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Abstract
Elucidating a connection with nonlinear Fourier analysis (NLFA), we extend a well
known algorithm in quantum signal processing (QSP) to represent measurable sig-
nals by square summable sequences. Each coefficient of the sequence is Lipschitz
continuous as a function of the signal.

Mathematics Subject Classification 68Q12 · 81P68 · 34L25 · 42C99

1 Introduction

A signal in this paper is a function from the interval I = [0, 1] to the interval

(−2− 1
2 , 2− 1

2 ). In quantum signal processing, one represents such a signal as the imag-
inary part of one entry of an ordered product of unitary matrices. The factors of this
product alternate between matrices depending on the functional parameter x ∈ I and
matrices depending on a sequence � of scalar parameters ψn which are tuned so that
the product represents a given signal. We are interested in the particular representation
of this type proposed by [14] and extended to infinite absolutely summable sequences
in [7]. Our main observation is that after some change of variables, the map sending
the sequence � to the signal is identified as the nonlinear Fourier series described
in [23]. Indeed, this nonlinear Fourier series as well as variants including one with
SU (1, 1) matrices in [24] have been studied for a long time in different contexts such
as orthogonal polynomials [21], Krein systems [6], scattering transforms [2, 22] or
AKNS systems [1].

In particular, transferring knowledge from nonlinear Fourier analysis, we extend
the theory in [7] from absolutely summable to square summable � using a nonlinear
version of the Plancherel identity. We obtain a representation of measurable signals
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by square summable sequences �. This representation extremizes a certain inequality
of Plancherel type.

To state ourmain result, Theorem1,wemake some formal definitions. Given ε > 0,
define the signal space Sε to be the set of real valued measurable functions f on [0, 1]
that satisfy the bound

sup
x∈[0,1]

| f (x)| ≤ 2− 1
2 − ε. (1.1)

We equip Sε with the metric induced by the Hilbert space norm

‖ f ‖ ≡
⎛
⎝ 2

π

1∫

0

| f (x)|2 dx√
1 − x2

⎞
⎠

1
2

. (1.2)

Let P be the space of sequences � = (ψk)k∈N of numbers ψk ∈ (−π
2 , π

2 ). We
equip P with the metric induced by the L∞-norm

‖�‖∞ = sup
k∈N

|ψk |.

For x ∈ [0, 1], define

W (x) :=
(

x i
√
1 − x2

i
√
1 − x2 x

)
, Z =

(
1 0
0 −1

)
. (1.3)

For � ∈ P and x ∈ [0, 1], define recursively

U0(�, x) = eiψ0Z (1.4)

and

Ud(�, x) = eiψd ZW (x)Ud−1(�, x)W (x)eiψd Z . (1.5)

Define ud(�, x) to be the upper left entry of Ud(�, x).

Theorem 1 Let ε > 0. For each f ∈ Sε , there exists a unique sequence � ∈ P such
that

∑
k∈Z

log(1 + tan2 ψ|k|) = − 2

π

∫ 1

0
log |1 − f (x)2| dx√

1 − x2
(1.6)

and �(ud(�, x)) converges with respect to the norm (1.2) to the function f as d tends
to ∞. For two functions f , f̃ ∈ Sε with corresponding sequences �, �̃ as above, we
have the Lipschitz bound

‖� − �̃‖∞ ≤ 7.3ε− 3
2 ‖ f − f̃ ‖. (1.7)
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Fig. 1 Illustration of QSP

Figure1 is a simplified cartoon of QSP, conflating for illustrative purpose the group
SO(3) with its double-cover SU (2) and ignoring for simplicity the reflection symme-
try in the product (1.5). For a given signal f , Theorem 1 provides tuning parameters
ψ j with which we can then evaluate f at x = cos θ as follows. We alternatingly rotate
the horizontal blue vector by θ about the vertical axis, an action generated by the Pauli
matrix X defined in Sect. 4, and by the consecutive tuning parameters ψ j about the
horizontal brown axis, an action generated by the Pauli matrix Z . The resulting rotated
blue vector has height f (x).

Our proof provides an algorithm to compute ψk via a Banach fixed point iteration
that converges exponentially fast with rate depending on ε. The iteration step requires
the application of a Cauchy projection, which in practice may be computed using a
fast Fourier transform.

The weight (1 − x2)− 1
2 in (1.6) has a singularity at one but not at zero. This

asymmetry arises because our theory works naturally with f extended to an even
function on [−1, 1].

After developing the relevant parts of nonlinear Fourier analysis, we prove Theorem
1 in Sect. 8. A relaxation of the threshold (1.1)will be discussed in a forthcoming paper.

The literature both on QSP and NLFA is extensive and we do not try to give a
complete overview here. Our first reference to the QSP algorithm discussed here is
[14],whichwas interested in an optimal algorithm forHamiltonian simulation.Various
interesting properties of QSP are discussed in [5, 9]. [18] introduces an SU (1, 1)
variant of QSP. For the task of computing the potential (ψn) for a given target function
f , several algorithms have been proposed including the so-called factorizationmethod
[3, 11, 12, 26], an optimization algorithm [25], fixed point iteration [7] and Newton’s
method [8]. The factorizationmethod in the context of nonlinear Fourier series is called
the layer-stripping formula and is discussed below. The papers [7] and [25] develop
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the �1 and �2 theories for QSP with many interesting theoretical results. Many of these
results are implicit in our discussion of NLFA in the present paper.

Discrete NLFA for the SU (1, 1) model was studied in [24] with particular empha-
sis on transferring analytic estimates for the linear Fourier transform to the nonlinear
setting. For the SU (2) model, a similar discussion appears in [23]. Some important
contributions to the quest for analogs of classical linear inequalities were made by [4,
13, 16, 17, 20], namely providing maximal and variational Hausdorff-Young inequal-
ities and discussing Carleson-type theorems for the SU (1, 1) model of the nonlinear
Fourier transform and some variants. For a discussion of some recent results and open
questions see [19].

The interest of the third author and subsequently the other authors in quantum signal
processing was initiated during an inspiring talk by L. Lin at a delightful conference at
ICERM on Modern Applied and Computational Analysis. In particular, we dedicate
this result to R. Coifman, who anticipated at the conference that QSP is some sort
of nonlinear Fourier analysis. The third author acknowledges an invitation to the
Santaló Lecture 2022, where he gave an introduction to nonlinear Fourier analysis.
The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy – EXC-2047/1
– 390685813 as well as CRC 1060. We also thank Jiasu Wang for pointing out typos
in the first ArXiv posting of this article.

2 The nonlinear Fourier transform

We are mainly interested in nonlinear Fourier series. However, we start with an excur-
sion to the nonlinear Fourier transform on the real line, which is a multiplicative and
non-commutative version of the linear Fourier transform.

Recall the linear Fourier transform

f̂ (ξ) :=
∫
R

f (x)e−2π i xξdx .

This integral is understood to be a Lebesgue integral if f is in L1(R). If f̂ is also
in L1(R), then both f and f̂ can be seen to be in L2(R) and one has the Plancherel
identity

‖ f̂ ‖2 = ‖ f ‖2.

The Plancherel identity holds for f in a dense subset of L2(R), and one can use it to
extend the Fourier transform to a unitary map from L2(R) to itself. This definition in
L2(R) coincides with the integral definition when f is in L2(R) ∩ L1(R).

The integral in the definition of the Fourier transform is an additive process over con-
tinuous time x . This process can alternatively be expressed by a differential evolution
equation for the partial Fourier integrals
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S(ξ, x) =
∫ x

−∞
f (t)e−2π i tξ dt,

namely

∂x S(ξ, x) = f (x)e−2π i xξ

with the initial condition

S(ξ,−∞) = 0

and the final state

S(ξ,∞) = f̂ (ξ).

If f ∈ L1(R), the required analytic facts such as solvability of the differential equation
and limits as x tends to ±∞ can be elaborated with standard methods.

