Article

Quantification of early biofilm growth in microtiter plates through a novel image analysis software

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The absorbance was measured at 562 nm. [27][28][29][30] Haemolysis ...
Article
Full-text available
In this work, three iridium(iii) tetrazolato complexes have been used in antibacterial, biofilm removal and for other bioactivities for the first time. Notably, these iridium(iii) tetrazolato complexes with high antibacterial, especially, Ir-CF3TAZ showed the best antimicrobial activity and the most effective hemolytic performance, which may pave the way to explore the value of the complexes for clinical applications in the future.
... In this typical technique, the liquid medium and planktonic cells are drained, leaving only attached biofilm, and crystal violet dye is applied for a period of time. This dye is retained by the biofilm matrix, and by adding ethanol as a decolorizing agent, the dye is resolubilized, and the amount of biofilm in the sample could be estimated quantitatively using spectrophotometer [64,65]. The findings showed inhibition of P. aeruginosa-formed biofilm that was treated with PG, with a percentage reaching 58% at a prodigiosin concentration of 1000 µg/mL. ...
Article
Full-text available
Background Microbial prodigiosin pigment has been proposed as a promising biomolecule having an antibacterial, immunosuppressive, antimalarial, antineoplastic, and anticancer activities. The good outcome originates from getting natural pigment, which has many medical applications. Results In this investigation, prodigiosin (PG) was extracted, characterized by UV-visible spectroscopy, thin-layer chromatography, mass spectroscopy, Fourier-transform infrared spectroscopy, and tested in various medical applications as an antibacterial, antioxidant, antibiofilm, anticancer, and wound healing agent at different concentrations. Antibacterial activity of PG pigment was shown against both Gram-positive and Gram-negative bacterial strains. Enterococcus faecalis was the most severely impacted, with minimum inhibitory value of 3.9 µg/mL. The formed biofilm by Pseudomonas aeruginosa was suppressed by 58–2.50% at prodigiosin doses ranging from 1000 to 31.25 µg/mL, respectively. The half-maximal inhibitory concentration (IC50) of 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical was 74.18 ± 23.77 µg/mL. At 100 µg/mL concentration, OK482790 prodigiosin had no harmful effect on normal skin cells and exhibited mild wound healing properties. Additionally, molecular docking simulations confirmed the prodigiosin’s interactions with target proteins, including epidermal growth factor receptor tyrosine kinase (EGFR-TK, PDB ID: 1M17), peptide deformylase from E. faecalis (PDB ID: 2OS1), acidic fibroblast growth factor (FGF-1, PDB ID: 3K1X), PA14_16140 protein from P. aeruginosa (PDB ID: 8Q8O), and human peroxiredoxin 5 (PDB ID: 1HD2) for explaining the anticancer, antibacterial, wound healing, antibiofilm, and antioxidant activities, respectively. Prodigiosin had favorable binding affinities and putative modes of action across various therapeutic domains. Conclusion This study pioneers the use of prodigiosin as a natural alternative to synthetic medicine since it fights germs, heals wounds, is antioxidant, and reduces biofilm formation. Clinical trial number Not applicable.
Article
Full-text available
The potential uses for antibiofilm surfaces reach across different sectors with significant resultant economic, societal and health impact. For those interested in using antibiofilm surfaces in the built environment, it is important that efficacy testing methods are relevant, reproducible and standardised where possible, to ensure data outputs are applicable to end-use, and comparable across the literature. Using pre-defined keywords, a review of literature reporting on antimicrobial surfaces (78 articles), within which a potential application was described as non-submerged/non-medical surface or coating with antibiofilm action, was undertaken. The most used methods utilized the growth of biofilm in submerged and static systems. Quantification varied (from most to least commonly used) across colony forming unit counts, non-microscopy fluorescence or spectroscopy, microscopy analysis, direct agar-contact, sequencing, and ELISA. Selection of growth media, microbial species, and incubation temperature also varied. In many cases, definitions of biofilm and attempts to quantify antibiofilm activity were absent or vague. Assessing a surface after biofilm recovery or assessing potential regrowth of a biofilm after initial analysis was almost entirely absent. It is clear the field would benefit from widely agreed and adopted approaches or guidance on how to select and incorporate end-use specific conditions, alongside minimum reporting guidelines may benefit the literature.
Article
Full-text available
Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogen Pseudomonas aeruginosa combined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnesses via perceiving varied mechanical stress and strain upon surface engagement.
