah , O. P. Abioye , and J. D. Bala . “Vermicompost-assisted phytoremediation of toxic
trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta.” International
Journal of Environmental Science and Technology (2022). http://dx.doi.org/10.1007/s13762-022-04105-y
Baker, Alan J. M. “Metal tolerance.” New Phytologist 106 (1987): 93–111.
Basta, N. T. , J. A. Ryan , and R. L. Chaney . “Trace element chemistry in residualtreated soil: Key concepts
and metal bioavailability.” Journal of Environmental Quality 34, no. 1 (2005): 49–63.
Bieby Voijant Tangahu , Siti Rozaimah Sheikh Abdullah , Hassan Basri , Mushrifah Idris , Nurina Anuar ,
Muhammad Mukhlisin . “A review on heavy metals (As, Pb, and Hg) Uptake by plants through
phytoremediation.” International Journal of Chemical Engineering (2011), Article ID 939161, 31 pages, 2011.
https://doi.org/10.1155/2011/939161
Böddi, B. , A. R. Oravecz , and E. Lehoczki . “Effect of cadmium on organization and photoreduction of
protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat.” Photosynthetica
(Czech Republic) (1995): 67–72.
Bolan, N. S. , D. C. Adriano , R. Natesan , and B.J. Koo . “Effects of organic amendments on the reduction and
phytoavailability of chromate in mineral soil.” Journal of Environmental Quality 32, no. 1 (January 2003):
120–128. https://doi.org/10.2134/jeq2003.1200.
Bolan, N. S. , Jin Hee Park , Brett Robinson , Ravi Naidu , and Keun Young Huh . “Phytostabilization.”
Advances in Agronomy (2011): 145–204. https://doi.org/10.1016/b978-0-12-385538-1.00004-4.
Cargnelutti, Denise , Luciane Almeri Tabaldi , Rosélia Maria Spanevello , Gladis de Oliveira Jucoski , Vanessa
Battisti , Marciel Redin , Carlos Eduardo Blanco Linares et al. “Mercury toxicity induces oxidative stress in
growing cucumber seedlings.” Chemosphere 65, no. 6 (2006): 999–1006.
Carrier, Patrick , Aurore Baryla , and Michel Havaux . “Cadmium distribution and microlocalization in oilseed
rape (Brassica napus) after long-term growth on cadmium-contaminated soil.” Planta 216 (2003): 345–939.
Chatterjee, J. , and C. Chatterjee . “Phytotoxicity of cobalt, chromium and copper in cauliflower.” Environmental
Pollution 109, no. 1 (2000): 69–74.
Clemens, Stephan , Michael G. Palmgren , and Ute Krämer . “A long way ahead: Understanding and
engineering plant metal accumulation.” Trends in Plant Science 7, no. 7 (2002): 309–315.
Cunningham, Scott D. , and David W. Ow . “Promises and prospects of phytoremediation.” Plant Physiology
110, no. 3 (1996): 715.
DalCorso, Giovanni , Silvia Farinati , and Antonella Furini . “Regulatory networks of cadmium stress in plants.”
Plant Signaling & Behavior 5, no. 6 (2010): 663–667.
DalCorso, Giovanni , Silvia Farinati , Silvia Maistri , and Antonella Furini . “How plants cope with cadmium:
Staking all on metabolism and gene expression.” Journal of Integrative Plant Biology 50, no. 10 (2008):
1268–1280.
De Borne , François Dorlhac , Taline Elmayan , Christian De Roton , Louis De Hys , and Mark Tepfer . “No
Title.” Molecular Breeding 4, no. 2 (January 1, 1998): 83–90. https://doi.org/10.1023/a:1009669412489.
De Vries, Jacobus J. , and Ian Simmers . “Groundwater recharge: An overview of processes and challenges.”
Hydrogeology Journal 10 (2002): 5–17.
Dec, Jerzy , and JeanMarc Bollag . “Use of plant material for the decontamination of water polluted with
phenols.” Biotechnology and Bioengineering 44, no. 9 (1994): 1132–1139.
Deikman , and Jill . “Molecular mechanisms of ethylene regulation of gene transcription.” Physiologia Plantarum
100, no. 3 (1997): 561–566.
Demirevska-Kepova, K. , Lyudmila Simova-Stoilova , Z. Stoyanova , Regina Hölzer , and Urs Feller .
“Biochemical changes in barley plants after excessive supply of copper and manganese.” Environmental and
Experimental Botany 52, no. 3 (2004): 253–266.
Duquène, L. , H. Vandenhove , F. Tack , E. Meers , J. Baeten , and J. Wannijn . “Enhanced phytoextraction of
uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.”
Science of the Total Environment 407, no. 5 (February 2009): 1496–1505.
https://doi.org/10.1016/j.scitotenv.2008.10.049.
Eapen, Susan , and S. F. Dsouza . “Prospects of genetic engineering of plants for phytoremediation of toxic
metals.” Biotechnology Advances 23, no. 2 (2005): 97–114.
Ebbs, Stephen D. , and Leon V. Kochian . “Toxicity of zinc and copper to Brassica species: Implications for
phytoremediation.” Journal of Environmental Quality 26, no. 3 (May 1997): 776–781.
https://doi.org/10.2134/jeq1997.00472425002600030026x.
Ernst, W. H. O. “Bioavailability of heavy metals and decontamination of soils by plants.” Applied Geochemistry
11, no. 1–2 (1996): 163–167.
Ernst, Wilfried H. O. “Evolution of metal tolerance in higher plants.” Forest Snow and Landscape Research 80,
no. 3 (2006): 251–274.
Ernst, Wilfried H. O. , GerdJoachim Krauss , Jos AC Verkleij , and Dirk Wesenberg . “Interaction of heavy
metals with the sulphur metabolism in angiosperms from an ecological point of view.” Plant, Cell & Environment
31, no. 1 (2008): 123–143.
Farias, Júlia G. , Fabiane L. G. Antes , Pedro A. A. Nunes , Sibila T. Nunes , Gabriel Schaich , Liana V.
Rossato , and Alcione Miotto et al. “Effects of excess copper in vineyard soils on the mineral nutrition of potato
genotypes.” Food and Energy Security 2, no. 1 (2013): 49–69.
Feng, Paul C.C , Thomas G Ruff , Shaukat H Rangwala , and Sudabathula R Rao . “Engineering Plant
Resistance to Thiazopyr Herbicide via Expression of a Novel Esterase Deactivation Enzyme.” Pesticide
Biochemistry and Physiology 59, no. 2 (October 1, 1997): 89–103. https://doi.org/10.1006/pest.1997.2312.
Fodor, F. “Physiological responses of vascular plants to heavy metals.” Physiology and Biochemistry of Metal
Toxicity and Tolerance in Plants (2002): 51–67, 149–177.
Fontes, R. L. F. , and F. R. Cox . “Zinc toxicity in soybean grown at high iron concentration in nutrient solution.”
Journal of Plant Nutrition 21, no. 8 (1998): 1723–1730.
Foy, C. D. , R.L.T. Chaney , and M. C. White . “The physiology of metal toxicity in plants.” Annual Review of
Plant Physiology 29, no. 1 (1978): 511–566.
Fusconi, Anna , Ombretta Repetto , Elisa Bona , Nadia Massa , Cristina Gallo , Eliane Dumas-Gaudot , and
Graziella Berta . “Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv.
Frisson seedlings.” Environmental and Experimental Botany 58, no. 1–3 (2006): 253–260.
Gamalero, Elisa , Guido Lingua , Graziella Berta , and Bernard R. Glick . “Beneficial role of plant growth
promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress.” Canadian
Journal of Microbiology 55, no. 5 (2009): 501–514.
Ghosh, Dipita , and Subodh Kumar Maiti . “Biochar assisted phytoremediation and biomass disposal in heavy
metal contaminated mine soils: A review.” International Journal of Phytoremediation (November 11, 2020):
1–18. https://doi.org/10.1080/15226514.2020.1840510.
Ghosh, Mridul , and S. P. Singh . “A review on phytoremediation of heavy metals and utilization of it’s by
products.” Asia Pacific Journal of Energy and Environment 6, no. 4 (2005): 18.
Giller, K. E. , E. Witter , and S. P. Mcgrath . “Toxicity of heavy metals to microorganisms and microbial
processes in agricultural soils: A review.” Soil Biology and Biochemistry 30, no. 10–11 (1998): 1389–1414.
https://doi.org/10.1016/S0038–0717(97)00270–8
Glass, David J. “Current market trends in phytoremediation.” International Journal of Phytoremediation 1, no. 1
(1999): 1–8.
Goyal, D. , et al. “Effect of heavy metals on plant growth: An overview.” In: M. Naeem , A. Ansari , and S. Gill
(eds.), Contaminants in Agriculture. Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-41552-5_4
Gratão, Priscila Lupino , Carolina Cristina Monteiro , Tiago Tezotto , Rogério Falleiros Carvalho , Letícia
Rodrigues Alves , Leila Priscila Peters , and Ricardo Antunes Azevedo . “Cadmium stress antioxidant
responses and root-to-shoot communication in grafted tomato plants.” Biometals 28, no. 5 (2015): 803–816.
Greipsson, S. “Phytoremediation. Nat. Educ.” Google Scholar (2011): 64–72.
Guo, Qian , Sabahat Majeed , Rong Xu , Kai Zhang , Apurva Kakade , Aman Khan , Fauzia Yusuf Hafeez ,
Chunlan Mao , Pu Liu , and Xiangkai Li . “Heavy metals interact with the microbial community and affect biogas
production in anaerobic digestion: A review.” Journal of Environmental Management 240 (2019): 266–272.
Hall, J. áL . “Cellular mechanisms for heavy metal detoxification and tolerance.” Journal of Experimental Botany
53, no. 366 (2002): 1–11.
Hamelink, Jerry , Harold Bergman , and Peter F. Landrum . Bioavailability: Physical, Chemical, and Biological
Interactions, CRC Press, 1994. http://ci.nii.ac.jp/ncid/BA23248199.
Holmberg, Niklas , and Leif Bülow . “Improving stress tolerance in plants by gene transfer.” Trends in Plant
Science 3, no. 2 (1998): 61–66.
Hossain, Mohammad Anwar , Mirza Hasanuzzaman , and Masayuki Fujita . “Up-regulation of antioxidant and
glyoxalase systems by exogenous glycine betaine and proline in mung bean confer tolerance to cadmium
stress.” Physiology and Molecular Biology of Plants 16 (2010): 259–272.
Israr, M. , S. V. Sahi , and J. Jain . “Cadmium accumulation and antioxidative responses in the Sesbania
drummondii callus.” Archives of environmental contamination and toxicology 50 (2006): 121–127.
Jabeen, Ruqaya , Altaf Ahmad , and Muhammad Iqbal . “Phytoremediation of heavy metals: Physiological and
molecular mechanisms.” The Botanical Review 75 (2009): 339–364.
Janicka-Russak, Małgorzata , Katarzyna Kabała , Marek Burzyński , and Grażyna Kłobus . “Response of
plasma membrane H+-ATPase to heavy metal stress in Cucumis sativu s roots.” Journal of Experimental
Botany 59, no. 13 (2008): 3721–3728.
Jeng, A. S. , and B. R. Singh . “Cadmium status of soils and plants from a long-term fertility experiment in
southeast Norway.” Plant and Soil 175 (1995): 67–74.
Jung, M. C. “Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a
Korean Cu-W Mine.” Sensors (Basel, Switzerland) 8, no. 4 (2008): 2413–2423.
https://doi.org/10.3390/s8042413
Kabata-Pendias, A. Trace Elements in Soils and Plants (3rd ed.). CRC Press, 2000.
https://doi.org/10.1201/9781420039900
Kang, Zhiming , Maojian Gong , Yinshi Li , Weizhen Chen , Yanan Yang , Junhao Qin , and Huashou Li . “Low
Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting
phytoremediation of Cd-contaminated soil.” Science of the Total Environment 800 (2021): 149600.
Kavamura, Vanessa Nessner , and Elisa Esposito . “Biotechnological strategies applied to the decontamination
of soils polluted with heavy metals.” Biotechnology Advances 28, no. 1 (2010): 61–69.
Khan, S. , Q. Cao , Y. M. Zheng , Y. Z. Huang , and Y. G. Zhu . “Health risks of heavy metals in contaminated
soils and food crops irrigated with wastewater in Beijing, China.” Environmental pollution 152, no. 3 (2008):
686–692.
Larney, Francis J. , and Denis A. Angers . “The role of organic amendments in soil reclamation: A review.”
Canadian Journal of Soil Science 92, no. 1 (2012): 19–38.
Lebrun, Manhattan , Romain Nandillon , Florie Miard , Sylvain Bourgerie , and Domenico Morabito . “Biochar
assisted phytoremediation for metal(loid) contaminated soils.” Assisted Phytoremediation (2022): 101–130.
https://doi.org/10.1016/b978-0-12-822893-7.00010-0.
Leitenmaier, B. , and H. Küpper . “Compartmentation and complexation of metals in hyperaccumulator plants.”
Frontiers in Plant Science 4 (2013): 374. https://doi.org/10.3389/fpls.2013.00374
Liu, Zhongchuang , Boning Chen , Li-ao Wang , Oksana Urbanovich , Liubov Nagorskaya , Xiang Li , and Li
Tang . “A review on phytoremediation of mercury contaminated soils.” Journal of Hazardous Materials 400
(2020): 123138.
Lone, M. I. , Z. L. He , P. J. Stoffella , and X. E. Yang . “Phytoremediation of heavy metal polluted soils and
water: Progresses and perspectives.” Journal of Zhejiang University. Science. B 9, no. 3 (2008): 210–220.
https://doi.org/10.1631/jzus.B0710633
Lu, Anxiang , Jihua Wang , Xiangyang Qin , Kaiyi Wang , Ping Han , and Shuzhen Zhang . “Multivariate and
geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi,
Beijing, China.” Science of the Total Environment 425 (2012): 66–74.
Ma, L. , K. Komar , C. Tu et al. “A fern that hyperaccumulates arsenic.” Nature 409, no. 579 (2001).
https://doi.org/10.1038/35054664
Ma, Y. , R. S. Oliveira , H. Freitas , and C. Zhang . “Biochemical and molecular mechanisms of plant-microbe-
metal interactions: Relevance for phytoremediation.” Frontiers in Plant Science 7 (2016): 918. doi:
10.3389/fpls.2016.00918
Maksymiec, W. “Effect of copper on cellular processes in higher plants.” Google Scholar (1998): 341–342.
McCutcheon, Steven C. , N. Lee Wolfe , L. Carreria , and T. Ou . “Phytoremediation of hazardous wastes.” In
Innovative Technologies for Site Remediation and Hazardous Waste Management: Proceedings of the National
Conference. American Society of Civil Engineers, New York, 1995, 597–604.
Meharg, A. A. “Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal
concentrations in the environment.” Plant, Cell & Environment 17, no. 9 (1994): 989–993.
Memon, Abdul R. , and Peter Schröder . “Implications of metal accumulation mechanisms to phytoremediation.”
Environmental Science and Pollution Research 16 (2009): 162–175.
Merkel, N. , R. Schultze-Kraft , and C. Infante . “Phytoremediation in the tropics–influence of heavy crude oil on
root morphological characteristics of graminoids.” Environmental Pollution 138, no. 1 (2005): 86–91
https://doi.org/10.1016/j.envpol.2005.02.023
Mildvan, Albert S. 9 Metals in Enzyme Catalsis. Academic Press, Chicago, 1970.
Mirzaei, Rouhollah , and Mohamad Sakizadeh . “Comparison of interpolation methods for the estimation of
groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran.” Environmental Science and
Pollution Research 23, no. 3 (October 7, 2015): 2758–2769. https://doi.org/10.1007/s11356-015-5507-2.
Misra, S. , and L. Gedamu . “Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L.
plants.” Theoretical and Applied Genetics 78 (1989): 161–168.
Mohanpuria, Prashant , Nisha K. Rana , and Sudesh Kumar Yadav . “Cadmium induced oxidative stress
influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze.” Environmental Toxicology: An
International Journal 22, no. 4 (2007): 368–374.
Moreno, Fabio N. , Chris W.N. Anderson , Robert B. Stewart , and Brett H. Robinson . “Mercury volatilisation
and phytoextraction from base-metal mine tailings.” Environmental Pollution 136, no. 2 (July 2005): 341–352.
https://doi.org/10.1016/j.envpol.2004.11.020.
Muthusaravanan, S. , N. Sivarajasekar , J. S. Vivek et al. “Phytoremediation of heavy metals: Mechanisms,
methods, and enhancements.” Environmental Chemistry Letters 16 (2018): 1339–1359.
https://doi.org/10.1007/s10311-018-0762-3
Nguyen, Thien Q. , Verena Sesin , Anna Kisiala , and R. J. Neil Emery. “Phytohormonal roles in plant
responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic
ecosystems.” Environmental Toxicology and Chemistry 40 (2021): 7–21.
Pandey, Nalini , and Chandra Prakash Sharma . “Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and
metabolism of cabbage.” Plant Science 163, no. 4 (2002): 753–758.
Prakash, Priyanka . “Nano-phytoremediation of heavy metals from soil: A critical review.” Pollutants 3, no. 3
(2023): 360–380.
Prasad, M.N.V. , Kenneth S. Sajwan , and Ravi Naidu . Trace Elements in the Environment. CRC Press, 2005.
http://books.google.ie/books?id=TRzNBQAAQBAJ&printsec=frontcover&dq=9780429141560&hl=&cd=1&sourc
e=gbs_api.
Prasad, M. N. V. , and H. M. De Oliveira Freitas . “Metal hyperaccumulation in plants – biodiversity prospecting
for phytoremediation technology.” Electronic Journal of Biotechnology 6, no. 3 (2003): 110–146. ISSN:
0717–3458.
Radis Steinmetz , Ricardo Luis , Airton Kunz , Valderi Luiz Dressler , Ericomarlonde Moraes Flores , and Ayrton
Figueiredo Martins . “Study of metal distribution in raw and screened swine manure.” CLEAN–Soil, Air, Water
37, no. 3 (2009): 239–244.
Raskin, Ilya , Robert D. Smith , and David E. Salt . “Phytoremediation of metals: Using plants to remove
pollutants from the environment.” Current Opinion in Biotechnology 8, no. 2 (1997): 221–226.
Rodriguez, L. , F. J. Lopez-Bellido , A. Carnicer , F. Recreo , A. Tallos , and J. M. Monteagudo . “Mercury
recovery from soils by phytoremediation.” In: E. Lichtfouse , J. Schwarzbauer , and D. Robert (eds.),
Environmental Chemistry. Springer, Berlin, Heidelberg, 2005. https://doi.org/10.1007/3-540-26531-7_18
Ruiz, Oscar N , and Henry Daniell . “Genetic engineering to enhance mercury phytoremediation.” Current
Opinion in Biotechnology 20, no. 2 (April 2009): 213–219. https://doi.org/10.1016/j.copbio.2009.02.010.
Saito, Akihiro , Misa Saito , Yusuke Ichikawa , Masaaki Yoshiba , Toshiaki Tadano , Eitaro Miwa , and Kyoko
Higuchi . “Difference in the distribution and speciation of cellular nickel between nickeltolerant and nontolerant
Nicotiana tabacum L. cv. BY2 cells.” Plant, Cell & Environment 33, no. 2 (2010): 174–187.
Salt, David E. , Michael Blaylock , Nanda P. B. A. Kumar , Viatcheslav Dushenkov , Burt D. Ensley , Ilan Chet ,
and Ilya Raskin . “Phytoremediation: A novel strategy for the removal of toxic metals from the environment
using plants.” Bio/technology 13, no. 5 (1995): 468–474.
Salt, David E. , R. D. Smith , and Ilya Raskin . “Phytoremediation.” Annual Review of Plant Biology 49, no. 1
(1998): 643–668.
Sandalio, L. M. , H. C. Dalurzo , M. Gomez , M. C. RomeroPuertas , and L. A. Del Rio . “Cadmiuminduced
changes in the growth and oxidative metabolism of pea plants.” Journal of Experimental Botany 52, no. 364
(2001): 2115–2126.
Sarwar, Nadeem , Muhammad Imran , Muhammad Rashid Shaheen , Wajid Ishaque , Muhammad Asif Kamran
, Amar Matloob , Abdur Rehim , and Saddam Hussain . “Phytoremediation strategies for soils contaminated
with heavy metals: Modifications and future perspectives.” Chemosphere 171 (March 2017): 710–721.
https://doi.org/10.1016/j.chemosphere.2016.12.116.
Sarwar, Nadeem , Saifullah, Sukhdev S Malhi , Munir Hussain Zia , Asif Naeem , Sadia Bibi , and Ghulam Farid
. “Role of mineral nutrition in minimizing cadmium accumulation by plants.” Journal of the Science of Food and
Agriculture 90, no. 6 (March 3, 2010): 925–937. https://doi.org/10.1002/jsfa.3916.
Scharenbroch, Bryant C. , Elsa N. Meza , Michelle Catania , and Kelby Fite . “Biochar and biosolids increase
tree growth and improve soil quality for urban landscapes.” Journal of Environmental Quality 42, no. 5 (2013):
1372–1385.
Scoccianti, Valeria , Marta Iacobucci , Maria Filomena Paoletti , Alessandra Fraternale , and Anna Speranza .
“Species-dependent chromium accumulation, lipid peroxidation, and glutathione levels in germinating kiwifruit
pollen under Cr(III) and Cr(VI) stress.” Chemosphere 73, no. 7 (October, 2008): 1042–1048.
https://doi.org/10.1016/j.chemosphere.2008.07.083.
Serrano, María F. , Julián E. López , Nancy Henao , and Juan F. Saldarriaga . “Phosphorus-loaded biochar-
assisted phytoremediation to immobilize cadmium, chromium, and lead in soils.” ACS Omega (January 9,
2024). https://doi.org/10.1021/acsomega.3c07433.
Shah, Vijendra , and Achlesh Daverey . “Phytoremediation: A multidisciplinary approach to clean up heavy
metal contaminated soil.” Environmental Technology & Innovation 18 (May 2020): 100774.
https://doi.org/10.1016/j.eti.2020.100774.
Sharma, Pallavi , and R. S. Dubey . “Involvement of oxidative stress and role of the antioxidative defense
system in growing rice seedlings exposed to toxic concentrations of aluminum.” Plant Cell Reports 26 (2007):
2027–2028.
Sharma, Pallavi , and Rama Shanker Dubey . “Lead toxicity in plants.” Brazilian Journal of Plant Physiology 17
(2005): 35–52.
Sharma, Shanti S. , and Karl-Josef Dietz . “The significance of amino acids and amino acid-derived molecules
in plant responses and adaptation to heavy metal stress.” Journal of Experimental Botany 57, no. 4 (2006):
711–726.
Shikha, Deep , and Prasoon Kumar Singh . “In situ phytoremediation of heavy metal–contaminated soil and
groundwater: A green inventive approach.” Environmental Science and Pollution Research 28 (2021):
4104–4124.
Singh, N. P. , and Anita Rani Santal . “Phytoremediation of heavy metals: The use of green approaches to
clean the environment.” Phytoremediation: Management of Environmental Contaminants, Volume 2 (2015):
115–129.
Singh, Nandita , Lena Q. Ma , Joseph C. Vu , and Anshita Raj . “Effects of arsenic on nitrate metabolism in
arsenic hyperaccumulating and non-hyperaccumulating ferns.” Environmental Pollution 157, no. 8–9 (2009):
2300–2305.
Siyar, Raheleh , Faramarz Doulati Ardejani , Mohsen Farahbakhsh , Parviz Norouzi , Mohammad Yavarzadeh ,
and Soroush Maghsoudy . “Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil,
assisted by electrokinetic.” Chemosphere 246 (2020): 125802.
Skórzyńska-Polit, Ewa , Bożena Pawlikowska-Pawlęga , Ewa Szczuka , Maria Drążkiewicz , and Zbigniew
Krupa . “The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper
stresses.” Plant Growth Regulation 48 (2006): 29–39.
Souza, Mark P. De, C. Mel Lytle , Maria M. Mulholland , Marinus L. Otte , and Norman Terry . “Selenium
assimilation and volatilization from dimethylselenoniopropionate by Indian Mustard.” Plant Physiology 122, no.
4 (April 1, 2000): 1281–1288. https://doi.org/10.1104/pp.122.4.1281.
Susarla, Sridhar , Victor F. Medina , and Steven C. McCutcheon . “Phytoremediation: An ecological solution to
organic chemical contamination.” Ecological Engineering 18, no. 5 (2002): 647–658.
Tan, Yew-Foon Nicholas O'Toole , Nicolas L. Taylor , and A. Harvey Millar . “Divalent metal ions in plant
mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory
function.” Plant Physiology 152, no. 2 (2010): 747–761.
Torri, Silvana I. , Rodrigo Studart Corrêa , and Giancarlo Renella . “Soil carbon sequestration resulting from
biosolids application.” Applied and Environmental Soil Science 2014 (2014): 1–9.
Tsao, David T. “Overview of phytotechnologies.” Phytoremediation (2003): 1–50.
Tytła, Malwina , Kamila Widziewicz , and Ewa Zielewicz . “Heavy metals and its chemical speciation in sewage
sludge at different stages of processing.” Environmental Technology 37, no. 7 (2016): 899–908.
Verkleji, J. A. S. The Effects of Heavy Metals Stress on Higher Plants and Their Use as Biomonitors. VCH, New
York, 1993, 415–424.
Villiers, Florent , Céline Ducruix , Véronique Hugouvieux , Nolwenn Jarno , Eric Ezan , Jérôme Garin ,
Christophe Junot , and Jacques Bourguignon . “Investigating the plant response to cadmium exposure by
proteomic and metabolomic approaches.” Proteomics 11, no. 9 (2011): 1650–1663.
Warne, Michael St John , Diane Heemsbergen , Darryl Stevens , Mike McLaughlin , Gillian Cozens , Mark
Whatmuff , Kris Broos et al. “Modeling the toxicity of copper and zinc salts to wheat in 14 soils.” Environmental
Toxicology and Chemistry: An International Journal 27, no. 4 (2008): 786–792.
Wintz, H. , T. Fox , and C. Vulpe . “Responses of plants to iron, zinc and copper deficiencies.” Biochemical
Society Transactions 30, no. 4 (2002): 766–768.
Wojcik, Małgorzata , and Anna Tukiendorf . “Phytochelatin synthesis and cadmium localization in wild type of
Arabidopsis thaliana.” Plant Growth Regulation 44, no. 1 (2004): 71–80.
Yang, Xiaoe , Ying Feng , Zhenli He , and Peter J. Stoffella . “Molecular mechanisms of heavy metal
hyperaccumulation and phytoremediation.” Journal of Trace Elements in Medicine and Biology 18, no. 4 (2005):
339–353.
Zhao, Le , Yong-Le Sun , Su-Xia Cui , Mei Chen , Hao-Meng Yang , Hui-Min Liu , Tuan-Yao Chai , and Fang
Huang . “Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana.”
Chemosphere 85, no. 1 (2011): 56–66.
Zhen, Yan , JinLiang Qi , SiSi Wang , Jing Su , GuoHua Xu , MingSheng Zhang, L. V. Miao, XinXiang Peng ,
Dacheng Tian , and YongHua Yang . “Comparative proteome analysis of differentially expressed proteins
induced by Al toxicity in soybean.” Physiologia Plantarum 131, no. 4 (2007): 542–554.
Danger of Contaminants in Foods through Phytoremediation
Abioye, O.P. , Ijah, U. J. J. & Aransiola, S. A. (2017). Phytoremediation of soil contaminants by biodiesel plant
Jatropha curcas. In Chapter 4 of K. Bauddh et al. (Eds.), Phytoremediation Potential of Bioenergy Plants, DOI
10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd.
https://link.springer.com/book/10.1007%2F978-981-10-3084-0.
Agency for Toxic Substances and Disease Registry (ATSDR) . (2004). Toxicological Profile for Copper.
Department of Health and Human Services, Public Health Service, Atlanta, GA.
Alkorta, I. , Hernandez-Allica, J. , Becerril, J. M. , Amezaga, I. , Albizu, I. , Onaindia, M. & Garbisu, C. (2004).
Recent findings in phytoremediation of soils contaminated with environmentally toxic heavy metals and
metalloids such as Zinc, Cadmium, Lead and Arsenic. Reviews in Environmental Science and Biotechnology,
3(1), 71–90.
Alloway, B , J. (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability.
Springer.
Anderson, U. , Hedberg, Y. , Liden, C. & Meding, B. (2017). Contact allergy to nickel. An epidemiological and
clinical study from the Swedish Contact Dermatitis Research Group. Acta Dermato-Venereologica, 97(5),
585–591.
Aransiola, S. A. , Ijah, U.J.J. & Abioye, O.P. (2013). Phytoremediation of Lead Polluted Soil by Glycine max L.
Applied and Environmental Soil Science, 2013, Article ID 631619, doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. & Bala, J. D. (2022). Vermicompost-assisted phytoremediation of
toxic trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta.
International Journal of Environmental Science and Technology. http://dx.doi.org/10.1007/s13762-022-04105-y
Babaniyi, B. R. , Ogundele, O. D. , Bisiomotosho, A. , Babaniyi, E. E. & Aransiola, S. A. (2023). Remediation
approaches in environmental sustainability. In Naga Raju Maddela , Lizziane Kretli Winkelstroter Eller , & Ram
Prasad (Eds.), Microbiology for Cleaner Production and Environmental Sustainability. CRC Press. ISBN:
9781032496061. https://www.routledge.com/Microbiology-for-Cleaner-Production-and-Environmental-
Sustainability/Maddela-Eller-Prasad/p/book/9781032496061
Baker, A. J. & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – A
review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.
Bakshi, M. & Sharma, S. (2014). Phytoremediation: A novel approach for utilization of iron and steel slag.
International Journal of Phytoremediation, 16(9), 940–951.
Banfalvi, G. & Schlegel, K. (2007). Estimation of the toxic potential of hexavalent chromium after oral
administration. Archives of Environmental Contamination and Toxicology, 53(3), 383–388.
Barriuso, E. & Houot, S. (1996). Influence of soil pH on adsorption of pesticides phenoxyacetic acid, 2, 4-
Dichlorophenoxyacetic acid, and 4-Chloro-2-Methylphenoxyacetic acid by clays and organo mineral complexes.
Environmental Science & Technology, 30(5), 1630–1638.
Bolan, N. S. , Adriano, D. C. , Mahimairaja, S. & Naidu, R , (2003). Role of phosphorus in immobilization and
bioavailability of heavy metals in the soil-plant system. Reviews of Environmental Contamination and
Toxicology, 177, 1–44.
Breuer, K. , Gobel, U. , Martin, D. & Gerding, H. (2015). Safety aspects of bismuth in medical use.
Schweizerische Rundschau for Medizin Praxis = Rvue Suisse de Medicine Praxis, 104(5), 247–253.
Brewer, G. J. (2019). Copper excess, Zinc deficiency, and cognition loss in Alzheimer’s disease. Biofactors,
45(5), 856–871.
Carocci, A. , Rovito, N. , Sinicropi, M. S. & Genchi, G. (2014). Mercury toxicity and neurodegenerative effects.
Reviews of Environmental Contamination and Toxicology, 229, 1–18.
Clarkson, T. W. & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in
Toxicology, 36(8), 609–662.
Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.
Biochimie, 88(11), 1707–1719.
Costa, M. (2003). Toxicity and carcinogenicity of Cr (IV) in animal models and humans. Critical Reviews in
Toxicology, 33(2), 137–197.
Costa, M , & Klein, C. B. (2006). Toxicity and carcinogenicity of chromium compounds in humans. Critical
Reviews in Toxicology, 36(2), 155–163.
Cundy, A. B. , Bardos, R. P. , Puscheneiter, M. , Mench, M. , Bert, V. , Friesl-Hanl, W. , … Muller, I. (2008).
Brownfields to green fields: Realising wider benefits from practical contaminant phytomanagement strategies.
Journal of Environmental Management, 87(1), 120–143.
De-Bellis, E. & Coomba, P. (2014). Children’s health and heavy metals in contaminated areas: A review of
impacts, methods of detection and prevention. Environmental Chemistry Letters, 12(4), 477–492.
Deng, L. , Zhang, W. & Zheng, J. (2017). A review on heavy metal phytoremediation from contaminated soil. In
Soil Heavy Metals (pp. 327–357). Springer.
Donaldson, K. , Stone, V. & Clouter, A. (2001). Renal and systemic effects of lung inflammation in rats.
Environmental Health Perspectives, 109(Suppl 4), 683–686.
Dushenkov, V. , Mikheev, A. , Prokhneysky, A. , Ruchko, M. , Sorochinsky, B. & Sorochinsky, S. (1997).
Phytoremediation of radiocesium-contaminated soil in the Chernobyl exclusion zone: From pilot research to the
first experience of practical. Application Environmental Science & Technology, 31(1), 165–173.
Eljarrat, E. & Barcelo, D. (2003). Priority lists of hazardous substances in the marine environment: Polycyclic
aromatic hydrocarbons and polychlorinated biphenyls. Environment International, 29(7), 771–783.
Elsaid, M. F. , Chelko, S. P. , Kilie, A. , Hickey, K. T. , Montgomery, K. , Lee, E. S. , … Carnes, C. A. (2018).
Effects of copper exposure on cardiac electrophysiology and arrhythmia. Nature Communication, 9(1), 4686.
EPA (U.S. Environmental Protection Agency) (2000). Phytoremediation Technical/Regulatory Guidance
Document. EPA 600/R-99/107.
EPA (U.S. Environmental Protection Agency) (2013). Phytotechnologies: Regulatory Status, Implementation
and Research Needs. EPA 542-R-13–017.
Epelde, L. , Becerril, J. M. , Barrutia, O. & Garbisu, C. (2009). Interaction between plant and rhizosphere
microbial communities in phytoremediation of hydrocarbons: A review. European Journal of Soil Biology,
45(5–6), 327–344.
EPRI (Electric Power Research Institute) (2001). Guidelines for Phytoremediation. EPRI TR-113623.
Garbisu, C. & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of
metals from the environment. Bioresource Technology, 77(3), 229–236.
Ghosh, S. & Bist, S. S. (2012). Bismuth subsalicylate: A comprehensive review. Journal of Pharmacy and Bio
allied Sciences, 4(4), 266–270.
Glick, B. R. , Todorovic, B. , Czarny, J. , Cheng, Z. , Duan, J. & McConkey, B. (2010). Promotion of plant
growth by bacterial ACC deaminase. Critical Reviews in Plant Science, 29(6), 360–393.
Grandjean, P. & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. The Lancet,
368(9553), 2167–2178.
Grandjean, P. , Weihe, P. , White, R. F. , Debes, F. , Araki, S. , Yokoyama, K. , … Murata, K. (1997). Cognitive
deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicology and Teratology, 19(6),
417–428.
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical
changes: A review. Plant and Soil, 237(2), 173–195.
Houston, M. C. (2011). Role of mercury toxicity in hypertension, cardiovascular disease and stroke. Journal of
Clinical Hypertension, 13(8), 621–627.
International Agency for Research on Cancer (IARC) (2004). IARC Monographs on the Evaluation of
Carcinogenic Risks to Humans. Some Drinking-Water Disinfectants and Contaminants, Including Arsenic. Vol.
84.
International Agency for Research on Cancer (IARC) . (2012). IARC Monographs on the Evaluation of
Carcinogenic Risks to Humans: Chemical Agents and Related Occupations. World Health Organization,
International Agency for Research on Cancer, Lyon, France.
Isaac, R. A. & Johnson, W. C. (2017). Foliar absorption of atmospheric lead by plants: A critical review. Critical
Reviews in Environmental Science and Technology, 47(10), 859–901.
Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.
Johnson-Arbor, K. & Friedrich, J. (2013). Systemic cobalt toxicity from total hip arthroplasties: Review of a rare
condition part 2: Measurement, risk factors and step-wise approach to treatment. Current Reviews in
Musculoskeletal Medicine, 6(4), 342–348.
Jusko, T. A. , Henderson, C. R. , Lanphear, B.P. , Cory-Slechta, D. A. , Parsons, P. J. , Canfield, R. L. , …
Bellinger, D. C. (2008). Blood Lead concentrations <10 μg/dL and child intelligence at 6 years of age.
Environmental Health Perspective, 116(2), 243–248.
Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press.
Kidd, P. , Barcelo, J. , Bernal, M. P. , Navari-Izzo, F. , Poschenrieder, C. , Shiley, S. , … Monterroso, C. (2015).
Trace elements behaviour at the root-soil interface: Implications in phytoremediation. Environmental and
Experimental Botany, 114, 21–38.
Kim, J. H. , Kim, K. R. , Owens, G. & Kim, M. S. (2007). Application of biochar to soil reduces cancer risk via
rice consumption: A case study in maddy fields in Northern Iran. Environmental Geochemistry and Health,
29(3), 167–178.