Exponentiation turns this additive process into a multiplicative process. Define

G(ξ, x) = eS(ξ,x).

Then G satisfies the differential equation

∂xG(ξ, x) = G(ξ, x) f (x)e−2π i xξ (2.1)

with the initial condition

G(ξ,−∞) = 1

and the final state

G(ξ,∞) = e f̂ (ξ).

In the above scalar valued setting, the multiplicative perspective is of an artificial
nature. However, the multiplicative process allows for matrix valued generalizations,
which lead to substantially different nonlinear Fourier transforms. For these general-
izations, the complex factor f (x)e−2π i xξ inC in (2.1) needs to be replaced by amatrix
factor. The most basic choices of such matrix factors come from real linear embed-
dings of C into three dimensional Lie algebras, in particular the ones associated with
the Lie groups SU (1, 1) and SU (2).

The most common SU (1, 1) model of the nonlinear Fourier transform is described
by the differential equation

∂xG(ξ, x) = G(ξ, x)

(
0 f (x)e−2π i xξ

f (x)e−2π i xξ 0

)
(2.2)
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with the initial condition

G(ξ,−∞) =
(
1 0
0 1

)

and the final state defined to be the SU (1, 1) nonlinear Fourier transform of f ,

G(ξ,∞) =
(
a(ξ) b(ξ)

b(ξ) a(ξ)

)
. (2.3)

As the matrix factor in (2.2) is in the Lie Algebra of SU (1, 1), the solution to the
differential equation stays in SU (1, 1). This explains the particular structure of the
matrix in (2.3) and we also have

|a(ξ)|2 − |b(ξ)|2 = 1.

Analogous to the linear situation, solvability of the differential equation with limits
as x tends to ±∞ is elementary for f ∈ L1(R). By Picard iteration, a solution can be
written as the limit of recursively defined approximations Gk with

G0(ξ, x) =
(
1 0
0 1

)

and for k > 0

Gk(ξ, x) =
(
1 0
0 1

)
+
∫ x

−∞
Gk−1(ξ, tk)

(
0 f (tk)e−2π i tkξ

f (tk)e−2π i tkξ 0

)
dtk .

In particular, Gk − Gk−1 is k-linear in f . If k is even, the k-linear term is diagonal
with upper left entry

∫
−∞<t1<t2<···<tk<∞

k/2∏
j=1

f (t2 j ) f (t2 j−1)e
2π iξ(t2 j−t2 j−1) dt2 j−1dt2 j (2.4)

and lower right entry the complex conjugate of (2.4). If k is odd, then the k-linear term
is anti-diagonal with upper right entry

∫
−∞<t1<t2<···<tk<∞

f (tk)e
−2π iξ tk

(k−1)/2∏
j=1

f (t2 j ) f (t2 j−1)e
2π iξ(t2 j−t2 j−1) dt2 j−1dt2 j

(2.5)

and lower left entry the complex conjugate of (2.5). Note that (2.4) and (2.5) are
the terms involved in the multilinear expansions of a and b, which have first order
approximation of the constant function 1 and the linear Fourier transform of f ,
respectively.
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The entries (2.4) and (2.5) are bounded in absolute value by the integrals

∫
−∞<t1<t2<···<tk<∞

k∏
j=1

| f (t j )|dt j = 1

k! ‖ f ‖k1. (2.6)

Hence the nonlinear Fourier transform is a real analytic map from L1(R) to the space
L∞(R,C2×2). Moreover, the inverse linear Fourier transform of (2.4) can be written
with the Dirac δ and the functional variable x as

∫
−∞<t1<t2<···<tk<∞

δ

⎛
⎝x +

k/2∑
j=1

t2 j − t2 j−1

⎞
⎠

k/2∏
j=1

¯f (t2 j ) f (t2 j−1) dt2 j−1dt2 j ,

(2.7)

and similarly for (2.5). The function (2.7) is again in L1(R) with norm bounded as
in (2.6). Hence the nonlinear Fourier transform is a real analytic map from L1(R)

to A(R,C2×2), the matrix valued functions with entries in the Wiener space A(R),
which is the linear Fourier transform of L1(R).

With more work, one can also show that the nonlinear Fourier transform extends to
an analytic map from L p(R) into a suitable space [4, 17] for 1 < p < 2. At p = 2, the
SU (1, 1) nonlinear Fourier transform can be defined by a similar density argument as
in the linear case using the nonlinear analogue of the Plancherel identity

‖ f ‖22 = 2
∫

log |a(ξ)| dξ =
∫
R

log(1 + |b(ξ)|2) dξ, (2.8)

which we will elaborate on below after (2.14). However, unlike the linear setting,
one obtains neither an injective map on L2(R), nor a real analytic map on L2(R) in
any suitable sense. See [24] in the discrete setting and [15] for references on these
respective phenomena.

The SU (2) model of the nonlinear Fourier transform is described by the solution
to the differential equation

∂xG(ξ, x) = G(ξ, x)

(
0 f (x)e−2π i xξ

− f (x)e−2π i xξ 0

)
(2.9)

with the initial condition

G(ξ,−∞) =
(
1 0
0 1

)

and whose final state is the SU (2) nonlinear Fourier transform of f

G(ξ,∞) =
(

a(ξ) b(ξ)

−b(ξ) a(ξ)

)
. (2.10)
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Here, the matrix in (2.10) is in SU (2) for each ξ ∈ R, and in particular

|a(ξ)|2 + |b(ξ)|2 = 1.

The L p theory for p < 2 in so far as discussed above is largely analogous to the case
of SU (1, 1) but with suitable changes of signs in the multi-linear terms. The analogue
of Plancherel however is the weaker information

‖ f ‖22 = lim
ξ→i∞ 2π iξ log (a(ξ)), (2.11)

where ξ tends to∞ along the imaginary axis in the upper half plane, or more generally
through any ray from the origin strictly in the upper half plane. This can be shown by
doing an asymptotic expansion

2π iξ log(a(ξ)) = c + O(|ξ |−1)

along such a ray as in [16] and observing that it is only the bilinear term in the
multilinear expansion of a that contributes to c. The bilinear term of a, now the
negative of the bilinear term of the SU (1, 1) case, is equal to

−
∫

−∞<t1<t2<∞
f (t2) f (t1)e

2π iξ(t2−t1) dt1dt2 = −
∫
s>0

∫
t
f (t + s) f (t)e2π iξs dtds.

(2.12)

Multiplying by 2π iξ and using that

− 2π iξe2π iξs1{s>0} (2.13)

is an approximating unit converging to the Dirac delta as ξ tends to infinity along a
ray in the upper half plane, we obtain

lim
ξ→i∞ −2π iξ

∫
s>0

∫
t
f (t + s) f (t)e2π iξs dtds =

∫
f (t) f (t) dt . (2.14)

This shows (2.11).
In the SU (1, 1) setting, where log(a) has an analytic extension to the upper half

plane, one can use a contour integral over a large semicircle in the upper half plane to
express the analogue of the limit (2.11) by an integral as in (2.8). Here, in the SU (2)
case, log(a) is in general not analytic in the upper half plane due to zeros of a and one
cannot as easily express the limit by an integral. Instead, one resorts to tools such as
factorization into inner and outer functions [10].
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3 Nonlinear Fourier series

Passing from functions onR to sequences F onZ, the Fourier transform,whichwe now
call Fourier series, no longer lives on R but on the unit circle T := {z ∈ C : |z| = 1}.
We slightly misuse the notion of Fourier series here, usually this notion is reserved for
the inverse of the map that we call Fourier series here.

There are nonlinear Fourier series with values in SU (1, 1), this is discussed in [24],
and nonlinear Fourier series with values in SU (2) discussed in [23]. We focus here on
the SU(2) model, which is relevant to the QSP model in Theorem 1.

The linear Fourier series of a sequence F = (Fn)n∈Z with finite support is defined
as

F̂(z) =
∑
n∈Z

Fnz
n .