Article
Full-text available
Bacteria often grow into matrix‐encased three‐dimensional (3D) biofilm communities, which can be imaged at cellular resolution using confocal microscopy. From these 3D images, measurements of single‐cell properties with high spatiotemporal resolution are required to investigate cellular heterogeneity and dynamical processes inside biofilms. However, the required measurements rely on the automated segmentation of bacterial cells in 3D images, which is a technical challenge. To improve the accuracy of single‐cell segmentation in 3D biofilms, we first evaluated recent classical and deep learning segmentation algorithms. We then extended StarDist, a state‐of‐the‐art deep learning algorithm, by optimizing the post‐processing for bacteria, which resulted in the most accurate segmentation results for biofilms among all investigated algorithms. To generate the large 3D training dataset required for deep learning, we developed an iterative process of automated segmentation followed by semi‐manual correction, resulting in >18,000 annotated Vibrio cholerae cells in 3D images. We demonstrate that this large training dataset and the neural network with optimized post‐processing yield accurate segmentation results for biofilms of different species and on biofilm images from different microscopes. Finally, we used the accurate single‐cell segmentation results to track cell lineages in biofilms and to perform spatiotemporal measurements of single‐cell growth rates during biofilm development.
Article
Full-text available
Biofilms are widely recognised as a contributing factor in significant problems currently facing human health and industry. The following paper summarises a round table forum held at the 2021 International Biodeterioration and Biodegradation Symposium which discussed the potential role of standards in biofilm research and industry innovation. Standards and other forms of best-practice guidance are reviewed in an academic research context as well as in relation to industry impacts and product development. The understanding of fundamental aspects of biofilms is rapidly evolving, driven in part by new analytical methods. However, the complex and multidisciplinary nature of biofilm-associated problems and typically limited training available for industry personnel tackling the associated issues often reduces the ability to provide best-practice solutions. As such it is argued that more effort needs to be made by both academia and industry experts to provide consensus and associated documentation on standard test methods or guidance documents related to studying and combating biofilms.
Article
Full-text available
Experimental evolution experiments in which bacterial populations are repeatedly exposed to an antimicrobial treatment, and examination of the genotype and phenotype of the resulting evolved bacteria, can help shed light on mechanisms behind reduced susceptibility. In this review we present an overview of why it is important to include biofilms in experimental evolution, which approaches are available to study experimental evolution in biofilms and what experimental evolution has taught us about tolerance and resistance in biofilms. Finally, we present an emerging consensus view on biofilm antimicrobial susceptibility supported by data obtained during experimental evolution studies.
Article
Full-text available
Biofilm-related multi-drug resistance (MDR) is a major problem in hospital-acquired infections (HAIs) that increase patient morbidity and mortality rates and economic burdens such as high healthcare costs and prolonged hospital stay. This review focuses on the burden of bacterial biofilm in the hospital settings, their impact on the emergence of MDR in the HAIs, biofilm detection methods, recent approaches against biofilms, and future perspectives. The prevalence of biofilm-associated MDR among HAIs ranges from 17.9% to 100.0% worldwide. The predominant bacterial isolates causing HAIs in recently published studies were S. aureus, A. baumannii, K. pneumoniae, and P. aeruginosa. In addition to the use of qualitative and quantitative methods to detect biofilm formation, advanced PCR-based techniques have been performed for detecting biofilm-associated genes. Although there are suggested therapeutic strategies against biofilms, further confirmation of their efficacy for in vivo application and antibiotics targeting biofilm-associated genes/proteins to minimize treatment failure is required for the future.
Article
Full-text available
This article presents a review after an exhaustive search that yielded 23 works carried out in the last decade for the availability of optical microscopes with open hardware as a low‐cost alternative to commercial systems. These works were developed with the aim of covering needs within several areas such as: Bio Sciences research in institutions with limited resources, diagnosis of diseases and health screenings in large populations in developing countries, and training in educational contexts with a need for high availability of equipment and low replacement cost. The analysis of the selected works allows us to classify the analyzed solutions into two main categories, for which their essential characteristics are enumerated: portable field microscopes and multipurpose automated microscopes. Moreover, this work includes a discussion on the degree of maturity of the solutions in terms of the adoption of practices aligned with the development of Open Science. Research Highlights Concise review on low‐cost microscopes for developing Open Science, exposing the role of smartphone‐based microscopy. The work classifies microscopes in two main categories: (1) portable field microscopes, and (2) multipurpose automated microscopes.