Klassen, C. D. , Amdur, M. O. & Doull, J. (Eds.) (2001). Casarett and Doull’s Toxicology: The Basic Science of
Poison (6th ed.). McGraw-Hill.
Kramer, U. (2010). Metal hyperaccumulation in plants. Animal Review of Plant Biology, 61, 517–534.
Kuang, L. , Li, X. , Yuan, T. , Tang, Y. , Xie, X. , … Zhang, S. (2017). A high performance liquid
chromatography method for the simultaneous determination of four bismuth compounds in urine and blood
samples. Journal of Analytical Toxicology, 41(2), 156–165.
Kumpiene, J. , Lagerkvist, A. & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in Soil using
Amendments: A Review. Waste Management, 28(1), 215–225.
Kumpiene, J. , Lagervist, A. & Maurice, C. (2014). Stabilization of As, Cr, Cu, Pb and Zn in Soil using
Amendments: A review. Waste Management, 34(1), 1–18.
Lanphear, B. P. , Hornung, R. , Khoury, J. , Yolton, K. , Baghurst, P. , Bellinger, D. C. , … Canfield, R. L.
(2005). Low-level environmental lead exposure and children’s intellectual function: An international pooled
analysis. Environmental Health Perspectives, 113(7), 894–899.
Le, T. T. , Granger, S. , Strobl, B. & Strobl, C. (2020). Time series analysis in environmental science: Machine
learning methods and applications. Environmental Modelling & Software, 133, 104868.
Li T. , Yang, X. & Islam, E. (2009). Effects of crop management practices on uptake and accumulation of heavy
metals in paddy rice. Journal of Environmental Sciences, 21(10), 1450–1454.
Liu, J. , Luo, Y. , Leung, H. M. , Zhang, Y. , Jiang, L. & Wu, S. (2016). Phytotoxicity and accumulation of
nanoparticles in wheat. Chemosphere, 144, 23–29.
Liu, J. , Wu, H. , Zhang, L. , Zhao, L. & Liu, Y. (2017). Endocytosis of nanoparticles in plant cells. Trends in
Plant Science, 22(11), 1007–1010.
Lodi, A. & Caouto, R. (2001). Hexavalent chromium causes the oxidation of NADH in the plasma membrane of
S. cerevisiae. Yeast, 18(14), 1234–1241.
Lombi, E. & Susini, J. (2009). Synchrotron-based techniques for plant and soil science: Opportunities,
challenges and future perspectives. Plant and Soil, 320(1–2), 1–35.
Lucchini, R. G. , Zoni, S. , Guazzetti, S. , Bontempi, E. , Micheletti, S. , Broberg, K. , … Ferri, F. (2012).
Neurological and neuropsychological functions in metal workers: A controlled study. International Archives of
Occupational and Environmental Health, 85(8), 939–951.
Lux, A. , Martinka, M. , Vaculík, M. & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A
review. Journal of Experimental Botany, 62(1), 21–37.
Ma, Y. , Oliveira, R. S. , Freitas, H. & Zhang, C. (2009). Biochemical and molecular mechanisms of plant-
microbe-metal interactions: Relevance for phytoremediation. In Reviews of Environmental Contamination and
Toxicology (Vol. 198, pp. 1–37). Springer.
Maestri, E. , Marmiroli, M. , Visioli, G. , Marmiroli, N. & Yoon, M. (2010). Metal tolerance and
hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental
Botany, 68(1), 1–13.
Marschner, H. (2012). Marschner’s Mineral Nutrition of Higher Plants. Academic Press.
Mench, M. , Manceau, A. , Vangronsveld, J. , Clijsters, H. & Mercier, G. (2003). Assessment of the
bioavailability of soil trace elements by selective chemical extraction procedures. In S. K. Gupta (Ed.), Trace
Elements as Contaminants and Nutrients: Consequences in Ecosystems and Human Health (pp. 387–424).
Wiley.
Menzel, M. , Jiang, W. & Wagner, G. (2019). The role of socio-economic and demographic factors for the
acceptance of phytoremediation: A case study in China. Sustainability, 11(19), 5365.
Milton, A. H. , Hasan, Z. , Rahman, A. , Rahman, M. & Zaman, M. R. (2001). Respiratory effects and arsenic
contaminated well water in Bangladesh. International Journal of Environmental Health Research, 11(2),
131–141.
Moseman-Valtierra, S. , Goncalves, B. , Mangiafico, S. & Restrepo, P. (2014). Phytoremediation potential of
spartina alterniflora in moderately contaminated salt marshes. Ecological Engineering, 67, 245–254.
Navas-Acien, A. , Guallar, E. , Silbergeld, E. K. , Rothenberg, S. J. , (2007). Lead exposure and cardiovascular
disease – a systematic review. Environmental Health Perspectives, 115(3), 472–482.
Navas-Acien, A. , Silbergeld, E. K. , Pastor-Barriuso, R. & Guallar, E. (2008). Arsenic exposure and prevalence
of type 2 diabetes in US adults. JAMA, 300(7), 814–822.
Nijjhawan, R. I. & Monlnar, E. T. (2016). Hard metal lung disease: Radiologic-pathologic correlation. Clinical
Imaging, 40(3), 496–499.
Nordberg, G. F. , Jin, T. & Nordberg, M. (2018). Cadmium. In Handbook on the Toxicology of Metals (pp.
667–708). Academic Press.
NRC (National Research Council) (2003). Bioavailability of Contaminants in Soils and Sediments: Processes,
Tools, and Applications. National Academies Press.
Occupational Safety and Health Administration (OSHA) (2006). Cobalt and Inorganic Cobalt Compounds.
Health Hazards Information Bulletin.
Patrick, L. (2006). Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment.
Alternative Medicine Review, 11(1), 2–22.
Rahman, M. , Tondel, M. , Ahmad, S. A. , Chowdhury, I. A. , Faruquee, M. H. & Axelson, O. (1999).
Hypertension and arsenic exposure in Bangladesh. Hypertension, 33(1), 74–78.
Rugh, C. L. , Wilde, H. D. , Stack, N. M. , Thompson, D. M. , Summers, A. O. , Meagher, R. B. , … Salt, D. E.
(1996). Mercuric ion reduction and resistance in transgenic arabidopsis thaliana plants expressing a modified
bacterial MerA Gene. Proceedings of the National Academy of Sciences, 93(8), 3182–3187.
Sallmen, M. & Lindbohm, M. L. (2000). Effects of parental exposure to lead and cadmium on pregnancy
outcome and infant development. Scandinavian Journal of Work, Environment & Health, 26(5), 431–437.
Salt, D. E. , Blaylock, M. , Kumar, N. P. B. A. , Dushenkov, V. , Ensley, B. D. , Chet, I. & Raskin, I. (1998).
Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants.
Biotechnology, 13(5), 468–474.
Salt, D. E. , Smith, R. D. , … Raskin, I. (1995). Phytoremediation. Annual Review of Plant Biology, 49, 643–668.
Satarug, S. , Baker, J. R. & Reilly, P. E. (2003). Long-term exposure to cadmium leads to the suppression of
osteoblast functions and the promotion of osteoclastogenesis: Likely roles of the p38 MAPK pathway.
Toxicology and Applied Pharmacology, 188(3), 203–214.
Satoh, H. & Suzuki, T. (2006). Review of analytical strategies for the determination of toxic metals in
environmental and biological samples. Analytical and Bioanalytical Chemistry, 386(4), 769–790.
Scheiber, I. F. & Mercer, J. F. (2010). Drugging copper metabolism. In Neurodegenerative Diseases (pp.
161–183). Springer.
Schreiber, L. (2019). Field-scale application of phytoremediation. Frontiers in Environmental Science, 7, 10.
Shukla, O. P. , Rai, U. N. & Dubey, S. (2015). Heavy metal contamination in vegetables grown around peri-
urban and urban-industrial clusters: A case study. Ecotoxicology and Environmental Safety, 113, 1–6.
Soleimani, M. , Hajabbasi, M. A. , Afyuni, M. & Nourbakhsh, F. (2019). Assessment of phytoremediation
efficiency and phytoextraction of heavy metals from a multi-metal contaminated soil. International Journal of
Phytoremediation, 21(3), 239–247.
Strandberg, M. (1988). Radionuclides in Terrestrial Ecosystems: A Guide for Ecologists and Radionuclide
Chemists. Springer.
Tellez-Plaza, M. , Navas-Acien, A. , Menke, A. & Crainiceanu, C. M. (2013). Cadmium exposure and all-cause
and cardiovascular mortality in the US general population. Environmental Health Perspectives, 121(10),
1017–1022.
Thyssen, J. P. , Menne, T. & Johansen, J. D. (2010). Nickel allergy in patch-tested female hairdressers and
assessment of nickel release from hairdressers’ scissors and crochet hooks. Contact Dermatitis, 63(6),
325–332.
Trachtenberg, F. , Barregard, L. & Akerström, M. (2010). The relationship between cadmium, lead, and mercury
in blood and the renal function in a non-smoking population. Kidney International, 78(6), 589–596.
Tyler, C. R. & Allan, A. M. (2014). The effects of arsenic exposure on neurological and cognitive dysfunction in
human and rodent studies: A review. Current Environmental Health Reports, 1(2), 132–147.
Uter, W. , Geler, J. , Lessmann, H. , Schnuch, A. & Frosch, P. J. (2004). Contact allergy to metals patch test
results of the information networks of department of dermatology 2001–2003. Contact Dermatitis, 51(5–6),
111–117.
Wenzel, W. W. , Unterbrunner, R. , Sommer, P. , Sessitsch, A. , Bandte, M. & Stingeder, G. (1999). Heavy
metal accumulation in trees planted on contaminated soil. Environmental Pollution, 104(2), 231–240.
Weyens, N. , van der Lelie, D. , Taghavi, S. , Newman, L. & Vangronsveld, J. (2009). Exploiting plant–microbe
partnerships to improve biomass production and remediation. Trends in Biotechnology, 27(10), 591–598.
Wolf, K. & Bouchard, M. F. (2016). Cardiovascular consequences of childhood lead exposure and obesity.
Clinical Epidemiology, 8, 45–46.
Zacchini, M. , Pietrini, F. , Mugnozza, G. S. , Iori, V. , Pietrosanti, L. , Massacci, A. & Cardarelli, M. (2009).
Metal accumulation and damage in rice (Oryza sativa L.) Seedlings treated with Cd, Ni and Cu. Plant Stress,
3(1), 47–56.
Microplastics and Nanoplastics in Soil
Adhikari, S. , Kelkar, V. , Kumar, R. , & Halden, R. U. (2022). Methods and challenges in the detection of
microplastics and nanoplastics: A minireview. Polymer International, 71(5), 543–551.
Agboola, O. D. , & Benson, N. U. (2021). Physisorption and chemisorption mechanisms influencing micro
(nano) plastics-organic chemical contaminants interactions: A review. Frontiers in Environmental Science, 9,
167.
Alimi, O. S. , Farner Budarz, J. , Hernandez, L. M. , & Tufenkji, N. (2018). Microplastics and nanoplastics in
aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental science &
technology, 52(4), 1704–1724.
Allouzi, M. M. A. , Tang, D. Y. Y. , Chew, K. W. , Rinklebe, J. , Bolan, N. , Allouzi, S. M. A. , & Show, P. L.
(2021). Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science
of the Total Environment, 788, 147815.
Aransiola, S. A. , Ikhumetse, A. A. , Babaniyi, B. R. , Abioye, O. P. , Oyedele, O. J. , & Falade. N. O. (2023).
Phytoaccumulation of micro and nanoplastics: Root Uptake. In N. R. Maddela , K. V. Reddy , & P. Ranjit (Eds.),
Micro and Nanoplastics in Soil. Springer Cham. https://doi.org/10.10007/978-3-031-21195-9_8.
Aransiola, S. A. , Victor-Ekwebelem, M. O. , Ajiboye, A. E. , Leh-Togi Zobeashia, S. S. , Ijah, U. J. J. , &
Oyedele, O. J. (2023). Ecological impacts and toxicity of micro and nanoplastics in agroecosystem. In N. R.
Maddela , K. V. Reddy , & P. Ranjit (Eds.), Micro and Nanoplastics in Soil. Springer Cham.
https://doi.org/10.10007/978-3-031-21195-9_10.
Astner, A. F. , Hayes, D. G. , O'Neill, H. , Evans, B. R. , Pingali, S. V. , Urban, V. S. , & Young, T. M. (2019).
Mechanical formation of micro-and nano-plastic materials for environmental studies in agricultural ecosystems.
Science of the Total Environment, 685, 1097–1106.
Auta, S. H. , Abioye, O. P. , Aransiola, S. A. , Bala, J. D. , Chukwuemeka, V. I. , Hassan, A. , Aziz, A. , &
Fauziah, S. H. (2022). Enhanced microbial degradation of PET and PS microplastics under natural conditions in
mangrove environment. Journal of Environmental Management, 304(2022), 114273.
https://doi.org/10.1016/j.jenvman.2021.114273
Azeem, I. , Adeel, M. , Ahmad, M. A. , Shakoor, N. , Jiangcuo, G. D. , Azeem, K. , & Rui, Y. (2021). Uptake and
accumulation of nano/microplastics in plants: A critical review. Nanomaterials, 11(11), 2935.
Bandini, F. , Taskin, E. , Bellotti, G. , Vaccari, F. , Misci, C. , Guerrieri, M. C. , & Puglisi, E. (2022). The
treatment of the organic fraction of municipal solid waste (OFMSW) as a possible source of micro-and nano-
plastics and bioplastics in agroecosystems: A review. Chemical and Biological Technologies in Agriculture,
9(1), 1–17.
Bhat, M. A. , Gedik, K. , & Gaga, E. O. (2023). Atmospheric micro (nano) plastics: Future growing concerns for
human health. Air Quality, Atmosphere & Health, 16(2), 233–262.
Bratovcic, A. (2019). Degradation of micro-and nano-plastics by photocatalytic methods. Journal of
Nanoscience and Nanotechnology Applications, 3, 206.
Cao, X. , Liang, Y. , Jiang, J. , Mo, A. , & He, D. (2023). Organic additives in agricultural plastics and their
impacts on soil ecosystems: Compared with conventional and biodegradable plastics. TrAC Trends in
Analytical Chemistry, 117212.
Chen, G. , Li, Y. , Liu, S. , Junaid, M. , & Wang, J. (2022). Effects of micro (nano) plastics on higher plants and
the rhizosphere environment. Science of the Total Environment, 807, 150841.
Focker, M. , van Asselt, E. D. , Berendsen, B. J. A. , van de Schans, M. G. M. , van Leeuwen, S. P. J. , Visser,
S. M. , & Van der Fels-Klerx, H. J. (2022). Review of food safety hazards in circular food systems in Europe.
Food Research International, 158, 111505.
Gong, X. , Shi, G. , Zou, D. , Wu, Z. , Qin, P. , Yang, Y. , … Zhou, Y. (2023). Micro-and nano-plastics pollution
and its potential remediation pathway by phytoremediation. Planta, 257(2), 35.
Guerrera, M. C. , Aragona, M. , Porcino, C. , Fazio, F. , Laurà, R. , Levanti, M. & Germanà, A. (2021). Micro
and nano plastics distribution in fish as model organisms: Histopathology, blood response and bioaccumulation
in different organs. Applied Sciences, 11(13), 5768.
He, D. , Zhang, Y. , & Gao, W. (2021). Micro (nano) plastic contaminations from soils to plants: Human food
risks. Current Opinion in Food Science, 41, 116–121.
Huang, F. , Hu, J. , Chen, L. , Wang, Z. , Sun, S. , Zhang, W. & Fang, L. (2023). Microplastics may increase the
environmental risks of Cd via promoting Cd uptake by plants: A meta-analysis. Journal of Hazardous Materials,
448, 130887.
Hurley, R. R. , & Nizzetto, L. (2018). Fate and occurrence of micro (nano) plastics in soils: Knowledge gaps and
possible risks. Current Opinion in Environmental Science & Health, 1, 6–11.
Iqbal, S. , Xu, J. , Allen, S. D. , Khan, S. , Nadir, S. , Arif, M. S. , & Yasmeen, T. (2020). Unraveling
consequences of soil micro-and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling
and soil microbial activity. Chemosphere, 260, 127578.
Kiran, B. R. , Kopperi, H. , & Venkata Mohan, S. (2022). Micro/nano-plastics occurrence, identification, risk
analysis and mitigation: Challenges and perspectives. Reviews in Environmental Science and Bio/Technology,
21(1), 169–203.
Kumar, V. , Singh, E. , Singh, S. , Pandey, A. , & Bhargava, P. C. (2023). Micro-and nano-plastics (MNPs) as
emerging pollutant in ground water: Environmental impact, potential risks, limitations and way forward towards
sustainable management. Chemical Engineering Journal, 459, 141568.
Liu, Y. , Huang, Q. , Hu, W. , Qin, J. , Zheng, Y. , Wang, J. & Xu, L. (2021). Effects of plastic mulch film
residues on soil-microbe-plant systems under different soil pH conditions. Chemosphere, 267, 128901.
Lynch, J. P. (2022). Harnessing root architecture to address global challenges. The Plant Journal, 109(2),
415–431.
Maddela, N. R. , Ramakrishnan, B. , Kakarla, D. , Venkateswarlu, K. , & Megharaj, M. (2022). Major
contaminants of emerging concern in soils: A perspective on potential health risks. RSC Advances, 12(20),
12396–12415.
Maity, S. , Guchhait, R. , Sarkar, M. B. , & Pramanick, K. (2022). Occurrence and distribution of
micro/nanoplastics in soils and their phytotoxic effects: A review. Plant, Cell & Environment, 45(4), 1011–1028.
Musa, I. O. , Auta, H. S. , Ilyasu, U. S. , Aransiola, S. A. , Makun, H. A. , Adabara, N. U. , Abioye, O. P. , Aziz,
A. , Jayanthi, B. , Maddela, N. R. , & Prasad, R. (2024). Micro and nanoplastics in environment – degradation,
detection, ecological impact. International Journal of Environmental Research, 18, 1.
https://doi.org/10.1007/s41742-023-00551-9
Ng, E. L. , Lwanga, E. H. , Eldridge, S. M. , Johnston, P. , Hu, H. W. , Geissen, V. , & Chen, D. (2018). An
overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627,
1377–1388.
Peng, L. , Mehmood, T. , Bao, R. , Wang, Z. , & Fu, D. (2022). An overview of micro (nano) plastics in the
environment: Sampling, identification, risk assessment and control. Sustainability, 14(21), 14338.
Pérez-Reverón, R. , Álvarez-Méndez, S. J. , Kropp, R. M. , Perdomo-González, A. , Hernández-Borges, J. , &
Díaz-Peña, F. J. (2022). Microplastics in agricultural systems: Analytical methodologies and effects on soil
quality and crop yield. Agriculture, 12(8), 1162.
Perković, S. , Paul, C. , Vasić, F. , & Helming, K. (2022). Human health and soil health risks from heavy metals,
micro (nano) plastics, and antibiotic resistant bacteria in agricultural soils. Agronomy, 12(12), 2945.
Qi, R. , Jones, D. L. , Li, Z. , Liu, Q. , & Yan, C. (2020). Behavior of microplastics and plastic film residues in the
soil environment: A critical review. Science of the Total Environment, 703, 134722.
Rai, P. K. , Lee, J. , Brown, R. J. , & Kim, K. H. (2021). Micro-and nano-plastic pollution: Behavior, microbial
ecology, and remediation technologies. Journal of Cleaner Production, 291, 125240.
Rubio, L. , Marcos, R. , & Hernández, A. (2020). Potential adverse health effects of ingested micro-and
nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. Journal of Toxicology
and Environmental Health, Part B, 23(2), 51–68.
Song, Y. , Cao, C. , Qiu, R. , Hu, J. , Liu, M. , Lu, S. , & He, D. (2019). Uptake and adverse effects of
polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure.
Environmental Pollution, 250, 447–455.
Sorasan, C. , Edo, C. , González-Pleiter, M. , Fernández-Piñas, F. , Leganés, F. , Rodríguez, A. , & Rosal, R.
(2022). Ageing and fragmentation of marine microplastics. Science of the Total Environment, 827, 154438.
Tian, W. , Song, P. , Zhang, H. , Duan, X. , Wei, Y. , Wang, H. , & Wang, S. (2022). Microplastic materials in the
environment: Problem and strategical solutions. Progress in Materials Science, 101035.
Ullah, R. , Tsui, M. T. K. , Chow, A. , Chen, H. , Williams, C. , & Ligaba-Osena, A. (2023). Micro (nano) plastic
pollution in terrestrial ecosystem: Emphasis on impacts of polystyrene on soil biota, plants, animals, and
humans. Environmental Monitoring and Assessment, 195(1), 252.
van den Berg, P. , Huerta-Lwanga, E. , Corradini, F. , & Geissen, V. (2020). Sewage sludge application as a
vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198.
Walker, T. R. , & Fequet, L. (2023). Current trends of unsustainable plastic production and micro (nano) plastic
pollution. TrAC Trends in Analytical Chemistry, 116984.
Wang, F. , Feng, X. , Liu, Y. , Adams, C. A. , Sun, Y. , & Zhang, S. (2022). Micro (nano) plastics and terrestrial
plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resources, Conservation and
Recycling, 185, 106503.
Wang, J. , Zhang, X. , Li, X. , & Wang, Z. (2023). Exposure pathways, environmental processes and risks of
micro (nano) plastics to crops and feasible control strategies in agricultural regions. Journal of Hazardous
Materials, 132269.
Yusuf, A. , Sodiq, A. , Giwa, A. , Eke, J. , Pikuda, O. , Eniola, J. O. , & Bilad, M. R. (2022). Updated review on
microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for
regulatory standards. Environmental Pollution, 292, 118421.
Zhou, J. , Jia, R. , Brown, R. W. , Yang, Y. , Zeng, Z. , Jones, D. L. , & Zang, H. (2023). The long-term
uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health.
Journal of Hazardous Materials, 442, 130055.
Environmental Pollution and the Entrance of Toxic Elements into the Food Chain
Abioye, O. P. , Ijah, U. J. J. , & Aransiola, S. A. (2017). Phytoremediation of Soil Contaminants by Biodiesel
Plant Jatropha curcas. In Chapter 4 of K. Bauddh et al. (Eds.), Phytoremediation potential of bioenergy plants,
DOI 10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd.
https://link.springer.com/book/10.1007%2F978-981-10-3084-0.
Agency for Toxic Substances and Disease Registry . (2007). Toxicological profile for lead. Retrieved from
https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
Agency for Toxic Substances and Disease Registry (ATSDR) . (2017). Principles of environmental health:
Lesson 5 – Risk assessment. Retrieved from https://www.atsdr.cdc.gov/training/principles/riskassessment/
Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability.
Springer.
Aransiola, S. A. , Ijah, U. J. J. , & Abioye, O. P. (2013). Phytoremediation of lead polluted soil by glycine max L.
Applied and Environmental Soil Science, 2013, Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. , & Bala, J. D. (2019). Microbial-aided Phytoremediation of heavy
metals contaminated soil: A review. European Journal of Biological Research, 9(2), 104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. , & Bala, J. D. (2022). Vermicompost-assisted phytoremediation of
toxic trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta.
International Journal of Environmental Science and Technology. http://dx.doi.org/10.1007/s13762-022-04105-y
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. , & Victor-Ekwebelem, M. O. (2021). Anammox in wastewater
treatment. In N. R. Maddela , L. C. García Cruzatty , & S. Chakraborty (Eds.), Advances in the domain of
environmental biotechnology. Environmental and microbial biotechnology. Springer.
https://doi.org/10.1007/978-981-15-8999-7_15
Aransiola, S. A. , Victor-Ekwebelem, M. O. , Ikhumetse, A. A. , & Abioye, O. P. (2021). Challenges and future
prospects of biotechnology. In N. R. Maddela & L. C. García (Eds.), Innovations in biotechnology for a
sustainable future. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-80108-3_20.
Babaniyi, B. R. , Ogundele, O. D. , Bisiomotosho, A. , Babaniyi, E. E. , & Aransiola, S. A. (2023). Remediation
approaches in environmental sustainability. In Naga Raju Maddela , Lizziane Kretli Winkelstroter Eller , & Ram
Prasad (Eds.), Microbiology for cleaner production and environmental sustainability. CRC Press. ISBN:
9781032496061. https://www.routledge.com/Microbiology-for-Cleaner-Production-and-Environmental-
Sustainability/Maddela-Eller-Prasad/p/book/9781032496061
Baker, A. J. , & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – a
review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.
Basner, M. , Babisch, W. , Davis, A. , Brink, M. , Clark, C. , Janssen, S. , & Stansfeld, S. (2014). Auditory and
non-auditory effects of noise on health. The Lancet, 383(9925), 1325–1332. doi: 10.1016/S0140-
6736(13)61613-X
Borgå, K. , Kidd, K. A. , Muir, D. C. , & Berglund, O. (2012). Trophic magnification factors: Considerations of
ecology, ecosystems, and study design. Integrated Environmental Assessment and Management, 8(1), 64–84.
Brundtland, G. H. (1987). Our common future: The world commission on environment and development. Oxford
University Press.
Cardinale, B. J. , et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67.
Carpenter, S. R. , Caraco, N. F. , Correll, D. L. , Howarth, R. W. , Sharpley, A. N. , & Smith, V. H. (1998).
Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568. doi:
10.2307/2641247
CBD (Convention on Biological Diversity) . (1992). Convention on biological diversity. Retrieved from
https://www.cbd.int/convention/text/
Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.
Biochimie, 88(11), 1707–1719.
Daily, G. C. (1997). Nature’s services: Societal dependence on natural ecosystems. Island Press.
Díaz, S. , Pascual, U. , Stenseke, M. , Martín-López, B. , Watson, R. T. , Molnár, Z. , Hill, R. , Chan, K. M. A. ,
Baste, I. A. , Brauman, K. A. , Polasky, S. , Church, A. , Lonsdale, M. , Larigauderie, A. , Leadley, P. W. , van
Oudenhoven, A. P. E. , van der Plaat, F. , Schröter, M. , Lavorel, S. , & Shirayama, Y. (2019). Summary for
policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental
science-policy platform on biodiversity and ecosystem services. Retrieved from
https://www.ipbes.net/news/ipbes-global-assessment-summary-policymakers-pdf
Eagles-Smith, C. A. , et al. (2008). Mercury in western North America: A synthesis of environmental
contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Science of the Total Environment, 407(1),
219–238.
Falchi, F. , Cinzano, P. , Elvidge, C. D. , Keith, D. M. , & Haim, A. (2016). Limiting the impact of light pollution
on human health, environment and stellar visibility. Journal of Environmental Management, 92(10), 2714–2722.
https://doi.org/10.1016/j.jenvman.2010.05.012
Foley, J. A. , DeFries, R. , Asner, G. P. , Barford, C. , Bonan, G. , Carpenter, S. R. , … Snyder, P. K. (2005).
Global consequences of land use. Science, 309(5734), 570–574.
Fuge, R. , & Wallschläger, D. (2010). Appendix 1: Naturally occurring substances in soils. In Essentials of
medical geology (pp. 577–621). Springer.
Gao, S. , Yang, Y. , Zhao, X. , & Niu, Z. (2015). Progress of atmospheric environmental monitoring in China.
Environmental Science and Pollution Research, 22(22), 17476–17488.
Gao, Y. , Wu, Y. , Liu, Y. , Li, Y. , Cheng, X. , Shen, Z. , & Tian, Y. (2016). Global trends of solid waste research
from 1997 to 2011 by using bibliometric analysis. Scientometrics, 109(1), 231–249.
https://doi.org/10.1007/s11192-016-1953-y
Gardiner, N. J. , Maas, R. , Draper, G. , & Richardson, J. (2019). Global atmospheric emissions inventory of
hexachlorocyclohexanes (HCHs) and Dichlorodiphenyltrichloroethane (DDT) from 1980 to 2030. Environmental
Science & Technology, 53(4), 2137–2146.
Gaston, K. J. , Bennie, J. , Davies, T. W. , & Hopkins, J. (2014). The ecological impacts of nighttime light
pollution: A mechanistic appraisal. Biological Reviews, 88(4), 912–927. https://doi.org/10.1111/brv.12036
Grandjean, P. , Bellinger, D. , Bergman, Å. , Cordier, S. , DaveySmith, G. , Eskenazi, B. , … Heindel, J. J.
(2014). The Faroes statement: Human health effects of developmental exposure to chemicals in our
environment. Basic & Clinical Pharmacology & Toxicology, 115(1), 162–169.
Hoegh-Guldberg, O. , et al. (2018). The Intergovernmental Panel on Climate Change (IPCC) special report on
the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to the threat of climate change. World
Meteorological Organization.
Hopenhayn-Rich, C. , et al. (1996). Cerebral dysfunction in children with chronic exposure to manganese from
drinking water. Environmental Research, 73(2–3), 175–180.
Horwell, C. J. , Williamson, B. J. , Donaldson, K. , Le Blond, J. S. , Damby, D. E. , Bowen, L. , … Gosschalk, K.
(2013). The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica
hazard. Particle and Fibre Toxicology, 10(1), 5.
International Agency for Research on Cancer . (2012). IARC monographs on the evaluation of carcinogenic
risks to humans – Arsenic, metals, fibres, and dusts. Retrieved from https://publications.iarc.fr/121
IPCC (Intergovernmental Panel on Climate Change) . (2014). Climate change 2014: Synthesis report.
Retrieved from https://www.ipcc.ch/report/ar5/syr/
IPCC (Intergovernmental Panel on Climate Change) . (2018). Global warming of 1.5°C. Retrieved from
https://www.ipcc.ch/sr15/
Kabata-Pendias, A. , & Mukherjee, A. B. (2007). Trace elements from soil to human. Springer.
Karimi, R. , & Fisher, N. S. (2020). Mercury and selenium in marine fish: Concentrations, interactions, and
sources of variation. Ecotoxicology and Environmental Safety, 196, 110541.
Khan, S. , Hesham, A. E. L. , & Qiao, M. (2009). Reclamation of heavy metal-contaminated soils. Springer.
Kumpiene, J. , et al. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in
soil. Environmental Pollution, 144(1), 62–69.
Lambert, M. R. , Carey, J. C. , Bao, H. , & Vance, J. M. (2019). Geochemical stability of deep-sea sediments in
the northeast Pacific Ocean. Chemical Geology, 523, 43–54.
Landrigan, P. J. , Fuller, R. , Acosta, N. J. R. , Adeyi, O. , Arnold, R. , Basu, N. , Balde, A. B. , Bertollini, R. ,
Bose-O'Reilly, S. , Boufford, J. I. , Breysse, P. N. , Chiles, T. , Mahidol, C. , Coll-Seck, A. M. , Cropper, M. L. ,
Fobil, J. , Fuster, V. , Greenstone, M. , Haines, A. , … Zhong, M. (2018). The lancet commission on pollution
and health. The Lancet, 391(10119), 462–512. https://doi.org/10.1016/S0140-6736(17)32345-0
Leal Filho, W. , Salvia, A. L. , & Frankenberger, F. (2019). A critical appraisal of the ‘making cities resilient’
campaign by local governments and community stakeholders. Sustainability, 11(6), 1743.
https://doi.org/10.3390/su11061743
Leichenko, R. , & O'Brien, K. L. (2008). Environmental change and globalization: Double exposures. Oxford
University Press.
Lelieveld, J. , Evans, J. S. , Fnais, M. , Giannadaki, D. , & Pozzer, A. (2015). The contribution of outdoor air
pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. doi:
10.1038/nature15371
Lombi, E. , Scheckel, K. G. , & Kempson, I. M. (2009). In situ speciation and bioavailability of trace elements in
hyperaccumulators using X-ray absorption spectroscopy. Plant Physiology, 151(3), 1254–1263.
McBride, M. B. (1994). Environmental chemistry of soils. Oxford University Press.
Meharg, A. A. , Williams, P. N. , Adomako, E. , Lawgali, Y. Y. , Deacon, C. , Villada, A. , … Raab, A. (2009).
Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science &
Technology, 43(5), 1612–1617.
Millennium Ecosystem Assessment . (2005). Ecosystems and human well-being: Synthesis. Island Press.
Münzel, T. , Gori, T. , Babisch, W. , & Basner, M. (2014). Cardiovascular effects of environmental noise
exposure. European Heart Journal, 35(13), 829–836. https://doi.org/10.1093/eurheartj/eht565
Needleman, H. L. (2004). Lead poisoning. Annual Review of Medicine, 55, 209–222.
Nordberg, G. F. , Fowler, B. A. , Nordberg, M. , & Friberg, L. T. (2015). Handbook on the toxicology of metals.
Academic Press.
Nriagu, J. O. (1988). A history of global metal pollution. Science of the Total Environment, 100, 149–165.
Pacyna, J. M. , Pacyna, E. G. , Steenhuisen, F. , & Wilson, S. (2007). Global anthropogenic mercury emission
inventory for 2000. Atmospheric Environment, 41(30), 8127–8139.
Panagos, P. , Van Liedekerke, M. , Yigini, Y. , & Montanarella, L. (2013). Contaminated sites in Europe: Review
of the current situation based on data collected through a European network. Journal of Environmental and
Public Health, 2013, 158764. https://doi.org/10.1155/2013/158764
Plumlee, G. S. , & Morman, S. A. (2011). The role of airborne mineral dusts in human disease. Aeolian
Research, 3(1), 93–114.
Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what?. Environmental
Pollution, 120(3), 497–507.
Rascio, N. , & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And
what makes them so interesting?. Plant Science, 180(2), 169–181.
Routti, H. , Letcher, R. J. , Born, E. W. , & Dietz, R. (2014). Long-term temporal trends of organohalogen
contaminants and their biomagnification in ringed seals from East Greenland. Environmental Science &
Technology, 48(9), 4964–4972.
Sala, O. E. , Chapin III, F. S. , Armesto, J. J. , Berlow, E. , Bloomfield, J. , Dirzo, R. , … Wall, D. H. (2000).
Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774.
Saloña-Bordas, M. I. , Iavicoli, I. , & Berglund, M. (2017). Bioaccumulation of essential and toxic trace elements
in the land snail Helix aspersa: Implications for human health. Environmental Geochemistry and Health, 39(3),
699–710.
Salt, D. E. , Blaylock, M. , Kumar, N. P. , Dushenkov, V. , Ensley, B. D. , Chet, I. , & Raskin, I. (1995).
Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants.
Biotechnology, 13(5), 468–474.
Santillo, D. , Johnston, P. , & Stringer, R. L. (2001). Human exposure to hexachlorobenzene resulting from the
combustion of household waste in barrels. Journal of Environmental Monitoring, 3(2), 196–201.
Scheckel, K. G. , Jacob, D. L. , Catarino, T. , Melby, E. S. , Fakra, S. C. , & Juillot, F. (2018). Nickel speciation
in the rhizosphere of hyperaccumulator plants from New Caledonia: A XAS and TEM study. Environmental
Science & Technology, 52(15), 8548–8556.
Selinus, O. , Alloway, B. , Centeno, J. A. , Finkelman, R. B. , Fuge, R. , Lindh, U. , & Smedley, P. (Eds.).
(2005). Essentials of medical geology: Impacts of the natural environment on public health. Academic Press.
Smedley, P. L. , & Kinniburgh, D. G. (2017). A review of the source, behaviour and distribution of arsenic in
natural waters. Applied Geochemistry, 17(5), 517–568.
Smith, B. W. , Funk, W. H. , & Sax, N. I. (2012). Selenium accumulation in benthic invertebrates and fish in
mercury-laden waters of the South River, Virginia, USA. Environmental Toxicology and Chemistry, 31(12),
2856–2863.
Steffen, W. , Richardson, K. , Rockström, J. , Cornell, S. E. , Fetzer, I. , Bennett, E. M. , … Sörlin, S. (2015).
Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855.
Sunderland, E. M. (2007). Mercury exposure from domestic and imported estuarine and marine fish in the US
seafood market. Environmental Health Perspectives, 115(2), 235–242.
Sutherland, R. A. , Rahman, M. M. , Baker, A. , & Molla, A. H. (2019). Arsenic distribution in different landscape
units within an abandoned gold mine, New Zealand. Science of the Total Environment, 647, 750–761.