The analogy with the Fourier transform becomes apparent when writing z = e−2π iξ

for some ξ ∈ R. Indeed, if we define a measure f on the real line as

f (x) =
∑
n∈Z

Fnδ(x − n),

then

f̂ (ξ) =
∫
R

∑
n∈Z

Fnδ(x − n)e−2π iξ x dx

=
∫
R

∑
n∈Z

Fnδ(x − n)e−2π iξn dx =
∑
n∈Z

Fne
−2π iξn = F̂(z).

The nonlinear analog becomes an ordered product of matrices described below. We
will be interested in meromorphic extensions beyond the circle T, hence we consider
the Riemann sphere C ∪ {∞} where ∞ is the reciprocal of 0. For a subset � of the
Riemann sphere we define the reflected set

�∗ = {z−1 : z ∈ �}. (3.1)

For a function a on � we define a∗ on �∗ by

a∗(z) = a(z−1). (3.2)

We note that (�∗)∗ = � and (a∗)∗ = a. If z ∈ T, then a∗(z) = a(z). Define the open
unit disc

D ≡ {z ∈ C : |z| < 1} ,
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The function a is analytic on D∗ precisely if a∗ is analytic on D. We have

a(∞) = a∗(0). (3.3)

If a is analytic on D
∗ and continuous up to the boundary T of D∗, then we have the

mean value theorem

a(∞) = a∗(0) =
∫
T

a∗ =
∫
T

a, (3.4)

where we denote by

∫
T

a =
∫ 1

0
a(e2π iθ ) dθ

the mean value of a on T, i.e., the constant term in the Fourier expansion of a.
For a sequence F : Z → C with finite support, define the meromorphic matrix

valued function G on the Riemann sphere by the recursive equation

Gk(z) = Gk−1(z)
1√

1 + |Fk |2
(

1 Fkzk

−Fkz−k 1

)
(3.5)

with the initial condition

lim
k→−∞Gk(z) =

(
1 0
0 1

)
,

and define the SU (2) nonlinear Fourier series

G(z) = lim
k→∞Gk(z) =

(
a(z) b(z)

−b∗(z) a∗(z)

)
. (3.6)

Existence of the limit as k → ±∞ is trivial thanks to the finite support of F , which
makes the sequence Gk(z) eventually constant in k. The matrix factors in (3.5) are in
SU (2) on T and hence so is their product. In particular,

a(z)a∗(z) + b(z)b∗(z) = 1

on T and as well on the Riemann sphere by analytic continuation.
Under the analogous formal transformation as above, the nonlinear Fourier series

becomes the SU (2) nonlinear Fourier transform for the measure

f (x) =
∑
n∈Z

fnδ(x − n),
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where fn = arctan(|Fn|)Fn|Fn|−1. This value of fn arises from the model
computation

exp

(
0 f0

− f0 0

)
=
(

cos | f0| f0| f0|−1 sin | f0|
− f0| f0|−1 sin | f0| cos | f0|

)

= cos | f0|
(

1 f0| f0|−1 tan | f0|
− f0| f0|−1 tan | f0| 1

)
= 1

1 + |F0|2
(

1 F0
−F0 1

)
.

We write the SU (2) nonlinear Fourier series of the sequence F on Z as

︷︸︸︷
F := (a, b)

with a and b as defined in (3.6). We identify the row vector (a, b) with the matrix
function as in (3.6). In particular, we write the product

(a, b)(c, d) = (ac − bd∗, ad + bc∗).

We describe some properties of the nonlinear SU (2) Fourier series, following [23]
and the analogous arguments in [24]. The first theorem describes some basic transfor-
mation properties analogous to transformation properties of the linear Fourier series.
To better understand the analogy, recall from the analogous discussion of the nonlinear
Fourier transform that the first order approximations of a and b are one and the linear
Fourier series, respectively.

Theorem 2 Let F, H be complex valued finitely supported sequences on Z and let

︷︸︸︷
F (z) = (a, b).

If all entries of F except possibly the zeroth entry vanish, then

(a(z), b(z)) = (1 + |F0|2)− 1
2 (1, F0). (3.7)

If Hn = Fn−1, then

︷︸︸︷
H (z) = (a(z), zb(z)). (3.8)

If the support of F is entirely to the left of the support of H, then

︷ ︸︸ ︷
F + H =

︷︸︸︷
F
︷︸︸︷
H . (3.9)

If |c| = 1, then

︷︸︸︷
cF = (a, cb). (3.10)
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If Hn = F−n, then

︷︸︸︷
H (z) = (a∗(z−1), b(z−1)). (3.11)

If Hn = Fn, then

︷︸︸︷
H (z) = (a∗(z−1), b∗(z−1)). (3.12)

Note that the properties in Theorem 2 are sufficient to uniquely determine the

map from F to
︷︸︸︷
F . The next theorem describes the range of this map on the space

of sequences with finite support. Let l(M, N ) be the space of all complex valued
sequences F on Z which are supported on the interval M ≤ k ≤ N in the strict sense
that F(M) 
= 0 and F(N ) 
= 0.

Theorem 3 Let M ≤ N.The SU (2) nonlinearFourier seriesmaps l(M, N ) bijectively
to the space of pairs (a, b) such that b is the linear Fourier series of a sequence in
l(M, N ) and a is the linear Fourier series of a sequence in l(M−N , 0)with 0 < a(∞)

and

aa∗ + bb∗ = 1. (3.13)

Moreover, we have the identity

a(∞) =
∏
n∈Z

(1 + |Fn|2)−1/2. (3.14)

Note that (3.13) implies that a and b have no common zeros in the Riemann sphere.
Moreover, |a| and |b| are bounded by 1 on T and a(∞) ≤ 1 with equality only if
b = 0 and F = 0.

Note that if a does not have zeros in D
∗, then log(a) is analytic in D

∗ and the real
part of (3.4) gives

log |a(∞)| =
∫
T

log |a|. (3.15)

Multiplying by −2 and using (3.14) and (3.13), we obtain

∑
n∈Z

log(1 + |Fn|2) = −
∫
T

log(1 − |b|2) (3.16)

in analogy to (2.8). If a has zeros in D∗, then we have only the inequality

∑
n∈Z

log(1 + |Fn|2) ≥ −
∫
T

log(1 − |b|2), (3.17)
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which can be obtained by applying the mean value theorem (3.4) to the logarithm of
the quotient of a∗ divided by the Blaschke product of its zeros [10].

As log(1 + x) is comparable to x for small x , under suitable pointwise smallness
assumptions on F and b and absence of zeros of a in D

∗ we obtain from (3.16) that
‖F‖l2(Z) and ‖b‖L2(T) are comparable, in analogy to the linear situation.

4 Quantum signal processing for finite sequences

In this section, we relate at the level of finite sequences the nonlinear Fourier series to
QSP.

Let � be in P as in Theorem 1. Let Fn for n ∈ Z be defined by

Fn = i tan(ψ|n|) (4.1)

and note that (Fn) is even and purely imaginary, that is, for all n ∈ Z,

F−n = Fn = −Fn .

For d ≥ 0, let Gd be the nonlinear Fourier series of the truncated sequence

(
Fn1{−d≤n≤d}

)
.

We may write Gd(z) for z ∈ T, using the symmetries of (Fn), recursively as

G0(z) = 1√
1 − F2

0

(
1 F0
F0 1

)
, (4.2)

Gd(z) = 1

1 − F2
d

(
1 Fdz−d

Fd zd 1

)
Gd−1(z)

(
1 Fdzd

Fdz−d 1

)
. (4.3)

Define X and M and recall Z as follows:

X =
(
0 1
1 0

)
, M = 2− 1

2

(
1 1
1 −1

)
, Z =

(
1 0
0 −1

)
. (4.4)

Observe that M2 is the identity matrix, that

XM = 2− 1
2

(
1 −1
1 1

)
= MZ , (4.5)

and hence also MZM = X and MXM = Z .
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Lemma 1 For x ∈ [0, 1] let θ be the unique number in [0, π
2 ] so that cos θ = x and

set z = e2iθ . We have for every d ≥ 0 and Ud as in Theorem 1,

MUd(�, x)M =
(
eidθ 0
0 e−idθ

)
Gd(z)

(
eidθ 0
0 e−idθ

)
.