Article
Full-text available
In Asia, Clitoria ternatea flowers are commonly used as a traditional medicinal herb and as a food colourant. Their bioactive compounds have anti-inflammatory, anti-microbial and anti-biofilm activities. Pseudomonas aeruginosa is one of the major pathogens that cause biofilm-associated infections resulting in an increase in antimicrobial resistance. Hence, the aim of this study was to investigate if the anti-biofilm properties of the anthocyanin-rich fraction of C. ternatea flowers were effective against P. aeruginosa . The effect of the anthocyanin-rich fraction of C. ternatea flowers on P. aeruginosa biofilms formed on a polystyrene surface was determined using the crystal violet assay and scanning electron microscopy (SEM). The anthocyanin-rich fraction reduced biofilm formation by four P. aeruginosa strains with a minimum biofilm inhibitory concentration value ranging between 0.625 and 5.0 mg ml ⁻¹ . We further show that the biofilm-inhibiting activity of C. ternatea flowers is not due to the flavonols but is instead attributed to the anthocyanins, which had significant biofilm inhibitory activity (64.0±1.1 %) at 24 h in a time–response study. The anthocyanin-rich fraction also significantly reduced bacterial attachment on the polystyrene by 1.1 log c.f.u. cm ⁻² surface based on SEM analysis. Hence, anthocyanins from C. ternatea flowers have potential as an agent to decrease the risk of biofilm-associated infections.
Article
Full-text available
Background & Objective: The ability of Pseudomonas aeruginosa to form biofilm has an important role in establishment of chronic phase of infections. Biofilm formation can be affected by antibiotics sub-MIC concentrations. The principal aim of the present study was to evaluate the effect of gentamicin at sub-MIC concentrations on biofilm formation in 100 Pseudomonas aeruginosa clinical isolates.Methods: Determination of minimal inhibitory concentration of gentamicin for clinical isolates was done using micro broth dilution method. The amount of biofilm formation in the treated and untreated isolates with gentamicin sub-MIC (1/2&1/4MIC) concentrations was evaluated using microtitre plate assay. pelA and pslA genes were detected in clinical isolates by PCR method.Results: 99% of clinical isolates were biofilm producer. Different changes in amountof biofilm formation were observed in the treated clinical isolates with sub-MIC concentrations of gentamicin. Two dominant changes were observed in 80% of clinical isolates. These concentrations had inhibitory effect on biofilm formation in 46.4% of isolates and caused a significant decrease in its amount. While in 31.3% of the isolates, the biofilm formation was significantly increased. The frequency of pelA and pslA genes among clinical isolates was 100%. Conclusion: gentamicin sub-MIC concentrations cause different changes on biofilm formation of Pseudomonas aeruginosa clinical isolates. Therefore, further studies are needed for discovering new treatment strategies and using sub-MIC concentrations of the antibiotic in prevention and treatment of Pseudomonas aeruginosa infections.
Article
Full-text available
Quantifying biofilm formation on surfaces is challenging because traditional microbiological methods, such as total colony-forming units (CFUs), often rely on manual counting. These are laborious, resource intensive techniques, more susceptible to human error. Confocal laser scanning microscopy (CLSM) is a high-resolution technique that allows 3D visualisation of biofilm architecture. In combination with a live/dead stain, it can be used to quantify biofilm viability on both transparent and opaque surfaces. However, there is little consensus on the appropriate methodology to apply in confocal micrograph processing. In this study, we report the development of an image analysis approach to repeatably quantify biofilm viability and surface coverage. We also demonstrate its use for a range of bacterial species and translational applications. This protocol has been created with ease of use and accessibility in mind, to enable researchers who do not specialise in computational techniques to be confident in applying these methods to analyse biofilm micrographs. Furthermore, the simplicity of the method enables the user to adapt it for their bespoke needs. Validation experiments demonstrate the automated analysis is robust and accurate across a range of bacterial species and an improvement on traditional microbiological analysis. Furthermore, application to translational case studies show the automated method is a reliable measurement of biomass and cell viability. This approach will ensure image analysis is an accessible option for those in the microbiology and biomaterials field, improve current detection approaches and ultimately support the development of novel strategies for preventing biofilm formation by ensuring comparability across studies.
Article
Full-text available
Biofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.
Article
Full-text available
We present a new large-scale three-fold annotated microscopy image dataset, aiming to advance the plant cell biology research by exploring different cell microstructures including cell size and shape, cell wall thickness, intercellular space, etc. in deep learning (DL) framework. This dataset includes 9,811 unstained and 6,127 stained (safranin-o, toluidine blue-o, and lugol’s-iodine) images with three-fold annotation including physical, morphological, and tissue grading based on weight, different section area, and tissue zone respectively. In addition, we prepared ground truth segmentation labels for three different tuber weights. We have validated the pertinence of annotations by performing multi-label cell classification, employing convolutional neural network (CNN), VGG16, for unstained and stained images. The accuracy has been achieved up to 0.94, while, F2-score reaches to 0.92. Furthermore, the ground truth labels have been verified by semantic segmentation algorithm using UNet architecture which presents the mean intersection of union up to 0.70. Hence, the overall results show that the data are very much efficient and could enrich the domain of microscopy plant cell analysis for DL-framework.