United Nations . (2015). Transforming our world: The 2030 agenda for sustainable development. Retrieved
from https://sdgs.un.org/2030agenda
UNEP (United Nations Environment Programme) . (2006). Marine pollution in the Mediterranean: A diagnostic
of the situation, UNEP/MAP. Retrieved from https://www.unepmap.org/index.php/en/pam
United Nations Environment Programme (UNEP) . (2013). Guidance manual for the classification of hazardous
waste under the Basel convention. Retrieved from
https://wedocs.unep.org/bitstream/handle/20.500.11822/8566/Basel_classification_manual_2013.pdf
United Nations Environment Programme (UNEP) . (2016). Marine plastic debris and microplastics – Global
lessons and research to inspire action and guide policy change. Retrieved from
https://wedocs.unep.org/bitstream/handle/20.500.11822/17787/GPA2016_Marine_PlasticDebrisAndMicroplasti
cs.pdf
UNEP (United Nations Environment Programme) . (2018). Towards a pollution-free planet. Retrieved from
https://www.unenvironment.org/resources/report/towards-pollution-free-planet
Widmer, R. , et al. (2005). Global perspectives on e-waste. Environmental Impact Assessment Review, 25(5),
436–458.
World Bank . (2019). Pollution: The hidden pandemic. Retrieved from
https://openknowledge.worldbank.org/handle/10986/32380
World Health Organization . (2006). Air quality guidelines: Global update 2005. Retrieved from
https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/
World Health Organization (WHO) . (2018). Ambient air pollution: A global assessment of exposure and burden
of disease. Retrieved from https://www.who.int/airpollution/data/AAP_GBD_2018.pdf
Younger, P. L. (2001). Mine water pollution. Environmental and pollution science (2nd ed., pp. 197–240).
Blackwell Science.
Zoller, W. H. , Parrington, J. R. , & Kotra, J. M. (1974). Heavy metal aerosols in the Alaskan Arctic.
Environmental Science & Technology, 8(7), 661–669.
Acute and Chronic Effects of Contaminants from Food Crops
Aasa, A. O. , P. B. Njobeh , and F. F. Fru . “Incidence of filamentous fungi in some food commodities from Ivory
Coast.” Journal of Agriculture and Food Research 8 (2022): 100304.
Abdolshahi, Anna , and B. Shokrollahi Yancheshmeh . “Food contamination.” In Mycotoxins and Food Safety
(pp. 5–16). Intech Open, 2020.
Abioye O. P. , U. J. J. Ijah , S. A. Aransiola , S. H. Auta , and M. I. Ojeba . “Bioremediation of toxic pesticides in
soil using microbial products.” In R. Prasad , S. C. Nayak , R. N. Kharwar , and N. K. Dubey (eds.),
Mycoremediation and Environmental Sustainability. Fungal Biology. Springer Cham, 2021.
https://doi.org/10.1007/978-3-030-54422-5_1
Alina, M. , A. Azrina , A. S. Mohd Yunus , S. Mohd Zakiuddin , H. Mohd Izuan Effendi , and R. Muhammad
Rizal . “Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the
Straits of Malacca.” International Food Research Journal 19, no. 1 (2012).
Arah, Isaac Kojo , Gerald K. Ahorbo , Etornam Kosi Anku , Ernest Kodzo Kumah , and Harrison Amaglo .
“Postharvest handling practices and treatment methods for tomato handlers in developing countries: A mini
review.” Advances in Agriculture 2016 (2016): 1–8. https://doi.org/10.1155/2016/6436945.
Aransiola, S. A. , U. J. J. Ijah , O. P. Abioye , and M. O. Victor-Ekwebelem . “ANAMMOX in Wastewater
Treatment.” In N. R. Maddela , L. C. García Cruzatty , and S. Chakraborty (eds.), Advances in the Domain of
Environmental Biotechnology. Environmental and Microbial Biotechnology. Springer Singapore, 2021.
https://doi.org/10.1007/978-981-15-8999-7_15
Aransiola, S. A. , U. J. J. Ijah , O. P. Abioye . Phytoremediation of lead polluted soil by Glycine max L. Applied
and Environmental Soil Science (2013), Article ID 631619. Doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/
Aransiola, S. A. , M. O. Victor-Ekwebelem , A. E. Ajiboye , S. S. Leh-Togi Zobeashia , U. J. J. Ijah , and O. J.
Oyedele . “Ecological impacts and toxicity of micro and nanoplastics in agroecosystem.” In N. R. Maddela , K.
V. Reddy , and P. Ranjit (eds.), Micro and Nanoplastics in Soil. Springer, 2023. https://doi.org/10.10007/978-3-
031-21195-9_10.
Amobonye, A. , C. Aruwa , S. A. Aransiola , O. John , T. D. Alabi , and J. Lalung . “Exploring the potential of
fungi in the bioremediation of pharmaceutically active compounds.” Front. Microbiology Section
Microbiotechnology 14 (2023): 1207792, https://doi.10.3389/fmicb.2023.1207792
Ashraf, Ifra , Tanzeel Khan , Nowsheeba Rashid , Shazia Ramzan , and Noureen Khurshid . “Role of some
emerging agro-chemicals in groundwater contamination.” Contaminants in Agriculture and Environment: Health
Risk and Remediation. Agro Environ Media 1 (2019): 9–20.
Awuchi, Chinaza Godseill , Erick Nyakundi Ondari , Sarah Nwozo , Grace Akinyi Odongo , Ifie Josiah
Eseoghene , Hannington Twinomuhwezi , Chukwuka U. Ogbonna , Anjani K. Upadhyay , Ademiku O. Adeleye ,
and Charles Odilichukwu R. Okpala . “Mycotoxins’ toxicological mechanisms involving humans, livestock and
their associated health concerns: A review.” Toxins 14, no. 3 (2022): 167.
Bacon, R. Todd , and John N. Sofos . “Characteristics of biological hazards in foods.” Food Safety Handbook
10 (2003): 157–195.
Baig, Jameel Ahmed , Saba Bhatti , Tasneem Gul Kazi , and Hassan Imran Afridi . “Evaluation of arsenic,
cadmium, nickel and lead in common spices in Pakistan.” Biological Trace Element Research 187 (2019):
585–595.
Bekele, Fitsum , Tamirat Tefera , Gelila Biresaw , and Tsegaye Yohannes . “Parasitic contamination of raw
vegetables and fruits collected from selected local markets in Arba Minch town, Southern Ethiopia.” Infectious
Diseases of Poverty 6, no. 1 (2017): 1–7.
Bhalla, Tek Chand . “International laws and food-borne illness.” In Food Safety and Human Health, pp.
319–371. Academic Press, 2019.
Bintsis, Thomas . “Foodborne pathogens.” AIMS Microbiology 3, no. 3 (2017): 529.
Cabral-Pinto, Marina M. S. , Manuela Inácio , Orquídia Neves , Agostinho A. Almeida , Edgar Pinto , Bárbara
Oliveiros , and Eduardo A. Ferreira da Silva . “Human health risk assessment due to agricultural activities and
crop consumption in the surroundings of an industrial area.” Exposure and Health 12 (2020): 629–640.
Concon, Jose M. Food Toxicology. Part A: Principles and Concepts; Part B: Contaminants and Additives.
Marcel Dekker Inc., 1988.
Dabuo, Bismark , Emmanuella Wesome Avogo , Gabriel Owusu Koomson , Maxwell Akantibila , and Daniel
Ayendo Gbati . “Aflatoxins: Toxicity, occurrences and chronic exposure.” In Aflatoxins – Occurrence, Detection
and Novel Detoxification Strategies. IntechOpen, 2022. https://doi.org/10.5772/intechopen.105723.
Dhuldhaj, Umesh Pravin , Rishikesh Singh , and Vipin Kumar Singh . “Pesticide contamination in agro-
ecosystems: Toxicity, impacts, and bio-based management strategies.” Environmental Science and Pollution
Research 30, no. 4 (2023): 9243–9270.
Di Stefano, Vita , and Giuseppe Avellone . “Food contaminants.” Journal of Food Studies 3, no. 1 (2014):
88–103.
Eraky, Maysa Ahmad , Samia Mostafa Rashed , Mona El-Sayed Nasr , Azza Mohammed Salah El-Hamshary ,
and Amera Salah El-Ghannam . “Parasitic contamination of commonly consumed fresh leafy vegetables in
Benha, Egypt.” Journal of Parasitology Research 2014 (2014): 7. Article ID 613960.
https://doi.org/10.1155/2014/613960.
Eskola, M. , G. Kos , C. T. Elliott , J. Hajšlová , S. Mayar , and R. Krska . “Worldwide contamination of food-
crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%.” Critical Reviews in Food Science
and Nutrition 60, no. 16 (2020): 2773–2789. https://doi.org/10.1080/10408398.2019.1658570
Faille, Christine , Charles Cunault , Thomas Dubois , and Thierry Benezech . “Hygienic design of food
processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns.”
Innovative Food Science & Emerging Technologies 46 (2018): 65–73.
Fu, L. , H. R. Valentino , and Y. Wang . “Bacterial contamination in food production.” In Antimicrobial Food
Packaging, pp. 35–43. Academic Press, 2016.
Garvey, Mary . “Food pollution: A comprehensive review of chemical and biological sources of food
contamination and impact on human health.” Nutrire 44 (2019): 1–13.
Gaur, Nisha , Korrapati Narasimhulu , and Y. PydiSetty . “Recent advances in the bio-remediation of persistent
organic pollutants and its effect on environment.” Journal of Cleaner Production 198 (2018): 1602–1631.
Gerba, Charles P. , and Christopher Y. Choi . “Role of irrigation water in crop contamination by viruses.” In
Viruses in Foods, pp. 257–263. Springer, 2006.
Gudkov, Sergey V. , Dmitriy E. Burmistrov , Dmitriy A. Serov , Maxim B. Rebezov , Anastasia A. Semenova ,
and Andrey B. Lisitsyn . “A mini review of antibacterial properties of ZnO nanoparticles.” Frontiers in Physics 9
(2021): 641481.
Gupta, D. K. , S. Chatterjee , S. Datta , A. V. Voronina , and C. Walther . “Radionuclides: Accumulation and
transport in plants.” Reviews of Environmental Contamination and Toxicology 241 (2017): 139–160.
Hashim, A. “Human health effects of chronic arsenic exposure.” In Arsenic Toxicity Remediation:
Biotechnological Approaches, pp. 45–60. Springer Nature, 2023.
Islam, Ejaz Ul , Xiao-E. Yang , Zhenli He , and Qaisar Mahmood . “Assessing potential dietary toxicity of heavy
metals in selected vegetables and food crops.” Journal of Zhejiang University Science B 8, no. 1 (2007): 1–13.
Khan, Romana , Alireza Noorpoor , and Abdol Ghaffar Ebadi . “Effects of air contamination on agriculture.” In
Sustainable Plant Nutrition Under Contaminated Environments, pp. 1–16. Springer International Publishing,
2022.
Kharazi, Ava , Mostafa Leili , Mohammad Khazaei , Mohammad Yusef Alikhani , and Reza Shokoohi . “Human
health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran.” Journal of Food
Composition and Analysis 100 (2021): 103890.
Khodaei, Diako , Fardin Javanmardi , and Amin Mousavi Khaneghah . “The global overview of the occurrence
of mycotoxins in cereals: A three-year survey.” Current Opinion in Food Science 39 (2021): 36–42.
Kuiper, Irene , Ellen L. Lagendijk , Guido V. Bloemberg , and Ben J.J. Lugtenberg . “Rhizoremediation: A
beneficial plant-microbe interaction.” Molecular Plant-Microbe Interactions 17, no. 1 (2004): 6–15.
Kumar, Abhishek , Hardik Pathak , Seema Bhadauria , and Jebi Sudan . “Aflatoxin contamination in food crops:
Causes, detection, and management: A review.” Food Production, Processing and Nutrition 3 (2021): 1–9.
Lebelo, Kgomotso , Ntsoaki Malebo , Mokgaotsa Jonas Mochane , and Muthoni Masinde . “Chemical
contamination pathways and the food safety implications along the various stages of food production: A
review.” International Journal of Environmental Research and Public Health no. 11 (May 28, 2021): 5795.
https://doi.org/10.3390/ijerph18115795.
Lewis, L. , M. Onsongo , H. Njapau , H., Schurz-Rogers , G. Luber , S. Kieszak , J. Nyamongo , et al. “Aflatoxin
contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central
Kenya.” Environmental Health Perspectives 113, no. 12 (2015): 1763–1767.
Liu, Jie : Lvhui Sun , Jiacai Zhang , Jiao Guo , Lei Chen , Desheng Qi , and Niya Zhang . ““Aflatoxin B1,
zearalenone and deoxynivalenol in feed ingredients and complete feed from central China.” Food Additives &
Contaminants: Part B 9, no. 2 (2016): 91–97.
MachadoMoreira, Bernardino , Karl Richards , Fiona Brennan , Florence Abram , and Catherine M. Burgess .
“Microbial contamination of fresh produce: What, where, and how?.” Comprehensive Reviews in Food Science
and Food Safety 18, no. 6 (2019): 1727–1750.
Mamat, Zulpiya , Hamid Yimit , Rou Zi A. Ji , and Mamattursun Eziz . “Source identification and hazardous risk
delineation of heavy metal contamination in Yanqi basin, northwest China.” Science of the Total Environment
493 (2014): 1098–1111.
Manwani, Seema , Pooja Devi , Tanvi Singh , Chandra Shekhar Yadav , Kumud Kant Awasthi , Narain Bhoot ,
and Garima Awasthi . “Heavy metals in vegetables: A review of status, human health concerns, and
management options.” Environmental Science and Pollution Research 30, no. 28 (2023): 71940–71956.
Mohle-Boetani, J. C. , J. Farrar , P. Bradley , Barak, J. D. P. , M Miller , Mandrell, R , P. Mead , et al.
“Salmonella infections associated with mung bean sprouts: Epidemiological and environmental investigations.”
Epidemiology & Infection 137, no. 3 (2009): 357–366.
Mudgal, Varsha , Nidhi Madaan , Anurag Mudgal, R. B. Singh , and Sanjay Mishra . “Effect of toxic metals on
human health.” The Open Nutraceuticals Journal 3, no. 1 (2010).
Nabil, Shariful Kibria , Nadira Mustari , and Mohidus Samad Khan . “Sources and health impacts of chemical
contaminants in foods.” Techniques to Measure Food Safety and Quality: Microbial, Chemical, and Sensory
(2021): 31–68.
Naeem, M. , Ritu Gill , Sarvajeet Singh Gill , Kashmir Singh , Adriano Sofo , and Narendra Tuteja . “Emerging
contaminants and their effect on agricultural crops.” Frontiers in Plant Science 14 (2023): 1296252.
Negash, Demissie . “A review of aflatoxin: Occurrence, prevention, and gaps in both food and feed safety.”
Journal of Applied Microbiological Research 1, no. 1 (2018): 35–43.
Obeng-Gyasi, Emmanuel , Javad Roostaei , and Jacqueline MacDonald Gibson . “Lead distribution in urban
soil in a medium-sized city: Household-scale analysis.” Environmental Science & Technology 55, no. 6 (2021):
3696–3705.
Onakpa, Michael Monday , Anoka Ayembe Njan , and Ogbureke Chidiebere Kalu . “A review of heavy metal
contamination of food crops in Nigeria.” Ann Glob Health 84, no. 3 (2018): 488–494.
Pachepsky, Yakov , Daniel R. Shelton , Jean ET McLain , Jitendra Patel , and Robert E. Mandrell . “Irrigation
waters as a source of pathogenic microorganisms in produce: A review.” Advances in Agronomy 113 (2011):
75–141.
Palimar, V. , K. M. Saralaya , M. Arun , M. K. Mohanty , and B. Singh . “Profile of methyl parathion poisoning in
Manipal, India.” Infection 12 (2012): 23–25.
Pappas, R. S. , G. M. Polzin , L. Zhang , C. H. Watson , D. C. Paschal , and D. L. Ashley . “Cadmium, lead, and
thallium in mainstream tobacco smoke particulate.” Food and Chemical Toxicology 44, no. 5 (2006): 714–723.
Pavlidis, G. , and V. A. Tsihrintzis . “Environmental benefits and control of pollution to surface water and
groundwater by agroforestry systems: A review.” Water Resources Management 32 (2018): 1–29.
Petrović, T. , and M. D'Agostino . “Viral contamination of food.” In Antimicrobial Food Packaging, pp. 65–79.
Academic Press, 2016.
Rather, Irfan A. , Wee Yin Koh , Woon K. Paek , and Jeongheui Lim . “The sources of chemical contaminants in
food and their health implications.” Frontiers in Pharmacology 8 (2017): 830.
Ronald, Pamela . “Plant genetics, sustainable agriculture and global food security.” Genetics 188, no. 1 (2011):
11–20.
Ruiz-Fernández, Ana Carolina , Jorge Feliciano Ontiveros-Cuadras , José L. Sericano , Joan-Albert Sanchez-
Cabeza , Laval Liong Wee Kwong , Robert B. Dunbar , David A. Mucciarone , Libia Hascibe Pérez-Bernal , and
Federico Páez-Osuna . “Long-range atmospheric transport of persistent organic pollutants to remote lacustrine
environments.” Science of the Total Environment 493 (2014): 505–520.
Scallan, Elaine , Robert M. Hoekstra , Frederick J. Angulo , Robert V. Tauxe , Marc-Alain Widdowson , Sharon
L. Roy , Jeffery L. Jones , and Patricia M. Griffin . “Foodborne illness acquired in the United States – major
pathogens.” Emerging Infectious Diseases 17, no. 1 (2011): 7.
Şengül, Ü. , E. Yalçın , B. Şengü , and K. Çavuşoğlu . “Investigation of aflatoxin contamination in maize flour
consumed in Giresun, Turkey.” Quality Assurance and Safety of Crops & Foods 8, no. 3 (2016): 385–391.
Seymour, I. J. , and H. Appleton . “Foodborne viruses and fresh produce.” Journal of applied microbiology 91,
no. 5 (2001): 759–773.
Sharapov, U. M. , A. M. Wendel , J. P. Davis , W. E. Keene , J. Farrar , S. Sodha , E. Hyytia-Trees , et al.
“Multistate outbreak of Escherichia coli O157: H7 infections associated with consumption of fresh spinach:
United States, 2006.” Journal of Food Protection 79, no. 12 (2016): 2024–2030.
Shen, Chen , Xiang-Chang Yin , Bo-Yang Jiao , Jing Li , Peng Jia , Xiao-Wen Zhang , Xue-Hao Cheng et al.
“Evaluation of adverse effects/events of genetically modified food consumption: A systematic review of animal
and human studies.” Environmental Sciences Europe 34, no. 1 (2022): 1–33.
Singh, Ngangbam Sarat , Ranju Sharma , Talat Parween , and P. K. Patanjali . “Pesticide contamination and
human health risk factor.” Modern Age Environmental Problems and Their Remediation (2018): 49–68.
Sreekumar, K. M. , and K. D. Prathapan . “An evidence-based inquiry into the endosulfan tragedy in
Kasaragod, Kerala.” Economic Political Wkly 56, no. 41 (2021): 45–53.
Udovicki, Bozidar , Mirjana Andjelkovic , Tanja Cirkovic-Velickovic , and Andreja Rajkovic . “Microplastics in
food: Scoping review on health effects, occurrence, and human exposure.” International Journal of Food
Contamination 9, no. 1 (2022): 1–16.
Vandelac, L. “Endocrine disruption agents: Environment, health, public policies, and the precautionary
principle.” Bulletin de L’academie Nationale de Medecine 184, no. 7 (2000): 1477–1486.
World Health Organization . “World Health Organization.” 2022, September 15. https://www.who.int/news-
room/fact-sheets/detail/pesticide-residues-in-food.
Yoshida, Fumikazu , Akio Hata , and Haruo Tonegawa . “Itai-Itai disease and the countermeasures against
cadmium pollution by the Kamioka mine.” Environmental Economics and Policy Studies 2 (1999): 215–229.
Zheng, Wei , Kelsey N. Wiles , Nancy Holm , Nathan A. Deppe , and Clinton R. Shipley . “Uptake, translocation,
and accumulation of pharmaceutical and hormone contaminants in vegetables.” In Retention, Uptake, and
Translocation of Agrochemicals in Plants, pp. 167–181. American Chemical Society, 2014.
Plant Uptake of Emerging Contaminants in Foods
Abid, R. , Manzoor, M. , De Oliveira, L.M. , da Silva, E. , Rathinasabapathi, B. , Rensing, C. , Mahmood, S. ,
Liu, X. and Ma, L.Q. 2019. Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-
hyperaccumulator Pteris Vittata. Environ. Pollution, 248, 756–762.
Adeyi, A.A. and Oladoye, P.O. 2020. Assessment of heavy metals in simulated leachates and the ashes of end-
of-life tyres. Int. J. Environ. Waste Manag.25(4), 474–486.
Al Chami, Z. , Amer, N. , Smets, K. , Yperman, J. , Carleer, R. , Dumontet, S. and Vangronsveld, J. 2014.
Evaluation of flash and slow pyrolysis applied on heavy metal contaminated Sorghum bicolor shoots resulting
from phytoremediation. Biomass and Bioenergy 63, 268–279.
Ali, B. , Schwartz, C. , Bitton, G. and Morel, J.L. 2006. Heavy metal contamination from mining sites in South
Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 63(5), 802–810.
Ali, H. , Khan, E. and Ilahi, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals:
Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry. 2019, 6730305.
Ali, H. , Khan, E. and Sajad, M.A. 2013. Phytoremediation of heavy metals—concepts and applications.
Chemosphere. 91(7), 869–881.
Ali, H. , Naseer, M. and Sajad, M.A. 2012. Phytoremediation of heavy metals by Trifolium alexandrinum. Int. J.
Environ. Sci. 2(3), 1459–1469.
Alloway, B.J. 2013. Sources of heavy metals and metalloids in soils. In: Alloway, B. (Ed.), Heavy Metals in
Soils. Environmental Pollution. Springer, Dordrecht, vol. 22. https://doi.org/10.1007/978-94-007-4470-7_2.
Al-Taani, A.A. , Nazzal, Y. , Howari, F.M. , Iqbal, J. , Bou Orm, N. , Xavier, C.M. , Bărbulescu, A. , Sharma, M.
and Dumitriu, C.S. 2021. Contamination assessment of heavy metals in agricultural soil, in the Liwa area
(UAE). Toxics 9(3), 53.
Anani, O.A. and Olomukoro, J.O. 2017. The evaluation of heavy metal load in benthic sediment using some
pollution indices in Ossiomo River, Benin City, Nigeria. FUNAI Asia Pac J Sci Technol 3(2), 103–119.
Anani, O.A. and Olomukoro, J.O. 2018a. Health risk from the consumption of freshwater prawn and crab
exposed to heavy metals in a Tropical River, southern Nigeria. J Heavy Metal Toxicity Dis 3(2), 5.
Anani, O.A. and Olomukoro, J.O. 2018b. Trace metal residues in a tropical watercourse sediment in Nigeria:
Health risk implications. IOP Conf. Ser. Earth Environ. Sci 210, 012005.
Anani, O.A. , Mishra, R.R. , Mishra, P. , Olomukoro, J.O. , Imoobe, T.O.T. and Adetunji, C.O. 2020. Influence of
heavy metal on food security: Recent advances. In Innovations in Food Technology: Current Perspectives and
Future Goals. Vancouver, pp. 257–267. Springer, Singapore.
Aransiola, S.A. , Ijah, U.J.J. and Abioye, O.P. 2013. Phytoremediation of Lead Polluted Soil by Glycine max L.
Appl. Environ. Soil Sci., Article ID 631619. Doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S.A. , Ijah, U.J.J. , Abioye, O.P. and Bala, J.D. 2019. Microbial-aided Phytoremediation of Heavy
metals Contaminated Soil: A review. Eur. J. Biol. Res. 9(2), 104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Arshad, M. , Saleem, M. and Hussain, S. 2007. Perspectives of bacterial ACC deaminase in phytoremediation.
Trends Biotechnol. 25, 356–362.
Asemoloye, M.D. , Ahmad, R. and Jonathan, S.G. 2017a. Synergistic action of rhizospheric fungi with
Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere 184,
1–12.
Asemoloye, M.D. , Ahmad, R. and Jonathan, S.G. 2017b. Transcriptomic responses of catalase, peroxidase
and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environ.
Pollut. 235, 55–64.
Asemoloye, M.D. , Chukwuka, K.S. and Jonathan, S.G. 2020b. Spent mushroom compost enhances plant
response and phytoremediation of heavy metal polluted soil. J. Plant Nutr. Soil Sci. 183, 492–499.
Asemoloye, M.D. , Jonathan, S.G. , Jayeola, A.A. and Ahmad, R. 2017. Mediational influence of spent
mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus
maximus Jacq. J. Environ. Manag. 200, 253e262.
Asemoloye, M.D. , Marchisio, M.A. , Gupta, V.K. and Pecoraro, L. 2021. Genome-based engineering of
ligninolytic enzymes in fungi. Microb. Cell Factories 20, 20.
Asemoloye, M.D. , Tosi, S. , Dacco, C. , Wang, X. , Xu, S. , Marchisio, M.A. , Gao, W. , Jonathan, S.G. and
Pecoraro, L. 2020a. Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor
irregularis isolated from Nigerian crude oil-polluted sites. Microorganisms 8(12), 1912.
Ashraf, S. , Ali, Q. , Zahir, Z.A. , Ashraf, S. and Asghar, H.N. 2019. Phytoremediation: Environmentally
sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 174, 714–727.
Babaniyi, B.R. , Ogundele, O.D. , Bisiomotosho, A. , Babaniyi, E.E. and Aransiola, S.A. 2023. Remediation
approaches in environmental sustainability. In: Maddela, N.R. , Kretli, L. , Eller, W. and Prasad, R. (Eds.),
Microbiology for Cleaner Production and Environmental Sustainability. CRC Press. ISBN: 9781032496061.
https://www.routledge.com/Microbiology-for-Cleaner-Production-and-Environmental-Sustainability/Maddela-
Eller-Prasad/p/book/9781032496061
Baker, A.J.M. and Walker, P.L. 1990. Ecophysiology of metal uptake by tolerant plants: Heavy metal uptake by
tolerant plants. In: Shaw, A.J. (Ed.), Evolutionary Aspects. CRC, Boca Raton.
Balaferj, H. , Bogusz, D. , Triqui, Z.A. , Guedira, A. , Bendaou, N. , Smouni, A. and Fahr, M. 2020. Zinc
hyperaccumulation in plants: A review. Plants 9, 562.
Bañuelos, G.S. , Cardon, G. , Mackey, B. , Ben-Asher, J. , Wu, L. , Beuselinck, P. , Akohoue, S. and
Zambrzuski, S. 1993. Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species.
J. Environ. Qual. 22(4), 786–792. https://doi.org/10.2134/jeq1993.00472425002200040021x.
Barakat, M.A. 2011. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4,
361–377.
Barbulescu, A. 2020. Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: A review.
Water 12(5), 1356.
Becerra-Castro, C. , Prieto-Fernández, A. , Álvarez-Lopez, V. , Monterroso, C. , Cabello-Conejo, M.I. , Acea,
M.J. and Kidd, P.S. 2011. Nickel solubilizing capacity and characterization of rhizobacteria isolated from
hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium. Int. J. Phytoremediation
13(1), 229–244.
Berken, A. , Mulholland, M.M. , Leduc, D.L. and Terry, N. 2002. Genetic engineering of plants to enhance
selenium phytoremediation. Crit. Rev. Plant Sci. 21, 567–582.
Bernard, A. 2008. Cadmium & its adverse effects on human health. Indian J. Med. Res. 128(4), 557.
Berti, W.R. and Cunningham, S.D. 2000. Phytostabilization of metals. In: Raskin, I. and Ensley, B.D. (Eds.),
Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment. John Wiley& Sons, Inc., New
York, NY, pp. 71–88.
Bizily, S.P. , Rugh, C.L. and Meagher, R.B. 2000. Phytodetoxification of hazardous organomercurials by
genetically engineered plants. Nat. Biotechnol. 18, 213–217.
Blaylock, M.J. and Huang, J. 2000. Phytoextraction of metals. In: Raskin, I. and Ensley, B.D. (Eds.),
Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment. JohnWiley & Sons, Inc., New
York, NY, p. 303.
Blaylock, M.J. , Salt, D.E. , Dushenkov, S. , Zakharova, O. , Gussman, C. , Kapulnik, Y. , Ensley, B.D. and
Raskin, I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci.
Technol. 31, 860–865.
Bolan, N. , Ko, B. , Anderson, C.W. and Vogeler, I. 2008. Solute interactions in soils in relation to bioavailability
and remediation of the environment. Rev. la Cienc. Del suelo y Nutr. Veg. 8, 1–5.
Bonanno, G. and Giudice, R.L. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis
(common reed) and their potential use as contamination indicators. Ecol. Indicat. 10(3), 639–645.
Braud, A. , Jézéquel, K. , Bazot, S. and Lebeau, T. 2009. Enhanced phytoextraction of an agricultural Cr- and
Pb-contaminated soil by bioaugmentation with siderophoreproducing bacteria. Chemosphere 74, 280–286.
Brevik, E.C. 2009. Soil, food security, and human health. In: Verheye, W. (Ed.), Soils, Plant Growth, and Crop
Production. EOLSS Publishers, Oxford, UK.
Brewer, E.P. , Saunders, J.A. , Angle, J.S. , Chaney, R.L. and Mcintosh, M.S. 1999. Somatic hybridization
between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor. Appl. Genet. 99, 761–771.
Bridgwater, A.V. , Meier, D. and Radlein, D. 1999. An overview of fast pyrolysis of biomass. Org. Geochem. 30,
1479–1493.
Burchett, M.D. , MacFarlane, G.R. and Pulkownik, A. 2003. Accumulation and distribution of heavy metals in
the grey mangrove Avicennia marina (Forsk.) Vierh: Biological indication potential. Environ. Pollut. 123,
139–151.
Burges, A. , Alkorta, I. , Epelde, L. and Garbisu, C. , 2018. From phytoremediation of soil contaminants to
phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediation 20, 384–397.
Carnelo, L.G.L. , de Miguez, S.R. and Marbán, L. 1997. Heavy metals input with phosphate fertilizers used in
Argentina. Sci. Total Environ. 204(3), 245–250.
Chaney, R.L. and Baklanov, I.A. 2017. Phytoremediation and phytomining: Status and promise. Adv. Bot. Res.
83, 189–221.
Chen, B.D. , Li, X.L. , Tao, H.Q. , Christie, P. and Wong, M.H. 2003. The role of arbuscular mycorrhiza in zinc
uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50,
839–846.
Chen, T. , Wei, C. , Huang, Z. , Huang, Q. , Lu, Q. and Fan, Z. 2002. Arsenic hyperaccumulator Pteris vittata L.
and its arsenic accumulation. Chin. Sci. Bull. 47, 207–210.
DalCorso, G. , Fasani, E. , Manara, A. , Visioli, G. and Furini, A. 2019. Heavy metal pollution: State of the art
and innovation in phytoremediation. Int. J. Mol. Sci. 20, 3412.
Das, N. , Bhattacharya, S. and Maiti, M.K. 2016. Enhanced cadmium accumulation and tolerance in transgenic
tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant
Physiol. Biochem. 105, 297–309.
De Souza, M.P. , Lytle, C.M. , Mulholland, M.M. , Otte, M.L. and Terry, N. 2000. Selenium assimilation and
volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiol. 122, 1281–1288.
Derakhshan Nejad, Z. , Jung, M.C. and Kim, K.H. 2018. Remediation of soils contaminated with heavy metals
with an emphasis on immobilization technology. Environ. Geochem. Health 40, 927–953.
Dhanwal, P. , Kumar, A. , Dudeja, S. , Chhokar, V. and Beniwal, V. 2017. Recent advances in phytoremediation
technology. In: Kumar, R. , Sharma, A.K. and Ahluwalia, S.S. (Eds.), Advances in Environmental
Biotechnology. Springer, Singapore, pp. 227–241.
Eid, E.M. , Galal, T.M. , Sewelam, N.A. , Talha, N.I. and Abdallah, S.M. 2020. Phytoremediation of heavy
metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative
assessment. Environ Sci Pollut Res. 27, 12138–12151.
Elbehiry, F. , Elbasiouny, H. , El-Ramady, H. and Brevik, E.C. 2019. Mobility, distribution, and potential risk
assessment of selected trace elements in soils of the Nile Delta. Egypt. Environ. Monit. Assess. 191, 713.
El-Kady, A.A. and Abdel-Wahhab, M.A. 2018. Occurrence of trace metals in foodstuffs and their health impact.
Trends Food Sci. Technol. 75, 36–45.
El-Radaideh, N. and Al-Taani, A. 2018. Geo-environmental study of heavy metals of the agricultural highway
soils, NW Jordan. Arab. J. Geosci. 11.
Epelde, L. , Becerril, J.M. , Mijangos, I. and Garbisu, C. 2009. Evaluation of the efficiency of a phytostabilization
process with biological indicators of soil health. J. Environ. Qual. 38, 2041–2049.
Fasani, E. , Manara, A. , Martini, F. , Furini, A. and DalCorso, G. 2018. The potential of genetic engineering of
plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 41, 1201–1232.
Flathman, P.E. and Lanza, G.R. 1998. Phytoremediation: Current views on an emerging green technology. J.
Soil Contam. 7, 415–432.
Galal, T.M. , Gharib, F.A. , Ghazi, S.M. and Mansour, K.H. 2017. Phytostabilization of heavy metals by the
emergent macrophyte Vossia cuspidate (Roxb.) Griff: A phytoremediation approach. Int J Phytorem. 19(11),
992–999.
Garbisu, C. and Alkorta, I. 2001. Phytoextraction: A cost-effective plant-based technology for the removal of
metals from the environment. Bioresour. Technol. 77, 229–236.
Gerhardt, K.E. , Gerwing, P.D. and Greenberg, B.M. 2017. Opinion: Taking phytoremediation from proven
technology to accepted practice. Plant Sci. 256, 170–185.
Ginn, B.R. , Szymanowski, J.S. and Fein, J.B. 2008. Metal and proton binding onto the roots of Fescue rubra.
Chem. Geol. 253, 130–135.
Glick, B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28, 367–374.
Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol.
Res. 169, 30–39.
Göhre, V. and Paszkowski, U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal
phytoremediation. Planta 223, 1115–1122.
Gouda, S. , Kerry, R.G. , Das, G. , Paramithiotis, S. , Shin, H.S. and Patra, J.K. 2018. Revitalization of plant
growth-promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131–140.
Grimm, N.B. , Foster, D. , Groffman, P. , Grove, J.M. , Hopkinson, C.S. , Nadelhoffer, K.J. , Pataki, D.E. and
Peters, D.P.C. 2008. The changing landscape: Ecosystem responses to urbanization and pollution across
climatic and societal gradients. Front. Ecol. Environ. 6, 264–272.
Guangwei, Y. , Hengyi, L. , Tao, B. , Zhong, L. , Qiang, Y. and Xianqiang, S. 2009. In-situ stabilisation followed
by ex-situ composting for treatment and disposal of heavy metals polluted sediments. J. Environ. Sci. 21,
877–883.
Gupta, A.K. and Sinha, S. 2008. Decontamination and/or revegetation of fly ash dykes through naturally
growing plants. J. Hazard. Mater. 153(3), 1078–1087.
Gupta, D.K. , Huang, H.G. and Corpas, F.J. 2013. Lead tolerance in plants: Strategies for phytoremediation.
Environ. Sci. Pollut. Res. 20, 2150–2161.
Harvey, L.J. and McArdle, H.J. 2008. Biomarkers of copper status: A brief update. Br. J. Nutr. 99, 17–20.
Herzig, R. , Nehnevajova, E. , Pfistner, C. , Schwitzguebel, J.-P. , Ricci, A. and Keller, C. 2014. Feasibility of
labile Zn phytoextraction using enhanced tobacco and sunflower: Results of five-and one-year field-scale
experiments in Switzerland. Int. J. Phytoremediation 16, 735–754.
Hooda, V. 2007. Phytoremediation of toxic metals from soil and waste water. J. Environ. Biol. 28 (2 Suppl. L),
367–376.
Hornung, A. , Apfelbacher, A. and Sagi, S. 2011. Intermediate pyrolysis: A sustainable biomass-to-energy
concept-biothermal valorisation of biomass (BtVB) process. J. Sci. Ind. Res. (India) 70, 664–667.
Hossain, M.B. , Jahiruddin, M. , Panaullah, G.M. , Loeppert, R.H. , Islam, M.R. and Duxbury, J.M. 2008. Spatial
variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and
phosphorus. Environ. Pollut. 156, 739–744.
Huang, R. , Dong, M. , Mao, P. , Zhuang, P. , Paz-Ferreiro, J. , Li, Y. , Li, Y. , Hu, X. , Netherway, P. and Li, Z.
2020. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils.
Sci. Total Environ. 721, 137581.
Huang, X.D. , El-Alawi, Y. , Penrose, D.M. , Glick, B.R. and Greenberg, B.M. 2004. Responses of three grass
species to creosote during phytoremediation. Environ. Pollut. 130, 453–463.