Note that the factor two in the exponent of the definition of z differs from the convention
in [7].

Proof We prove the Lemma by induction on d. For k ∈ N, we have

Meiψk Z M = eiψk MZM (4.6)

= eiψk X =
(
cos(ψk) i sin(ψk)

i sin(ψk) cos(ψk)

)
= cos(ψk)

(
1 i tan(ψk)

i tan(ψk) 1

)

(4.7)

= 1√
1 + tan(ψk)2

(
1 i tan(ψk)

i tan(ψk) 1

)
= 1√

1 − F2
k

(
1 Fk
Fk 1

)
.

(4.8)

Applying this with k = 0 and using (4.2) and (1.4) in the form

Meiψ0Z M = MU0(�, x)M (4.9)

verifies the base case d = 0 of the induction.
Now let d ≥ 1 and assume the induction hypothesis is true for d − 1. Noting that

similarly as in (4.7),

W (x) = ei arccos(x)X ,

we have

MW (x)M = ei arccos(x)MXM = eiθ Z =
(
eiθ 0
0 e−iθ

)
. (4.10)

Hence, with (4.6),

√
1 − F2

d MW (x)eiψd Z =
(
eiθ 0
0 e−iθ

)(
1 Fd
Fd 1

)
M (4.11)

and

√
1 − F2

d e
iψd ZW (x)M = M

(
1 Fd
Fd 1

)(
eiθ 0
0 e−iθ

)
. (4.12)
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We obtain with the recursive definition (1.5) and induction hypothesis,

(1 − F2
d )MUd(�, x)M (4.13)

= (1 − F2
d )Meiψd ZW (x)M(MUd−1M)M(�, x)W (x)eψd Z M

=
(
1 Fd
Fd 1

)(
eidθ 0
0 e−idθ

)
Gd−1(z)

(
eidθ 0
0 e−idθ

)(
1 Fd
Fd 1

)

=
(
eidθ 0
0 e−idθ

)(
1 Fdz−d

Fd zd 1

)
Gd−1(z)

(
1 Fdzd

Fdz−d 1

)(
eidθ 0
0 e−idθ

)

= (1 − F2
d )

(
eidθ 0
0 e−idθ

)
Gd(z)

(
eidθ 0
0 e−idθ

)
. (4.14)

This proves the induction step for d and completes the proof of Lemma 1. ��

Lemma 2 Let d ≥ 0 and set

Gd(z) =:
(

a(z) b(z)
−b∗(z) a∗(z)

)
.

For x ∈ [0, 1], let θ be the unique number in [0, π
2 ] such that cos θ = x and set

z = e2iθ . We have for d ≥ 1 and ud as in Theorem 1,

i�(ud(�, x)) = b(z).

Proof We use Lemma 1 to obtain

Ud(�, x) = M

(
eidθ 0
0 e−idθ

)
Gd(z)

(
eidθ 0
0 e−idθ

)
M

= M

(
a(z)zd b(z)
−b∗(z) a∗(z)z−d

)
M .

We then compute the upper left corner

ud (�, x) = 1

2

(
1 1
) (a(z)zd b(z)

−b∗(z) a∗(z)z−d

)(
1
1

)
= 1

2
(a(z)zd + a∗(z)z−d + b(z) − b∗(z)).

(4.15)

As z is in T, the last display becomes

�(a(z)zd) + i�(b(z)).

As (Fn) is purely imaginary and even, the symmetries of the nonlinear Fourier series
imply that b is also purely imaginary. In particular, (4.15) gives Lemma 2. ��
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The above proof gives b(z) = b(z−1) for z ∈ T and that �(ud(x,�)) extends to
an even function in x ∈ [−1, 1].

We note that with this correspondence between NLFA and QSP established, Theo-
rem 31 and Theorem 5 in [25] observe a version of the comparability of ‖F‖l2(Z) and
‖b‖L2(T) discussed in the remarks to (3.16) in the previous section.

5 Nonlinear Fourier series of summable sequences

While our focus in this paper is on square summable sequences, we briefly comment
on the analytically simpler theory of nonlinear Fourier series of elements in the space
�1(Z) of absolutely summable sequences onZ. The linear Fourier series maps �1(Z) to
the spaceC(T) of continuous functions on T, a closed subspace of L∞(T). The actual
image of �1(Z) under the linear Fourier series is the Wiener algebra A(T). Similar
mapping properties are true for the nonlinear Fourier series.

We first recall the Theorem below of [23] for the L∞ bounds. Consider a metric on
SU (2) induced by the operator norm, i.e.,

dist(T , T ′) := ‖T − T ′‖op (5.1)

and let C(T, SU (2)) be the metric space of all continuous G : T → SU (2) with
metric defined by

dist(G,G ′) := sup
z∈T

dist(G(z),G ′(z)). (5.2)

Theorem 4 ([23, Theorem 2.5]) The SU (2) nonlinear Fourier series extends uniquely
to a Lipschitz map �1(Z) → C(T, SU (2)) with Lipschitz constant at most 3.

The use of the operator norm is of no particular relevance except possibly for the
value of the Lipschitz constant, because all norms on the finite dimensional space of
2 × 2 matrices are equivalent. Let b and b′ be the second entries of the first row of︷︸︸︷
F and

︷︸︸︷
F ′ , respectively. Then Theorem 4 in particular implies

‖b − b′‖L∞ ≤ 3‖F − F ′‖�1 . (5.3)

We next turn to the Wiener algebra A(T). Recall that the linear Fourier series is
injective from �1(Z) onto A(T) and the norm ‖.‖A on the Wiener algebra is defined
so that the linear Fourier series is an isometry from �1(Z) to the Wiener algebra. Let
A(T,C2) be the space of pairs (a, b) of functions in A(T) and let the norm of (a, b)
be defined as ‖a‖A + ‖b‖A.

Theorem 5 The SU (2) nonlinear Fourier series is a real analytic map from �1(Z) to
A(T,C2).
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Let R ≥ 0, ‖F‖�1, ‖F ′‖�1 ≤ R. If b and b′ are the second entries of the nonlinear
Fourier series of F and F ′, respectively, then

‖b − b′‖A ≤ eR‖F − F ′‖�1 . (5.4)

If additionally R ≤ 0.36, then

‖F − F ′‖�1 ≤ 2‖b − b′‖A. (5.5)

Proof We begin with a finite sequence F and write the nonlinear Fourier series as an
ordered product

(a(z), b(z)) =
∞∏

j=−∞
(1 + |Fj |2)− 1

2 (1, Fj z
j ), (5.6)

where the non-commutative product is understood in the sense of j increasing from
left to right. We decompose (1, Fj z j ) = (1, 0) + (0, Fj z j ) and apply the distributive
law. The terms resulting from the distributive law are parameterized by increasing
sequences j1 < · · · < jn of indices, for which Fj z j appears in the term. Hence we
write the right side of (5.6) as

C(F)

⎛
⎝

∞∑
n=0

∑
j1< j2<···< jn

n∏
k=1

(0, Fjk z
jk )

⎞
⎠ (5.7)

with

C(F) =
∞∏

j=−∞
(1 + |Fj |2)− 1

2 .