Article
Full-text available
Biofilms are communities of microorganisms that live in a self-produced extracellular matrix in order to survive in hostile environments. Second messengers, such as c-di-GMP and cAMP, participate in the regulation of biofilm formation. c-di-GMP is a major molecule that is involved in modulating the bacterial transition between a planktonic lifestyle and biofilm formation. Aside from regulating carbon catabolism repression in most bacteria, cAMP has also been found to mediate biofilm formation in many bacteria. Although the underlying mechanisms of biofilm formation mediated by cAMP-CRP have been well-investigated in several bacteria, the regulatory pathways of cAMP-CRP are still poorly understood compared to those of c-di-GMP. Moreover, some bacteria appear to form biofilm in response to changes in carbon source type or concentration. However, the relationship between the carbon metabolisms and biofilm formation remains unclear. This mini-review provides an overview of the cAMP-CRP-regulated pathways involved in biofilm formation in some bacteria. This information will benefit future investigations of the underlying mechanisms that connect between biofilm formation with nutrient metabolism, as well as the cross-regulation between multiple second messengers.
Article
Full-text available
Biofilms develop from bacteria bound on surfaces that grow into structured communities (microcolonies). Although surface topography is known to affect bacterial colonization, how multiple individual settlers develop into microcolonies simultaneously remains underexplored. Here, we use multiscale population-growth and 3D-morphometric analyses to assess the spatiotemporal development of hundreds of bacterial colonizers towards submillimeter-scale microcolony communities. Using an oral bacterium (Streptococcus mutans), we find that microbial cells settle on the surface randomly under sucrose-rich conditions, regardless of surface topography. However, only a subset of colonizers display clustering behavior and growth following a power law. These active colonizers expand three-dimensionally by amalgamating neighboring bacteria into densely populated microcolonies. Clustering and microcolony assembly are dependent on exopolysaccharides, while population growth dynamics and spatial structure are affected by cooperative or antagonistic microbes. Our work suggests that biofilm assembly resembles certain spatial-structural features of urbanization, where population growth and expansion can be influenced by type of settlers, neighboring cells, and further community merging and scaffolding occurring at various scales.
Article
Full-text available
Attachment is a necessary first step in bacterial commitment to surface-associated behaviors that include colonization, biofilm formation, and host-directed virulence. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa can initially attach to surfaces via its single polar flagellum. Although many bacteria quickly detach, some become irreversibly attached and express surface-associated structures, such as Type IV pili, and behaviors, including twitching motility and biofilm initiation. P. aeruginosa that lack the GTPase FlhF assemble a randomly placed flagellum that is motile; however, we observed that these mutant bacteria show defects in biofilm formation comparable to those seen for non-motile, aflagellate bacteria. This phenotype was associated with altered behavior of ΔflhF bacteria immediately following surface-attachment. Forward and reverse genetic screens led to the discovery that FlhF interacts with FimV to control flagellar rotation at a surface, and implicated cAMP signaling in this pathway. Although cAMP controls many transcriptional programs in P. aeruginosa, known targets of this second messenger were not required to modulate flagellar rotation in surface-attached bacteria. Instead, alterations in switching behavior of the motor appeared to result from direct or indirect effects of cAMP on switch complex proteins and/or the stators associated with them.
Article
Full-text available
Surface sensing in bacteria is a precursor to the colonization of biotic and abiotic surfaces, and an important cause of drug resistance and virulence. As a motile bacterium approaches and adheres to a surface from the bulk fluid, the mechanical forces that act on it change. Bacteria are able to sense these changes in the mechanical load through a process termed mechanosensing. Bacterial mechanosensing has featured prominently in recent literature as playing a key role in surface sensing. However, the changes in mechanical loads on different parts of the cell at a surface vary in magnitudes as well as in signs. This confounds the determination of a causal relationship between the activation of specific mechanosensors and surface sensing. Here, we explain how contrasting mechanical stimuli arise on a surface-adherent cell and how known mechanosensors respond to these stimuli. The evidence for mechanosensing in select bacterial species is re-interpreted, with a focus on mechanosensitive molecular motors. We conclude with proposed criteria that bacterial mechanosensors must satisfy to successfully mediate surface sensing.