Jacob, J.M. , Karthik, C. , Saratale, R.G. , Kumar, S.S. , Prabakar, D. , Kadirvelu, K. and Pugazhendhi, A. 2018.
Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 217, 56–70.
Javed, M.T. , Tanwir, K. , Akram, M.S. , Shahid, M. , Niazi, N.K. and Lindberg, S. 2019. Chapter 20 –
phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: Role of plant-induced pH
changes. In: Hasanuzzaman, M. , Prasad, M.N.V. and Fujita, M. (Eds.), Cadmium Toxicity and Tolerance in
Plants. Academic Press, London, pp. 495–529.
Kabata-Pendias, A. and Pendias, H. 2001. Trace Metals in Soils and Plants, 2nd ed. CRC Press, Boca Raton,
FL.
Kachout, S.S. , Mansoura, A.B. , Mechergui, R. , Leclerc, J.C. , Rejeb, M.N. and Ouerghi, Z. 2012.
Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J. Sci. Food Agric. 92,
336–342.
Keshavarzi, A. and Kumar, V. 2019. Ecological risk assessment and source apportionment of heavy metal
contamination in agricultural soils of northeastern Iran. Int. J. Environ. Health Res. 29(5), 544–560.
Khalid, S. , Shahid, M. , Niazi, N.K. , Murtaza, B. , Bibi, I. and Dumat, C. 2017. A comparison of technologies for
remediation of heavy metal contaminated soils. J. Geochem. Explor. 182, 247–268.
Khlifi, R. , Olmedo, P. , Gil, F. , Feki-Tounsi, M. , Hammami, B. , Rebai, A. and HamzaChaffai, A. 2014.
Biomonitoring of cadmium, chromium, nickel and arsenic in general population living near mining and active
industrial areas in Southern Tunisia. Environ. Monit. Assess. 186, 761–779.
Kovacs, H. and Szemmelveisz, K. 2017. Disposal options for polluted plants grown on heavy metal
contaminated brownfield lands – a review. Chemosphere 166, 8–20.
Kovacs, H. , Szemmelveisz, K. and Palotas, A.B. 2013. Solubility analysis and disposal options of combustion
residues from plants grown on contaminated mining area. Environ. Sci. Pollut. Res. 20, 7917–7925.
Kozmínska, A. , Wiszniewska, A. , Hanus-Fajerska, E. and Muszýnska, E. 2018. Recent strategies of
increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant
Biotechnol. Rep. 12, 1–14.
Kruger, E.L. , Anderson, T.A. and Coats, J.R. 1997. Phytoremediation of Soil and Water Contaminants.
American Chemical Society, Washington, DC, vol. 664, p. 328.
Kumar, V. , Pandita, S. , Sharma, A. , Bakshi, P. , Sharma, P. , Karaouzas, I. , Bhardwaj, R. , Thukral, A.K. and
Cerda, A. 2021. Ecological and human health risks appraisal of metal (loid) s in agricultural soils: A review.
Geol. Ecol. Lands. 5(3), 173–185.
Kuppens, T. , Van Dael, M. , Vanreppelen, K. , Thewys, T. , Yperman, J. , Carleer, R. , Schreurs, S. and Van
Passel, S. 2015. Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice
cultivated for phytoextraction. J. Clean. Prod. 88, 336–344.
Lee, J. and Sung, K. 2014. Effects of chelates on soil microbial properties, plant growth and heavy metal
accumulation in plants. Ecol. Eng. 73, 386–394.
Li, J.T. , Liao, B. , Lan, C.Y. , Ye, Z.H. , Baker, A.J.M. and Shu, W.S. 2010. Cadmium tolerance and
accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for
phytoextraction. J. Environ. Qual. 39 (4), 1262–1268.
Liu, Y. , He, Y. , Wang, Z. , Wan, K. , Xia, J. , Liu, J. and Cen, K. 2018. Multi-point LIBS measurement and
kinetics modeling of sodium release from a burning Zhundong coal particle. Combust. Flame 189, 77–86.
Lorestani, B. , Yousefi, N. , Cheraghi, M. and Farmany, A. 2013. Phytoextraction and phytostabilization
potential of plants grown in the vicinity of heavy metalcontaminated soils: A case study at an industrial town
site. Environ. Monit. Assess. 185(12), 10217–10223.
Lü, J. , Jiao, W.-B. , Qiu, H.-Y. , Chen, B. , Huang, X.-X. and Kang, B. , 2018. Origin and spatial distribution of
heavy metals and carcinogenic risk assessment in mining areas at You’xi County southeast China. Geoderma
310, 99–106.
Ma, Y. , Prasad, M. , Rajkumar, M. and Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes
accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29, 248–258.
MacFarlane, G.R. and Burchett, M.D. 2002. Toxicity, growth and accumulation relationships of copper, lead and
zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar. Environ. Res. 54, 65–84.
Maestri, E. , Marmiroli, M. , Visioli, G. , Marmiroli, N. , 2010. Metal tolerance and hyperaccumulation: Costs and
trade-offs between traits and environment. Environ. Exp. Bot. 68, 1–13.
Mahar, A. , Wang, P. , Ali, A. , Awasthi, M.K. , Lahori, A.H. , Wang, Q. and Zhang, Z. 2016. Challenges and
opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf.
126, 111–121.
Mahmood, Q. , Mirza, N. and Shaheen, S. 2015. Phytoremediation using algae and macrophytes: I. In: Ansari,
A. , Gill, S. , Gill, R. , Lanza, G. and Newma, L. (Eds.), Phytoremediation. Springer, Cham, pp. 265–289.
Malik, R.N. , Husain, S.Z. and Nazir, I. 2010. Heavy metal contamination and accumulation in soil and wild plant
species from industrial area of Islamabad, Pakistan. Pak J. Bot. 42(1), 291–301.
Mani, D. and Kumar, C. 2014. Biotechnological advances in bioremediation of heavy metals contaminated
ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11(3),
843–872.
Mani, S. , Tabil, L.G. and Sokhansanj, S. 2006. Effects of compressive force, particle size and moisture content
on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30, 648–654.
Marques, A.P. , Rangel, A.O. and Castro, P.M. 2009. Remediation of heavy metal contaminated soils:
Phytoremediation as a potentially promising clean-up technology. Crit. Rev. Environ. Sci. Technol. 39,
622–654.
Mastretta, C. , Taghavi, S. , van der Lelie, D. , Mengoni, A. , Galardi, F. , Gonnelli, C. , Barac, T. , Boulet, J. ,
Weyens, N. and Vangronsveld, J. 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce
cadmium phytotoxicity. Int. J. Phytoremediation 11(3), 251–267.
Mazej, Z. and Germ, M. 2009. Trace element accumulation and distribution in four aquatic macrophytes.
Chemosphere 74(5), 642–647.
McLaughlin, M.J. , Hamon, R.E. , McLaren, R.G. , Speir, T.W. and Rogers, L.S. 2000a. Review: A
bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia
and New Zealand. Aust. J. Soil Res. 38, 1037–1086.
Mclaughlin, M.J. , Zarcinas, B.A. and Cook, N. 2000b. Soil testing for heavy metals. Commun. Soil Sci. Plant
Anal. 31(11–14), 1661–1700.
Mesjasz-Przybyłowicz, J. , Nakonieczny, M. , Migula, P. , Augustyniak, M. , Tarnawska, M. , Reimold, W. ,
Koeberl, C. , Przybyłowicz, W. and Głowacka, E. 2004. Uptake of cadmium, lead nickel and zinc from soil and
water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol. Cracoviensia Ser. Bot. 46, 75–85.
Mganga, N. , Manoko, M.L.K. and Rulangaranga, Z.K. 2011. Classification of plants according to their heavy
metal content around north mara gold mine, Tanzania: Implication for phytoremediation. Tanzan. J. Sci. 37,
109–119.
Micó, C. , Recatalá, L. , Peris, M. and Sánchez, J. 2006. Assessing heavy metal sources in agricultural soils of
an European Mediterranean area by multivariate analysis. Chemosphere 65(5), 863–872.
Milić, D. , Luković, J. , Ninkov, J. , Zeremski-Škorić, T. , Zorić, L. , Vasin, J. and Milić, S. 2012. Heavy metal
content in halophytic plants from inland and maritime saline areas. Cent. Eur. J. Biol. 7, 307–317.
Mkandawire, M. and Dudel, E.G. 2005. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters
of two abandoned uranium mining sites in Saxony, Germany. Sci. Total Environ. 336(1–3), 81–89.
Mulligan, N.M. , Yong, R.N. and Gibbs, B.F. 2001. Remediation technologies for soils and groundwater.
Remediat. Technol. Soils Groundw. 60, 1–449.
Nehnevajova, E. , Herzig, R. , Federer, G. , Erismann, K.-H. and Schwitzguébel, J.P. 2007. Chemical
mutagenesis – a promising technique to increase metal concentration and extraction in sunflowers. Int. J.
Phytoremediation 9, 149–165.
Nejad, Z.D. , Jung, M.C. and Kim, K.H. 2018. Remediation of soils contaminated with heavy metals with an
emphasis on immobilization technology. Environ. Geochem. Health 40(3), 927–953.
Nikalje, G.C. and Suprasanna, P. 2018. Coping with metal toxicity – cues from halophytes. Front. Plant Sci. 9,
777.
Oladoye, P.O. 2022. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste) water: A state-
of-the-art review. Chemosphere 287, 132130.
Olowe, O.M. , Akanmu, A.O. and Asemoloye, M.D. 2020. Exploration of microbial stimulants for induction of
systemic resistance in plant disease management. Ann. Appl. Biol. 177(3), 282–293.
Padmavathiamma, P.K. and Li, L.Y. 2012. Rhizosphere influence and seasonal impact on phytostabilisation of
metals – a field study. Water Air Soil Pollut. 223, 107–124.
Pan, X.D. , Wu, P.G. and Jiang, X.G. 2016. Levels and potential health risk of heavy metals in marketed
vegetables in Zhejiang, China. Sci. Rep. 6(1), 20317.
Pandiyan, J. , Mahboob, S. , Govindarajan, M. , Al-Ghanim, K.A. , Ahmed, Z. , Al-Mulhm, N.J. and Krishnappa,
R. 2021. An assessment of the level of heavy metals pollution in the water, sediment, and aquatic organisms: A
perspective of tackling environmental threats for food security. Saudi J. Biol. Sci. 28(2), 1218–1225.
Phillips, D.P. , Human, L.R.D. and Adams, J.B. 2015. Wetland plants as indicators of heavy metal
contamination. Mar. Pollut. Bull. 92(1–2), 227–232.
Prasad, M.N.V. 2003. Phytoremediation of metal-polluted ecosystems: Hype for commercialization. Russ. J.
Plant Physiol. 50, 686–701.
Radziemska, M. , Vaverková, M.D. and Baryła, A. 2017. Phytostabilization – management strategy for
stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 14(9), 958.
Rai, P.K. , Lee, S.S. , Zhang, M. , Tsang, Y.F. and Kim, K. 2019. Heavy metals in food crops: Health risks, fate,
mechanisms, and management. Environ. Int. 125(2019), 365–385.
Rascio, N. and Navari-Izzo, F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And
what makes them so interesting? Plant Sci. 180, 169–181.
Raskin, I. , Smith, R.D. and Salt, D.E. 1997. Phytoremediation of metals: Using plants to remove pollutants from
the environment. Curr. Opin. Biotechnol. 8, 221–226.
Rezania, S. , Taib, S.M. , Md Din, M.F. , Dahalan, F.A. and Kamyab, H. 2016. Comprehensive review on
phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard Mater.
318, 587–599.
Rezapour, S. , Golmohammad, H. and Ramezanpour, H. 2014. Impact of parent rock and topography aspect
on the distribution of soil trace metals in natural ecosystems. Int. J. Environ. Sci. Technol. 11(7), 2075–2086.
Robinson, B. , Kim, N. , Marchetti, M. , Moni, C. , Schroeter, L. , van den Dijssel, C. and Clothier, B. 2006.
Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environ. Exp.
Bot. 58(1–3), 206–215.
Sachs, J. 1865. Handbuch der Experimental-Physiologie der Pflanzen. Wilhelm Engelmann Verlag, Leipzig,
Germany, pp. 153–154.
Salt, D.E. , Blaylock, M. , Kumar, N.P. , Dushenkov, V. , Ensley, B.D. , Chet, I. and Raskin, I. 1995.
Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants.
Biotechnology 13(5), 468–474.
Salt, D.E. , Smith, R.D. and Raskin, I. 1998. Phytoremediation. Annu. Rev. Plant Physiol. 49, 643–668.
Sarret, G. , Vangronsveld, J. , Manceau, A. , Musso, M. , D'Haen, J. , Menthonnex, J.J. and Hazemann, J.L.
2001. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ.
Sci. Technol. 35(13), 2854–2859.
Sarwar, N. , Imran, M. , Shaheen, M.R. , Ishaque, W. , Kamran, M.A. , Matloob, A. , Rehim, A. and Hussain, S.
2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future
perspectives. Chemosphere 171, 710–721.
Sas-Nowosielska, A. , Kucharski, R. , Małkowski, E. , Pogrzeba, M. , Kuperberg, J.M. and Kryński, K.J.E.P.
2004. Phytoextraction crop disposal – an unsolved problem. Environ. Pollution. 128(3), 373–379.
Schalk, I.J. , Hannauer, M. and Braud, A. 2011. New roles for bacterial siderophores in metal transport and
tolerance. Environ. Microbiol. 13, 2844–2854.
Sharma, B. , Sarkar, A. , Singh, P. and Singh, R.P. 2017. Agricultural utilization of biosolids: A review on
potential effects on soil and plant grown. Waste Manag. 64, 117–132.
Sheoran, V. , Sheoran, A.S. and Poonia, P. 2010. Role of hyperaccumulators in phytoextraction of metals from
contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 41, 168–214.
Singh, A. and Prasad, S.M. 2015. Remediation of heavy metal contaminated ecosystem: An overview on
technology advancement. Int. J. Environ. Sci. Technol. 12(1), 353–366.
Singh, J. and Kalamdhad, A.S. 2013. Effects of lime on bioavailability and leachability of heavy metals during
agitated pile composting of water hyacinth. Bioresour. Technol. 138, 148–155.
Smolińska, B. and Król, K. 2012. Leaching of mercury during phytoextraction assisted by EDTA, KI and citric
acid. J. Chem. Technol. Biotechnol. 87(9), 1360–1365.
Souza, L.A. , Piotto, F.A. , Nogueirol, R.C. and Azevedo, R.A. 2013. Use of nonhyperaccumulator plant species
for the phytoextraction of heavy metals using chelating agents. Sci. Agric. 70, 290–295.
Srivastava, S. , Sounderajan, S. , Udas, A. and Suprasanna, P. 2014. Effect of combinations of aquatic plants
(Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecol. Eng. 73,
297–301.
Srivastava, V. , Sarkar, A. , Singh, S. , Singh, P. , de Araujo, A.S.F. and Singh, R.P. 2017. Agroecological
responses of heavy metal pollution with special emphasis on soil health and plant performances. Front.
Environ. Sci. 5, 64.
Stals, M. , Thijssen, E. , Vangronsveld, J. , Carleer, R. , Schreurs, S. and Yperman, J. 2010. Flash pyrolysis of
heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and
wood/leaves blended pyrolysis on the behaviour of heavy metals. J. Anal. Appl. Pyrolysis 87, 1–7.
Streets, D. , Lu, Z. , Levin, L. and Terschure, A. 2017. 2017 Sunderland, E. Historical releases of mercury to air,
land, and water from coal combustion. Sci. Total Environ. 615, 131–140.
Suman, J. , Uhlik, O. , Viktorova, J. and Macek, T. 2018. Phytoextraction of heavy metals: A promising tool for
clean-up of polluted environment? Front. Plant Sci. 9, 1476.
Sutton, D.J. and Tchounwou, P.B. 2007. Mercury induces the externalization of phosphatidyl-serine in human
renal proximal tubule (HK-2) cells. Int. J. Environ. Res. Publ. Health 4, 138–144.
Sutton, D.J. , Tchounwou, P.B. , Ninashvili, N. and Shen, E. 2002. Mercury induces cytotoxicity and
transcriptionally activates stress genesin human liver carcinoma (HepG2) cells. Int. J. Mol. Sci. 3, 965–984.
Šyc, M. , Pohořelý, M. , Kameníková, P. , Habart, J. , Svoboda, K. and Punčochář, M. 2012. Willow trees from
heavy metals phytoextraction as energy crops. Biomass and Bioenergy 37, 106–113.
Tchounwou, P.B. , Centeno, J.A. and Patlolla, A.K. 2004a. Arsenic toxicity, mutagenesis, and carcinogenesis –
a health risk assessment and management approach. Mol. Cell. Biochem. 255, 47–55.
Tchounwou, P.B. , Ishaque, A.B. and Schneider, J. 2001. Cytotoxicity and transcriptional activation of stress
genes in human liver carcinoma cells (HepG2) exposed to cadmium chloride. Mol. Cell. Biochem. 222, 21–28.
Tchounwou, P.B. , Newsome, C. , Williams, J. and Glass, K. 2008. Copper-induced cytotoxicity and
transcriptional activation of stress genes in human liver carcinoma (HepG(2)) cells. Met. Ions Biol. Med. 10,
285–290.
Tchounwou, P.B. , Yedjou, C.G. , Foxx, D.N. , Ishaque, A.B. and Shen, E. 2004b. Lead-induced cytotoxicity
and transcriptional activation of stress genes in human liver carcinoma (HepG2) cells. Mol. Cell. Biochem. 255,
161–170.
Tchounwou, P.B. , Yedjou, C.G. , Patlolla, A.K. and Sutton, D.J. 2012. Heavy metal toxicity and the
environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. pp.
133–164. Springer, Basel.
Terry, N. , Carlson, C. , Raab, T. and Zayed, A.M. 1992. Rates of selenium volatilization among crop species. J.
Environ. Qual. 21, 341–344.
Terry, N. , Zayed, A.M. , De Souza, M.P. and Tarun, A.S. 2000. Selenium in higher plants. Annu. Rev. Plant
Physiol. 51, 401–432.
Thangavel, P. and Subbhuraam, C. 2004. Phytoextraction: Role of hyperaccumulators in metal contaminated
soils. Proc. Indian Nat. Sci. Acad. B 70, 109–130.
Tian, K. , Huang, B. , Xing, Z. and Hu, W. 2017. Geochemical baseline establishment and ecological risk
evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol. Indicat. 72, 510–520.
Todorović, Z.B. , Ranđelović, L.M. , Marjanović, J.Z. , Todorović, V. , Cakić, M. and Cvetković, O.G. 2014. The
assessment and distribution of heavy metals in surface sediments from the reservoir ‘Barje’: Serbia.
Savremene Tehnologije 3(2), 85–95.
Tóth, G. , Hermann, T. , Da Silva, M.R. and Montanarella, L.J.E.I. 2016. Heavy metals in agricultural soils of the
European Union with implications for food safety. Environ. Int. 88, 299–309.
United Nations . 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. March 25,
2017.
https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20D
evelopment%20web.pdf.
Upadhyay, M.K. , Gautam, A. , Mallick, S. and Srivastava, S. 2017. A successive application approach for
effective utilization of three aquatic plants in arsenic removal. Water Air Soil Pollut. 228(2), 54.
US EPA . 1992. Method 1311, Toxicity Characteristic Leaching Procedure (TCLP). Publication SW) 846: Test
Methods for Evaluating Solid Waste, Physical/Chemical Methods.
US EPA Method 1312; U.S. Environmental Protection Agency , 1986; 1994 update.
Vangronsveld, J. , Herzig, R. , Weyens, N. , Boulet, J. , Adriaensen, K. , Ruttens, A. and van der Lelie, D. 2009.
Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res.
16(7), 765–794.
Vhahangwele, M. and Mugera, G.W. 2015. Journal of environmental chemical engineering the potential of ball-
milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous.
Biochem. Pharmacol. 3, 2416–2425.
Vimercati, L. , Gatti, M.F. , Gagliardi, T. , Cuccaro, F. , De Maria, L. , Caputi, A. , Quarato, M. and Baldassarre,
A. 2017. Environmental exposure to arsenic and chromium in an industrial area. Environ. Sci. Pollut. Res. Int.
11528–11535.
Walker, D.J. , Lutts, S. , Sanchez-Garcia, M. and Correal, E. 2014. Atriplex halimus L.: Its biology and uses. J.
Arid Environ. 100–101, 111–121.
Wang, A.S. , Angle, J.S. , Chaney, R.L. , Delorme, T.A. and Reeves, R.D. 2006. Soil pH effects on uptake of
Cd and Zn by Thlaspi caerulescens. Plant Soil 281, 325–337.
Wang, S. and Shi, X. 2001. Molecular mechanisms of metal toxicity and carcinogenesis. Mol. Cell. Biochem.
222, 3–9.
Wang, Y. , Qiu, Q. , Xin, G. , Yang, Z. , Zheng, J. , Ye, Z. and Li, S. 2013. Heavy metal contamination in a
vulnerable mangrove swamp in South China. Environ. Monit. Assess. 185, 5775–5787.
WHO . 1996. Trace Elements in Human Nutrition and Health. World Health Organization, Geneva.
Wong, M.H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils.
Chemosphere 50, 775–780.
Wu, G. , Kang, H. , Zhang, X. , Shao, H. , Chu, L. and Ruan, C. 2010. A critical review on the bio-removal of
hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and
opportunities. J. Hazard Mater. 174, 1–8.
Wuana, R.A. and Okieimen, F.E. 2011. Heavy metals in contaminated soils: A review of sources, chemistry,
risks and best available strategies for remediation. ISRN Ecol 1–20.
Yan, X. , Liu, M. , Zhong, J. , Guo, J. and Wu, W. 2018. How human activities affect heavy metal contamination
of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustain. Times 10,
1–19.
Yedjou, C.G. and Tchounwou, P.B. 2007a. N-acetyl-L-cysteine affords protection against lead-induced
cytotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int. J. Environ. Res. Publ. Health 4,
132–137.
Yedjou, C.G. and Tchounwou, P.B. 2007b. In-vitro cytotoxic and genotoxic effects of arsenic trioxide on human
leukemia (HL-60) cells using the MTT and alkaline single cell gel electrophoresis (Comet) assays. Mol. Cell.
Biochem. 301, 123–130.
Zalewska, T. and Danowska, B. 2017. Marine environment status assessment based on microphytobenthos
plants as bioindicators of heavy metals pollution. Mar. Pollut. Bull. 118, 281–288.
Zhang, X. , Zhong, T. , Lei, L. and Liu, X.O. 2015. Impact of soil heavy metal pollution on food safety in China.
PloS One 10(8), e0135182.
Zhao, F.J. , Lombi, E. , Breedon, T. and McGrath, S.P. 2000. Zinc hyperaccumulation and cellular distribution in
Arabidopsis halleri. Plant Cell Environ. 23, 507–514.
Zhao, Q. and Kaluarachchi, J.J. 2002. Risk assessment at hazardous waste-contaminated sites with variability
of population characteristics. Environ. Int. 28, 41–53.
Impact of Contamination of Agricultural Soil on Humans and the Environment
Abdel-Mallek, A.Y. , Moharram, A.M. , Abdel-Kader, M.I. and Omar, S.A. (1994). Effect of soil treatment with
the organophosphorus insecticide Profenfos on the fungal flora and some microbial activities. Microbiological
Research, 149(2): 167–171.
Ajuzie, C.U. , Atuanya, E.I. and Enerijiofi, K.E. (2015). Biodegradation potentials of microorganisms isolated
from eleme petrochemical industrial effluent. Nigerian Society for Experimental Biology Journal, 15(4):
128–136.
Asante, S.K. , Tamo, M. and Jackai, L.E.N. (2001). Integrated management of cowpea insect pests using elite
cultivars, date of planting and minimum insecticide application. African Crop Science Journal, 9: 655–665.
Azzi, V. , El Samrani, A. , Lartiges, B. , Kobeissi, A. , Kanso, A. and Kazpard, V. (2017). Trace metals in
phosphate fertilizers used in eastern Mediterranean countries. CLEAN – Soil, Air, Water, 45(1).
Bhattacharyya, R. , Chandra, S. , Singh, R.D. , Kundu, S. , Srivastva, A.K. and Gupta, H.S. (2007). Long-term
farmyard manure application effects on properties of a silty clay Loam soil under irrigated wheat– soybean
rotation. Soil & Tillage Research, 94: 386–396.
Bhowmik, D. , Chetri, S. , Enerijiofi, K.E. , Naha, A. , Kanungo, T.D. , Shah, M.P. and Nath, S. (2023).
Multitudinous approaches, challenges and opportunities of bioelectrochemical systems in conversion of wastes
to energy from wastewater treatment plants. Journal of Cleaner and Circular Bioeconomy-Elsevier, 4: 100040.
Cameron, K.C. , Di, H.J. and Moir, J.L. (2013). Nitrogen losses from the soil/plant system: A review: Nitrogen
losses. Annals of Applied Biology, 162(2): 145–173.
Centers for Disease Control and Prevention . (2007). Pesticides. Wayback Machine. cdc.gov.
Curl, E.A. (1963). Control of plant diseases by crop rotation. The Botanical Review, 29: 413–479.
Dara, S.K. (2019). The new integrated pest management paradigm for the modern age. Journal of Integrated
Pest Management, 10(1): 1–9, 12.
Dara, S.K. , Peck, D. and Murray, D. (2018). Chemical and non-chemical options for managing twospotted
spider mite, western tarnished plant bug and other arthropod pests in strawberries. Insects, 9: 156.
Dara, S.K. , Sandoval-Solis, S. and Peck, D. (2016). Improving strawberry irrigation with micro-sprinklers and
their impact on pest management. Agricultural Sciences, 7: 859–868.
Davis, J.L. , Armengaud, P. , Larson, T.R. , Graham, I.A. , White, P.J. , Newton, A.C. and Amtmann, A. (2018).
Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects on two
fungal pathogens with different sensitivities to jasmonic acid. Plant, Cell & Environment, 41: 2357–2372.
Demirbas, A. and Ozturk, T. (2005). Anaerobic digestion of agricultural solid residues. International Journal of
Green Energy, 1(4): 483–494.
Devi, P.I. , Manjula, M. and Bhavani, R.V. (2022). Agrochemicals, environment, and human health. Annual
Review of Environment and Resources, 47: 399–421.
Dodia, D.A. , Patel, I.S. and Patel, G.M. (2010). Botanical Pesticides for Pest Management. Scientific
Publishers (India).
Dosdall, L.M. , Herbut, M.J. , Cowle, N.T. and Micklich, T.M. (1996). The effect of seeding date and plant
density on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola. Canadian Journal of
Plant Science, 76: 169–177.
El-Sayed, A.M. , Suckling, D.M. , Byers, J.A. , Jang, E.B. and Wearing, C.H. (2009). Potential of “lure and kill” in
long-term pest management and eradication of invasive species. Journal of Economic Entomology, 102:
815–835.
Enerijiofi, K.E. and Ajuzie, C.U. (2012). Health impact of some heavy metals resistance in microbes isolated
from ikhueniro refuse dumpsite, Benin City. Nigerian Journal of Microbiology, 26: 2593–2599.
Enerijiofi, K.E. and Ekhaise, F.O. (2019a). Physicochemical and microbiological characterisation of Edaiken
and Santana markets open solid waste dumpsites soils in Benin City, Nigeria. FULafia Journal of Science and
Technology, 5(2): 136–149.
Enerijiofi, K.E. and Ekhaise, F.O. (2022). Achieving ecofriendly environment through sustainable management
of solid wastes in the ecosystem. In: T. Aftab (Ed.), Sustainable Management of Environmental Contaminants:
Eco-friendly Remediation Approaches. Springer, pp. 451–470. https://doi.org/10.1007/978-3-031-08446-1_17
Enerijiofi, K.E. and Ikhajiagbe, B. (2021). Plant-microbe interaction in attenuation of toxic waste in ecosystem.
In: V. Kumar , R. Prasad , and M. Kumar (Eds.), Rhizobiont in Bioremediation of Hazardous Waste. Springer,
pp. 291–315. https://doi.org/10.1007/978-981-16-0602-1_13 Online ISBN: 978-981-16-0601-4 Print ISBN: 978-
981-16-06021-1
Enerijiofi, K.E. and Obade, E. (2018). Assessment of the impact of herbicide contaminated top soils on its
physiochemical, microbiological and enzymatic properties. FUW Trends in Science and Technology Journal,
3(2): 802–806
Enerijiofi, K.E. , Ahonsi, C.O. and Ajao, E.K. (2020). Biodegradation potentials of waste engine oil by three
bacterial isolates. Journal of Applied Sciences and Environmental Management, 24(3): 483–487.
https://dx.doi.org/10.4314/jasem.v24i3.14.
Enerijiofi, K.E. , Fakeye, O.D. and Oziegbe, O.S. (2018). Physicochemical and microbial assessment of sewage
from Ogwa and ebelle communities of Esan Land, Edo State. Bayero Journal of Pure and Applied Sciences,
11(1): 202–207. http://dx.doi.org/10.4314/bajopas.v11i1.35
Enerijiofi, K.E. , Okuguni, N.N. and Ajayi, A.V. (2022). Physicochemical composition and heavy metals
tolerance of bacterial isolates in leachate from Solid waste dumpsites in Delta North Senatorial District, Delta
State. Jordan Journal of Earth and Environmental Sciences – Elsevier, 13(1): 48–52.
FAO . (2019). The International Code of Conduct for the Sustainable Use and Management of Fertilizers. Food
and Agriculture Organization of the United Nations.
Fargione, J.E. , Bassett, S. , Boucher, T. , Bridgham, S.D. , Conant, R.T. , Cook-Patton, S.C. , Ellis, P.W. ,
Falcucci, A. , Fourqurean, J.W. , Gopalakrishna, T. , Gu, H. , Henderson, B. , Hurteau, M.D. , Kroeger, K.D. ,
Kroeger, T. , Lark, T.J. , Leavitt, S.M. , Lomax, G. , McDonald, R.I. , Megonigal, J.P. , Miteva, D.A. ,
Richardson, C.J. , Sanderman, J. , Shoch, D. , Spawn, S.A. , Veldman, J.W. , Williams, C.A. , Woodbury, P.B. ,
Zganjar, C. , Baranski, M. , Elias, P. , Houghton, R.A. , Landis, E. , McGlynn, E. , Schlesinger, W.H. , Siikamaki,
J.V. , Sutton-Grier, A.E. and Griscom, B.W. (2018). Natural climate solutions for the United States. Science
Advice, 4.
Foster, S.P. and Harris, M.O. (1997). Behavioral manipulation methods for insect pest-management. Annual
Review of Entomology, 42: 123–146.
Gamliel, A. and Katan, J. (2012). Solarization: Theory and Practice. American Phytopathological Society.
Gionfra, S. (2018). Plastic Pollution in Soils. Institute for European Environmental Policy, p. 18.
Gogo, E.O. , Saidi, M. , Ochieng, J.M. , Martin, T. , Baird, V. and Ngouajio, M. (2014). Microclimate modification
and insect pest exclusion using agronet improve pod yield and quality of French bean. HortScience, 49:
1298–1304.
Gruda, N. and Popsimonova, G. (2017). Current situation and future trends of protected cultivation in South
East Europe. In: W. Baudoin , A. Nersisyan , A. Shamilov , A. Hodder , D. Gutierrez , S. de Pascale , S. Nicola ,
N. Gruda , L. Urban , and J. Tanny (Eds.), Good Agricultural Practices for Greenhouse Vegetable Production in
the South East European countries – Principles for Sustainable Intensification of Smallholder Farms. Plant
Production and Protection Paper Edition, pp. 17–26.
Hajek, A.E. and Eilenberg, J. (2018). Natural Enemies: An Introduction to Biological Control. Cambridge
University Press.
Hatfield, J.L. , Sauer, T.J. and Cruse, R.M. (2017). Chapter one – soil: The forgotten piece of the water, food,
energy Nexus. In: D.L. Sparks (Ed.), Advances in Agronomy. Academic Press, p. 65.
Heimpel, G.E. and Cock, M.J.W. (2018). Shifting paradigms in the history of classical biological control.
BioControl, 63: 27–37.
Heinz, K.M. , Parrella, M.P. and Newman, J.P. (1992). Time-efficient use of yellow sticky traps in monitoring
insect populations. Journal of Economic Entomology, 85: 2263–2269.
Hodson, A.K. and Lampinen, B.D. (2018). Effects of cultivar and leaf traits on the abundance of Pacific spider
mites in almond orchards. Arthropod Plant Interact: 1–11.
Ikhajiagbe, B. , Enerijiofi, K.E. and Umendu, P.O. (2021). Mycorestoration of an oil polluted soil. Studia
Universitatis Babeş-Bolyai Biologia, 66(1): 73–84.
Jansen, L. , Henskens, M. and Hiemstra, F. (2019). Report on Use of Plastics in Agriculture. Schuttelaar &
Partners Edition, p. 19.
Jat, L.K. , Singh, S.K. , Latare, A.M. , Singh, R.S. and Patel, C.B. (2013). Effect of dates of sowing and fertilizer
on growth and yield of wheat (Triticumaestivum) in an inceptisol of Varanasi. Indian Journal of Agronomy, 58:
611–614.
Jiao, W. , Chen, W. , Chang, A.C. and Page, A.L. (2012). Environmental risks of trace elements associated with
long-term phosphate fertilizers applications: A review. Environmental Pollution, 168: 44–53.
Karungi, J. , Adipala, E. , Ogenga-Latigo, M.W. , Kyamanywa, S. and Oyobo, N. (2000). Pest management in
cowpea. Part 1. Influence of planting time and plant density on cowpea field pests infestation in eastern
Uganda. Crop Protection, 19: 231–236.
Kellogg, R.L. , Nehring, R. , Grube, A. , Goss, D.W. and Plotkin, S. (2000). Environmental indicators of
pesticide leaching and runoff from farm fields. Archived 18 June 2002 at the Wayback Machine. United States
Department of Agriculture Natural Resources Conservation Service.
Kenis, M. , Hurley, B.P. , Hajek, A.E. and Cock, M.J.W. (2017). Classical biological control of insect pests of
trees: Facts and figures. Biological Invasions, 19: 3401–3417.
Kim, K.-H. , Kabir, E. and Jahan, S.A. (2017). Exposure to pesticides and the associated human health effects.
Science of the Total Environment, 575: 525–535.
Klassen, W. and Curtis, C.F. (2005). History of the sterile insect technique. In: V.A. Dyck , J. Hendrichs , and A.
Robinson (Eds.), Sterile Insect Technique. Springer, pp. 3–36.
Kumar, M. , Baishaya, L.K. , Ghosh, D.C. , Gupta, V.K. , Dubey, S.K. , Das, A. and Patel, D.P. (2014).
Productivity and soil health of potato (Solanum tuberosum L.) field as influenced by organic manures, inorganic
fertilizers and biofertilizers under high altitudes of eastern Himalayas. Journal of Agriculture Science, 4:
223–234.
Kumar, V. , Tripathi, H.C. and Mishra, S.K. (2012). Impact of integrated nutrient management on yield,
economics and soil fertility in hybrid rice (Oryza sativa) – mustard (Brassica juncea) cropping system. New
Agriculturist, 23: 21–26.
Kunjwal, N. and Srivastava, R.M. (2018). Insect pests of vegetables. In: Omkar (Ed.), Pests and Their
Management. Springer, pp. 163–221.
Lasota, J.A. and Dybas, R.A. (1991). Avermectins, a novel class of compounds: Implications for use in
arthropod pest control. Annual Review of Entomology, 36: 91–117.
Leach, H. Moses, J. , Hanson, E. , Fanning, P. and Isaacs, R. (2017). Rapid harvest schedules and fruit
removal as non-chemical approaches for managing spotted wing Drosophila. Journal of Pest Science, 91:
219–226.
Liebman, M. and Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecological
Applications, 3: 92–122.
Madrid, F. , López, R. and Cabrera, F. (2007). Metal accumulation in soil after application of municipal solid
waste compost under intensive farming conditions. Agriculture, Ecosystems & Environment, 119(3): 249–256.
Mahanta, D.K. , Chandrashekara, C. , Arunkumar, R. , Mina, B.L. , Pandey, B.M. , Mishra, P.K. , Bisht, J.K.
Srivastva, A.K. and Bhatt, J.C. (2013). Influence farmyard manure application and mineral fertilization on yield
sustainability, carbon sequestration potential and soil property of Garden pea– French bean cropping system in
the Indian Himalayas. Scientia Horticulturae, 164: 414–427.
Manuel, A.E. , López-Periago, E. , Martínez-Carballo, E. , Gándara, J.S. , Mejuto, J.C. and García-Río, L.
(2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources (PDF).