The n-th term in the sum of (5.7) is diagonal for even n and anti-diagonal for odd
n. Setting

Tn(F
1, . . . , Fn)(z) :=

∑
j1< j2<···< jn

⎛
⎜⎝
∏

1≤k≤n
k is odd

Fk
jk z

jk

⎞
⎟⎠

⎛
⎜⎝

∏
1≤k≤n
k is even

−Fk
jk
z− jk

⎞
⎟⎠ , (5.8)

we obtain

a = C(F)

∞∑
n=0

T2n(F, . . . , F). (5.9)

b = C(F)

∞∑
n=0

T2n+1(F, . . . , F). (5.10)
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We will show that both the function C and the multilinear expansions in (5.9) and
(5.10) extend to analytic maps in �1(Z), thereby proving that a and b extend to analytic
maps in the argument F ∈ �1(Z).

We first discuss C(F). For a sequence Hj of non-negative numbers, we have

∞∏
j=−∞

(1 + Hj ) = 1 +
∞∑
n=1

∑
j1<···< jn

n∏
k=1

Hjk ≤ 1 +
∞∑
n=1

1

n! ‖H‖�1(Z), (5.11)

which we recognize as a multi-linear expansion with infinite radius of convergence.
As the map Fj → Fj Fj is real analytic from �1(Z) to itself and the − 1

2 -th power is
real analytic from [1,∞) to (0, 1], the function C extends to a real analytic map from
�1(Z) to (0, 1].

As for Tn , taking all F j = F and summing (5.8) in absolute value over all permu-
tations of the indices j1 to jn , the sum separates into a product of sums and one can
estimate for |z| = 1

|Tn(F, . . . , F)(z)| ≤ 1

n! ‖F‖n
�1

. (5.12)

Thus the multilinear expansions in the expression (5.9) and (5.10) of a and b have
infinite radius of convergence in �1(Z) and extend to real analytic maps from �1 to
L∞(T,C2). Moreover, (5.8) is the linear Fourier series of the sequence given by

(Ťn(F
1, . . . , Fn)) j =

∑
j1< j2<···< jn∑n
k=1 −(−1)k jk= j

⎛
⎜⎝
∏

1≤k≤n
k is odd

Fk
jk

⎞
⎟⎠

⎛
⎜⎝

∏
1≤k≤n
k is even

−Fi
ji

⎞
⎟⎠ .

Absolutely summing over j as well as over permutations of the indices from j1 to jn
yields that

‖Tn(F1, . . . , Fn)‖A ≤ 1

n!
n∏
j=1

‖F j‖�1 . (5.13)

Hence the multilinear expansions in (5.9) and (5.10) extend to real analytic maps from
�1(Z) to A(T). The nonlinear Fourier series extends to a real analytic map from �1(Z)

to A(T,C2). This proves the first statement of Theorem 5.
We turn to the proof of (5.4). By an n-fold application of the triangle inequality and

(5.13) above,

‖Tn(F, . . . , F) − Tn(F
′, . . . , F ′)‖A

≤
n∑
j=1

‖Tn(F ′, . . . , F ′, F − F ′, F, . . . , F)‖A
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≤ ‖F − F ′‖�1R
n−1

(n − 1)! , (5.14)

where in the middle term the difference F − F ′ occurs in the j-th entry. On the other
hand, by a telescoping sum as in (5.14) using that all factors of C(F) are bounded by
1, we get

|C(F) − C(F ′)| ≤
∞∑

j=−∞

∣∣∣(1 + |Fj |2)− 1
2 − (1 + |F ′

j |2)−
1
2

∣∣∣

≤
∞∑

j=−∞

∣∣∣(1 + |Fj |2) 1
2 − (1 + |F ′

j |2)
1
2

∣∣∣ ≤
∞∑

j=−∞
|Fj − F ′

j | = ‖F − F ′‖�1(Z).

(5.15)

Thus, by the triangle inequality,

‖b − b′‖A ≤ |C(F) − C(F ′)|
∞∑
n=0

R2n+1

(2n + 1)! + C(F ′)
∞∑
n=0

‖F − F ′‖�1R
2n

(2n)! (5.16)

≤ (sinh(R) + cosh(R)) ‖F − F ′‖�1 = eR‖F − F ′‖�1 . (5.17)

This proves (5.4).
We turn to the proof of (5.5). We first note a lower bound for C(F). We have

− 2 log(C(F)) =
∞∑

j=−∞
log(1 + |Fj |2)) ≤

∑
|Fj |2 ≤ ‖F‖2

�1
≤ R2 (5.18)

and hence

C(F) ≥ e− 1
2 R

2
. (5.19)

The key observation is now that T1(F) is the linear Fourier series of F . We will
isolate this term in (5.10) by the triangle inequality as follows:

‖b − b′‖A + ‖
∞∑
n=1

C(F)T2n+1(F, . . . , F) − C(F ′)T2n+1(F
′, . . . , F ′)‖A

≥ ‖C(F)T1(F) − C(F ′)T1(F ′)‖A

≥ C(F)‖T1(F) − T1(F
′)‖A − |C(F) − C(F ′)|‖T1(F ′)‖A

≥ e− 1
2 R

2‖F − F ′‖�1 − ‖F − F ′‖�1‖F‖�1 ≥ (e− 1
2 R

2 − R)‖F − F ′‖�1 .

(5.20)

Here we have used (5.19) and (5.15).
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Estimating the second term on the far left-hand side of (5.20) analogously to (5.16)
yields

‖b − b′‖A + (eR − 1 − R)‖F − F ′‖�1 ≥ (e− 1
2 R

2 − R)‖F − F ′‖�1

and hence

‖b − b′‖A ≥ ‖F − F ′‖�1

(
1 + e− 1

2 R
2 − eR

)
,

where the last term in parentheses is larger than 1
2 for R ≤ 0.36. ��

In [7], the authors investigate similar inequalities. Up to comparing the constants,
Theorem 3, Corollaries 18 and 20 of [7] state the same inequalities as (5.4) and (5.5).
In fact, constants in [7] are better than the ones we obtain. This is due to the fact
that we only use the triangle inequality and absorb all the multilinear terms into the
first term, whereas [7] carries out a more subtle estimate through the Jacobian of∑∞

n=0 T2n+1(F, . . . , F).

6 Nonlinear Fourier series of one sided square summable sequences

In this section, we largely follow [23] while giving a self-contained presentation.
For 1 ≤ p ≤ ∞, let H p(D) be the classical Hardy space associated to the disc D,

that is the set of functions f in L p(T)which are the linear Fourier series of a sequence
supported in [0,∞). The linear Fourier series of a Hardy space function f provides
an analytic extension of f to D which has non-tangential limits almost everywhere
on T equal to the function f . We denote the value of the extension of f at a point
z ∈ D by f (z). The anti-Hardy space H p(D∗) consists of the functions f on T for
which f ∗ ∈ H p(D). The mean value theorem in the form of (3.4) continues to hold
for functions a ∈ H p(D∗). In particular, values of functions a in H(D∗) and H(D)

respectively at ∞ and 0, if real, are the average of the real part of the function on T.
If f ∈ H p(D) is bounded by 1, then its extension to D is bounded by 1. If f has

modulus 1 almost everywhere on T, then f is called inner. If f (0) > 0, then log | f |
is integrable on T and

∫
T

log | f | ≥ log f (0), (6.1)

and f is called outer if equality holds in (6.1).
If f ∈ H p(D), and f vanishes at 0, then the imaginary part of f is the Hilbert

transform H with respect to the circle of the real part of f . If f ∈ H p(D∗), and f
vanishes at ∞, then the imaginary part of f is the negative of the Hilbert transform of
the real part of f . The Hilbert transform has operator norm one in L2(T).
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On the Hilbert space L2 (T), there is the orthogonal projection operator PD onto
H2 (D). We also define

PD∗ f = (PD( f ∗))∗.

Then PD∗ is the orthogonal projection of L2 (T) onto H2(D∗). Both these operators
have operator norm one on L2 (T).