Article
Full-text available
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Article
Full-text available
Microorganisms play a great role in ecosystem, wastewater treatment, monitoring of environmental changes and decomposition of waste materials. However, some of them are harmful to humans and animals such as tuberculosis bacteria and plasmodium. In such course, it is important to identify, track, analyse, consider the beneficial side and get rid of the negative effects of microorganisms using fast, accurate and reliable methods. In recent decades, image analysis techniques have been used to address the drawbacks of manual traditional approaches in the identification and analysis of microorganisms. As image segmentation being an important step (technique) in the detection, tracking, monitoring, feature extraction, modelling and analysis of microorganisms, different methods have been deployed, from classical approaches to current deep neural networks upon different challenges on microorganism images. This survey comprehensively analyses the various studies focused on developing microorganism image segmentation methods in the last 30 years (since 1989). In this survey, segmentation methods are categorised into classical and machine learning methods. Furthermore, these methods are sub-categorized into threshold based, region based and edge based which belong to classical methods, supervised and unsupervised machine leaning based methods which belong to machine learning category. A growth trend of different methods and most frequently used methods in each category are meticulously analysed. A clear explanation of the suitability of these methods for different segmentation challenges encountered on microscopic microorganism images is also enlightened.
Article
Full-text available
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Article
Full-text available
Fluorescent staining is a common tool for both quantitative and qualitative assessment of pro- and eukaryotic cells sub-population fractions by using microscopy and flow cytometry. However, direct cell counting by flow cytometry is often limited, for example when working with cells rigidly adhered either to each other or to external surfaces like bacterial biofilms or adherent cell lines and tissue samples. An alternative approach is provided by using fluorescent microscopy and confocal laser scanning microscopy (CLSM), which enables the evaluation of fractions of cells subpopulations in a given sample. For the quantitative assessment of cell fractions in microphotographs, we suggest a simple two-step algorithm that combines single cells selection and the statistical analysis. To facilitate the first step, we suggest a simple procedure that supports finding the balance between the detection threshold and the typical size of single cells based on objective cell size distribution analysis. Based on a series of experimental measurements performed on bacterial and eukaryotic cells under various conditions, we show explicitly that the suggested approach effectively accounts for the fractions of different cell sub-populations (like the live/dead staining in our samples) in all studied cases that are in good agreement with manual cell counting on microphotographs and flow cytometry data. This algorithm is implemented as a simple software tool that includes an intuitive and user-friendly graphical interface for the initial adjustment of algorithm parameters to the microphotographs analysis as well as for the sequential analysis of homogeneous series of similar microscopic images without further user intervention. The software tool entitled BioFilmAnalyzer is freely available online at https://bitbucket.org/rogex/biofilmanalyzer/downloads/.
Article
Full-text available
In the upper aerodigestive tract, biofilm deposits by oropharyngeal microbes can cause failure of medical polymer devices like voice prostheses. Previous studies on testing of inhibitive strategies still lack of comparability due to varying study protocols concerning growth media, microbial species and growth conditions. Goal of the study was therefore to test cultivation of a mixed biofilm of isolated oropharyngeal microbes under in vitro growth conditions using mixtures of common growth media. Mixtures of yeast peptone dextrose medium (YPD), fetal bovine serum (FBS), RPMI 1640, Yeast nitrogen base medium (YNB) and brain heart infusion (BHI) were tested to grow mixed biofilm deposits of Candida albicans, Candida tropicalis, Staphylococcus aureus, Streptococcus epidermidis, Rothia dentocariosa and Lactobacillus gasseri on medical grade silicone. Periodic assessment of living biofilm was performed over 22 days by a digital microscope and the cultivated biofilm structures were analyzed by scanning electron microscopy after completion of the study. Mixtures of BHI, YPD and FBS improved microscopic growth of multispecies biofilm deposits over time, while addition of RPMI and YNB resulted in reduction of visible biofilm deposit sizes. A mixtures of FBS 30% + YPD 70% and BHI 30% + YPD 70% showed enhanced support of permanent surface growth on silicone. Growth kinetics of in vitro multispecies biofilms can be manipulated by using mixtures of common growth media. Using mixtures of growth media can improve growth of longterm multispecies oropharyngeal biofilm models used for in vitro testing of antibiofilm materials or coatings for voice prostheses.