Agriculture, Ecosystems and Environment, 123(4): 247–260.
Meena, V.S. , Maurya, B.R. , Bohra, J.S. , Verma, R. and Meena, M.D. (2013). Effect of concentrate manure
and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of
Varanasi. Field Crops Research, 245: 6–12.
Mirandaesquivel, N. , de La Cruz, J.L.I. , Pacheco, R.G. , Enerijiofi, K.E. and Sanchez-Yanez, J.M. (2023).
Bioremediation and accelerated phytoremediation of a soil impacted by a hydrocarbon mixture. International
Journal of Plant and Soil Science, 35(23): 58–66.
Mohler, C.L. and Johnson, S.E. (2009). Crop Rotation on Organic Farms a Planning Manual. Natural Resource,
Agriculture, and Engineering Service.
Morrison, W.R. , Lee, D.-H. , Short, B.D. , Khrimian, A. and Leskey, T.C. (2016). Establishing the behavioral
basis for an attract-and-kill strategy to manage the invasive Halyomorpha halys in apple orchards. Journal of
Pest Science, 89: 81–96.
Musa, S.I. and Ikhajiagbe, B. (2021). Screening of bacterial isolates for phosphate solubilizing capability in a
ferruginous ultisol in Benin city, Edo State Nigeria. Bayero Journal of Pure and Applied Sciences, 13(2):
94–106.
Nielsen, A.L. , Dively, G. , Pote, J.M. , Zinati, G. and Mathews, C. (2016). Identifying a potential trap crop for a
novel insect pest, Halyomorpha halys (Hemiptera: Pentatomidae), in organic farms. Environmental Entomology,
45: 472–478.
Poulsen, H.D. (1998). Zinc and copper as feed additives, growth factors or unwanted environmental factors.
Journal of Animal and Feed Sciences, 7(Suppl. 1): 135–142.
Pretty, J. and Bharucha, Z.P. (2015). Integrated pest management for sustainable intensification of agriculture
in Asia and Africa. Insects, 6: 152–182.
Qadir, M. , Wichelns, D. , Raschid-Sally, L. , McCornick, P.G. , Drechsel, P. , Bahri, A. and Minhas, P.S. (2010).
The challenges of wastewater irrigation in developing countries. Agricultural Water Management, 97(4):
561–568.
Rahman, M.H. , Islam, M.R. , Jahiruddin, M. , Rafii, M.Y. , Hanafi, M.M. and Malek, M.A. (2013). Integrated
nutrient management in maize-legume-rice cropping pattern and its impact on soil fertility. Journal of Food,
Agriculture and Environment, 11: 648–652.
Reta, G. , Dong, X. , Li, Z. , Su, B. , Hu, X. , Bo, H. , Yu, D.S. , Wan, H. , Liu, J.R. , Li, Y. , Xu, G. , Wang, K.
and Xu, S. (2018). Environmental impact of phosphate mining and beneficiation: Review. International Journal
of Hydrogen, 2(4): 424–431.
Sarfraz, M. , Dosdall, L.M. and Keddie, B.A. (2005). Spinosad: A promising tool for integrated pest
management. Outlooks on Pest Management, 16: 78–84.
Scott, C.A. , Faruqui, N.I. and Raschid-Sally, L. (Eds.). (2004). Wastewater Use in Irrigated Agriculture:
Confronting the Livelihood and Environmental Realities. CABI.
Shorey, H.H. and Gerber, R.G. (1996). Use of puffers for disruption of sex pheromone communication among
navel orangeworm moths (Lepidoptera: Pyralidae) in almonds, pistachios, and walnuts. Environmental
Entomology, 25: 1154–1157.
Snoeijers, S.S. , Pérez-García, A. Joosten, M.H.A.J. and De Wit, P.J.G.M. (2000). The effect of nitrogen on
disease development and gene expression in bacterial and fungal plant pathogens. European Journal of Plant
Pathology, 106: 493–506.
Soni Kumari and Amarnath Mishra . (2021). Heavy Metals Contamination, Open Access Peer Reviewed
Chapter. Soni Kumari and Amarnath Mishra.
Van Lenteren, J.C. (1988). Biological and integrated pest control in greenhouses. Annual Review of
Entomology, 33: 239–269.
Vladés, E.M.A.E. , Aldana, L.L.L. , Figueroa, B.R. , Gutiérrez, O.M. , Hernández, R.M.C. and Chavelas, M.T.
(2005). Trapping of Scyphophorus acupunctatus (Coleoptera: Curculionidae) with two natural baits in a field of
Polianthes tuberosa (Liliales: Agavaceae) in the state of Morelos, México. Florida Entomologist, 88: 338–340.
Vox, G. , Loisi, R.V. , Blanco, I. , Mugnozza, G.S. and Schettini, E. (2016). Mapping of agriculture plastic
Waste. Agriculture and Agricultural Science Procedia, 8: 583–591.
Vukicevich, E. , Lowery, T. , Bowen, P. , Úrbez-Torres, J.R. and Hart, M. (2016). Cover crops to increase soil
microbial diversity and mitigate decline in perennial agriculture. A review. Agronomy for Sustainable
Development, 36.
Wang, C. , Wu, S. , Zhou, S. , Shi, Y. and Song, J. (2017). Characteristics and source identification of polycyclic
aromatic hydrocarbons (PAHs) in urban soils: A review. Pedosphere, 27(1): 17–26.
Wang, H. , Dong, Y. and Wang, H. (2014). Hazardous metals in animal manure and their changes from 1990 to
2010 in China. Toxicological & Environmental Chemistry, 96(9): 1346–1355.
Webb, S.E. and Linda, S.B. (1992). Evaluation of spunbonded polyethylene row covers as a method of
excluding insects and viruses affecting fallgrown squash in Florida. Journal of Economic Entomology, 85:
2344–2345.
Weithmann, N. , Möller, J.N. , Löder, M.G.J. , Piehl, S. , Laforsch, C. and Freitag, R. (2018). Organic fertilizer
as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4): eaap8060.
Wright, R.J. (1984). Evaluation of crop rotation for control of Colorado potato beetles (Coleoptera:
Chrysomelidae) in commercial potato fields on Long Island. Journal of Economic Entomology, 77: 1254–1259.
Xiong, X. , Yanxia, L. , Wei, L. , Chunye, L. , Wei, H. and Ming, Y. (2010). Copper content in animal manures
and potential risk of soil copper pollution with animal manure use in agriculture. Resources, Conservation and
Recycling, 54(11): 985–990.
Zalom, F.G. , Bolda, M.P. Dara, S.K. and Joseph, S. (2018). UC IPM Pest Management Guidelines: Strawberry
(Insects and Mites). University of California Statewide IPM Program, Publication Number 3468.
Zhang, H.L. , Lal, R. , Zhao, X. , Xue, J.F. and Chen, F. (2014). Opportunities and challenges soil carbon
sequestration by conservation agriculture in China. Advances in Agronomy, 124: 1–36.
Phytoexclusion and Phytostabilization
Abioye, O. P. , Ijah, U. J. J. , & Aransiola, S. A. (2017). Phytoremediation of Soil Contaminants by Biodiesel
Plant Jatropha curcas, Chapter 4 of Bauddh, K., et al. (eds.), Phytoremediation Potential of Bioenergy Plants.
Springer Nature Singapore Pte Ltd. [https://link.springer.com/book/10.1007%2F978-981-10-3084-0].
Ahmad, R. S. , Munawar, H. , Saima, H. , & Siddique, F. (2023). Introductory Chapter: Food Safety. In Food
Safety-New Insights. IntechOpen. London, United Kingdom.
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. , & Bala, J. D. (2019). Microbial-Aided Phytoremediation of Heavy
Metals Contaminated Soil: A Review. European Journal of Biological Research, 9(2), 104–125.
[http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/15].
Aransiola, S. A. , Ikhumetse, A. A. , Babaniyi, B. R. , Abioye, O. P. , Oyedele, O. J. , & Falade, N. O. (2023).
Phytoaccumulation of Micro and Nanoplastics: Root Uptake. In Maddela, N. R. , Reddy, K. V. , & Ranjit, P.
(eds.), Micro and Nanoplastics in Soil. Springer, Cham. https://doi.org/10.10007/978-3-031-21195-9_8.
Arnot, J. A. , & Gobas, F. A. (2004). A Food Web Bioaccumulation Model for Organic Chemicals in Aquatic
Ecosystems. Environmental Toxicology and Chemistry: An International Journal, 23(10), 2343–2355.
Bajwa, U. , & Sandhu, K. (2011). Effect of Handling and Processing on Pesticide Residues in Food – a Review.
Journal of Food Science and Technology, 51, 201–220.
Batty, L. C. , Baker, A. J. , & Wheeler, B. D. (2005). Juncus Subnodulosus: Can Plant Age Affect Metal
Tolerance and Uptake? New Phytologist, 165(3), 801–810.
Berti, W. R. , & Cunningham, S. D. (2000). Phytostabilization of Metals. Phytoremediation of Toxic Metals:
Using Plants to Clean Up the Environment (pp. 71–88). Wiley, New York.
Codex Alimentarius Commission . (2020). Codex Alimentarius: International Food Standards.
[http://www.fao.org/fao-who-codexalimentarius/en/].
Conway, G. (2000). Food for All in the 21st Century. Environment: Science and Policy for Sustainable
Development, 42(1), 8–18.
Dabbene, F. , Gay, P. , & Tortia, C. (2014). Traceability Issues in Food Supply Chain Management: A Review.
Biosystems Engineering, 120, 65–80.
Food and Agriculture Organization . (2019). The State of Food and Agriculture: Moving Forward on Food Loss
and Waste Reduction. [http://www.fao.org/state-of-food-agriculture/en/].
Food and Agriculture Organization . (2023). Safe Food for Everyone: Working Together for Food Safety.
[https://www.fao.org/3/cc4347en/online/safe-food-for-everyone-2023/international-cooperation-community-
awareness.html].
Food and Drug Administration . (2023). International Cooperation on Food Safety.
[https://www.fda.gov/food/international-interagency-coordination/international-cooperation-food-safety], last
accessed January 20, 2024.
Garbisu, C. , Allica, J. H. , Barrutia, O. , Alkorta, I. , & Becerril, J. M. (2002). Phytoremediation: A Technology
Using Green Plants to Remove Contaminants From Polluted Areas. Reviews on Environmental Health, 17(3),
173–188.
Garbisu, C. , Urra, J. , Mench, M. , & Kidd, P. (2019). Guide To Best Phytomanagement Practices for the
Recovery of Biodiversity in Degraded and Contaminated Sites. [https://www.phytosudoe.eu/wp-
content/uploads/2020/05/PRODUCT-WP-2-GUIDE-TO-BEST-PHYTOMANAGEMENT-PRACTICES.pdf].
Glick, B. R. (2003). Phytoremediation: Synergistic Use of Plants and Bacteria to Clean Up the Environment.
Biotechnology Advances, 21(5), 383–393.
Greipsson, S. (2011). Phytoremediation. Nature Education Knowledge, 3(10), 7.
Gupta, D. K. , Nicoloso, F. T. , & Schetinger, M. R. C. (2013). Lead Tolerance and Phytoremediation Potential
of Brazilian Leguminous Tree Species. Environmental Science and Pollution Research, 20(8), 5689–5701.
Gurtler, J. B. , & Gibson, K. E. (2022). Irrigation Water and Contamination of Fresh Produce With Bacterial
Foodborne Pathogens. Current Opinion in Food Science, 47, 100889.
Huang, J. W. , Chen, J. , & Berti, W. R. (2019). Phytoextraction of Lead from Contaminated Soils.
Environmental Science and Technology, 33(18), 3828–3833.
Insfran-Rivarola, A. , Tlapa, D. , Limon-Romero, J. , Baez-Lopez, Y. , Miranda-Ackerman, M. , Arredondo-Soto,
K. , & Ontiveros, S. (2020). A Systematic Review and Meta-Analysis of the Effects of Food Safety and Hygiene
Training on Food Handlers. Foods, 9(9), 1169.
Khalid, S. , Shahid, M. , Natasha, Bibi, I. , Sarwar, T. , Shah, A. H. , & Niazi, N. K. (2018). A Review of
Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation With a Focus
on Low and High-Income Countries. International Journal of Environmental Research and Public Health, 15(5),
895.
Khan, M. A. , Nizami, A. S. , & Tariq, R. (2019). Phytoremediation: An Environmentally Sustainable Green
Technology for Management of Heavy Metal Contaminated Soils. Ecological Engineering, 127, 497–507.
Khan, Z. , Fan, X. , Khan, M. N. , Khan, M. A. , Zhang, K. , Fu, Y. , & Shen, H. (2022). The Toxicity of Heavy
Metals and Plant Signaling Facilitated By Biochar Application: Implications for Stress Mitigation and Crop
Production. Chemosphere, 308, 136466.
Kumar, P. B. A. N. , Dushenkov, V. , Motto, H. , & Raskin, I. (2016). Phytoextraction: The Use of Plants to
Remove Heavy Metals from Soils. Environmental Science and Technology, 29(5), 1232–1238.
Liang, B. , & Scammon, D. (2016). Food Contamination Incidents: What Do Consumers Seek Online? Who
Cares? International Journal on Nonprofit and Voluntary Sector Marketing, 21, 227–241.
Lone, M. I. , He, Z. , Stoffellapeter, J. , & Yang, X. (2008). Phytoremediation of Heavy Metal Polluted Soils and
Water: Progress and Perspectives. Journal of Zhejiang University Science B., 9(3), 210–220.
Lorestani, B. , Yousefi, N. , Cheraghi, M. , & Farmany, A. (2013). Phytoextraction and Phytostabilization
Potential of Plants Grown in the Vicinity of Heavy Metal-Contaminated Soils: A Case Study at an Industrial
Town Site. Environmental Monitoring and Assessment, 185, 10217–10223.
Meghwal, M. , Heddurshetti, U. , & Biradar, R. (2017). Good Manufacturing Practices for Food Processing
Industries: Principles and Practical Applications. In Food Technology. Applied Research and Production
Techniques, 1st Edition. Apple Academic Press, New York, pp 1–26.
Meharg, A. A. , Rahman, M. M. , & Hossain, M. (2008). Phytoremediation of Arsenic-Contaminated Paddy Soils
with the Wetland Fern Species Pteris Vittata L. Environmental Science and Technology, 42(21), 8011–8016.
Mench, M. , Lepp, N. , Bert, V. , Schwitzguébel, J. P. , Gawronski, S. W. , Schröder, P. , & Vangronsveld, J.
(2010). Successes and Limitations of Phytotechnologies at Field Scale: Outcomes, Assessment and Outlook
from COST Action 859. Journal of Soils and Sediments, 10, 1039–1070.
Mench, M. , Schwitzguébel, J. P. , Schroeder, P. , Bert, V. , Gawronski, S. W. , Gupta, S. , … Vangronsveld, J.
(2009). Assessment of Successful Experiments and Limitations of Phytotechnologies: Contaminant Uptake,
Detoxification and Sequestration, and Consequences for Food Safety. Environmental Science and Pollution
Research, 16(7), 876–900.
Mishra, S. , Kumar, R. , & Kumar, M. (2023). Use of Treated Sewage or Wastewater as an Irrigation Water for
Agricultural Purposes-Environmental, Health, and Economic Impacts. Total Environment Research Themes,
100051.
Pandey, V. , Mishra, D. , Yadav, R. , Siddiqui, A. , Hiremath, C. , Kumar, B. , & Khare, P. (2023). Phyto-
Exclusion of Pb and Cd By Different Genotypes of Andrographis Paniculata (Burm. F.) Nees: A Novel Approach
for Safe Cultivation. Industrial Crops and Products, 191, 115977.
Rajendran, S. , Priya, T. A. K. , Khoo, K. S. , Hoang, T. K. , Ng, H. S. , Munawaroh, H. S. H. , Karaman, C. ,
Orooji, Y. , & Show, P. L. (2022). A Critical Review on Various Remediation Approaches for Heavy Metal
Contaminants Removal From Contaminated Soils. Chemosphere, 287, 132369.
Rather, I. A. , Koh, W. Y. , Paek, W. K. , & Lim, J. (2017). The Sources of Chemical Contaminants in Food and
Their Health Implications. Frontiers in Pharmacology, 8, 308465.
Ryan, P. R. , Raman, H. , Gupta, S. , & Horst, W. J. (2001). Deliberating Suberization. Plant Science, 160(3),
405–413.
Sabir, N. , Singh, B. , Hasan, M. , Sumitha, R. , Deka, S. , Tanwar, R. , Ahuja, D. B. , Tomar, B. S. ,
Bambawale, O. M. , & Khah, E. M. (2010). Good Agricultural Practices (GAP) for IPM in Protected Cultivation.
Technical Bulletin, 23, 1–14.
Sadiku, M. N. , Ashaolu, T. J. , & Musa, S. M. (2020). Food Contamination: A Primer. International Journal of
Advanced Science and Research, 6(03), 01–07.
Salt, D. E. , Smith, R. D. , & Raskin, I. (1995). Phytoremediation. Annual Review of Plant Biology, 46(1), 15–36.
Santhoshkumar, M. , Reddy, G. C. , & Sangwan, P. S. (2017). A Review on Organic Farming-Sustainable
Agriculture Development. International Journal of Pure and Applied Bioscience, 5(4), 1277–1282.
Shackira, A. M. , & Puthur, J. T. (2019). Phytostabilization of Heavy Metals: Understanding of Principles and
Practices. Plant-Metal Interactions, 263–282.
Shrivastava, P. , & Kumar, R. (2015). Soil Salinity: A Serious Environmental Issue and Plant Growth
Promoting Bacteria as One of the Tools for Its Alleviation . Saudi Journal of Biological Sciences, 22(2),
123–131.
Smith, R. A. , & Bidstrup, P. L. (2009). Food Contamination: Sources and Surveillance. Food Security in
Australia, 67–85.
Song, Y. , Kirkwood, N. , Maksimovic, C. , Zheng, X. , O'Connor, D. , Jin, Y. , & Hou, D. (2019). Nature Based
Solutions for Contaminated Land Remediation and Brownfield Redevelopment in Cities: A Review. Science of
the Total Environment, 663, 568–579.
Swanenburg, M. , Rijsman, V. M. C. , Teeuw, J. , Mengelers, M. J. B. , Noordam, M. Y. , & Schwarz-Bovee, A.
(2001). A Framework for Defining Hazard Indicators in the Food Supply Chain. Agricultural Economics
Research Institute, Wageningen, The Netherlands.
Szynkowska, M. I. , Pawlaczyk, A. , & Mackiewicz, E. (2018). Bioaccumulation and Biomagnification of Trace
Elements in the Environment. Recent Advances in Trace Elements, 251–276.
Tordoff, G. M. , Baker, A. J. , Willis, A. J. , & Massacci, A. (2000). Heavy Metal Tolerance in Plants: Strategies
for Phytoremediation. Environmental Science and Technology, 34(18), 4505–4511.
Ucar, Y. , Ceylan, Z. , Durmus, M. , Tomar, O. , & Cetinkaya, T. (2021). Application of Cold Plasma Technology
in the Food Industry and Its Combination with Other Emerging Technologies. Trends in Food Science &
Technology, 114, 355–371.
United States Department of Agriculture . (2022). A Citizen’s Guide to Phytoremediation.
[https://www.da.gov/remedytech/citizens-guide-phytoremediation].
Unnevehr, L. J. , & Jensen, H. H. (1999). The Economic Implications of Using HACCP as a Food Safety
Regulatory Standard. Food Policy, 24, 625–635.
Villanueva, C. , Kogevinas, M. , Cordier, S. , Templeton, M. , Vermeulen, R. , & Nuckols, J. (2013). Assessing
Exposure and Health Consequences of Chemicals in Drinking Water: Current State of Knowledge and
Research Needs. Environmental Health Perspectives, 122, 213–221.
Wang, L. , Zhang, Q. , Liao, X. , Li, X. , Zheng, S. , & Zhao, F. (2021). Phytoexclusion of Heavy Metals Using
Low Heavy Metal Accumulating Cultivars: A Green Technology. Journal of Hazardous Materials, 413, 125427.
Wilcock, A. , Pun, M. , Khanona, J. , & Aung, M. (2004). Consumer Attitudes, Knowledge and Behaviour: A
Review of Food Safety Issues. Trends in Food Science & Technology, 15(2), 56–66.
World Health Organization . (2022). Food Safety. [https://www.who.int/news-room/fact-sheets/detail/food-
safety].
Yadav, R. , Singh, S. , Kumar, A. , & Singh, A. N. (2022). Phytoremediation: A Wonderful Cost-Effective Tool. In
Cost Effective Technologies for Solid Waste and Wastewater Treatment (pp. 179–208). Elsevier, Amsterdam,
The Netherlands.
Yuan, S. , Li, C. , Zhang, Y. , Yu, H. , Xie, Y. , Guo, Y. , & Yao, W. (2021). Ultrasound as an Emerging
Technology for the Elimination of Chemical Contaminants in Food: A review. Trends in Food Science &
Technology, 109, 374–385.
Phytoremediation
Abioye, O. P. , U. J. J. Ijah , and S. A. Aransiola . 2017. “Phytoremediation of soil contaminants by biodiesel
plant jatropha curcas.” Chapter 4 of K. Bauddh , et al. (eds.), Phytoremediation Potential of Bioenergy Plants.
Springer Nature Singapore Pte Ltd. https://link.springer.com/book/10.1007%2F978-981-10-3084-0.
Abubakar, M. M. , M. M. Ahmad , and B. U. Getso . 2014. “Rhizofiltration of heavy metals from eutrophic water
using Pistia stratiotes in a controlled environment.” IOSR J Environ Sci Toxicol Food Technol 8 (6):3.
Ahmadpour, P. F. Mahmud, T. M. M. , Abdu, A. , Soleimani, M , and Tayefeh, F. H. 2012. “Phytoremediation of
heavy metals: A green technology.” Afr J Biotechnol 11 (76):14036–14043.
Ali, H. , E. Khan , and M. A. Sajad . 2013. “Phytoremediation of heavy metals – concepts and applications.”
Chemosphere 91 (7):869–881.
Amin, H. , B. Ahmed Arain , M. S. Abbasi , F. Amin , T. M. Jahangir , and N. U. Soomro . 2019. “Evaluation of
chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective
phytoremediation.” Int J Phytorem 21 (4):352–363.
Antoniadis, V. , E. Levizou , S. M. Shaheen , Y. S. Ok , A. Sebastian , C. Baum , M. N. V. Prasad , W. W.
Wenzel , and J. Rinklebe . 2017. “Trace elements in the soil-plant interface: Phytoavailability, translocation, and
phytoremediation–A review.” Earth-Sci Rev 171:621–645.
Aransiola, S. A. , U. J. J. Ijah , and O. P. Abioye . 2013. “Phytoremediation of lead polluted soil by glycine max
L.” Appl Environ Soil Sci 2013. Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S. A. , U. J. J. Ijah , O. P. Abioye , and J. D. Bala . 2019. “Microbial-aided phytoremediation of heavy
metals contaminated soil: A review.” Eur J Biol Res 9 (2):104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Aransiola, S. A. U. J. J. Ijah, O. P. Abioye , and J. D. Bala . 2022. “Vermicompost-assisted phytoremediation of
toxic trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta.” Int J
Environ Sci Technol. http://dx.doi.org/10.1007/s13762-022-04105-y.
Awa, S. H. , and T. Hadibarata . 2020. “Removal of heavy metals in contaminated soil by phytoremediation
mechanism: A review.” Wat, Air, Soil Poll 231 (2).
Babaniyi, B. R. , O. D. Ogundele , A. Bisi-Omotosho , E. E. Babaniyi , and S. A. Aransiola . 2023. “Remediation
approaches in environmental sustainability.” In Naga Raju Maddela , Lizziane Kretli Winkelstroter Eller , and
Ram Prasad (eds.), Microbiology for Cleaner Production and Environmental Sustainability. CRC Press. ISBN:
9781032496061. https://www.routledge.com/Microbiology-for-Cleaner-Production-and-Environmental-
Sustainability/Maddela-Eller-Prasad/p/book/9781032496061.
Banuelos, G. S. , H. A. Ajwa , N. Terry , and A. Zayed . 1997. “Phytoremediation of selenium laden soils: A new
technology.” J Soil and Wat Conserv 52 (6):426–430.
Bhat, S. A. , O. Bashir , S. A. Ul Haq , T. Amin , A. Rafiq , M. Ali , J. H. P. Americo-Pinheiro , and F. Sher .
2022. “Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary
approach.” Chemosphere 303 (Pt 1):134788.
Change, F. C. 2014. Synthesis Report of the IPCC Fifth Assessment Report. (AR5)/Eds. R. K. Pachauri , and L.
A. Meyer . IPCC: Geneva, Switzerland. 151 p.
Change, F. C. 2020. Unpacking the Burden on Food Safety. FAO – Food and Agriculture Organization of the
United Nations: Rome, Italy.
Chhotu, D. J. , and M. H. Fulekar . 2008. “Phytoremediation: The application of vermicompost to remove zinc,
cadmium, copper, nickel and lead by sunflower plant.” Environ Eng Manag J 7 (5): 547–558.
Codex Alimentarius Commission . 1999. “Principles and guidelines for the conduct of microbiological risk
assessment.” https://www.fao.org/fao-who-codexalimentarius/sh-
proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%
252FCXG%2B30–1999%252FCXG_030e_2014.pdf (Accessed 7 February 2024).
de Farias, V. , L. T. Maranho , E. C. de Vasconcelos , M. A. da Silva Carvalho Filho , L. G. Lacerda , J. A.
Azevedo , A. Pandey , and C. R. Soccol . 2009. “Phytodegradation potential of Erythrina crista-galli L.,
Fabaceae, in petroleum-contaminated soil.” Appl Biochem Biotechnol 157 (1):10–22.
Dhanwal, P. , A. Kumar , S. Dudeja , V. Chhokar , and V. Beniwal . 2017. “Recent advances in
phytoremediation technology.” Adv Environ Biotechnol:227–241.
Egendorf, S. P. , P. Groffman , G. Moore , and Z. Cheng . 2020. “The limits of lead (Pb) phytoextraction and
possibilities of phytostabilization in contaminated soil: A critical review.” Int J Phytorem 22 (9):916–930.
Etim, E. E. 2012. “Phytoremediation and its mechanisms: A review.” Int J Environ Bioener 2 (3):120–126.
Evangelou, M. W. , M. Ebel , and A. Schaeffer . 2007. “Chelate assisted phytoextraction of heavy metals from
soil. Effect, mechanism, toxicity, and fate of chelating agents.” Chemosphere 68 (6):989–1003.
Favas, P. J. , J. Pratas , and M. N. Prasad . 2012. “Accumulation of arsenic by aquatic plants in large-scale field
conditions: Opportunities for phytoremediation and bioindication.” Sci Total Environ 433:390–397.
Feliciano, R. J. , P. Guzmán-Luna , G. Boué , M. Mauricio-Iglesias , A. Hospido , and J. M. Membré . 2022.
“Strategies to mitigate food safety risk while minimizing environmental impacts in the era of climate change.”
Trends Food Sci Technol 126:180–191.
Göhre, V. , and U. Paszkowski . 2006. “Contribution of the arbuscular mycorrhizal symbiosis to heavy metal
phytoremediation.” Planta 223 (6):1115–1122.
Gong, Y. , J. Chen , and R. Pu . 2019. “The enhanced removal and phytodegradation of sodium dodecyl sulfate
(SDS) in wastewater using controllable water hyacinth.” Int J Phytorem 21 (11):1080–1089.
Gonzalez, H. , D. Fernandez-Fuego , A. Bertrand , and A. Gonzalez . 2019. “Effect of pH and citric acid on the
growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for
phytostabilization.” Environ Sci Pollut Res Int 26 (25):26242–26253.
Gworek, B. , W. Dmuchowski , and A. H. Baczewska-Dąbrowska . 2020. “Mercury in the terrestrial
environment: A review.” Environ Sci Eur 32 (1).
Han, Y. , J. Lee , C. Kim , J. Park , M. Lee , and M. Yang . 2020. “Uranium rhizofiltration by Lactuca sativa,
brassica campestris L., raphanus sativus L., Oenanthe javanica under different hydroponic conditions.”
Minerals 11 (1).
Harguinteguy, C. A. , R. Schreiber , and M. L. Pignata . 2013. “Myriophyllum aquaticum as a biomonitor of
water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina).” Ecol Indic
27:8–16.
He, Y. , A. A. M. Langenhoff , N. B. Sutton , H. H. M. Rijnaarts , M. H. Blokland , F. Chen , C. Huber , and P.
Schroder . 2017. “Metabolism of ibuprofen by phragmites australis: Uptake and phytodegradation.” Environ Sci
Technol 51 (8):4576–4584.
Hernández, A. , N. Loera , M. Contreras , L. Fischer , and D. Sánchez . 2019. “Comparison between Lactuca
sativa L. and Lolium perenne: Phytoextraction capacity of Ni, Fe, and Co from galvanoplastic industry.” Ener
Technol 2019:137–147.
Herzig, R. , E. Nehnevajova , C. Pfistner , J. P. Schwitzguebel , A. Ricci , and C. Keller . 2014. “Feasibility of
labile Zn phytoextraction using enhanced tobacco and sunflower: Results of five- and one-year field-scale
experiments in Switzerland.” Int J Phytorem 16 (7–12):735–754.
Hsiao, K. H. , P. H. Kao , and Z. Y. Hseu . 2007. “Effects of chelators on chromium and Nickel Uptake by
Brassica Juncea on serpentine-mine tailings for phytoextraction.” J Hazard Mater 148 (1–2):366–376.
Huang, X. , D. Luo , X. Chen , L. Wei , Y. Liu , Q. Wu , T. Xiao , X. Mai , G. Liu , and L. Liu . 2019. “Insights into
heavy metals leakage in chelator-induced phytoextraction of Pb- and Tl-contaminated soil.” Int J Environ Res
Public Health 16 (8).
Irshad, M. , B. Ruqia , and Z. Hussain . 2015. “Phytoaccumulation of heavy metals in natural vegetation at the
municipal wastewater site in Abbottabad, Pakistan.” Int J Phytorem 17 (12):1269–1273.
ISO 14040 . 2006. “Environmental management – life cycle assessment – principles and framework.” ISO
14040. https://www.iso.org/obp/ui#iso:std: Iso:14040:ed-2:v1:en (Accessed 7 February 2024).
Kafle, A. , A. Timilsina , A. Gautam , K. Adhikari , A. Bhattarai , and N. Aryal . 2022. “Phytoremediation:
Mechanisms, plant selection and enhancement by natural and synthetic agents.” Environ Adv 8.
Kagalkar, A. N. , M. U. Jadhav , V. A. Bapat , and S. P. Govindwar . 2011. “Phytodegradation of the
triphenylmethane dye Malachite Green mediated by cell suspension cultures of Blumea malcolmii Hook.”
Bioresour Technol 102 (22):10312–10318.
Kamal, M. , A. E. Ghaly , N. Mahmoud , and R. Cote . 2004. “Phytoaccumulation of heavy metals by aquatic
plants.” Environ Int 29 (8):1029–1039.
Khalid, N. , A. Noman , M. Aqeel , A. Masood , and A. Tufail . 2018. “Phytoremediation potential of Xanthium
strumarium for heavy metals contaminated soils at roadsides.” Int J Environ Sci Technol 16 (4):2091–2100.
Kristanti, R. Ayu , W. J. Ngu , A. Yuniarto , and T. Hadibarata . 2021. “Rhizofiltration for removal of inorganic
and organic pollutants in groundwater: A review.” Biointerface Res Appl Chem 11 (4):12326–12347.
Kshirsagar, S. , and N. C. Aery . 2007. “Phytostabilization of mine waste: Growth and physiological responses
of Vigna unguiculata (L.) Walp.” J Environ Biol 28 (3):651–654.
Kumar, S. , S. Prasad , K. K. Yadav , M. Shrivastava , N. Gupta , S. Nagar , Q. V. Bach , H. Kamyab , S. A.
Khan , S. Yadav , and L. C. Malav . 2019. “Hazardous heavy metals contamination of vegetables and food
chain: Role of sustainable remediation approaches – A review.” Environ Res 179 (Pt A):108792.
Lee, M. , and M. Yang . 2010. “Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus
vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater.” J Hazard Mater 173 (1–3):589–596.
Li, X. , X. Zhang , X. Wang , and Z. Cui . 2019. “Phytoremediation of multi-metal contaminated mine tailings
with Solanum nigrum L. and biochar/attapulgite amendments.” Ecotoxicol Environ Saf 180:517–525. doi:
10.1016/j.ecoenv.2019.05.033.
Limmer, M. , and J. Burken . 2016. “Phytovolatilization of organic contaminants.” Environ Sci Technol 50
(13):6632–6643.
Luo, C. , Z. Shen , L. Lou , and X. Li . 2006. “EDDS and EDTA-enhanced phytoextraction of metals from
artificially contaminated soil and residual effects of chelant compounds.” Environ Pollut 144 (3):862–871.
Manzoor, M. , I. Gul , I. Ahmed , M. Zeeshan , I. Hashmi , B. A. Z. Amin , J. Kallerhoff , and M. Arshad . 2019.
“Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species.”
Chemosphere 227:561–569.
Mishra, S. , Bharagava, R. Nandkishor More , Ashutosh Yadav , Surabhi Zainith , Sujata Mani , and Pankaj
Chowdhary . 2019. “Heavy metal contamination: An alarming threat to environment and human health.” Environ
Biotechnol Sustain Future:103–125.
Muthusaravanan, S. , N. Sivarajasekar , J. S. Vivek , T. Paramasivan , M. Naushad , J. Prakashmaran , V.
Gayathri , and Omar K. Al-Duaij . 2018. “Phytoremediation of heavy metals: Mechanisms, methods and
enhancements.” Environ Chem Lett 16 (4):1339–1359.
Ossai, I. C. , A. Ahmed , A. Hassan , and F. S. Hamid . 2020. “Remediation of soil and water contaminated with
petroleum hydrocarbon: A review.” Environ Technol Innov 17. doi: 10.1016/j.eti.2019.100526.
PilonSmits, E. A. H. , M. P. de Souza , G. Hong , A. Amini , R. C. Bravo , S. T. Payabyab , and N. Terry . 1999.
“Selenium volatilization and accumulation by twenty aquatic plant species.” J Environ Qual 28 (3):1011–1018.
Pratas, J. , P. J. Favas , C. Paulo , N. Rodrigues , and M. N. Prasad . 2012. “Uranium accumulation by aquatic
plants from uranium-contaminated water in Central Portugal.” Int J Phytorem 14 (3):221–234.
Radziemska, M. , M. D. Vaverková , and A. Baryla . 2017. “Phytostabilization-management strategy for
stabilizing trace elements in contaminated soils.” Int J Environ Res Public Health 14 (9).
Rai, P. K. 2019. “Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a
natural wetland.” Environ Technol Innov 15.
Raskin, I. I. , R. D. Smith , and D. E. Salt . 1997. “Phytoremediation of metals: Using plants to remove pollutants
from the environment.” Curr Opin Biotechnol 8 (2):221–226.
Ridoutt, B. G. , G. A. Hendrie , and M. Noakes . 2017. “Dietary strategies to reduce environmental impact: A
critical review of the evidence base.” Adv Nutr 8 (6):933–946. doi: 10.3945/an.117.016691.
Ruppert, L. , Z. Q. Lin , R. P. Dixon , and K. A. Johnson . 2013. “Assessment of solid phase microfiber
extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant-soil system.” J Hazard Mater
262:1230–1236.
Sarwar, N. , M. Imran , M. R. Shaheen , W. Ishaque , M. A. Kamran , A. Matloob , A. Rehim , and S. Hussain .
2017. “Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future
perspectives.” Chemosphere 171:710–721.
Singh, V. , B. Pandey , and S. Suthar . 2019. “Phytotoxicity and degradation of antibiotic ofloxacin in duckweed
(Spirodela polyrhiza) system.” Ecotoxicol Environ Saf 179:88–95.
Song, P. , D. Xu , J. Yue , Y. Ma , S. Dong , and J. Feng . 2022. “Recent advances in soil remediation
technology for heavy metal contaminated sites: A critical review.” Sci Total Environ 838 (Pt 3):156417.
Sonone, S. S. , S. Jadhav , M. S. Sankhla , and R. Kumar . 2020. “Water contamination by heavy metals and
their toxic effect on aquaculture and human health through food chain.” Lett Appl NanoBioSci 10
(2):2148–2166.
Suman, J. , O. Uhlik , J. Viktorova , and T. Macek . 2018. “Phytoextraction of heavy metals: A promising tool for
clean-up of polluted environment?” Front Plant Sci 9:1476.