We refer to [10] for these and further details on the theory of Hardy spaces.
Let L be the set of pairs of measurable functions (a, b) on T such that

aa∗ + bb∗ = 1 (6.2)

almost everywhere on T and a is in H2(D∗) with a(∞) > 0. We introduce the
following metric on L:

ρ((a, b), (c, d)) =
(∫

T

|a − c|2
) 1

2 +
(∫

T

|b − d|2
) 1

2 + | log(a(∞)) − log(c(∞))|.
(6.3)

The nonlinear Fourier series of a finite sequence is in L. Moreover, the metric ρ

has the following compatibility with the product (3.9) in Theorem 2.

Theorem 6 Let F, F̃ be finite sequences with support entirely to the left of the support
of some other finite sequences G, G̃. Let (a, b), (ã, b̃), (c, d), (c̃, d̃), be the nonlinear
Fourier series of F, F̃,G, G̃, respectively. Then

ρ((a, b)(c, d), (ã, b̃)(c̃, d̃)) ≤ 2ρ((a, b), (ã, b̃)) + 2ρ((c, d), (c̃, d̃)). (6.4)

Proof Thanks to the support properties of the sequences, bd∗ vanishes at ∞ and

log(ac − bd∗)(∞) = log(a(∞)) + log(c(∞))

and similarly for the quantities with tildes. This shows the desired inequality for the
logarithmic parts of the metric.

The functions a, b, c, d and their tilde counterparts are bounded by 1 almost
everywhere on T. Hence

|(ac − bd∗) − (ãc̃ − b̃d̃∗)| = |(a − ã)c + ã(c − c̃) − (b − b̃)d∗ − b̃(d∗ − d̃∗)|
≤ |a − ã| + |c − c̃| + |b − b̃| + |d∗ − d̃∗|,

and similarly

|(ad + bc∗) − (ãd̃ + b̃c̃∗)| ≤ |a − ã| + |c − c̃| + |b − b̃| + |d∗ − d̃∗|.

The desired bounds for the L2 parts of ρ then follow by the triangle inequality. ��
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Note that as the absolute values of a and c are almost everywhere bounded by 1
on T, the metric ρ defines the same topology as the metric on L in [23] using an L1

integral.
Let H be the set of functions in L such that b is in H2(D). Let H be the set of

functions in H such that a∗ and b have no common inner factor in the sense that if
a∗g−1 and bg−1 are in H2(D) for some inner function g onT, then g is constant. Note
that the bar in H has the meaning of a closure rather than a complex conjugation. In
fact, H̄ is complete.

For a sequence F supported on [0,∞) define (ak, bk) for k ≥ 0 recursively by

(a0(z), b0(z)) = (1 + |F0|2)− 1
2 (1, F0) (6.5)

and for k > 0

(ak(z), bk(z)) = (ak−1(z), bk−1(z))(1 + |Fk |2)− 1
2 (1, Fkz

k). (6.6)

This definition coincides with (3.6) under the identification of Gk with (ak, bk) for
sequences supported on [0,∞).

Theorem 7 Let F be a sequence in l2(Z)with support in [0,∞). The sequence (ak , bk)
as in (6.5) and (6.6) converges in L to an element (a, b) in H. We have

a(∞) =
∏
n≥0

(1 + |Fn|2)−1/2. (6.7)

We call the limit (a, b) in this theorem the nonlinear Fourier series of F . This definition
is consistent with the definition of the nonlinear Fourier series near (3.6) in the case
that F has finite support. Theorem 2 continues to hold for one sided infinite sequences,
by taking limits as in Theorem 7.

Proof We first show that the sequence (ak, bk) is Cauchy in L. Let k < l and write

(ak, bk)(c, d) = (al , bl) (6.8)

where (c, d) is the nonlinear Fourier series of the sequence
(
Fn1{k+1≤n≤l}

)
and where

we have used the multiplicative property (3.9) in Theorem 2. We have by Plancherel
(3.14), applied to al , ak , and c

log |al(∞)| − log |ak(∞)| = −1

2

∑
k<n≤l

log(1 + |Fn|2) = log |c(∞)|. (6.9)

The right-hand side tends to zero for k → ∞ because (Fn) is square summable.
By (6.8) we have

|ak − al | = |ak(1 − c) + bkd
∗| ≤ |1 − c| + |d|,

|bl − bk | = |akd + bk(c
∗ − 1)| ≤ |1 − c| + |d|.
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To control the L2 norms of the left-hand sides, it suffices to control the L2 norm of
each summand on the right-hand side. As 1 − c(∞) is real and 1 − c is in H2(D∗),
the L2 norm of the imaginary part of 1 − c, which equals the negative of the Hilbert
transform of the real part of 1 − c, is hence bounded by the L2 norm of its real part,
since the Hilbert transform H has norm one acting on L2(T) [10, Chapter 3]. Using
this and the bound ‖c‖∞ ≤ 1, we estimate

1

4

∫
T

|1 − c|2 ≤ 1

2

∫
T

|�(1 − c)|2 ≤
∫
T

�(1 − c) = 1 − c(∞) ≤ − log c(∞).

The latter tends to zero as in (6.9) as k → ∞. Moreover,

∫
T

|d|2 =
∫
T

1 − |c|2 ≤ −2
∫
T

log |c| ≤ −2 log(c(∞)),

which also tends to zero as in (6.9). Having seen that the sequence (ak, bk) is Cauchy
with respect to all three summands in the definition of ρ, it is Cauchy with respect to
ρ.

As each (ak, bk) is in H and H is complete, (ak, bk) has a limit in H.
��

Theorem 8 Let (a, b) ∈ H. There is a unique y ∈ C such that there exists (c, d) ∈ H
satisfying

(c(z), d(z)z) := (1 + |y|2)−1/2(1,−y)(a(z), b(z)) (6.10)

for almost all z ∈ T. Using this statement, define the functions (an, bn) recursively for
n ≥ 0 by

(a0, b0) = (a, b)

(an+1(z), bn+1(z)z) = (1 + |Fn|2)− 1
2 (1,−Fn)(an(z), bn(z)), (6.11)

where Fn is the unique number such that (an+1, bn+1) is inH. Then the sequence (Fn)
is square summable and

a(∞) ≤
∏
n≥0

(1 + |Fn|2)−1/2. (6.12)

If (a, b) /∈ H, then we have strict inequality in (6.12).

The sequence produced in this theorem is called the layer stripping sequence of (a, b),
[22]. Layer stripping is an alternation between a leftmultiplication by a constantmatrix
and a shift by z, mirroring the alternation between two types of unitary matrices in the
QSP representation of the nonlinear Fourier series.

Proof To see the first statement of Theorem 8, note that for each y ∈ C, the factor
(1 + |y|2)−1/2(1,−y) is in SU (2) and thus the right-hand side of (6.10) is an almost

123



M. Alexis et al.

everywhere SU (2)-valued function on T. Hence (c, d) is SU (2)-valued on T. The
matrix product on the right-hand side of (6.10) is (a + yb∗, b − ya∗). We have that
a + yb∗ is in H2(D∗) and b − ya∗ is in H2(D). Equality in (6.10) requires b − ya∗
to vanish at 0. There is a unique complex number y so that this happens, namely

y = b(0)/a∗(0). (6.13)

For this y, we note that b − ya∗ can be written as a product of z with an H2(D)

function, and that, using that a(∞) is positive and thus equal to a∗(0),

a(∞) + yb∗(∞) = a(∞) + yb(0) = a(∞)(1 + |y|2) > 0. (6.14)

We may thus use (6.10) with this y to define c, d. In particular, by (6.14) and (6.10)
we have c(∞) > 0. It follows that (c, d) ∈ H̄. We have thus shown existence and
uniqueness of y as in the first part of the theorem.

We may define Fn as in the second part of the theorem and obtain by induction

an+1(∞) = a(∞)

n∏
k=0

(1 + |Fn|2) 1
2 .