Article
Full-text available
Biofilms are microbial communities attached to a surface and embedded in an extracellular polymeric substance which provides for the protection, stability and nutrients of the various bacterial species indwelling. These communities can build up in a variety of different environments from industrial equipment to medical devices resulting in damage, loss of productivity and disease. They also have great potential for economic and societal benefits as bioremediation agents and renewable energy sources. The great potential benefits and threats of biofilms has encouraged researchers across disciplines to study biofilm characteristics and antibiofilm strategies resulting in chemists, physicists, material scientists, and engineers, to develop beneficial biofilm applications and prevention methods. The ultimate outcome is a wealth of knowledge and innovative technology. However, without extensive formal training in microbes and biofilm research, these scientists find a daunting array of established techniques for growing, quantifying and characterizing biofilms while trying to design experiments and develop innovative laboratory protocols. This minireview focuses on enriching interdisciplinary efforts and understanding by overviewing a variety of quantitative and qualitative biofilm characterization methods to assist the novice researcher in assay selection. This review consists of four parts. Part 1 is a brief overview of biofilms and the unique properties that demand a highly interdisciplinary approach. Part 2 describes the classical quantification techniques including colony forming unit (CFU) counting and crystal violet staining, but also introduces some modern methods including ATP bioluminescence and quartz crystal microbalance. Part 3 focuses on the characterization of biofilm morphology and chemistry including scanning electron microscopy and spectroscopic methods. Finally, Part 4 illustrates the use of software, including ImageJ and predictive modeling platforms, for biofilm analysis. Each section highlights the most common methods, including literature references, to help novice biofilm researchers make choices which commensurate with their study goals, budget and available equipment.
Article
Full-text available
Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called ‘FlyPi’. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED)-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to ‘shop around’. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi’s capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi’s utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.
Article
Full-text available
Organisms adjust their gene expression to improve fitness in diverse environments. But finding the optimal expression in each environment presents a challenge. We ask how good cells are at finding such optima by studying the control of carbon catabolism genes in Escherichia coli. Bacteria show a growth law: growth rate on different carbon sources declines linearly with the steady-state expression of carbon catabolic genes. We experimentally modulate gene expression to ask if this growth law always maximizes growth rate, as has been suggested by theory. We find that the growth law is optimal in many conditions, including a range of perturbations to lactose uptake, but provides sub-optimal growth on several other carbon sources. Combining theory and experiment, we genetically re-engineer E. coli to make sub-optimal conditions into optimal ones and vice versa. We conclude that the carbon growth law is not always optimal, but represents a practical heuristic that often works but sometimes fails.
Article
Full-text available
Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.
Article
Full-text available
We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90%) in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants.
Article
Full-text available
Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms-such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials-all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.
Article
Full-text available
The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms. Graphical abstract A novel photographic method was developed to quantify bacterial biofilms. Broad spectrum biomolecular staining enhanced the visibility of the biofilms. Image analysis objectively and quantitatively measured biofilm accumulation from digital photographs. When compared to independent measurements of cell density the new method accurately quantified growth of Pseudomonas putida biofilms as they grew over time. The graph shows a comparison of biofilm quantification from cell density and image analysis. Error bars show standard deviation from three independent samples. Inset photographs show effect of staining
Article
Full-text available
Urinary tract infections (UTIs) are a severe public health problem and are caused by a range of pathogens, but most commonly by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. In this Review, we discuss how basic science studies are elucidating the molecular details of the crosstalk that occurs at the host–pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs. We also describe current efforts to translate this knowledge into new clinical treatments for UTIs.
Article
Full-text available
Like most of the materials used by humans, polymeric materials are proposed in the literature and occasionally exploited clinically, as such, as devices or as part of devices, by surgeons, dentists, and pharmacists to treat traumata and diseases. Applications have in common the fact that polymers function in contact with animal and human cells, tissues, and/or organs. More recently, people have realized that polymers that are used as plastics in packaging, as colloidal suspension in paints, and under many other forms in the environment, are also in contact with living systems and raise problems related to sustainability, delivery of chemicals or pollutants, and elimination of wastes. These problems are basically comparable to those found in therapy. Last but not least, biotechnology and renewable resources are regarded as attractive sources of polymers. In all cases, water, ions, biopolymers, cells, and tissues are involved. Polymer scientists, therapists, biologists, and ecologists should thus use the same terminology to reflect similar properties, phenomena, and mechanisms. Of particular interest is the domain of the so-called “degradable or biodegradable polymers” that are aimed at providing materials with specific time-limited applications in medicine and in the environment where the respect of living systems, the elimination, and/or the bio-recycling are mandatory, at least ideally.
Article
Full-text available
Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial-associated infections.
Article
Full-text available
The influence of the nitrogen source on pyoverdine production by Pseudomonas fluorescens grown in chemostat culture in synthetic media at constant pH was studied. Pigment synthesis was highest in a medium with proline as the nitrogen source; other amino acids were less effective in promoting pigment synthesis. The pH and Fe3+ content of the media affected pyoverdine production. The ratio of pigment to growth was maximal at pH 8. When the Fe3+ concentration was increased from 10 to 200 μg 1-1 in media with the same nitrogen source, pyoverdine synthesis decreased. Since the Fe3+ contents of the synthetic media were different, the amount present was adjusted to a standard concentration to permit comparisons between the various nitrogen sources.