Sun, Y. 2011. “The role of EDTA on cadmium phytoextraction in a cadmium-hyperaccumulator Rorippa
globosa.” J Environ Chem Ecotoxicol 3 (3):45–51.
Susarla, S. 2002. “Phytoremediation: An ecological solution to organic chemical contamination.” Ecol Eng 18
(5):647–658.
Tirado, M. C. , R. Clarke , L. A. Jaykus , A. McQuatters-Gollop , and J. M. Frank . 2010. “Climate change and
food safety: A review.” Food Res Int 43 (7):1745–1765.
Tlustoš, P. , J. Száková , J. Hrubý , I. Hartman , J. Najmanová , J. Nedělník , D. Pavlíková , and M. Batysta .
2006. “Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants.” Plant, Soil
and Environ 52 (9):413–423.
Turgut, C. , M. K. Pepe , and T. J. Cutright . 2005. “The effect of EDTA on Helianthus annuus uptake,
selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils.”
Chemosphere 58 (8):1087–1095.
Vangronsveld, J. , R. Herzig , N. Weyens , J. Boulet , K. Adriaensen , A. Ruttens , T. Thewys , A. Vassilev , E.
Meers , E. Nehnevajova , D. van der Lelie , and M. Mench . 2009. “Phytoremediation of contaminated soils and
groundwater: Lessons from the field.” Environ Sci Pollut Res Int 16 (7):765–794.
Waheed, H. , N. Ilyas , N. Iqbal Raja , T. Mahmood , and Z. Ali . 2019. “Heavy metal phyto-accumulation in
leafy vegetables irrigated with municipal wastewater and human health risk repercussions.” Int J Phytorem 21
(2):170–179.
Willett, W. , J. Rockström , B. Loken , M. Springmann , T. Lang , S. Vermeulen , T. Garnett , D. Tilman , F.
DeClerck , A. Wood , M. Jonell , M. Clark , L. J. Gordon , J. Fanzo , C. Hawkes , R. Zurayk , J. A. Rivera , W.
De Vries , L. Majele Sibanda , A. Afshin , A. Chaudhary , M. Herrero , R. Agustina , F. Branca , A. Lartey , S.
Fan , B. Crona , E. Fox , V. Bignet , M. Troell , T. Lindahl , S. Singh , S. E. Cornell , K. Srinath Reddy , S.
Narain , S. Nishtar , and C. J. L. Murray . 2019. “Food in the anthropocene: The EAT-lancet commission on
healthy diets from sustainable food systems.” Lancet 393 (10170):447–492.
Wuana, R. A. , and F. E. Okieimen . 2011. “Heavy metals in contaminated soils: A review of sources, chemistry,
risks and best available strategies for remediation.” ISRN Ecol 2011:1–20.
Yang, Y. , Y. Ge , P. Tu , H. Zeng , X. Zhou , D. Zou , K. Wang , and Q. Zeng . 2019. “Phytoextraction of Cd
from a contaminated soil by tobacco and safe use of its metal-enriched biomass.” J Hazard Mater
363:385–393.
Zhang, Q. , W. Kong , L. Wei , Y. Wang , Y. Luo , P. Wang , J. Liu , J. L. Schnoor , and G. Jiang . 2020.
“Uptake, phytovolatilization, and interconversion of 2,4-dibromophenol and 2,4-dibromoanisole in rice plants.”
Environ Int 142:105888.
Zine, H. , L. Midhat , R. Hakkou , M. El Adnani , and A. Ouhammou . 2020. “Guidelines for a phytomanagement
plan by the phytostabilization of mining wastes.” Sci Afr 10.
Phytoremediation and Food Safety Case Studies
Abioye, O. P. , Ijah, U. J. J. and Aransiola, S. A. 2017. Phytoremediation of soil contaminants by biodiesel plant
Jatropha curcas. In Chapter 4 of Bauddh, K. , et al. (eds.), Phytoremediation Potential of Bioenergy Plants, DOI
10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd.
https://link.springer.com/book/10.1007%2F978-981-10-3084-0.
Akinbile, C. O. and Yusoff, M. S. 2012. Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia
stratiotes) effectiveness in Aquaculture wastewater treatment. International Journal of Phytoremediation 14(1),
201–211.
Anon , A., 1997. Consideration and preliminary test of using vetiver for water eutrophication control in Taihu
Lake in China. Proceedings of the International Vetiver Workshop, Fuzhou, China.
Aoi, T. and Hayashi, T. 1996 Nutrient removal by water lettuce (Pistia stratiotes). Water Science Technology
34(7–8), 407–412.
Aransiola, S. A. , Ijah, U. J. J. and Abioye, O. P. 2013. Phytoremediation of Lead Polluted Soil by Glycine max
L. Applied and Environmental Soil Science 2013, Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. and Bala, J. D. 2019. Microbial-aided phytoremediation of heavy
metals contaminated soil: A review. European Journal of Biological Research 9(2), 104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Audet, P. and Charest, C. 2007. Heavy metal phytoremediation from a meta-analytical perspective.
Environmental Pollution 147, 231–237.
Awuah, E. , Peprah, O. M. , Lubberding, H. J. and Gijzen, H. J. 2004. Comparative performance studies of
water lettuce, duck weed and algal based stabilization ponds using low strength sewage. Journal of Toxicology
and Environmental Health 67(1), 1727–1739.
Baker, A. J. M. and Whiting, S. M. 2002. In search for the Holy Grail – another step in understanding metal
hyperaccumulation? New Phytologist 155, 1–7.
Baker, A. J. M. , McGrath, S. P. , Reeves, R. D. and Smith, J. A. C. 2000 Metal hyperaccumulator plants: A
review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In
Terry, N. and Banuelos, G. (eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca
Raton.
Baker, A. J. M. , Proctor, J. and Reeves, R. D. 1992. The vegetation of ultramafic (serpentine) soils.
Proceedings of the First International Conference on Serpentine Ecology, University of California, Intercept,
Hampshire, UK.
Baker, A. J. M. , Reeves, R. D. and Hajara, A. S. M. 1994. Heavy metal accumulation and tolerance in British
populations of the metallophyte Thlaspi Caerulescens J. & C. Presl (Brassicaceae). New Phytology 127, 61–68.
Banerjee, R. , Goswami, P. and Mukherjee, A. 2018. Chapter 22 – Stabilization of Iron ore mine spoil dump
sites with vetiver system. In Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier, Kolkata, 393–413.
Bech, J. , Poschenrieder, C. , Barcelo, J. and Lansac, A. 2002. Plants from mine spoils in the South American
area as potential sources of germplasm for phytoremediation technologies. Acta Biotechnology 1–2, 5–11.
Begonia, G. B. , Davis, C. D. , Begonia, M. E. T. and Gray, C. N. 1998. Growth responses of Indian Mustard
(Brassica juncea (L.) Czern.) and its phytoextraction of lead from a contaminated soil. Bulletin of Environmental
Contamination and Toxicology 61, 38–43.
Bennett, L. E. , Burkhead, J. L. , Hale, K. L. , Terry, N. , Pilon, M. and Pilon-Smits, E. A. H. 2003. Analysis of
transgenic Indian mustard plants for phytoremediation of metalcontaminated mine tailings. Journal of
Environmental Quality 32, 432–440.
Berti, W. W. R. and Cunningham, S. D. 2000: Phytostabilization of metals. – In: Raskin, I. and Ensley, B. D.
(eds.), Phytoremediation of Toxic Metals – Using Plants to Clean Up the Environment. John Wiley & Sons, Inc.,
New York, 71–88.
Blaylock, M. J. , Salt, D. E. , Dushenkov, S. , Zakharova, O. , Gussman, C. , Kapulnik, Y. , Ensley, B. D. and
Raskin, I. 1997. Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents.
Environmental Science and Technology 31, 860–866.
Brooks, R. R. 1998. Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology,
archaeology, mineral exploration and phytomining. – CAB International, Wallingford.
Brooks, R. R. and Wither, E. D. 1977a. Nickel hyperaccumulation by Rinorea bengalensis (Wall.) O.K. Journal
of Geochemical Exploration 7, 295–300.
Brooks, R. R. and Wither, E. D. 1977b. Balt and nickel in Rinorea species. Plant and Soil 47, 707–712.
Castellanos, A. E. , Martinez, M. J. , Llano, J. M. , Halvorson, W. L. , Espiricueta, M. and Espejel, I. 2005.
Successional trends in Sonoran Desert abandoned agricultural fields in northern Mexico. Journal of Arid
Environment 60, 437–455.
Chen, J. , Qing-Xuan Xu , Yi Su , Zhi-Qi Shi and Fengxiang, X. 2013. Phytoremediation of organic polluted soil.
Journal of Bioremediation & Biodegradation4, 1–3.
Cobbett, C . 2003). Heavy metals and plants – model systems and hyperaccumulators. New Phytologist 159,
289–293.
Conesa, H. M. , Garcia, G. , Faz, A. and Arnaldos, R. 2007. Dynamics of metal tolerant plant communities’
development in mine tailings from the Cartagena-La Union Mining District (SE Spain) and their interest for
further revegetation purposes. Chemosphere 68, 1180–1185.
Conesa, H. M. , Robinson, B. H. , Schulin, R. and Nowack, B. 2007. Growth of Lygeum spartum in acid mine
tailings: Response of plants developed from seedlings, rhizomes, and at field conditions. Environmental
Pollution 145, 700–707.
Cunningham, S. D. and Berti, W. W. R. 2000. Phytoextraction and phytostabilization: Technical, economic, and
regulatory considerations of the soil-lead issue. –. In: Terry, N. and Banuelos, G. (eds.), Phytoremediation of
Contaminated Soil and Water. CRC Press LLC, Boca Raton.
Cunningham, S. D. and Ow, D. W. 1996. Promises and prospect of phytoremediation. Plant Physiology 110,
715–719.
Cunningham, S. D. , Berti, W. R. and Huang, J. W. W. 1995. Phytoremediation of contaminated soils. Trends in
Biotechnology 13, 393–397.
Das, P. K. 2018. Phytoremediation and Nanoremediation: Emerging Techniques for treatment of acid mine
drainage water. Defence Life Science Journal 3(2), 190–196.
Del Rio-Celestino, M. , Font, R. , Moreno-Rojas, R. and De Haro-Bailon, A. 2006. Uptake of lead and zinc by
wild plants growing on contaminated soils. Industrial Crop and Products 24, 230–237.
Deng, J. C. , Liao, B. , Ye, M. , Deng, D. M. , Lan, C. Y. and Shu, W. S. 2007. The effects of heavy metal
pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations. Plant Soil 297:
83–92.
Dixit, A. , Dixit, S. and Goswamy, D. S. 2011. Process and plants for wastewater remediation – a review.
Science Reviews and Chemical Communication 1(1), 71–77.
Duker, A. A. , Carranza, E. J. M. and Hale, M. 2005. Arsenic geochemistry and health. Environmental
International 31, 631–641.
Dushenkov, S. 2003. Trends in phytoremediation of radionuclides. Plant and Soil 249, 167–175.
Emenike, C. U. , Jayanthi, B. , Agamuthu, P. and Fauziah, S. H. 2018. Biotransformation and removal of heavy
metals: A review of phytoremediation and microbial remediation assessment on contaminated soil.
Environmental Reviews 26(2), 156–168.
Ernst, W. H. O. 2000. Evolution of metal hyperaccumulation and the phytoremediation hype. New Phytologist
146, 357–358.
Ernst, W. H. O. 2005. Phytoextraction of mine wastes – options and impossibilities. Chemie der Erde-
Geochemistry 65(1), 29–42.
Forján, R. , Rodríguez-Vila, A. and Covelo, E. F. 2017. Increasing the nutrient content in a mine soil through the
application of technosol and biochar and grown with Brassica juncea L. Waste and Biomass Valorization, 1–17.
Frérot, H. , Lefébvre, C. , Gruber, W. , Collin, C. , Santos, A. and Escarré, J. 2006. Specific interactions
between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282, 53–65.
Gebauer, R. L. E. and Ehleringer, J. R. 2000. Water and nitrogen uptake patterns following moisture pulses in a
cold desert community. Ecology 81, 695–712.
Girija, N. , Pillai, S.S. and Koshy, M. 2011. Potential of vetiver for phytoremediation of waste in retting area. The
Ecoscan 1, 267–273.
Glick, B. R. 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment.
Biotechnology Advances 21, 383–393.
Gonzalez, R. C. and Gonzalez-Chavez, M. C. A. 2006. Metal accumulation in wild plants surrounding mining
wastes: Soil and sediment remediation (SSR). Environmental Pollution 144, 84–92.
Gosavi, K. , Sammut, J. , Gifford, S. and Jankowski, J. 2004. Macroalgal biomonitors of trace metal
contamination in acid sulfate soil aquaculture ponds. Science of the Total Environment 324, 25–39.
Hasan, S. H. , Talat, M. and Rai, S. 2007. Sorption of cadmium and zinc from aqueous solutions by water
hyacinth (Eichhornia crassipes). Bioresource Technology 98(4), 918–928.
Hong, M. S. , Farmayan, W. F. , Dortch, I. J. , Chiang, C. Y. , McMillan, S. K. and Schnoor, J. L. 2001.
Phytoremediation of MTBE from groundwater plume. Environmental Science and Technology 35, 1231–1239.
Huang, J. W. , Blaylock, M. J. , Kapulnik, Y. and Ensley, B. D. 1998. Phytoremediation of uranium-
contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environmental
Science and Technology 32, 2004–2008.
Ingersoll, T. and Baker, L. A. 1998. Nitrate removal in wetland microcosms. Water Research 32, 677–684.
Iqbal, M. C. M. , Kulasekara, L. , Rajakaruna, N. and Iqbal, S. S. 2006. Plant-soil relations of a serpentine site in
the southern coast of Sri Lanka. 5th International Conference on Serpentine Ecology. Siena, Italy, 09–13 May.
(Abstract).
Jaffré, T. , Brooks, R. R. , Lee, J. and Reeves, R. D. 1976: Sebertia acuminata: A hyperaccumulator of nickel
from New Caledonia. Science 193, 579–580.
Jaffré, T. , Kersten, W. , Brooks, R. R. and Reeves, R. D. 1979. Nickel uptake by Flacourtiaceae of New
Caledonia. Proceedings of the Royal Society of London B205, 385–394.
Jayasekera, R. and Rossbach, M. 1994. Trace elements in plants growing in contrasting ecosystems in Sri
Lanka: Analytical aspects. Environmental Geochemistry and Health 16, 171–179.
Jayasekera, R. and Rossbach, M. 1996. Background levels of heavy metals in plants of different taxonomic
groups from a montane rain forest in Sri Lanka. Environmental Geochemistry and Health 18, 55–62.
Jefferson, L. V. 2004. Implications of plant density on the resulting community structure of mine site land.
Restoration Ecology 12, 429–438.
Jopony, M. and Tongkul, F. 1999. Hyperaccumulation of nickel by Rinorea benghalensis in ultrabasic soils of
Sabah, Malaysia. 3rd International Conference on Environmental Chemistry and Geochemistry in the Tropics.
Hong Kong, 24–26 November. (Abstract).
Keller, C. , Hammer, D. , Kayser, A. , Richner, W. , Brodbeck, M. and Sennhauser, M. 2003. Root development
and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant Soil 249,
67–81.
Knight, B. , Zhao, F. J. , McGrath, S. P. and Shen, Z. G. 1997. Zinc and cadmium uptake by the
hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical
speciation of metals in soil solution. Plant Soil 197, 71–78.
Kramer, P. A. , Zabowski, D. , Scherer, G. and Everett, R. L. 2000. Native plant restoration of copper mine
tailings: I. Substrate effect on growth and nutritional status in a greenhouse study. Journal of Environmental
Quality 29, 1762–1769.
Krämer, U. 2003. Phytoremediation to phytochelatin – plant trace metal homeostasis. New Phytologist 158,
4–6.
Kratochvil, D. and Volesky, B. 1998. Advances in the biosorption of heavy metals. Trends in Biotechnology 16,
291–300.
Krzaklewski, W. and Pietrzykowski, M. 2002. Selected physicochemical properties of zinc and lead ore tailings
and their biological stabilisation. Water Air Soil Pollution 141, 125–142.
Kumar, A , Bisht, B. S. , Joshim, V. D. and Dhewa, T. 2011. Review on bioremediation of polluted environment:
A management tool. International Journal of Environmental Science 1, 1079–1093.
Kumar, P. B. A. N. , Dushenkov, V. , Motto, H. and Raskin, I. 1995. Phytoextraction: The use of plants to
remove heavy metals form soils. Environmental Science and Technology 29, 1232–1238.
Kumari, R. , Kaur, I. and Bhatnagar, A. K. 2013. Enhancing soil health and productivity of Lycopersicon
esculentum Mill. using Sargassum johnstonii Setchell and Gardner as a soil conditioner and fertilizer. Journal of
Applied Phycology 25(4), 1225–1235.
Lasat, M. M. , Fuhrmann, M. , Ebbs, S. D. , Cornish, J. E. and Kochian, L. V. 1998. Phytoremediation of a
radiocesium-contaminated soil: Evaluation of cesium-137 bioaccumulation in the shoots of three plant species.
Journal of Environmental Quality 27, 165–169.
Leita, L. , De Nobili, M. , Pardini, G. , Ferrari, F. and Sequi, S. 1989. Anomalous contents of heavy metals in
soils and vegetation of a mine area in S.W. Sardinia , Italy. Water Air Soil Pollution 48, 423–433.
Li, Y , and Li, B. 2011. Study on fungi-bacteria consortium bioremediation of petroleum contaminated mangrove
sediments amended with mixed biosurfactants. Advanced Materials Research 183, 1163–1167.
Lutts, S. , Lefevre, I. , Delperee, C. , Kivits, S. , Dechamps, C. , Robledo, A. , Correal, E. (2004): Heavy metal
accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality 33:
1271–1279.
Mane, A. V. , Saratale, G. D. , Karadge, B. A. and Samant, J. S. 2011. Studies on the effects of salinity on
growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash. Emirates Journal of
Food and Agriculture 23(1), 59–70.
Mannino, I. , Franco, D. , Piccioni, E. , Favero, L. , Mattiuzzo, E. and Zanetto, G. 2008. A cost-effectiveness
analysis of seminatural wetlands and activated sludge wastewater treatment systems. Environmental
Management 41, 118–129.
Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press Inc., San Diego.
McGaw, L. J. , Rabe, T. , Sparg, S. G. , Jäger, A. K. , Eloff, J. N. and van Staden, J. 2001. An investigation on
the biological activity of Combretum species. Journal of Ethnopharmacology 75(1), 45–50.
Meerts, P. and Van Isacker, N. (1997): Heavy metal tolerance and accumulation in metallicolous and non-
metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecology 133, 221–231.
Melato, F. A. , Mokgalaka, N. S. and McCrindle, R. I. 2016. Adaptation and detoxification mechanisms of
Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings. International Journal of
Phytoremediation 18(5), 509–520.
Mendez, M. O. , Glenn, E. P. and Maier, R. M. 2007. Phytostabilization potential of quailbush for mine tailings:
Growth, metal accumulation, and microbial community changes. Journal of Environmental Quality 36, 245–253.
Michelle, B. da-C., Rosane, A. and Jaime, W. V.de-M. 2010. Phytoremediation of acid mine drainage by aquatic
floating macrophytes. – Institute of Science and Technology for Mineral Resource, Water and Biodiversity,
INCT-ACQUA – Annual Report 1–4.
Mishra, V. K. , Upadhyaya, A. R. , Pandey, S. K. and Tripathi, B. D. 2008a. Heavy metal pollution induced due
to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring
aquatic macrophytes. Bioresource Technology 99, 930–936.
Mishra, V. K. , Upadhyaya, A. R. , Pandey, S. K. and Tripathi, B. D. 2008b. Phytoremediation of mercury and
Arsenic from Tropical open cast coalmine effluent through naturally occurring aquatic macrophytes. Water, Air
and Soil Pollution 192, 303–314.
Mokhtar, H. , Morad, N. and Ahmad Fizri, F. F. 2011. Hyperaccumulation of copper by two species of aquatic
plants. International Conference on Environmental Science and Engineering IPCBEE 8. IACSIT Press,
Singapore.
Mudhoo, A. , Sharma, S. K. , Lin, Z. Q. and Dhankher, O. P. 2010. Phytoremediation of arsenic-contaminated
environment an overview. In Sharma, S. K. and Mudhoo, A. (eds.), Green Chemistry for Environmental
Sustainability. Taylor and Francis Group, Boca ratan London, New York, 127.
Mummey, D. L. , Stahl, P. D. and Buyer, J. S. 2002a. Microbial biomarkers as an indicator of ecosystem
recovery following surface mine reclamation. Applied Soil Ecology 21, 251–259.
Mummey, D. L. , Stahl, P. D. and Buyer, J. S. 2002b. Soil microbiological properties 20 years after surface mine
reclamation: Spatial analysis of reclaimed and undisturbed sites. Soil Biology and Biochemistry 34, 1717–1725.
Munshower, F. F. 1994. Practical Handbook of Disturbed Land Revegetation. Lewis Publishing, Boca Raton.
National Research Council . 2005. Mineral Tolerance of Animals. National Academies Press, Washington.
Newete, S. W. and Byrne, M. J. 2016. The capacity of aquatic macrophytes for phytoremediation and their
disposal with specific reference to water hyacinth. Environmental Science and Pollution Research 23(11),
10630–10643.
Osmond, C. B. , Bjorkman, O. and Anderson, D. J. (1980). Physiological Processes in Plant Ecology: Toward a
Synthesis with Atriplex. Springer-Verlag, New York.
Pichtel, J. , Salt, C. A. (1998): Vegetative growth and trace metal accumulation on metalliferous wastes. –
Journal of Environmental Quality 27: 618–624.
Pierzynski, G. M. , Lambert, M. , Hetricck, B. A. D. , Weeney, D. W. and Erickson, L. E. 2002. Phytostabilization
of metal mine tailings using tall fescue. Practical Periodical Hazard and Toxic Radioactive Waste Manage 6,
212–217.
Piha, M. I. , Vallack, H. W. , Michael, N. and Reeler, B. M. 1995. A lowinput approach to vegetation
establishment on mine and coal ash wastes in semiarid regions. 2. Lagooned pulverized fuel ash in Zimbabwe.
Journal of Applied Ecology 32, 382–390.
Pilon-Smits, E. A. H. 2005. Phytoremediation. Annual Review of Plant Biology 56, 15–39.
Pilon-Smits, E. and Pilon, M. 2002. Phytoremediation of metals using transgenic plants. Critical Review in Plant
Science 21, 439.
Prasad, M. N. V. and Freitas, H. M. O. 2003. Metal hyperaccumulation in plants – Biodiversity prospecting for
phytoremediation technology. Electronic Journal of Biotechnology 6, 285–321.
Prescott, L. M. , Harley, J. P. and Klein, D. A. 2002. Microbiology. McGraw-Hill, New York, 5, 1014.
Proctor, J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East.
Perspectives in Plant Ecology, Evolution, and Systematics 6, 105–124.
Proctor, J. , Phillipps, C. , Duff, G. K. , Heaney, A. and Robertson, F. M. 1989. Ecological studies in Gunung
Silam, a small ultrabasic mountain in Sabah, Malaysia. II. Some forest processes. Journal of Ecology 77,
317–331.
Prokop, G. , Schamann, M. and Edelgaard, I. 2000. Management of contaminated sites in western Europe.
European Environment Agency, Copenhagen, Denmark 171.
Qadir, S. , Qureshi, M. I. , Javed, S. and Abdin, M. Z. 2004. Genotypic variation in phytoremediation potential of
Brassica juncea cultivars exposed to Cd stress. Plant Science 167, 1171–1181.
Qin, H. , Zhang, Z. , Liu, M. , Liu, H. , Wang, Y. , Wen, X. , Zhang, Y. and Yan, S. 2016. Site test of
phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce.
Ecological Engineering 95(1), 753–762.
Rahman, M. A. , Hasegawa, H. , Ueda, K. , Maki, T. , Okumura, C. and Rahman, M. M. 2007. Arsenic
accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere 69(3),
493–499.
Rai, P. K. 2008. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An
Eco-sustainable approach. International Journal of Phytoremediation 10(2), 131–158.
Rajakaruna, N. and Baker, A. J. M. 2004. Serpentine: A model habitat for botanical research in Sri Lanka.
Ceylon Journal of Science (Biological Sciences) 32, 1–19.
Rajakaruna, N. and Bohm, B. A. 2002. Serpentine and its vegetation: A preliminary study from Sri Lanka.
Journal of Applied Botany 76, 20–28.
Ramadan, T. 2001. Dynamics of Salt Secretion by Sporobolus spicatus (Vahl) Kunth from Sites of Differing
Salinity. Annals of Botany 87, 259–266.
Raskin, I. and Ensley, B. D. 2000. Phytoremediation of Toxic Metals – Using Plants to Clean up the
Environment. J. Wiley & Sons, New York, 304.
Reeves, R. D. 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil
249, 57–65.
Robinson, B. H. , Green, S. , Mills, T. , Clothier, B. , Velde, M , Laplane, R. , Fung, L. , Deurer, M. , Hurst, S. ,
Thayalakumaran, T. and Dijssel, C. 2003. Phytoremediation: Using plants as blowups to improve degraded
environments. Australian Journal of Soil Research 41, 599–611.
Rosario, K. , Iverson, S. L. , Henderson, D. A. , Chartrand, S. , McKeon, C. , Glenn, E. P. and Maier, R. M.
2007. Bacterial community changes during plant establishment at the San Pedro River mine tailings site.
Journal of Environmental Quality 36, 1249–1259.
Sabey, B. R. , Pendleton, R. L. and Webb, B. L. 1990. Effect of municipal sewage-sludge application on growth
of two reclamation shrub species in copper mine spoils. Journal of Environmental Quality 19, 580–586.
Salt, D. E. , Pickering, I. J. , Prince, R. C. , Gleba, D. , Dushenkov, S. , Smith, R. D. and Raskin, I. 1997. Metal
accumulation by aquacultured seedlings of Indian mustard. Environmental Science and Technology 31,
1636–1644.
Salt, D. E. , Smith, R. D. and Raskin, I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant
Molecular Biology 49, 643–668.
Schmidt, U. 2003. Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant
accumulation, and leaching of heavy metals. Journal of Environmental Quality 32, 1939–1954.
Sharma, S. , Singh, B. and Manchanda, V. K. 2014. Phytoremediation: Role of terrestrial plants and aquatic
macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental
Science and Pollution Research 22(2), 946–962.
Shu, W. S. , Ye, Z. H. , Lan, C. Y. , Zhang, Z. Q. and Wong, M. H. 2001. Acidification of lead/zinc mine tailings
and its effect on heavy metal mobility. Environmental International 26, 389–394.
Singh, G. , Bhati, M. and Rathod, T. 2010. Use of tree seedlings for the phytoremediation of a municipal effluent
used in dry areas of north-western India: Plant growth and nutrient uptake. Ecological Engineering 36(10),
1299–1306.
Sivasankari, B. and Ravindran, D. 2016. A study on chemical analysis of water hyacinth (Eichhornia crassipes)
and water lettuce (Pistia stratiotes). International Journal of Innovative Research in Science and Technology
5(10), 17566–17570.
Smith, R. A. H. and Bradshaw, A. D. 1979. The use of metal tolerant plant populations for the reclamation of
metalliferous wastes. Journal of Applied Ecology 16, 595–612.
Snow, A. A. , Andow, D. A. , Gepts, P. , Hallerman, E. M. , Power, A. , Tiedje, J. M. and Wolfenbarger, L. L.
2005. Genetically engineered organisms and the environment: Current status and recommendations.
Ecological Application 10, 377–404.
Sood, A. , Uniyal, P. L. , Prasanna, R. and Ahluwalia, A. S. 2012. Phytoremediation potential of aquatic
macrophyte, Azolla. Ambio 41, 122–137.
Stoffberg, G. H. , van Rooyen, M. W. , van der Linde, M. J. and Groeneveld, H. T. 2008. Predicting the growth
in tree height and crown size of three street tree species in the City of Tshwane, South Africa. Urban Forestry
and Urban Greening 7, 259–264.
Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University
Press, Princeton, NJ.
Truong, P. and Hart, B. 2001. Vetiver grass for wastewater treatment. Pacific Rim Vetiver Network Technical
Bulletin No. 2001/2.
Tucker, R. K. and Shaw, J. A. 2000. Phytoremediation and public acceptance. In Raskin, I. and Ensley, B. D.
(eds.), Phytoremediation of Toxic Metals. Using Plants to Clean Up the Environment. J. Wiley & Sons, New
York, 33–42.
Turnau, K. , Henriques, F. S. , Anielska, T. , Renker, C. and Buscot, F. 2007. Metal uptake and detoxification
mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environmental and Experimental Botany 61,
117–123.
United States Environmental Protection Agency (USEPA) . 2000. Introduction to Phytoremediation. EPA, U.S.
Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.
US Congress Office of technology assessment . 1991. Bioremediation for Marine Oil Spills Background Paper,
OTA-BP-O-70. U.S. Government Printing Office, Washington, DC.
Van Dillewijn, P. , Caballero, A. , Paz, J. A. , Gonzalez-Perez, M. M. , Oliva, J. M. and Ramos, J. L. 2007.
Bioremediation of 2,4,6 trinitrotoluene under field conditions. Environmental Science & Technology 41,
1378–1383.
Van Rensburg, L. and Morgenthal, T. 2004. The effect of woodchip waste on vegetation establishment during
platinum tailings rehabilitation. South African Journal of Science 100, 294–300.
Vidali, M. 2001. Bioremediation-An overview. Pure and Applied Chemistry 73(7), 1163–1172.
Von Willert, F. J. and Stehouwer, R. C. 2003. Compost and calcium surface treatment effects on subsoil
chemistry in acidic minespoil columns. Journal of Environmental Quality 32, 781–788.
Wagner, S. , Truong, P. , Vieritz, A. and Smeal, C. 2003. Response of vetiver grass to extreme nitrogen and
phosphorus supply. Proceedings of the 3rd International Conference on Vetiver and Exhibition, Guangzhou,
China.
Watson, I. W. , Westoby, M. and Holm, A. M. 1997. Continuous and episodic components of demographic
change in arid zone shrubs: Models of two Eremophila species from Western Australia compared with
published data on other species. Journal of Ecology 85, 833–846.
Windsor, D. M. and Clements, A. 2001. A germination and establishment field trial of Themeda australis
(kangaroo grass) for mine site restoration in the Central Tablelands of New South Wales. Restoration Ecology
9, 104–110.
Wither, E. D. and Brooks, R. R. 1977. Hyperaccumulation of nickel by some plants of Southeast Asia. Journal
of Geochemical Exploration 8, 579–583.
Wolfe, A. K. and Bjornstad, D. J. 2002. Why would anyone object? An exploration of social aspects of
phytoremediation acceptability. Critical Review in Plant Science 21, 429–438.
Wolfenbarger, L. L. and Phifer, P. R. 2000. Biotechnology and ecology-the ecological risks and benefits of
genetically engineered plants. Science 290, 2088–2093.
Wong, M. H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils.
Chemosphere 50, 775–780.
Wood, M. K. , Buchanan, B. A. and Skeet, W. 1995. Shrub preference and utilization by big game on New
Mexico reclaimed mine land. Journal of Range Management 48, 431–437.
Wu, J. , Hsu, F. C. and Cunningham, S. D. 1999. Chelate-assisted Pb phytoextraction: Pb availability, uptake,
and translocation constraints. Environmental Science and Technology 33, 1898–1904.
Ye, Z. H. , Wong, J. W. C. , Wong, M. H. , Lan, C. Y. and Baker, A. J. M. 1999. Lime and pig manure as
ameliorants for revegetating lead/zinc mine tailings: A greenhouse study. Bioresource Technology 69, 35–43.
Yerima, M. B. , Umar, A. F. , Shinkafi, S. A. and Ibrahim, M. L. 2012. Bioremediation of hydrocarbon pollution: A
sustainable means of biodiversity conservation. Journal of Environment Protection and Sustainable
Development3, 43–50.
Zhao, F. J. , Lombi, E. and McGrath, S. P. 2003. Assessing the potential for zinc and cadmium
phytoremediation with the hyperaccumulator Thlaspi Caerulescens. Plant Soil 249, 37–43.
Zheng, C. R. , Tu, C. and Chen, H. M. 1997. Preliminary study on purification of eutrophic water with vetiver.
Proceedings of the International Vetiver Workshop, Fuzhou, China.
Zhu, Y. L. , Pilon-Smits, E. A. H. , Jouanin, L. and Terry, N. 1999. Overexpression of glutathione synthetase in
Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiology 119, 73–79.
Zouboulis, A. I. and Katsoyiannis, I. A. 2005. Recent advances in the bioremediation of arsenic-contaminated
groundwaters. Environment International 31(2), 213–219.
Phytoremediation
Abioye, O. P. , U. J. J. Ijah , and S. A. Aransiola . “Phytoremediation of soil contaminants by biodiesel plant
jatropha curcas,” Chapter 4 of K. Bauddh et al. (eds.), Phytoremediation Potential of Bioenergy Plants. Doi:
10.1007/978-981-10-3084-0_4. Springer Nature Singapore Pte Ltd. (2017).
https://link.springer.com/book/10.1007%2F978-981-10-3084-0
Agrawal, S. B. , A. Singh , R. K. Sharma , and M. Agrawal . “Bioaccumulation of heavy metals in vegetables: A
threat to human health.” Terrestrial and Aquatic Environmental Toxicology 1, no. 2 (2007): 13–23.
Ahmad, Burhan , Misbah Anwar , Hammad Badar , Mubashir Mehdi , and Farooq Tanveer . “Analyzing export
competitiveness of major fruits and vegetables of Pakistan: An application of revealed comparative advantage
indices.” Pakistan Journal of Agricultural Sciences 58, no. 2 (2021): 719–730.
Alegbeleye, Oluwadara Oluwaseun , Ian Singleton , and Anderson S. Sant'Ana . “Sources and contamination
routes of microbial pathogens to fresh produce during field cultivation: A review.” Food Microbiology 73 (2018):
177–208.
Alrumman, Sulaiman , Sherif Keshk , and Attallah El Kott . “Water pollution: Source & treatment.” American
Journal of Environmental Engineering (2016): 88–98.
Alvarez, María V. , Alejandra G. Ponce , and María R. Moreira . “Influence of polysaccharidebased edible
coatings as carriers of prebiotic fibers on quality attributes of readytoeat fresh blueberries.” Journal of the
Science of Food and Agriculture 98, no. 7 (2018): 2587–2597.
Anaman, Richmond , Chi Peng , Zhichao Jiang , Xu Liu , Ziruo Zhou , Zhaohui Guo , and Xiyuan Xiao .
“Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site
by GIS based PCA and PMF.” Science of the Total Environment 823 (2022): 153759.
Aransiola, S. A. , F. Afolabi , F. Joseph , and N.R. Maddela . “Soil enzymes: Distribution, interactions and
influencing factors.” In P. Jeschke and E. B. Starikov (Eds.), Agricultural Biocatalysis: Enzymes in Agriculture
and Industry (1st ed.). Jenny Stanford Publishing, 2023, 303–333. ISBN 9789814968478.
https://www.routledge.com/Agricultural-Biocatalysis-Enzymes-in-Agriculture-and-Industry/Jeschke-
Starikov/p/book/9789814968478
Aransiola, S. A. , U. J. J. Ijah , and O. P. Abioye . “Phytoremediation of lead polluted soil by Glycine max L.”
Applied and Environmental Soil Science (2013). Article ID 631619. doi: 10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/.
Aransiola, S. A. , U. J. J. Ijah , O. P. Abioye , and J. D. Bala . “Microbial-aided phytoremediation of heavy
metals contaminated soil: A review.” European Journal of Biological Research 9, no. 2 (2019): 104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Aransiola, S. A. , U. J. J. Ijah , O. P. Abioye , and J. D. Bala . “Vermicompost-assisted phytoremediation of toxic
trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta.” International
Journal of Environmental Science and Technology (2022). http://dx.doi.org/10.1007/s13762-022-04105-y
Arora, Shreya , and Pulkit Mathur . “Nutrient profiling: An approach promoting healthy food choices.”
International Journal of Health Sciences and Research 4, no. 7 (2014): 227–239.
Arthur, Ellen L. , Pamela J. Rice , Patricia J. Rice , Todd A. Anderson , Sadika M. Baladi , Keri L. D. Henderson
, and Joel R. Coats . “Phytoremediation – an overview.” Critical Reviews in Plant Sciences 24, no. 2 (2005):
109–122.
Attinti, Ramesh , Kirk R. Barrett , Rupali Datta , and Dibyendu Sarkar . “Ethylenediaminedisuccinic acid (EDDS)
enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the
field.” Environmental Pollution 225 (2017): 524–533.