As an+1(∞) ≤ 1 for all n, we obtain (6.12).
Now assume (a, b) /∈ H . Then there is a non-constant inner function g such that

ã∗ = a∗g−1 and b̃ = bg−1 are in H2(D). Multiplying by a number of modulus one,
we may assume that g(0) ≥ 0, and since g is not constant then by the maximum
principle we have g(0) < 1. Multiplying (6.11) by ((g∗)−1, 0) from the right, one
obtains inductively that the layer stripping sequence F̃ of (ã, b̃) is the same as that of
(a, b). But

ã(∞) > g∗(∞)ã(∞) = a(∞).

Applying (6.12) to (ã, b̃) then gives (6.12) for (a, b) with strict inequality. ��
Theorem 9 Let F be a sequence in l2(Z) with support in [0,∞). Then the layer

stripping sequence of
︷︸︸︷
F = (a, b) is F. Moreover, (a, b) is in H. Conversely, if

(a, b) is any element in H, then its layer stripping sequence is square summable and
(a, b) is the nonlinear Fourier series of this layer stripping sequence.

Proof To prove the first part of the theorem, assume to get a contradiction that there

is a sequence F such that the layer stripping sequence of
︷︸︸︷
F is not equal to F . Let n

be the minimal index such that the n-th term of F differs from the n-term of the layer

stripping sequence of
︷︸︸︷
F . We may assume that n is minimal among all hypothetical

counterexamples to the first statement of the theorem.
Let F̃ be the sequence supported on [1,∞) which coincides with F on [1,∞). Let

(ak, bk) and (ãk, b̃k) be the respective sequences defined by the recursion (6.5), (6.6).
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By induction, we obtain for k ≥ 0

(1 + |F0|2)− 1
2 (1,−F0)(ak, bk) = (ãk, b̃k). (6.15)

Taking a limit as k → ∞ with Theorem 7, we obtain for the nonlinear Fourier series
(a, b) and (ã, b̃)

(1 + |F0|2)− 1
2 (1,−F0)(a, b) = (ã, b̃). (6.16)

By Theorem 3, b̃k(0) = 0, for all k ≥ 0, and by taking limits, as evaluation at 0
is continuous in H2(D), we have b̃(0) = 0. Hence there is d ∈ H2(D) such that
d(z)z = b̃(z). Set c = ã, then

(1 + |F0|2)− 1
2 (1,−F0)(a(z), b(z)) = (c(z), d(z)z). (6.17)

By the uniqueness part of Theorem 8, we have that F0 is the zeroth entry of the layer
stripping sequence of (a, b). In particular, n ≥ 1. By definition, the later terms of the
layer stripping sequence of (a, b) are those of the layer stripping sequence of (c, d).
But (c, d) is the nonlinear Fourier series of the sequence Hn = F̃n+1 by Theorem 2.
It follows that the (n − 1)-st term of the layer stripping sequence of (c, d) does not
coincide with Hn−1. This contradicts the minimality of n.

Thus we have shown that the layer stripping sequence of (a, b) is equal to F . As
we have the Plancherel identity (6.7), we observe that (a, b) ∈ H by Theorem 8.

We turn to the second part of theTheorem. Let (c, d) ∈ H, let F be its layer stripping
sequence and let (ck, dk) be the corresponding sequence as defined in Theorem 8. By
(6.12), the sequence F is square summable. Let (a, b) be the nonlinear Fourier series
of F and let (ak, bk) be as in (6.5), (6.6). By induction, we show that for each k ≥ 0
we have

(ak(z), bk(z))(ck+1(z), dk+1(z)z
k+1) = (c(z), d(z)). (6.18)

Namely, for k = 0, both sides of the equation are equal to

(1 + |F0|2)− 1
2 (1, F0)(c1(z), d1(z)z).

For k ≥ 1, the left-hand side of (6.18) is

(ak−1(z), bk−1(z))(1 + |Fk |2)− 1
2 (1, Fk(z)z

k)(ck+1(z), dk+1(z)z
k+1) (6.19)

by definition of (ak, bk). Algebraic verification analogous to a shift show that we may
replace zk and zk+1 in (6.19) by 1 and z, respectively. Hence, by the definition of the
sequence (ck, dk), the expression (6.19) is equal to

(ak−1(z), bk−1(z))(ck(z), dk(z)z
k), (6.20)
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which by the induction hypothesis is the right-hand side of (6.18). This completes the
induction step and proves (6.18).

Dividing by the left factor of (6.20), we obtain from (6.18)

(ck(z), dk(z)z
k) = (a∗

k (z),−bk(z))(c, d).

The entries of the matrix on the right-hand side converge in L2(T) because the entries
of (a∗

k , bk) converge and such convergence is preserved under multiplication by a
bounded measurable function. Therefore, the entries of the left-hand side converge in
L2(T) as well.

The limit of dk(z)zk is in the closed subspace H2(D). The linear Fourier coefficients
of this limit vanish because the k leading Fourier coefficients of dk(z)zk vanish and the
map taking a function to any individual Fourier coefficient is continuous in the space
H2(D). Hence dk(z)zk converges to zero. Also c∗

k converges in H2(D). The limit is an

inner function g, because |ck | = √
1 − |dk |2 converges pointwise almost everywhere

to 1. Taking limits in (6.18) with Theorem 6 gives

(a, b)(g∗, 0) = (c, d)

and thus ag∗ = c and bg = d. As (c, d) ∈ H, we have by definition that g is constant.
This constant is positive and hence is equal to one. It follows that (c, d) = (a, b),
which proves the second part of Theorem 9.

��

7 Nonlinear Fourier series of square summable sequences.

In this section, we adapt arguments in [24] to the SU (2) setting. Unlike [24], we need
to assume an effective bound on b and assume that a is outer. Some of the complex
analytic tools need adjustments. We give a self-contained presentation.

Recall H and define H∗
0 to be the set of (a, b) in L such that (a, b∗) is in H and

b∗(0) = 0. By the shift andmirror symmetries of Theorem2, the results of the previous
section apply in symmetric form. In particular, H∗

0 is the space of nonlinear Fourier
series of sequences in l2(Z) supported on (−∞,−1].

We split a sequence F in l2(Z), as F− + F+, where F− is supported in (−∞,−1]
and F+ is supported in [0,∞). Let (a−, b−) inH∗

0 and (a+, b+) inH be the nonlinear
Fourier series of F− and F+, respectively. Then we define (a, b) almost everywhere
on T by

(a, b) := (a−, b−)(a+, b+). (7.1)

As a product of SU (2) matrices almost everywhere, (a, b) is in SU (2) and thus
entry-wise bounded by one almost everywhere. The identity

a = a−a+ − b−b∗+ (7.2)
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shows that a has an analytic extension to D
∗ with

a(∞) = a−(∞)a+(∞). (7.3)

Hence a is in H2(D∗) with a(∞) > 0 and we have (a, b) ∈ L.
We define (a, b) as in (7.1) to be the nonlinear Fourier series of F . By Theorems

6 and 7 and the symmetries of Theorem 2, (a, b) is the limit as k → ∞ in L of the
nonlinear Fourier series of the truncations of F to the intervals [−k, k]. The properties
in Theorem 2 continue to hold for this extension of the definition of nonlinear Fourier
series. We also see with (6.7) and (7.3) that

a(∞) =
∏
n∈Z

(1 + |Fn|2)−1/2. (7.4)

Let B be the subspace of L of all (a, b) such that

inf
z∈D∗ |a(z)|2 >

1

2
. (7.5)

For a function a satisfying (7.5), there is a holomorphic branch of log(a∗) on D with
nontangential limits coinciding with log(a∗) on the boundary. By the mean value
theorem for the real part of log(a∗), a∗ is outer on D.

We embedB into theHilbert spaceH ≡ L2 (T)⊕L2 (T), written as columnvectors,
with the norm

∥∥∥∥
(
a
b

)∥∥∥∥H
=
√

‖a‖2
L2(T)

+ ‖b‖2L2(T)
.