Article
Full-text available
We discuss unique features of lens-free computational imaging tools and report some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture (NA) of ∼0.8-0.9 across a field of view (FOV) of more than 20 mm(2) or an NA of ∼0.1 across a FOV of ∼18 cm(2), which corresponds to an image with more than 1.5 gigapixels. We also discuss the current challenges that these computational on-chip microscopes face, shedding light on their future directions and applications.
Article
Full-text available
The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas: putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure - mean thickness, roughness, substratum coverage and surface to volume ratio - showed that the four Pseudomonas: strains represent different modes of biofilm growth. P. putida had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. P. aeruginosa colonized the entire substratum, and formed flat, uniform biofilms. P. aureofaciens resembled P. aeruginosa, but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of P. fluorescens had a phenotype intermediate between those of P. putida and P. aureofaciens. Analysis of biofilms of P. aureofaciens growing on 0.03 mM, 0.1 mM or 0.5 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.
Article
Full-text available
Biofilms are adherent aggregates of bacterial cells that form on biotic and abiotic surfaces, including human tissues. Biofilms resist antibiotic treatment and contribute to bacterial persistence in chronic infections. Hence, the elucidation of the mechanisms by which biofilms are formed may assist in the treatment of chronic infections, such as Pseudomonas aeruginosa in the airways of patients with cystic fibrosis. Here we show that subinhibitory concentrations of aminoglycoside antibiotics induce biofilm formation in P. aeruginosa and Escherichia coli. In P. aeruginosa, a gene, which we designated aminoglycoside response regulator (arr), was essential for this induction and contributed to biofilm-specific aminoglycoside resistance. The arr gene is predicted to encode an inner-membrane phosphodiesterase whose substrate is cyclic di-guanosine monophosphate (c-di-GMP)-a bacterial second messenger that regulates cell surface adhesiveness. We found that membranes from arr mutants had diminished c-di-GMP phosphodiesterase activity, and P. aeruginosa cells with a mutation changing a predicted catalytic residue of Arr were defective in their biofilm response to tobramycin. Furthermore, tobramycin-inducible biofilm formation was inhibited by exogenous GTP, which is known to inhibit c-di-GMP phosphodiesterase activity. Our results demonstrate that biofilm formation can be a specific, defensive reaction to the presence of antibiotics, and indicate that the molecular basis of this response includes alterations in the level of c-di-GMP.
Article
Full-text available
Confocal laser scanning microscopy (CLSM) is the method of choice to study interfacial biofilms and acquires time-resolved three-dimensional data of the biofilm structure. CLSM can be used in a multi-channel modus where the different channels map individual biofilm components. This communication presents a novel image quantification tool, PHLIP, for the quantitative analysis of large amounts of multichannel CLSM data in an automated way. PHLIP can be freely downloaded from http://phlip.sourceforge.net. PHLIP is an open source public license Matlab toolbox that includes functions for CLSM imaging data handling and ten image analysis operations describing various aspects of biofilm morphology. The use of PHLIP is here demonstrated by a study of the development of a natural marine phototrophic biofilm. It is shown how the examination of the individual biofilm components using the multi-channel capability of PHLIP allowed the description of the dynamic spatial and temporal separation of diatoms, bacteria and organic and inorganic matter during the shift from a bacteria-dominated to a diatom-dominated phototrophic biofilm. Reflection images and weight measurements complementing the PHLIP analyses suggest that a large part of the biofilm mass consisted of inorganic mineral material. The presented case study reveals new insight into the temporal development of a phototrophic biofilm where multi-channel imaging allowed to parallel monitor the dynamics of the individual biofilm components over time. This application of PHLIP presents the power of biofilm image analysis by multi-channel CLSM software and demonstrates the importance of PHLIP for the scientific community as a flexible and extendable image analysis platform for automated image processing.
Article
Chronic infections caused by microbial biofilms represent an important clinical challenge. The recalcitrance of microbial biofilms to antimicrobials and to the immune system is a major cause of persistence and clinical recurrence of these infections. In this Review, we present the extent of the clinical problem, and the mechanisms underlying the tolerance of biofilms to antibiotics and to host responses. We also explore the role of biofilms in the development of antimicrobial resistance mechanisms. Chronic infections caused by microbial biofilms represent an important clinical challenge owing to the recalcitrance of microbial biofilms to antimicrobials and the immune system, causing persistence and clinical recurrence of these infections. In this Review, Ciofu and colleagues discuss our current understanding of the mechanisms of tolerance of such biofilms to the immune system as well as of tolerance and resistance to antimicrobials.