Atun, Sri , S. R. I. Handayani , A. N. N. A. Rakhmawati , Nur Aini Purnamaningsih , Bian Ihda An Naila , and
Astuti Lestari . “Study of potential phenolic compounds from stems of dendrophthoe falcata (Loranthaceae)
plant as antioxidant and antimicrobial agents.” Oriental Journal of Chemistry 34, no. 5 (2018).
Azizullah, Azizullah , Muhammad Nasir Khan Khattak , Peter Richter , and Donat-Peter Häder . “Water pollution
in Pakistan and its impact on public health – a review.” Environment International 37, no. 2 (2011): 479–497.
Badosa, E. , N. Chico , M. Pla , D. Parés , and E. Montesinos . “Evaluation of ISO enrichment realtime PCR
methods with internal amplification control for detection of Listeria monocytogenes and Salmonella enterica in
fresh fruit and vegetables.” Letters in Applied Microbiology 49, no. 1 (2009): 105–111.
Belay, Tesfalem , and H. Tizazu . “Assessment of pollution status of soils and vegetables irrigated by Awash
river and its selected tributaries.” International Journal of Environmental Sciences & Natural Resources 18, no.
5 (2019): 163–168.
Bhatnagar, J. P. , and S. K. Awasthi . Prevention of food adulteration act (act no. 37 of 1954) along with central
& state rules (as amended for 1999). Ashoka Law House, 2000.
Bolan, Shiv , Anitha Kunhikrishnan , Balaji Seshadri , Girish Choppala , Ravi Naidu , Nanthi S. Bolan , Yong Sik
Ok et al. “Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal (loid) s in
complementary medicines.” Environment International 108 (2017): 103–118.
Briggs, David . “Environmental pollution and the global burden of disease.” British Medical Bulletin 68, no. 1
(2003): 1–24.
Bureau, Sylvie , Daniel Cozzolino , and Christopher J. Clark . “Contributions of Fourier-transform mid infrared
(FT-MIR) spectroscopy to the study of fruit and vegetables: A review.” Postharvest Biology and Technology 148
(2019): 1–14.
Cai, Chen , Picheng Gong , Yue Wang , Mengmeng Wang , Bo Zhang , Bing Wang , and Huiling Liu .
“Investigating the environmental risks from the use of spray-dried cephalosporin mycelial dreg (CMD) as a soil
amendment.” Journal of Hazardous Materials 359 (2018): 300–306.
Cai, Qiu , Mei-Li Long , Ming Zhu , Qing-Zhen Zhou , Ling Zhang , and Jie Liu . “Food chain transfer of
cadmium and lead to cattle in a lead–zinc smelter in Guizhou, China.” Environmental Pollution 157, no. 11
(2009): 3078–3082.
Carletti, Letizia , Rinaldo Botondi , Roberto Moscetti , Elisabetta Stella , Danilo Monarca , Massimo Cecchini ,
and Riccardo Massantini . “Use of ozone in sanitation and storage of fresh fruits and vegetables.” Journal of
Food, Agriculture and Environment 11, nos. 3–4 (2013): 585–589.
Chamley, Hervé , ed. Geosciences, environment and man. Elsevier, 2003.
Chary, N. Sridhara, C. T. Kamala , and D. Samuel Suman Raj . “Assessing risk of heavy metals from
consuming food grown on sewage irrigated soils and food chain transfer.” Ecotoxicology and Environmental
Safety 69, no. 3 (2008): 513–524.
Cole, Russell F. , Graham A. Mills , Ruth Parker , Thi Bolam , Andrew Birchenough , Silke Kröger , and Gary R.
Fones . “Trends in the analysis and monitoring of organotins in the aquatic environment.” Trends in
Environmental Analytical Chemistry 8 (2015): 1–11.
CPCB . Report under central pollution control board. Guidelines for the measurement of ambient air pollution,
vol. 1. Ministry of Environment and Forests, 2011.
Cunningham, Scott D. , J. R. Shann , David E. Crowley , and Todd A. Anderson . Phytoremediation of
contaminated water and soil. ACS Symposium series, vol. 664. American Chemical Society, 1997, pp. 2–17.
Cunningham, Scott D. , Todd A. Anderson , A. Paul Schwab , and F. C. Hsu . “Phytoremediation of soils
contaminated with organic pollutants.” Advances in Agronomy 56, no. 1 (1996): 55–114.
Dey, Dipankar , Satadeep Singha Roy , Niharendu Saha , Anupam Datta , and Pradip Dey . “Method for
estimating potentially available inorganic phosphorus under organic farming system.” International Journal of
Chemical Studies 7 (2019): 1829–1835.
Elgallal, M. , L. Fletcher , and B. Evans . “Assessment of potential risks associated with chemicals in
wastewater used for irrigation in arid and semiarid zones: A review.” Agricultural Water Management 177
(2016): 419–431.
El Hamiani, Ouafae , Hicham El Khalil , Catherine Sirguey , Ahmed Ouhammou , Gabriel Bitton , Christophe
Schwartz , and Ali Boularbah . “Metal concentrations in plants from mining areas in South Morocco: Health risks
assessment of consumption of edible and aromatic plants.” CLEAN–Soil, Air, Water 43, no. 3 (2015): 399–407.
El-Kady, Ahmed A. , and Mosaad A. Abdel-Wahhab . “Occurrence of trace metals in foodstuffs and their health
impact.” Trends in Food Science & Technology 75 (2018): 36–45.
Elliott, Michael . “Biological pollutants and biological pollution––an increasing cause for concern.” Marine
Pollution Bulletin 46, no. 3 (2003): 275–280.
Elsaka, M. S. , M. M. Elkholy , and M. A. Aiad . “The contamination status of heavy metals associated with fruits
and vegetables collected from some markets at El-Gharbia Governorate.” Journal of Soil Sciences and
Agricultural Engineering 11, no. 7 (2020): 299–305.
Ernst, W. H. O. “Bioavailability of heavy metals and decontamination of soils by plants.” Applied Geochemistry
11, no. 1–2 (1996): 163–167.
Evangelou, Michael W. H. , Mathias Ebel , and Andreas Schaeffer . “Chelate assisted phytoextraction of heavy
metals from soil. Effect, mechanism, toxicity, and fate of chelating agents.” Chemosphere 68, no. 6 (2007):
989–1003.
Gall, Jillian E. , Robert S. Boyd , and Nishanta Rajakaruna . “Transfer of heavy metals through terrestrial food
webs: A review.” Environmental monitoring and assessment 187 (2015): 1–21.
Garba, M. , M. A. Dandago , E. C. Igwe , and K. D. Salami . “Heavy metals safety of ready-to-eat (RTE)
vegetables salads (a review).” Dutse Journal of Pure and Applied Sciences 7, no. 2 (2021): 21–37.
Giller, Ken E. , Ernst Witter , and Steve P. Mcgrath . “Toxicity of heavy metals to microorganisms and microbial
processes in agricultural soils: A review.” Soil Biology and Biochemistry 30, no. 10–11 (1998): 1389–1414.
Gogo, E. O. , A. M. Opiyo , K. Hassenberg , Ch Ulrichs , and S. Huyskens-Keil . “Postharvest UV-C treatment
for extending shelf life and improving nutritional quality of African indigenous leafy vegetables.” Postharvest
Biology and Technology 129 (2017): 107–117.
Govarthanan, M. , R. Mythili , T. Selvankumar , S. Kamala-Kannan , and H. Kim . “Myco-phytoremediation of
arsenic-and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from
decayed wood.” Ecotoxicology and Environmental Safety 151 (2018): 279–284.
Gupta, Shalini , D. S. Grewal , and Ajay Gupta . “Water and soil pollution in Punjab with special reference to
Mandi-Gobindgarh and surrounding areas.” American Journal of Engineering Research 2, no. 9 (2013):
251–257.
Hu, Nan , Tao Lang , Dexin Ding , Jingsong Hu , Changwu Li , Hui Zhang , and Guangyue Li . “Enhancement of
repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata.”
Journal of Environmental Radioactivity 199 (2019): 58–65.
Igwegbe, Amin O. , Chibugo H. Agukwe , and Charles A. Negbenebor . “A survey of heavy metal (lead,
cadmium and copper) contents of selected fruit and vegetable crops from Borno State of Nigeria.” International
Journal of Engineering Science 2, no. 1 (2013): 01–05.
Jiang, Mingyan , Shiliang Liu , Yangfan Li , Xi Li , Zhenghua Luo , Huixing Song , and Qibing Chen . “EDTA-
facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos.”
Ecotoxicology and Environmental Safety 170 (2019): 502–512.
Jung, Myung Chae . “Heavy metal concentrations in soils and factors affecting metal uptake by plants in the
vicinity of a Korean Cu-W mine.” Sensors 8, no. 4 (2008): 2413–2423.
Kaiser, Wolfgang , Torsten Schultz-Fademrecht , Michaela Blech , Julia Buske , and Patrick Garidel .
“Investigating photodegradation of antibodies governed by the light dosage.” International Journal of
Pharmaceutics 604 (2021): 120723.
Khurana, M. P. S. , and R. L. Bansal . “Impact of sewage irrigation on speciation of nickel in soils and its
accumulation in crops of industrial towns of Punjab.” Journal of Environmental Biology 29, no. 5 (2008):
793–798.
Kim, Shin Woong , Yooeun Chae , Jongmin Moon , Dokyung Kim , Rongxue Cui , Gyeonghyeon An , Seung-
Woo Jeong , and Youn-Joo An . “In situ evaluation of crop productivity and bioaccumulation of heavy metals in
paddy soils after remediation of metal-contaminated soils.” Journal of Agricultural and Food Chemistry 65, no. 6
(2017): 1239–1246.
Kohzadi, Shadi , Behzad Shahmoradi , Daem Raushani , and Asad Nouri . “International perspectives:
Evaluation and risk assessment of heavy metals in the groundwater resources of Saqqez, Iran.” Journal of
Environmental Health 80, no. 6 (2018): E1–E9.
Kore, Vijaykumar T. , Sima S. Tawade , and J. Kabir . “Application of edible coatings on fruits and vegetables.”
Imperial Journal of Interdisciplinary Research 3, no. 1 (2017): 591–603.
Kopyra, Małgorzata , and Edward A. Gwóźdź . “Nitric oxide stimulates seed germination and counteracts the
inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus.” Plant Physiology and
Biochemistry 41, no. 11–12 (2003): 1011–1017.
Koźmińska, Aleksandra , Alina Wiszniewska , Ewa Hanus-Fajerska , and Ewa Muszyńska . “Recent strategies
of increasing metal tolerance and phytoremediation potential using genetic transformation of plants.” Plant
Biotechnology Reports 12 (2018): 1–14.
Larsson, Lisbeth , Bo Stenberg , and Lennart Torstensson . “Effects of mulching and cover cropping on soil
microbial parameters in the organic growing of black currant.” Communications in Soil Science and Plant
Analysis 28, no. 11–12 (1997): 913–925.
Lespes, Gaëtane , Christophe Marcic , Julien Heroult , Isabelle Le Hecho , and Laurence Denaix . “Tributyltin
and triphenyltin uptake by lettuce.” Journal of Environmental Management 90 (2009): S60–S68.
Li, Fei-li , Wen Shi , Zan-fang Jin , Hui-mei Wu , and G. Daniel Sheng . “Excessive uptake of heavy metals by
greenhouse vegetables.” Journal of Geochemical Exploration 173 (2017): 76–84.
Li, Fei-li , Yuehua Qiu , Xinyang Xu , Feng Yang , Zhiwei Wang , Jianru Feng , and Jiade Wang . “EDTA-
enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.).”
Ecotoxicology and Environmental Safety 191 (2020): 110185.
Li, Xiaofang , and Longbin Huang . “Toward a new paradigm for tailings phytostabilization – nature of the
substrates, amendment options, and anthropogenic pedogenesis.” Critical Reviews in Environmental Science
and Technology 45, no. 8 (2015): 813–839.
Liang, Guihong , and Zhenhua Zhang . “Reducing the nitrate content in vegetables through joint regulation of
short-distance distribution and long-distance transport.” Frontiers in Plant Science 11 (2020): 1079.
Liu, Zhongchuang , and Khanh-Quang Tran . “A review on disposal and utilization of phytoremediation plants
containing heavy metals.” Ecotoxicology and Environmental Safety 226 (2021): 112821.
Lokeshwari, H. , and G. T. Chandrappa . “Impact of heavy metal contamination of Bellandur Lake on soil and
cultivated vegetation.” Current Science (2006): 622–627.
Luo, Jie , Wenxiang He , Xinli Xing , Jian Wu , and X. W. Sophie Gu . “The variation of metal fractions and
potential environmental risk in phytoremediating multiple metal polluted soils using Noccaea caerulescens
assisted by LED lights.” Chemosphere 227 (2019): 462–469.
Luo, Y. , L. Wu , L. Liu , C. Han , and Z. Li . “Heavy metal contamination and remediation in Asian agricultural
land.” In MARCO symposium, 2009.
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heavy+Metal+Contamination+and+Remediation
+in+Asian+Agricultural+Land++Yongming+Luo+Longhua+Wu+Lin+Liu+Cunliang+Han+Zhu+Li&btnG=
accessed on 15/1/2024
Lv, Jianshu , Yang Liu , Zulu Zhang , Jierui Dai , Bin Dai , and Yuchi Zhu . “Identifying the origins and spatial
distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical
approach.” Journal of Soils and Sediments 15 (2015): 163–178.
Ma, Ying , Mani Rajkumar , António Moreno , Chang Zhang , and Helena Freitas . “Serpentine endophytic
bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought
stress.” Chemosphere 185 (2017): 75–85.
Mansour, Sameeh A. , Mohamed H. Belal , Asem A. K. Abou-Arab , and Marwa F. Gad . “Monitoring of
pesticides and heavy metals in cucumber fruits produced from different farming systems.” Chemosphere 75,
no. 5 (2009): 601–609.
Mantilla, N. , M. E. Castell-Perez , C. Gomes , and Rosana G. Moreira . “Multilayered antimicrobial edible
coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus).” LWT-Food Science
and Technology 51, no. 1 (2013): 37–43.
Manwani, Seema , C. R. Vanisree , Vibha Jaiman , Kumud Kant Awasthi , Chandra Shekhar Yadav , Mahipal
Singh Sankhla , Pritam P. Pandit , and Garima Awasthi . “Heavy metal contamination in vegetables and their
toxic effects on human health.” Sustainable Crop Production: Recent Advances 181–197 (2022).
Maqsood, Quratulain , Nazim Hussain , Mehvish Mumtaz , Muhammad Bilal , and Hafiz M. N. Iqbal . “Novel
strategies and advancement in reducing heavy metals from the contaminated environment.” Archives of
Microbiology 204, no. 8 (2022): 478.
McCutcheon, S. C. , and J. L. Schnoor . “Overview of phytotransformation and control of wastes.”
Phytoremediation: Transformation and Control of Contaminants (2003): 1–58.
McMichael, Anthony J. , and Kirk R. Smith . “Seeking a global perspective on air pollution and health.”
Epidemiology (1999): 1–4.
Mditshwa, Asanda , Lembe Samukelo Magwaza , Samson Zeray Tesfay , and Nokwazi Carol Mbili . “Effect of
ultraviolet irradiation on postharvest quality and composition of tomatoes: A review.” Journal of Food Science
and Technology 54 (2017): 3025–3035.
Mostafidi, Mahdieh , Mohammad Reza Sanjabi , Faezeh Shirkhan , and Maryam Tamaskani Zahedi . “A review
of recent trends in the development of the microbial safety of fruits and vegetables.” Trends in Food Science &
Technology 103 (2020): 321–332.
Mousavi, Afsaneh , Latifeh Pourakbar , Sina Siavash Moghaddam , and Jelena Popović-Djordjević . “The effect
of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium
phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress.” Journal of Environmental
Chemical Engineering 9, no. 4 (2021): 105456.
Mridha, F. A. , R. O. Huque , A. F. Khatun , M. A. Islam , A. R. Hossain , M. A. Hossain , and M. S. Kabir .
Effects of gamma irradiation on antioxidant markers, microbial population an d sensory attributes of strawberry
(Fragaria× ananassa Duch.) cv. festival. Plant Cell Biotechnology and Molecular Biology 18, nos. 5–6 (2017):
208–218.
Mritunjay, Sujeet Kumar , and Vipin Kumar . “Fresh farm produce as a source of pathogens: A review.”
Research Journal of Environmental Toxicology 9, no. 2 (2015): 59–70.
Nemati Josheghani, Reza . “Novel methods of chromatography and mass spectrometry for quantitative
investigation of bacteria-derived lipopeptides and their relationship with human disease.” (2016).
Okonkwo, Jonathan O. , and M. Mothiba . “Physico-chemical characteristics and pollution levels of heavy
metals in the rivers in Thohoyandou, South Africa.” Journal of Hydrology 308, no. 1–4 (2005): 122–127.
Pais, Istvan , and JonesJr J.B. The handbook of trace elements. CRC Press, 1997. 1–27.
Panda, T. , N. Mishra , B. K. Pradhan , and R. B. Mohanty . “Diversity of leafy vegetables and its significance to
rural households of Bhadrak district, Odisha, India.” Scientia Agriculturae 11, no. 3 (2015): 114–123.
Qin, Jianwei , Moon S. Kim , Kuanglin Chao , Sagar Dhakal , Byoung-Kwan Cho , Santosh Lohumi ,
Changyeun Mo , Yankun Peng , and Min Huang . “Advances in Raman spectroscopy and imaging techniques
for quality and safety inspection of horticultural products.” Postharvest Biology and Technology 149 (2019):
101–117.
Rahman, Zeeshanur , and Ved Pal Singh . “The relative impact of toxic heavy metals (THMs)(arsenic (As),
cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview.”
Environmental Monitoring and Assessment 191 (2019): 1–21.
Rana, Vivek . “Assessment of surface water quality of river Kali-east: A tributary of river Ganga in Uttar
Pradesh, India.” (2021).[https://doi.org/10.21203/rs.3.rs-591475/v1].
Ruiz, Oscar N. , Derry Alvarez , Cesar Torres , Laura Roman , and Henry Daniell . “Metallothionein expression
in chloroplasts enhances mercury accumulation and phytoremediation capability.” Plant Biotechnology Journal
9, no. 5 (2011): 609–617.
Rusin, Monika , Joanna Domagalska , Danuta Rogala , Mehdi Razzaghi , and Iwona Szymala . “Concentration
of cadmium and lead in vegetables and fruits.” Scientific Reports 11, no. 1 (2021): 11913.
Saleem, Muhammad Hamzah , Shah Fahad , Shahid Ullah Khan , Mairaj Din , Abid Ullah , Ayman EL Sabagh ,
Akbar Hossain , Analía Llanes , and Lijun Liu . “Copper-induced oxidative stress, initiation of antioxidants and
phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different
soils of China.” Environmental Science and Pollution Research 27 (2020): 5211–5221.
Salt, David E. , Michael Blaylock , Nanda P. B. A. Kumar , Viatcheslav Dushenkov , Burt D. Ensley , Ilan Chet ,
and Ilya Raskin . “Phytoremediation: A novel strategy for the removal of toxic metals from the environment
using plants.” Biotechnology 13, no. 5 (1995): 468–474.
Salt, D. E. , P. B. A. Nanda Kumar , S. Dushenkov , and I. Raskin . “Phytoremediation: A new technology for
the environmental cleanup of toxic metals.” Proceedings of the International Symposium on Resource
Conservation and Environmental Technologies in Metallurgical Industries (1994): 381–384.
Saglam, Necdet , Ozfer Yesilada , Ahmet Cabuk , Mesut Sam , Semran Saglam , Sedef Ilk , Ezgi Emul , Pınar
Aytar Celik , and Ekrem Gurel . “Innovation of strategies and challenges for fungal nanobiotechnology.”
Advances and Applications Through Fungal Nanobiotechnology (2016): 25–46.
Schnoor, Jerald L. , Louis A. Light , Steven C. McCutcheon , N. Lee Wolfe , and Laura H. Carreia .
“Phytoremediation of organic and nutrient contaminants.” Environmental Science & Technology 29, no. 7
(1995): 318A–323A.
Sekhar, K. Chandra , C. T. Kamala , N. S. Chary , A. R. K. Sastry , T. Nageswara Rao , and M. J. J. O. H. M.
Vairamani . “Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant
biomass.” Journal of Hazardous Materials 108, no. 1–2 (2004): 111–117.
Sharma, Rajesh Kumar , Madhoolika Agrawal , and Fiona M. Marshall . “Heavy metal (Cu, Zn, Cd and Pb)
contamination of vegetables in urban India: A case study in Varanasi.” Environmental Pollution 154, no. 2
(2008): 254–263.
Sharma, R. R. , Dinesh Singh , and Rajbir Singh . “Biological control of postharvest diseases of fruits and
vegetables by microbial antagonists: A review.” Biological Control 50, no. 3 (2009): 205–221.
Shen, Xing , Min Dai , Jiawei Yang , Lin Sun , Xiao Tan , Changsheng Peng , Imran Ali , and Iffat Naz . “A
critical review on the phytoremediation of heavy metals from environment: Performance and challenges.”
Chemosphere 291 (2022): 132979.
Shi, Taoran , Jin Ma , Xiao Wu , Tienan Ju , Xianglong Lin , Yunyun Zhang , Xinhong Li , Yiwei Gong , Hong
Hou , Long Zhou , Fuyong Wu “Inventories of heavy metal inputs and outputs to and from agricultural soils: A
review.” Ecotoxicology and Environmental Safety 164 (2018): 118–124.
Siciliano, S. D. , H. Goldie , and J. J. Germida . “Enzymatic activity in root exudates of Dahurian wild rye
(Elymus dauricus) that degrades 2-chlorobenzoic acid.” Journal of Agricultural and Food Chemistry 46, no. 1
(1998): 5–7.
Singh, Nitika , Vivek Kumar Gupta , Abhishek Kumar , and Bechan Sharma . “Synergistic effects of heavy
metals and pesticides in living systems.” Frontiers in Chemistry 5 (2017): 70.
Smith, Allan H. , Elena O. Lingas , and Mahfuzar Rahman . “Contamination of drinking-water by arsenic in
Bangladesh: A public health emergency.” Bulletin of the World Health Organization 78, no. 9 (2000):
1093–1103.
Sparks, Donald L. , Balwant Singh , and Matthew G. Siebecker . Environmental Soil Chemistry (edited by D. L.
Sparks , B. Singh , and M. G. Siebecker ). Elsevier, 2022.
Stangoulis, James C. R. , and Marija Knez . “Biofortification of major crop plants with iron and zinc-
achievements and future directions.” Plant and Soil 474, no. 1 (2022): 57–76.
Tan, Hui Wun , Yean Ling Pang , Steven Lim , and Woon Chan Chong . “A state-of-the-art of phytoremediation
approach for sustainable management of heavy metals recovery.” Environmental Technology & Innovation 30
(2023): 103043.
Tchounwou, Paul B. , Clement G. Yedjou , Anita K. Patlolla , and Dwayne J. Sutton . “Heavy metal toxicity and
the environment.” Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology
(2012): 133–164.
Thron, Raymond W. “Direct and indirect exposure to air pollution.” Otolaryngology – Head and Neck Surgery
114, no. 2 (1996): 281–285.
Vu, Minh Thai , Thi Minh Hao Dong , and Huu Cuong Le . “The applicability of using biofuel for diesel engines.”
World Wide Journal of Multidisciplinary Research and Development no. 5 (2019): 85–90.
Walton, Barbara T. , and Todd A. Anderson . “Microbial degradation of trichloroethylene in the rhizosphere:
Potential application to biological remediation of waste sites.” Applied and Environmental Microbiology 56, no. 4
(1990): 1012–1016.
Wei, Binggan , and Linsheng Yang . “A review of heavy metal contaminations in urban soils, urban road dusts
and agricultural soils from China.” Microchemical Journal 94, no. 2 (2010): 99–107.
Woldetsadik, Desta , Pay Drechsel , Bernard Keraita , Fisseha Itanna , and Heluf Gebrekidan . “Heavy metal
accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa,
Ethiopia.” International Journal of Food Contamination 4 (2017): 1–13.
World Health Organization . Air quality guidelines for Europe. World Health Organization. Regional Office for
Europe, 2000.
Yeoh, Wei Keat , and Asgar Ali . “Ultrasound treatment on phenolic metabolism and antioxidant capacity of
fresh-cut pineapple during cold storage.” Food Chemistry 216 (2017): 247–253.
Zanella, R. , O. Damian , C. D. Amaral Friggi , M. Leonardo , and M. Bohrer . (2012). An overview about recent
advances in sample preparation techniques for pesticide residues analysis in cereals and feedstuffs. InTech.
http://dx.doi.org/10.5772/48752.
Zhang, Cuimei , Shangli Shi , Zhen Liu , Fan Yang , and Guoli Yin . “Drought tolerance in alfalfa (Medicago
sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation.” Journal
of Plant Physiology 232 (2019a): 226–240.
Zhang, Chen , Zemin Li , Chong-Yu Zhang , Mengmeng Li , Yunkyoung Lee , and Gui-Guo Zhang . “Extract
methods, molecular characteristics, and bioactivities of polysaccharide from alfalfa (Medicago sativa L.).”
Nutrients 11, no. 5 (2019b): 1181.
Soil Assessment Policy and Permissible Levels of Contaminants in Plant Food
Products
Alegría, A. , R. Barberá , R. Boluda , F. Errecalde , R. Farré , and M. J. Lagarda . 1991. “Environmental
cadmium, lead and nickel contamination: Possible relationship between soil and vegetable content.” Fresenius’
Journal of Analytical Chemistry 339 (9):654–657. doi: 10.1007/BF00325553.
Alimentarius, C. 2011. “Codex standard.” Rome, Food Agriculture Organization:33–198.
Andrews, Susan S. , Douglas L. Karlen , and Cynthia A. Cambardella . 2004. “The soil management
assessment framework.” Soil Science Society of America Journal 68 (6):1945–1962. doi:
10.2136/sssaj2004.1945.
Aransiola, S.A. , U.J.J. Ijah , O.P. Abioye , and J.D. Bala . 2019. “Microbial-aided phytoremediation of heavy
metals contaminated soil: A review.” European Journal of Biological Research 9 (2):104–125.
http://www.journals.tmkarpinski.com/index.php/ejbr/article/view/157.
Balali-Mood, M. , K. Naseri , Z. Tahergorabi , M. R. Khazdair , and M. Sadeghi . 2021. “Toxic mechanisms of
five heavy metals: Mercury, lead, chromium, cadmium, and arsenic.” Frontiers in Pharmacology 12:643972. doi:
10.3389/fphar.2021.643972.
Baligar, V.C. , N.K. Fageria , H. Eswaran , M.J. Wilson , and Zhenli He . 2004. “Nature and properties of red
soils of the world.” The Red Soils of China: Their Nature, Management and Utilization:7–27.
Ball, Bruce C. , Rachel M. L. Guimarães , Joanna M. Cloy , Paul R. Hargreaves , T. Graham Shepherd , and
Blair M. McKenzie . 2017. “Visual soil evaluation: A summary of some applications and potential developments
for agriculture.” Soil and Tillage Research 173:114–124. doi: 10.1016/j.still.2016.07.006.
Bhattacharyya, Tapas , D. Sarkar , S.K. Ray , P. Chandran , D.K. Pal , D.K. Mandal , J. Prasad , G.S. Sidhu ,
K.M. Nair , and A.K. Sahoo . 2014. “Soil information system: Use and potentials in humid and semi-arid tropics.”
Current Science:1550–1564.
Blum, Winfried E. H. 2005. “Functions of soil for society and the environment.” Reviews in Environmental
Science and Bio/Technology 4 (3):75–79. doi: 10.1007/s11157-005-2236-x.
Boettinger, J. , G. Busch , B. Fonnesbeck , J. Lawley , A. Croft , T. Edwards , and J. Macmahon . 2010. “Soil-
landscape relationships and soil properties associated with rare plants in the eastern Mojave Desert near Las
Vegas, Nevada, USA.” Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia.
Bonelli, Maria Grazia , Mauro Ferrini , and Andrea Manni . 2017. “Artificial neural networks to evaluate organic
and inorganic contamination in agricultural soils.” Chemosphere 186:124–131.
Bünemann, Else K. , Giulia Bongiorno , Zhanguo Bai , Rachel E. Creamer , Gerlinde De Deyn , Ron de Goede ,
Luuk Fleskens , Violette Geissen , Thom W. Kuyper , Paul Mäder , Mirjam Pulleman , Wijnand Sukkel , Jan
Willem van Groenigen , and Lijbert Brussaard . 2018. “Soil quality – A critical review.” Soil Biology and
Biochemistry 120:105–125. doi: 10.1016/j.soilbio.2018.01.030.
Chandan, Ritula Thakur , and R. Thakur . 2018. “An intelligent model for Indian soil classification using various
machine learning techniques.” International Journal of Computational Engineering Research (IJCER) 33
(2250):3005.
Comin, J.J. , C.A. Bourscheid , L.D. Giumbelli , M. Souza Teixeira , R.D.R. Couto , P.E. Lovato , G. Brunetto ,
F.M. Vezzani , C.R. Lourenzi , and A. Loss . 2024. “Qualitative soil quality assessment is efficient in a grazing
system with or without trees.” Journal of the Science of Food and Agriculture 104 (4):1962–1970. doi:
10.1002/jsfa.13084.
Dharumarajan, S. , Rajendra Hegde , N. Janani , and S. K. Singh . 2019. “The need for digital soil mapping in
India.” Geoderma Regional 16. doi: 10.1016/j.geodrs.2019.e00204.
Dwevedi, Alka , Promod Kumar , Pravita Kumar , Yogendra Kumar , Yogesh K. Sharma , and Arvind M.
Kayastha . 2017. “Soil sensors: Detailed insight into research updates, significance, and future prospects.” New
Pesticides and Soil Sensors:561–594.
Dziubanek, G. , A. Piekut , M. Rusin , R. Baranowska , and I. Hajok . 2015. “Contamination of food crops grown
on soils with elevated heavy metals content.” Ecotoxicology and Environmental Safety 118:183–189. doi:
10.1016/j.ecoenv.2015.04.032.
EmmetBooth, J.P. , P.D. Forristal , O. Fenton , B.C. Ball , N.M. Holden , and Michael Goss . 2016. “A review of
visual soil evaluation techniques for soil structure.” Soil Use and Management 32 (4):623–634. doi:
10.1111/sum.12300.
Fabietti, Gabriele , Mattia Biasioli , Renzo Barberis , and Franco Ajmone-Marsan . 2009. “Soil contamination by
organic and inorganic pollutants at the regional scale: The case of Piedmont, Italy.” Journal of Soils and
Sediments 10 (2):290–300. doi: 10.1007/s11368-009-0114-9.
Guimarães, Rachel M. L. , Afrânio F. Neves Junior , Wellington G. Silva , Craig D. Rogers , Bruce C. Ball ,
Célia R. Montes , and Bruno F. F. Pereira . 2017. “The merits of the visual evaluation of soil structure method
(VESS) for assessing soil physical quality in the remote, undeveloped regions of the Amazon basin.” Soil and
Tillage Research 173:75–82. doi: 10.1016/j.still.2016.10.014.
Hamurcu, M. , M.M. Ozcan , N. Dursun , and S. Gezgin . 2010. “Mineral and heavy metal levels of some fruits
grown at the roadsides.” Food and Chemical Toxicology 48 (6):1767–1770. doi: 10.1016/j.fct.2010.03.031.
Hartemink, A.E. , Y. Zhang , J.G. Bockheim , N. Curi , S.H.G. Silva , J. Grauer-Gray , D.J. Lowe , and P.
Krasilnikov . 2020. “Soil horizon variation: A review.” 125–185. doi: 10.1016/bs.agron.2019.10.003.
Holzapfel, C. 2009. “These deserts lie within the subtropical high pressure belt where the descending part of
the Hadley’s cell air•• circulation causes general aridity. Rain shadow deserts. They are found on the landward
side of coastal mountain ranges. Coastal deserts. Found along coasts bordering very cold.” Ecosystem
Ecology:222.
Hu, W. , B. Huang , D.C. Weindorf , and Y. Chen . 2014. “Metals analysis of agricultural soils via portable X-ray
fluorescence spectrometry.” Bulletin of Environmental Contamination and Toxicology 92 (4):420–426. doi:
10.1007/s00128-014-1236-3.
Igwegbe, A. O. , C. H. Agukwe , and C. A. Negbenebor . 2013. “A survey of heavy metal (lead, cadmium and
copper) contents of selected fruit and vegetable crops from Borno State of Nigeria.” International Journal of
Engineering Science 2 (1):01–05.
Jansson, J.K. , and K.S. Hofmockel . 2020. “Soil microbiomes and climate change.” Nature Reviews
Microbiology 18 (1):35–46. doi: 10.1038/s41579-019-0265-7.
Jorhem, Lars , Birgitta Sundström , and Joakim Engman . 2001. “Cadmium and other metals in Swedish wheat
and rye flours: Longitudinal study, 1983–1997.” Journal of AOAC International 84 (6):1984–1992. doi:
10.1093/jaoac/84.6.1984.
Karlen, Douglas L. , Craig A. Ditzler , and Susan S. Andrews . 2003. “Soil quality: Why and how?” Geoderma
114 (3–4):145–156. doi: 10.1016/s0016-7061(03)00039-9.
Knoepp, Jennifer D. , Leonard F. DeBano , and Daniel G. Neary . 2005. “Soil chemistry.” Wildland Fire in
Ecosystem:42–44.
Kumar, Anil . 2020. “Inorganic soil contaminants and their biological remediation.” Plant Responses to Soil
Pollution:133–153.
Leblanc, J.C. , A. Tard , J.L. Volatier , and P. Verger . 2005. “Estimated dietary exposure to principal food
mycotoxins from the first French total diet study.” Food Additives & Contaminants 22 (7):652–672. doi:
10.1080/02652030500159938.
Lee, K.E. , and C.E. Pankhurst . 1992. “Soil organisms and sustainable productivity.” Soil Research 30
(6):855–892.
Liu, X. , Q. Song , Y. Tang , W. Li , J. Xu , J. Wu , F. Wang , and P.C. Brookes . 2013. “Human health risk
assessment of heavy metals in soil-vegetable system: A multi-medium analysis.” Science of the Total
Environment 463–464:530–540. doi: 10.1016/j.scitotenv.2013.06.064.
Liu, Y.R. , L. Guo , Z. Yang , Z. Xu , J. Zhao , S.H. Wen , M. Delgado-Baquerizo , and L. Chen . 2023.
“Multidimensional drivers of mercury distribution in global surface soils: Insights from a global standardized field
survey.” Environmental Science & Technology 57 (33):12442–12452. doi: 10.1021/acs.est.3c04313.
Mahdi, Jwad E. , Lynette K. Abbott , Natasha Pauli , and Zakaria M. Solaiman . 2017. “Biological Indicators for
Soil Health: Potential for Development and Use of On-Farm Tests.” In Modern Tools and Techniques to
Understand Microbes, 123–134.
Makovnikova, Jarmila , Gabriela Barančíková , Pavel Dlapa , and Katarina Dercova . 2006. “Inorganic
contaminants in soil ecosystems.” Chemicke listy 100 (6).
Martorell, I. , G. Perelló , R. Marti-Cid , J.M. Llobet , V. Castell , and J.L. Domingo . 2011. “Human exposure to
arsenic, cadmium, mercury, and lead from foods in Catalonia, Spain: Temporal trend.” Biological Trace Element
Research 142 (3):309–322. doi: 10.1007/s12011-010-8787-x.
Meena, Ram Swaroop , and Sandeep Kumar . 2023. “Soil quality protection policies and plans to ensure
sustainability.” In Encyclopedia of Soils in the Environment, 457–472.
Mishra, B.B. 2016. “Indian system of soil classification: A way forward.” Agricultural Research & Technology:
Open Access Journal 3 (1). doi: 10.19080/artoaj.2016.03.555606.
Montgomery, David R. , Darlene Zabowski , Fiorenzo C. Ugolini , Rolf O. Hallberg , and Henri Spaltenstein .
2000. “Soils, watershed processes, and marine.” Earth System Science: From Biogeochemical Cycles to Global
Changes 72:159.
Mueller, Lothar , Uwe Schindler , T. Graham Shepherd , Bruce C. Ball , Elena Smolentseva , Chunsheng Hu ,
Volker Hennings , Peter Schad , Jutta Rogasik , Jutta Zeitz , Sandro L. Schlindwein , Axel Behrendt , Katharina
Helming , and Frank Eulenstein . 2012. “A framework for assessing agricultural soil quality on a global scale.”
Archives of Agronomy and Soil Science 58 (sup1):S76–S82. doi: 10.1080/03650340.2012.692877.