Article
Microbially influenced corrosion (MIC), is acknowledged to be the direct cause of catastrophic corrosion failures, with associated damage costs ranging to many billions of US$ annually. In spite of extensive research and numerous publications, fundamental questions relating to MIC remain unanswered. The following review provides an overview of current MIC research and stresses the lack of information related to MIC recognition, prediction and mitigation. The review establishes a link between management decisions and root causes. A holistic, proactive approach to MIC is suggested in which an entire system is considered, monitored and improved.
Article
Biofilms are a form of collective life with emergent properties that confer many advantages on their inhabitants, and they represent a much higher level of organization than single cells do. However, to date, no global analysis on biofilm abundance exists. We offer a critical discussion of the definition of biofilms and compile current estimates of global cell numbers in major microbial habitats, mindful of the associated uncertainty. Most bacteria and archaea on Earth (1.2 × 10 ³⁰ cells) exist in the ‘big five’ habitats: deep oceanic subsurface (4 × 10 ²⁹ ), upper oceanic sediment (5 × 10 ²⁸ ), deep continental subsurface (3 × 10 ²⁹ ), soil (3 × 10 ²⁹ ) and oceans (1 × 10 ²⁹ ). The remaining habitats, including groundwater, the atmosphere, the ocean surface microlayer, humans, animals and the phyllosphere, account for fewer cells by orders of magnitude. Biofilms dominate in all habitats on the surface of the Earth, except in the oceans, accounting for ~80% of bacterial and archaeal cells. In the deep subsurface, however, they cannot always be distinguished from single sessile cells; we estimate that 20–80% of cells in the subsurface exist as biofilms. Hence, overall, 40–80% of cells on Earth reside in biofilms. We conclude that biofilms drive all biogeochemical processes and represent the main way of active bacterial and archaeal life.
Article
Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA.
Article
High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.
Article
Formation of a bacterial biofilm is a developmental process that begins when a cell attaches to a surface, but how does a bacterial cell know it is on or near a surface in the first place? The phase of this 'swim-or-stick' switch is determined by a sensory transduction mechanism referred to as surface sensing, which involves the rotating bacterial flagellum. This review explores six bacterial species as models of flagellar mechanosensing of surfaces to understand the current state of our knowledge and the challenges that lie ahead. A common link between these bacteria is a requirement for the proper function of the flagellar motor stators that channel ions into the cell to drive flagellar rotation. Conditions that affect ion flow act as a signal that, ultimately, controls the master transcriptional regulatory circuits controlling the flagellar hierarchy and biofilm formation.
Article
The microtiter plate (also called 96-well plate) assay for studying biofilm formation is a method which allows for the observation of bacterial adherence to an abiotic surface. In this assay, bacteria are incubated in vinyl "U"-bottom or other types of 96-well microtiter plates. Following incubation, planktonic bacteria are rinsed away, and the remaining adherent bacteria (biofilms) are stained with crystal violet dye, thus allowing visualization of the biofilm. If quantitation is desired, the stained biofilms are solubilized and transferred to a 96-well optically clear flat-bottom plate for measurement by spectrophotometry.
Article
The method for cell number measurement in monolayer cultures by crystal violet staining published recently by Gillies et al. (R. G. Gillies, N. Didier, M. Denton (1986) Anal. Biochem. 159, 109-113) was modified and significantly improved. The procedure was adapted for use in 96-well plates since the method is inherently very sensitive. Modifications allowed fast and complete solubilization of dye adsorbed by cell nuclei during staining. Since light absorption of the unstained or destained cell layers is negligible, cell number measurements can be performed in the respective wells. Due to these features, multiple assays may be carried out rapidly using standard 96-well plate readers. In addition, it is shown that the sensitivity of the assay can be varied and easily controlled by choosing the appropriate pH during the staining procedure. This increases the flexibility of the method making it useful for determining cell density of a wide range of different cell types.
Article
We have developed and implemented methods of extracting morphological features from images of biofilms in order to quantify the characteristics of the inherent heterogeneity. This is a first step towards quantifying the relationship between biofilm heterogeneity and the underlying processes, such as mass-transport dynamics, substrate concentrations, and species variations. We have examined two categories of features, areal, which quantify the relative magnitude of the heterogeneity and textural, which quantify the microscale structure of the heterogeneous elements. The feature set is not exhaustive and has been restricted to two-dimensional images to this point. Included in this paper are the methods used to extract the structural information and the algorithms used to quantify the data. The features discussed are porosity, fractal dimension, diffusional length, angular second moment, inverse difference moment and textural entropy. We have found that some features are better predictors of biofilm behavior than others and we discuss possible future directions for research in this area.