Mutuku, Eunice A. , Bernard Vanlauwe , Dries Roobroeck , Pascal Boeckx , and Wim M. Cornelis . 2021.
“Visual soil examination and evaluation in the sub-humid and semi-arid regions of Kenya.” Soil and Tillage
Research 213. doi: 10.1016/j.still.2021.105135.
Nandi, Ravi , and Nedumaran Swamikannu . 2019. “Agriculture extension system in India: A meta-analysis.”
Agricultural Science Research Journal 10:473–479.
Nortcliff, Stephen . 2002. “Standardisation of soil quality attributes.” Agriculture, Ecosystems & Environment 88
(2):161–168.
Owens, A. 2023. Soil and Landscape Assessment of the Hydrological Capacity of a~ 45-Year-Old Spray
Irrigation Wastewater Treatment System. The Pennsylvania State University.
Pan, F. , Y. Yu , L. Yu , H. Lin , Y. Wang , L. Zhang , D. Pan , and R. Zhu . 2020. “Quantitative assessment on
soil concentration of heavy metal-contaminated soil with various sample pretreatment techniques and detection
methods.” Environmental Monitoring and Assessment 192 (12):800. doi: 10.1007/s10661-020-08775-4.
Pehluvan, Mücahit , Huseyin Karlidag , and Metin Turan . 2012. “Heavy metal levels of mulberry (MORUS
ALBA L.) grown at different distances from the roadsides.” Journal of Animal and Plant Sciences 22:665–670.
Rahman, M.A. , M.M. Rahman , S.M. Reichman , R.P. Lim , and R. Naidu . 2014. “Heavy metals in Australian
grown and imported rice and vegetables on sale in Australia: Health hazard.” Ecotoxicology and Environmental
Safety 100:53–60. doi: 10.1016/j.ecoenv.2013.11.024.
Rajasulochana, P. , and V. Preethy . 2016. “Comparison on efficiency of various techniques in treatment of
waste and sewage water – A comprehensive review.” Resource-Efficient Technologies 2 (4):175–184. doi:
10.1016/j.reffit.2016.09.004.
Rajendran, S. , A.K. Priya , P. Senthil Kumar , T.K.A. Hoang , K. Sekar , K.Y. Chong , K.S. Khoo , H.S. Ng , and
P.L. Show . 2022. “A critical and recent developments on adsorption technique for removal of heavy metals
from wastewater-A review.” Chemosphere 303 (Pt 2):135146. doi: 10.1016/j.chemosphere.2022.135146.
Real, M.I.H. , H.M. Azam , and N. Majed . 2017. “Consumption of heavy metal contaminated foods and
associated risks in Bangladesh.” Environmental Monitoring and Assessment 189 (12):651. doi:
10.1007/s10661-017-6362-z.
Reza, S.K. , D.C. Nayak , S. Mukhopadhyay , T. Chattopadhyay , and S.K. Singh . 2017. “Characterizing spatial
variability of soil properties in alluvial soils of India using geostatistics and geographical information system.”
Archives of Agronomy and Soil Science 63 (11):1489–1498. doi: 10.1080/03650340.2017.1296134.
Rhind, S.M. 2005. “Are endocrine disrupting compounds a threat to farm animal health, welfare and
productivity?” Reproduction in Domestic Animals 40 (4):282–290.
Saeed, Maimona , Noshin Ilyas , Fatima Bibi , Sumera Shabir , Sabiha Mehmood , Nosheen Akhtar , Iftikhar Ali
, Sami Bawazeer , Abdel Rahman Al Tawaha , and Sayed M. Eldin . 2023. “Nanoremediation approaches for
the mitigation of heavy metal contamination in vegetables: An overview.” Nanotechnology Reviews 12 (1). doi:
10.1515/ntrev-2023-0156.
Santha Kumar, G. , P.K. Saini , Rajesh Deoliya , Aman Kumar Mishra , and S.K. Negi . 2022. “Characterization
of laterite soil and its use in construction applications: A review.” Resources, Conservation & Recycling
Advances 16. doi: 10.1016/j.rcradv.2022.200120.
Senesi, Nicola , and Elisabetta Loffredo . 2018. “The chemistry of soil organic matter.” In Soil Physical
Chemistry, 239–370. CRC Press.
Sharma, L.K. , N.N. Sirdesai , K.M. Sharma , and T.N. Singh . 2018. “Experimental study to examine the
independent roles of lime and cement on the stabilization of a mountain soil: A comparative study.” Applied
Clay Science 152:183–195. doi: 10.1016/j.clay.2017.11.012.
Sharma, R.K. , M. Agrawal , and F. Marshall . 2006. “Heavy metal contamination in vegetables grown in
wastewater irrigated areas of Varanasi, India.” Bulletin of Environmental Contamination & Toxicology 77 (2).
Siddiqui, Shahid Ali , and Naseem Fatima . 2017. “Indian soils: Identification and classification.” Earth Sci. India
10 (Iii):1–14.
Skjemstad, J.O. , Leslie J. Janik , and J.A. Taylor . 1998. “Non-living soil organic matter: What do we know
about it?” Australian Journal of Experimental Agriculture 38 (7):667–680.
Sonneveld, M.P.W. , G.B.M. Heuvelink , and S.W. Moolenaar . 2014. “Application of a visual soil examination
and evaluation technique at site and farm level.” Soil Use and Management 30 (2):263–271. doi:
10.1111/sum.12117.
Stancic, Z. , D. Vujevic , A. Gomaz , S. Bogdan , and D. Vincek . 2016. “Detection of heavy metals in common
vegetables at Varazdin City Market, Croatia.” Arh Hig Rada Toksikol 67 (4):340–350. doi: 10.1515/aiht-2016-
67-2823.
Sulaeman, Yiyi , Sukarman Sukarman , Risma Neswati , Nurdin Nurdin , and Tony Basuki . 2023.
“Characteristics and utilization of black soils in Indonesia.” SAINS TANAH – Journal of Soil Science and
Agroclimatology 20 (1). doi: 10.20961/stjssa.v20i1.70343.
Thompson, L.A. , and W.S. Darwish . 2019. “Environmental chemical contaminants in food: Review of a global
problem.” Journal of Toxicology 2019:2345283. doi: 10.1155/2019/2345283.
Usubalieva, Aigul Z. , M.B. Batkibekova , Holger Hintelmann , and Ramzan Judge . 2013. “The content of zinc,
copper, lead and cadmium in some vegetables of Kyrgyzstan.” Pakistan Journal of Food Sciences 23
(4):189–193.
Valentin, L. , A. Nousiainen , and A. Mikkonen . 2013. “Introduction to organic contaminants in soil: Concepts
and risks.” Emerging Organic Contaminants in Sludges: Analysis, Fate and Biological Treatment:1–29.
Van Dang, Minh . 2007. “Quantitative and qualitative soil quality assessments of tea enterprises in Northern
Vietnam.” African Journal of Agricultural Research 2 (9):455–462.
Wezel, Alexander , Barbara Gemmill Herren , Rachel Bezner Kerr , Edmundo Barrios , André Luiz Rodrigues
Gonçalves , and Fergus Sinclair . 2020. “Agroecological principles and elements and their implications for
transitioning to sustainable food systems. A review.” Agronomy for Sustainable Development 40 (6). doi:
10.1007/s13593-020-00646-z.
Winterkorn, Hans F. , and E.C. Chandrasekharan . 1951. Laterite Soils and Their Stabilization. Winterkorn
Road Research Institute.
Young, R. 2012. Soil Properties and Behaviour. Vol. 5. Elsevier.
Plant Uptake of Emerging Contaminants in Foods, Regulatory Considerations, and
Future Directions
Amit, S. K. , Uddin, M. M. , Rahman, R. , Islam, S. M. R. , & Khan, M. S. (2017). A review on mechanisms and
commercial aspects of food preservation and processing. Agriculture & Food Security, 6(1), 51.
https://doi.org/10.1186/s40066-017-0130-8
Aransiola, S. A. , Ijah, U. J. J. , Abioye, O. P. , & Bala, J. D. (2022). Vermicompost-assisted phytoremediation of
toxic trace element-contaminated soil in Madaka, Nigeria using Melissa officinalis L and Sida acuta.
International Journal of Environmental Science and Technology. http://dx.doi.org/10.1007/s13762-022-04105-y
Blum, A. , Behl, M. , Birnbaum, L. , Diamond, M. L. , Phillips, A. , Singla, V. , Sipes, N. S. , Stapleton, H. M. , &
Venier, M. (2019). Organophosphate ester flame retardants: Are they a regrettable substitution for
polybrominated diphenyl ethers? Environmental Science & Technology Letters, 6(11), 638–649.
https://doi.org/10.1021/acs.estlett.9b00582
Bradu, P. , Biswas, A. , Nair, C. , Sreevalsakumar, S. , Patil, M. , Kannampuzha, S. , Mukherjee, A. G. ,
Wanjari, U. R. , Renu, K. , Vellingiri, B. , & Gopalakrishnan, A. V. (2023). Recent advances in green technology
and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research, 30(60),
124488–124519. https://doi.org/10.1007/s11356-022-20024-4
Christou, A. , Papadavid, G. , Dalias, P. , Fotopoulos, V. , Michael, C. , Bayona, J. M. , Piña, B. , & Fatta-
Kassinos, D. (2019). Ranking of crop plants according to their potential to uptake and accumulate contaminants
of emerging concern. Environmental Research. https://doi.org/10.1016/j.envres.2018.12.048
Cobb, G. P. , Sands, K. , Waters, M. S. , Wixson, B. G. , & Dorward-King, E. J. (2000). Accumulation of heavy
metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry.
https://doi.org/10.1002/etc.5620190311
FAO . (2022). Thinking about the future of food safety. FAO. https://doi.org/10.4060/cb8667en
Hyland, K. , Blaine, A. C. , & Higgins, C. P. (2015). Accumulation of contaminants of emerging concern in food
crops-part 2: Plant distribution. Environmental Toxicology and Chemistry. https://doi.org/10.1002/etc.3068
Jones, D. R. , & Finlay, R. D. (2009). Carbon flow in the rhizosphere: Carbon trading at the soil–root interface.
Plant and Soil. https://doi.org/10.1007/s11104-009-9925-0
Konfo, T. R. C. , Djouhou, F. M. C. , Hounhouigan, M. H. , Dahouenon-Ahoussi, E. , Avlessi, F. , &
Sohounhloue, C. K. D. (2023). Recent advances in the use of digital technologies in agri-food processing: A
short review. Applied Food Research, 3(2), 100329. https://doi.org/10.1016/j.afres.2023.100329
Kyei, N. N. A. , Waid, J. L. , Ali, N. , & Gabrysch, S. (2021). Awareness, experience, and knowledge of farming
households in rural Bangladesh regarding mold contamination of food crops: A cross-sectional study.
International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph181910335
Li, H. , Sheng, G. , Chiou, C. T. , & Xu, O. (2005). Relation of organic contaminant equilibrium sorption and
kinetic uptake in plants. Environmental Science & Technology. https://doi.org/10.1021/es050424z
Lim, J.-M. , Jin, B. , & Butcher, D. J. (2012). A comparison of electrical stimulation for electrodic and EDTA-
enhanced phytoremediation of lead using Indian Mustard (Brassica juncea). Bulletin of the Korean Chemical
Society. https://doi.org/10.5012/bkcs.2012.33.8.2737
Luo, L. , Ma, Y. , Zhang, S. , Wei, D. , & Zhu, Y.-G. (2009). An inventory of trace element inputs to agricultural
soils in China. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2009.01.011
Macherius, A. , Eggen, T. , Lorenz, W. , Moeder, M. , Ondruschka, J. , & Reemtsma, T. (2012). Metabolization
of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment.
Environmental Science & Technology. https://doi.org/10.1021/es3028378
Manyi-Loh, C. , Mamphweli, S. , Meyer, E. , & Okoh, A. (2018). Antibiotic use in agriculture and its
consequential resistance in environmental sources: Potential public health implications. Molecules: A Journal of
Synthetic Chemistry and Natural Product Chemistry, 23(4), 795. https://doi.org/10.3390/molecules23040795
Marmugi, A. , Ducheix, S. , Lasserre, F. , Polizzi, A. , Paris, A. , Priymenko, N. , Bertrand-Michel, J. , Pineau, T.
, Guillou, H. , Martin, P. G. P. , & Mselli-Lakhal, L. (2011). Low doses of bisphenol a induce gene expression
related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology.
https://doi.org/10.1002/hep.24685
McGrath, S. P. , & Zhao, F.-J. (2013). Concentrations of metals and metalloids in soils that have the potential to
lead to exceedance of maximum limit concentrations of contaminants in food and feed. Soil Use and
Management. https://doi.org/10.1111/sum.12080
Morin-Crini, N. , Sharma, V. K. , Zheng, M. , Balaram, V. , Ribeiro, A. C. F. , Lu, Z. , Stock, F. , Carmona, E. ,
Teixeira, M. R. , Picos-Corrales, L. A. , Moreno-Piraján, J. C. , Giraldo, L. , Li, C. , Pandey, A. , Hocquet, D. ,
Torri, G. , & Crini, G. (2022). Worldwide cases of water pollution by emerging contaminants: A review.
Environmental Chemistry Letters. https://doi.org/10.1007/s10311-022-01447-4
Niemuth, N. J. , Jordan, R. , Crago, J. , Blanksma, C. A. , Johnson, R. D. , & Klaper, R. D. (2014). Metformin
exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish.
Environmental Toxicology and Chemistry. https://doi.org/10.1002/etc.2793
Onakpa, M. M. , Njan, A. A. , & Kalu, O. C. (2018). A review of heavy metal contamination of food crops in
Nigeria. Annals of Global Health. https://doi.org/10.29024/aogh.2314
Ortuzar, M. , Esterhuizen, M. , Olicón-Hernández, D. R. , González-López, J. , & Aranda, E. (2022).
Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and
bioremediation systems. Frontiers in Microbiology, 13.
https://www.frontiersin.org/articles/10.3389/fmicb.2022.869332
Petrie, B. (2021). A review of combined sewer overflows as a source of wastewater-derived emerging
contaminants in the environment and their management. Environmental Science and Pollution Research.
https://doi.org/10.1007/s11356-021-14103-1
Rehman, Z. U. , Khan, S. , Shah, M. M. , Brusseau, M. L. , Khan, S. G. , & Mainhagu, J. (2018). Transfer of
heavy metals from soils to vegetables and associated human health risks at selected sites in Pakistan.
Pedosphere. https://doi.org/10.1016/s1002-0160(17)60440-5
Shahid, M. , Dumat, C. , Khalid, S. , Schreck, E. , Xiong, T. , & Niazi, N. K. (2017). Foliar heavy metal uptake,
toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous
Materials. https://doi.org/10.1016/j.jhazmat.2016.11.063
Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change
Biology. https://doi.org/10.1111/gcb.13178
Sorbo, A. , Pucci, E. , Nobili, C. , Taglieri, I. , Passeri, D. , & Zoani, C. (2022). Food safety assessment:
Overview of metrological issues and regulatory aspects in the European Union. Separations, 9(2), Article 2.
https://doi.org/10.3390/separations9020053
Tang, Z. , & Zhao, F.-J. (2020). The roles of membrane transporters in arsenic uptake, translocation and
detoxification in plants. Critical Reviews in Environmental Science and Technology.
https://doi.org/10.1080/10643389.2020.1795053
Tilman, D. , & Clark, M. R. (2014). Global diets link environmental sustainability and human health. Nature.
https://doi.org/10.1038/nature13959
Tschan, M. , Robinson, B. , & Schulin, R. (2009). Antimony in the soil – plant system – a review. Environmental
Chemistry. https://doi.org/10.1071/en08111
Tudi, M. , Daniel Ruan, H. , Wang, L. , Lyu, J. , Sadler, R. , Connell, D. , Chu, C. , & Phung, D. T. (2021).
Agriculture development, pesticide application and its impact on the environment. International Journal of
Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112
Unuofin, J. O. , Okoh, A. I. , & Nwodo, U. U. (2019). Aptitude of oxidative enzymes for treatment of wastewater
pollutants: A laccase perspective. Molecules. https://doi.org/10.3390/molecules24112064
van der Meulen, B. , Card, M. M. , Din, A. , Fortin, N. D. , Mahmudova, A. , Maister, B. , Türkoğlu, H. G. , Bilgin,
F. K. , Lederman, J. , Poto, M. P. , Sattigeri, V. D. , Sohn, M. , Sun, J. , Urazbaeva, A. , & Vasiliev, Y. (2022).
Chapter 3 – Food regulation around the world. In A. Martinović , S. Oh , & H. Lelieveld (Eds.), Ensuring global
food safety (2nd ed., pp. 11–137). Academic Press. https://doi.org/10.1016/B978-0-12-816011-4.00001-X
Vitousek, P. M. , Mooney, H. A. , Lubchenco, J. , & Melillo, J. M. (1997). Human domination of earth’s
ecosystems. Science. https://doi.org/10.1126/science.277.5325.494
Wang, Y.-N. , Chan, K. M. , & Chan, W. (2017). Plant uptake and metabolism of nitrofuran antibiotics in spring
onion grown in nitrofuran-contaminated soil. Journal of Agricultural and Food Chemistry.
https://doi.org/10.1021/acs.jafc.7b01050
Wu, C. , Spongberg, A. L. , Witter, J. D. , Fang, M. , & Czajkowski, K. (2010). Uptake of pharmaceutical and
personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated
water. Environmental Science & Technology. https://doi.org/10.1021/es1011115
Zhang, Q. , Yao, Y. , Wang, Y. , Zhang, Q. , Cheng, Z. , Li, Y. , Yang, X. , Wang, L. , & Sun, H. (2021). Plant
accumulation and transformation of brominated and organophosphate flame retardants: A review.
Environmental Pollution, 288, 117742. https://doi.org/10.1016/j.envpol.2021.117742
Toxic Metals and Emerging Contaminants in Food
Abedi, A. S. , Hoseini, H. , Mohammadi-Nasrabadi, F. , Rostami, N. , & Esfarjani, F. (2023). Consumer health
risk assessment of Arsenic and Mercury in hen eggs through Monte Carlo simulations. BMC Public Health,
23(1). https://doi.org/10.1186/s12889-023-16223-4
Adjei-Mensah, R. , Ofori, H. , Tortoe, C. , Torgbor Johnson, P. N. , Aryee, D. , & Kofi Frimpong, S. (2021).
Effect of home processing methods on the levels of heavy metal contaminants in four food crops grown in and
around two mining towns in Ghana. Toxicology Reports, 8, 1830–1838.
https://doi.org/10.1016/j.toxrep.2021.11.001
Agarwal, S. K. (1988). The importance of naturally occurring toxicants in foods. Biochemical Education, 16(4),
212–213. https://doi.org/10.1016/0307-4412(88)90124-0
Alves, R. N. , Maulvault, A. L. , Barbosa, V. L. , Cunha, S. , Kwadijk, C. J. A. F. , Álvarez-Muñoz, D. ,
Rodríguez-Mozaz, S. , Aznar-Alemany, Ò. , Eljarrat, E. , Barceló, D. , Fernandez-Tejedor, M. , Tediosi, A. , &
Marques, A. (2017). Preliminary assessment on the bioaccessibility of contaminants of emerging concern in
raw and cooked seafood. Food and Chemical Toxicology, 104, 69–78. https://doi.org/10.1016/j.fct.2017.01.029
Aransiola, S. A. , Ijah, U. J. J. , & Abioye, O. P. (2013). Phytoremediation of lead polluted soil by Glycine max L.
Applied and Environmental Soil Science, 2013. Article ID 631619. doi:10.1155/2013/631619.
https://www.hindawi.com/journals/aess/2013/631619/abs/
Atta, M. B. , El-Sebaie, L. A. , Noaman, M. A. , & Kassab, H. E. (1997). The effect of cooking on the content of
heavy metals in fish (Tilapia nilotica). Food Chemistry, 58(1–2), 1–4. https://doi.org/10.1016/0308-
8146(95)00205-7
Barbosa, V. , Maulvault, A. L. , Alves, R. N. , Kwadijk, C. , Kotterman, M. , Tediosi, A. , Fernández-Tejedor, M. ,
Sloth, J. J. , Granby, K. , Rasmussen, R. R. , Robbens, J. , De Witte, B. , Trabalón, L. , Fernandes, J. O. ,
Cunha, S. C. , & Marques, A. (2018). Effects of steaming on contaminants of emerging concern levels in
seafood. Food and Chemical Toxicology, 118, 490–504. https://doi.org/10.1016/j.fct.2018.05.047
Beier, R. C. , & Nigg, H. N. (1992). Natural Toxicants in Foods. In Phytochemical Resources for Medicine and
Agriculture (pp. 247–367). Springer US. https://doi.org/10.1007/978-1-4899-2584-8_12
Bejarano, L. , Mignolet, E. , Devaux, A. , Espinola, N. , Carrasco, E. , & Larondelle, Y. (2000). Glycoalkaloids in
potato tubers: The effect of variety and drought stress on the ?-solanine and ?-chaconine contents of potatoes.
Journal of the Science of Food and Agriculture, 80(14), 2096–2100. https://doi.org/10.1002/1097-
0010(200011)80:14<2096::AID-JSFA757>3.0.CO;2-6
Cade, S. E. , Kuo, L.-J. , & Schultz, I. R. (2018). Polybrominated diphenyl ethers and their hydroxylated and
methoxylated derivatives in seafood obtained from Puget Sound, WA. Science of the Total Environment, 630,
1149–1154. https://doi.org/10.1016/j.scitotenv.2018.02.301
Cheng, C. (2018). Codex alimentarius commission. In Encyclopedia of Food Security and Sustainability.
https://doi.org/10.1016/B978-0-08-100596-5.22376-7
Corguinha, A. P. B. , Souza, G. A. de , Gonçalves, V. C. , Carvalho, C. de A. , Lima, W. E. A. de Martins, F. A.
D. , Yamanaka, C. H. , Francisco, E. A. B. , & Guilherme, L. R. G. (2015). Assessing arsenic, cadmium, and
lead contents in major crops in Brazil for food safety purposes. Journal of Food Composition and Analysis, 37,
143–150. https://doi.org/10.1016/j.jfca.2014.08.004
Cui, L. , Gao, L. , Zheng, M. , Li, J. , Zhang, L. , Wu, Y. , Qiao, L. , Xu, C. , Wang, K. , & Huang, D. (2020).
Short- and medium-chain chlorinated paraffins in foods from the sixth Chinese total diet study: Occurrences
and estimates of dietary intakes in South China. Journal of Agricultural and Food Chemistry, 68(34),
9043–9051. https://doi.org/10.1021/acs.jafc.0c03491
Dağcilar, K. , & Gezer, C. (2021). Heavy metal residues in milk and dairy products produced in northern
Cyprus. Progress in Nutrition, 23(1). https://doi.org/10.23751/pn.v23i1.9384
Ding, J. , Deng, T. , Xu, M. , Wang, S. , & Yang, F. (2018). Residuals of organophosphate esters in foodstuffs
and implication for human exposure. Environmental Pollution, 233, 986–991.
https://doi.org/10.1016/j.envpol.2017.09.092
Ding, Y. , Han, M. , Wu, Z. , Zhang, R. , Li, A. , Yu, K. , Wang, Y. , Huang, W. , Zheng, X. , & Mai, B. (2020).
Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea.
Environment International, 143, 105919. https://doi.org/10.1016/j.envint.2020.105919
Elafify, M. , Eltoukhy, M. , Sallam, K. I. , Sadoma, N. M. , Mohammed Abd-Elghany, S. , Abdelkhalek, A. , & El-
Baz, A. H. (2023). Heavy metal residues in milk and some dairy products with insight into their health risk
assessment and the role of Lactobacillus rhamnosus in reducing the lead and cadmium load in cheese. Food
Chemistry Advances, 2. https://doi.org/10.1016/j.focha.2023.100261
Food and Agriculture Organization of the United Nations . (2012). World agriculture towards 2030/2050.
Science, 376 (6589), 133–134. https://doi.org/10.1126/science.abo7429
Fu, J. , Fu, K. , Chen, Y. , Li, X. , Ye, T. , Gao, K. , Pan, W. , Zhang, A. , & Fu, J. (2021). Long-range transport,
trophic transfer, and ecological risks of organophosphate esters in remote areas. Environmental Science &
Technology, 55(15), 10192–10209. https://doi.org/10.1021/acs.est.0c08822
Fu, J. , Fu, K. , Gao, K. , Li, H. , Xue, Q. , Chen, Y. , Wang, L. , Shi, J. , Fu, J. , Zhang, Q. , Zhang, A. , & Jiang,
G. (2020). Occurrence and trophic magnification of organophosphate esters in an Antarctic ecosystem: Insights
into the shift from legacy to emerging pollutants. Journal of Hazardous Materials, 396, 122742.
https://doi.org/10.1016/j.jhazmat.2020.122742
Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology,
156(3), 609–643. https://doi.org/10.1099/mic.0.037143-0
Gall, J. E. , Boyd, R. S. , & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: A
review. Environmental Monitoring and Assessment, 187(4), 201. https://doi.org/10.1007/s10661-015-4436-3
Gebbink, W. A. , Glynn, A. , Darnerud, P. O. , & Berger, U. (2015). Perfluoroalkyl acids and their precursors in
Swedish food: The relative importance of direct and indirect dietary exposure. Environmental Pollution, 198,
108–115. https://doi.org/10.1016/j.envpol.2014.12.022
Gebbink, W. A. , van der Lee, M. K. , Peters, R. J. B. , Traag, W. A. , Dam, G. ten , Hoogenboom, R. L. A. P. ,
& van Leeuwen, S. P. J. (2019). Brominated flame retardants in animal derived foods in the Netherlands
between 2009 and 2014. Chemosphere, 234, 171–178. https://doi.org/10.1016/j.chemosphere.2019.06.046
Giera, D. S. , Preisitsch, M. , Brevard, H. , & Nemetz, J. (2022). Quantitative removal of pyrrolizidine alkaloids
from essential oils by the hydrodistillation step in their manufacturing process. Planta Medica, 88(7), 538–547.
https://doi.org/10.1055/a-1534-6928
Han, L. , Sapozhnikova, Y. , & Nuñez, A. (2019). Analysis and occurrence of organophosphate esters in meats
and fish consumed in the United States. Journal of Agricultural and Food Chemistry, 67(46), 12652–12662.
https://doi.org/10.1021/acs.jafc.9b01548
He, C. , Wang, X. , Tang, S. , Thai, P. , Li, Z. , Baduel, C. , & Mueller, J. F. (2018). Concentrations of
organophosphate esters and their specific metabolites in food in Southeast Queensland, Australia: Is dietary
exposure an important pathway of organophosphate esters and their metabolites? Environmental Science &
Technology, 52(21), 12765–12773. https://doi.org/10.1021/acs.est.8b03043
Huang, H. , Gao, L. , Zheng, M. , Li, J. , Zhang, L. , Wu, Y. , Wang, R. , Xia, D. , Qiao, L. , Cui, L. , Su, G. , Liu,
W. , & Liu, G. (2018). Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat
products from 20 provinces of China. Environmental Pollution, 233, 439–445.
https://doi.org/10.1016/j.envpol.2017.10.022
Kasozi, K. I. , Otim, E. O. , Ninsiima, H. I. , Zirintunda, G. , Tamale, A. , Ekou, J. , Musoke, G. H. , Muyinda, R. ,
Matama, K. , Mujinya, R. , Matovu, H. , Ssempijja, F. , Eze, E. D. , Atino, M. , Udechukwu, B. , Kayima, R. ,
Etiang, P. , Ayikobua, E. T. , Kembabazi, S. , … Otim, O. (2021). An analysis of heavy metals contamination
and estimating the daily intakes of vegetables from Uganda. Toxicology Research and Application, 5,
239784732098525. https://doi.org/10.1177/2397847320985255
Lee, J. G. , Hwang, J. Y. , Lee, H. E. , Kim, T. H. , Choi, J. D. , & Gang, G. J. (2019). Effects of food processing
methods on migration of heavy metals to food. Applied Biological Chemistry, 62(1).
https://doi.org/10.1186/s13765-019-0470-0
Lee, S. , Choo, G. , Ekpe, O. D. , Kim, J. , & Oh, J.-E. (2020). Short-chain chlorinated paraffins in various foods
from Republic of Korea: Levels, congener patterns, and human dietary exposure. Environmental Pollution, 263,
114520. https://doi.org/10.1016/j.envpol.2020.114520
Li, X. , Dong, S. , Zhang, W. , Fan, X. , Wang, R. , Wang, P. , & Su, X. (2019). The occurrence of perfluoroalkyl
acids in an important feed material (fishmeal) and its potential risk through the farm-to-fork pathway to humans.
Journal of Hazardous Materials, 367, 559–567. https://doi.org/10.1016/j.jhazmat.2018.12.103
Li, X. , Gao, K. , Dong, S. , Liu, X. , Fu, K. , Wang, P. , Zhang, A. , Su, X. , & Fu, J. (2019). Length-specific
occurrence and profile of perfluoroalkyl acids (PFAAs) in animal protein feeds. Journal of Hazardous Materials,
373, 224–231. https://doi.org/10.1016/j.jhazmat.2019.03.074
Li, X. , Liu, Y. , Yin, Y. , Wang, P. , & Su, X. (2023). Occurrence of some legacy and emerging contaminants in
feed and food and their ranking priorities for human exposure. Chemosphere, 321, 138117.
https://doi.org/10.1016/j.chemosphere.2023.138117
Madariaga-Mazón, A. , Hernández-Alvarado, R. B. , Noriega-Colima, K. O. , Osnaya-Hernández, A. , &
Martinez-Mayorga, K. (2019). Toxicity of secondary metabolites. Physical Sciences Reviews, 4(12).
https://doi.org/10.1515/psr-2018-0116
Medvedeva, Y. , Kucher, A. , Lipsa, J. , & Hełdak, M. (2021). Human health risk assessment on the
consumption of apples growing in urbanized areas: Case of Kharkiv, Ukraine. International Journal of
Environmental Research and Public Health, 18(4), 1–14. https://doi.org/10.3390/ijerph18041504
Naseri, M. , Rahmanikhah, Z. , Beiygloo, V. , & Ranjbar, S. (2014). Effects of two cooking methods on the
concentrations of some heavy metals (cadmium, lead, chromium, nickel and cobalt) in some rice brands
available in Iranian market. Journal of Chemical Health Risks, 4(2).
Nkansah, M. A. , Agorsor, P. I. , & Opoku, F. (2021). Heavy metal contamination and health risk assessment of
mechanically milled delicacy called fufu. International Journal of Food Contamination, 8(1).
https://doi.org/10.1186/s40550-021-00085-y
Nkhebenyane, J. , & Tywabi-Ngeva, Z. (n.d.). Heavy Metal Contamination in Food: The Perspective of the Sub-
Saharan Informal Food Trade. www.intechopen.com
Noorlander, C. W. , van Leeuwen, S. P. J. , te Biesebeek, J. D. , Mengelers, M. J. B. , & Zeilmaker, M. J.
(2011). Levels of perfluorinated compounds in food and dietary intake of PFOS and PFOA in The Netherlands.
Journal of Agricultural and Food Chemistry, 59(13), 7496–7505. https://doi.org/10.1021/jf104943p
Onyeaka, H. , Ghosh, S. , Obileke, K. , Miri, T. , Odeyemi, O. A. , Nwaiwu, O. , & Tamasiga, P. (2024).
Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production.
Food Control, 155, 110040. https://doi.org/10.1016/j.foodcont.2023.110040
Oyekunle, J. A. O. , Ore, O. T. , Durodola, S. S. , Oyinloye, J. A. , Oyebode, B. A. , & Ajanaku, O. L. (2020).
Heavy metal levels and changes in trimethylamine content of smoked fish and meat under different storage
conditions. SN Applied Sciences, 2(6), 1004. https://doi.org/10.1007/s42452-020-2844-7
Perelló, G. , Martí-Cid, R. , Llobet, J. M. , & Domingo, J. L. (2008). Effects of various cooking processes on the
concentrations of arsenic, cadmium, mercury, and lead in foods. Journal of Agricultural and Food Chemistry,
56(23), 11262–11269. https://doi.org/10.1021/jf802411q
Pietron, W. J. , Warenik-Bany, M. , & Wozniak, B. (2021). Polybrominated diphenyl ethers (PBDEs) in raw milk
from different animal species and in infant formula. Occurrence and risk assessment. Chemosphere, 278,
130479. https://doi.org/10.1016/j.chemosphere.2021.130479
Poma, G. , Glynn, A. , Malarvannan, G. , Covaci, A. , & Darnerud, P. O. (2017). Dietary intake of phosphorus
flame retardants (PFRs) using Swedish food market basket estimations. Food and Chemical Toxicology, 100,
1–7. https://doi.org/10.1016/j.fct.2016.12.011
Rahman, M. A. , Rahman, M. M. , Reichman, S. M. , Lim, R. P. , & Naidu, R. (2014). Heavy metals in Australian
grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicology and Environmental
Safety, 100, 53–60. https://doi.org/10.1016/j.ecoenv.2013.11.024
Rai, P. K. , Lee, S. S. , Zhang, M. , Tsang, Y. F. , & Kim, K. H. (2019). Heavy metals in food crops: Health risks,
fate, mechanisms, and management. In Environment International (Vol. 125, pp. 365–385). Elsevier Ltd.
https://doi.org/10.1016/j.envint.2019.01.067
Schecter, A. , Päpke, O. , Harris, T. R. , Tung, K. C. , Musumba, A. , Olson, J. , & Birnbaum, L. (2006).
Polybrominated diphenyl ether (PBDE) levels in an expanded market basket survey of U.S. food and estimated
PBDE dietary intake by age and sex. Environmental Health Perspectives, 114(10), 1515–1520.
https://doi.org/10.1289/ehp.9121
Schilter, B. , Constable, A. , & Perrin, I. (2014). Naturally occurring toxicants of plant origin. In Food Safety
Management (pp. 45–57). Elsevier. https://doi.org/10.1016/B978-0-12-381504-0.00003-2
Schrenk, D. , Bignami, M. , Bodin, L. , Chipman, J. K. , del Mazo, J. , GraslKraupp, B. , Hogstrand, C. ,
Hoogenboom, L. (Ron), Leblanc, J. , Nebbia, C. S. , Nielsen, E. , Ntzani, E. , Petersen, A. , Sand, S. ,
Schwerdtle, T. , Vleminckx, C. , Marko, D. , Oswald, I. P. , Piersma, A. , … Wallace, H. (2020). Risk
assessment of aflatoxins in food. EFSA Journal, 18(3). https://doi.org/10.2903/j.efsa.2020.6040
Shaw, I. , & Vannoort, R. (2001). Pesticides. In Food Chemical Safety (pp. 218–237). Elsevier.
https://doi.org/10.1533/9781855736320.2.218
Tao, F. , Abou-Elwafa Abdallah, M. , Ashworth, D. C. , Douglas, P. , Toledano, M. B. , & Harrad, S. (2017).
Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use
of PBDEs and HBCDD. Environment International, 105, 95–104. https://doi.org/10.1016/j.envint.2017.05.010
Urugo, M. M. , & Tringo, T. T. (2023). Naturally occurring plant food toxicants and the role of food processing
methods in their detoxification. In International Journal of Food Science (Vol. 2023). Hindawi Limited.
https://doi.org/10.1155/2023/9947841
Wang, J.-X. , Bao, L.-J. , Shi, L. , Liu, L.-Y. , & Zeng, E. Y. (2019). Characterizing PBDEs in fish, poultry, and
pig feeds manufactured in China. Environmental Science and Pollution Research, 26(6), 6014–6022.
https://doi.org/10.1007/s11356-018-04057-2
Zafeiraki, E. , Gebbink, W. A. , Hoogenboom, R. L. A. P. , Kotterman, M. , Kwadijk, C. , Dassenakis, E. , & van
Leeuwen, S. P. J. (2019). Occurrence of perfluoroalkyl substances (PFASs) in a large number of wild and
farmed aquatic animals collected in the Netherlands. Chemosphere, 232, 415–423.
https://doi.org/10.1016/j.chemosphere.2019.05.200
Zhang, H. , Vestergren, R. , Wang, T. , Yu, J. , Jiang, G. , & Herzke, D. (2017). Geographical differences in
dietary exposure to perfluoroalkyl acids between manufacturing and application regions in China.
Environmental Science & Technology, 51(10), 5747–5755. https://doi.org/10.1021/acs.est.7b00246
Zhao, N. , Fu, J. , Liu, Y. , Wang, P. , Su, X. , & Li, X. (2020). Animal-derived and plant-derived protein
supplement feeds are important sources of organophosphate esters in the food supply. Journal of Agricultural
and Food Chemistry, 68(42), 11694–11701. https://doi.org/10.1021/acs.jafc.0c04235