For (a, b) and (c, d) in B, the metrics defined by H and ρ are equivalent,

1

8
ρ((a, b), (c, d)) ≤

∥∥∥∥
(
a
b

)
−
(
c
d

)∥∥∥∥H
≤ ρ((a, b), (c, d)).

Indeed, the second inequality follows directly from the definition of ρ, while the first
follows from the additional observation that for outer functions a∗ and c∗,

|log |a(∞)| − log |c(∞)|| =
∣∣∣∣
∫
T

log |a| − log |c|
∣∣∣∣ ≤ 2

∫
T

|a − c| ≤ 2‖a − c‖L2(T),

which used an elementary inequality for the logarithm in the domain [ 12 , 1].
Theorem 10 For each complex valued measurable function b on T with

ess supz∈T |b(z)|2 <
1

2
, (7.6)

there is a unique measurable function a on T such that (a, b) ∈ B.
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Proof To see existence of a, let

M(z) ≡ log
√
1 − |b(z)|2

for almost every z ∈ T. By (7.6), M is real and integrable on T. Then M − i HM with
H the Hilbert transform on T has an analytic extension to D

∗. Define

a := eM−i HM , (7.7)

which is in H2(D∗) and satisfies

|a(z)| = eM =
√
1 − |b(z)|2

for almost every z ∈ T. Also a−1 has analytic extension to D∗ and is bounded by 2
1
2 .

It follows that

inf
z∈D∗ |a (z)|2 >

1

2
.

Hence (a, b) ∈ B.
To see uniqueness of a, let ã be another function as claimed in the theorem. Then

ãa−1 and its reciprocal are analytic in the disc D∗ with boundary values of modulus
one almost everywhere. Hence both are bounded by 1 on the disc and thus of modulus
one and are hence constant. This constant is positive at ∞ and thus 1. This proves
uniqueness.

��
Theorem 11 For each (a, b) ∈ B, there are unique (a+, b+) ∈ H and (a−, b−) ∈ H∗

0
such that we have the Riemann Hilbert type factorization

(a−, b−)(a+, b+) = (a, b) (7.8)

almost everywhere on T. Moreover, there is a unique F ∈ l2(Z) whose nonlinear
Fourier series is (a, b).

Proof Existence and uniqueness of the factorization (7.8) shows existence and unique-
ness of F by the one sided Theorem 9 and the definition (7.1) of the nonlinear
Fourier series on �2(Z). It therefore suffices to show existence and uniqueness of
the factorization.

We first discuss uniqueness and begin by deducing necessary conditions on the
factors in (7.8). Multiplying by the inverse of the matrix (a+, b+) from the right in
(7.8), we obtain

(a−, b−) = (a, b)(a∗+,−b+) = (aa∗+ + bb∗+,−ab+ + a+b). (7.9)
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In particular, the second component of this identity reads as

b− = −ab+ + a+b. (7.10)

Because |a| is bounded below almost everywhere on T, we can divide by a to get

b+ = −b−
a

+ b

a
a+. (7.11)

The term b+ is in H2(D). The term b−
a has an analytic extension to D

∗ and hence

is in H2(D∗) because |a| is bounded below by 2− 1
2 . Moreover, b−

a vanishes at ∞.
Acting on (7.11) by the Cauchy projection PD yields

b+ = PD

(
b

a
a+
)

. (7.12)

We similarly rewrite the identity for the first component of (7.9) as

a∗+ = a−
a

− b

a
b∗+,

and applying PD yields

a∗+ = 1

a+(∞)
− PD

(
b

a
b∗+
)

. (7.13)

Here we used that a−a−1 has analytic extension to D
∗ and applying PD to it gives

the constant term in the linear Fourier expansion, which is equal to a−(∞)a(∞)−1,
which is positive and equal to a+(∞)−1 by (7.3).

Motivated by (7.12) and (7.13), we consider the mapping

(A, B) �→
((

1 − PD

(
b

a
B∗
))∗

, PD

(
b

a
A

))
, (7.14)

which is a contraction on H because PD is a projection and by (7.5),

ess supz∈T
∣∣∣∣
b (z)

a (z)

∣∣∣∣ =
√
ess supz∈T

1

|a (z)|2 − 1 < 1,

where we used that a has limits almost everywhere on T. Thus (7.14) has a unique
fixed point (A, B) by Banach’s fixed point theorem. Multiplying (7.12) and (7.13) by
a+(∞) shows

(A, B) = a+(∞)(a+, b+) (7.15)
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is the fixed point of (7.14) and therefore the right side of (7.15) is uniquely determined.
Evaluating at infinity gives

A(∞) = a+(∞)2. (7.16)

Identity (7.16) is necessary and thus the positive value a+(∞) is unique. Dividing the
necessary (7.15) by this unique number shows that (a+, b+) is unique. And by (7.8),
(a−, b−) is also unique.

For existence of a factorization (7.8), again consider the map in (7.14) on H, and
let (A, B) ∈ H be the unique solution. We claim that

M ≡ AA∗ + BB∗ (7.17)

is constant on T. Clearly, M is real on T, so it suffices to show that M is in H1 (D∗).
Indeed, this will ensure the linear Fourier coefficients of M are supported on (−∞, 0],
while the conjugate antipodal symmetry of the Fourier coefficients of any real valued
function ensures the negative Fourier coefficients of M vanish just as its positive
coefficients do. We use the fact that (A, B) is a fixed point of (7.14) to write

M = A

[
1 − PD

(
b

a
B∗
)]

+ B∗PD
(
b

a
A

)
, (7.18)

which after adding and subtracting AB∗ba−1 gives

M = A

[
1 + (Id−PD)

(
b

a
B∗
)]

− B∗ (Id−PD)

(
b

a
A

)
. (7.19)

We recognize Id−PD as the projection operator onto H2
0 (D∗), i.e., the set of functions

in H2 (D∗)with vanishing zeroth Fourier coefficient. As the fixed point equation shows
that A ∈ H2(D∗) and B ∈ H2(D), thenM is a sumof products of functions in H2(D∗),
which must then belong in H1(D∗).

By (7.19), we also have M (∞) equals

A (∞)

[
1 + (Id−PD)

(
b

a
B∗
)

(∞)

]
− B∗(∞) (Id−PD)

(
b

a
A

)
(∞) = A(∞).

We can also write

A(∞) = M =
∫

T

M =
∫

T

|A|2 + |B|2 ≥ 0, (7.20)

where equality holds in the last step if and only if |A| = |B| = 0 almost everywhere
on T. However (A, B) = (0, 0) is not the fixed point of (7.14), hence A(∞) > 0.
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Define normalized versions of A and B, i.e.,

a+ (z) ≡ A(z)

A(∞)
1
2

, b+ (z) ≡ B(z)

A(∞)
1
2

, (7.21)

so that a+ ∈ H2 (D∗), b+ ∈ H2 (D) satisfy

a+a∗+ + b+b∗+ = M

A (∞)
= 1

and thus (a+, b+) ∈ H.
Now we define

(a−, b−) ≡ (a, b)
(
a∗+,−b+

)

Because (a−, b−) is the product of matrices in SU (2), we have

a−a∗− + b−b∗− = 1 on T.

We claim that (a−, b−) ∈ H
∗
0, that is a−, b− ∈ H2(D∗) and b−(∞) = 0.

Indeed, because (A, B) is a fixed point of (7.14), then a− equals

aa∗+ + bb∗+ = a

(
1

a+(∞)
− PD

(
b

a
b∗+
))

+ bb∗+ = a
1

a+(∞)
+ a (Id−PD)

(
b

a
b∗+
)

,

which is clearly an element of H2 (D∗) with constant term a(∞)
a+(∞)

, which is positive
as both numerator and denominator are positive. Using (7.14) again, we have

b− = −ab+ + ba+ = −aPD

(
b

a
a+
)

+ ba+ = a (Id−PD)

(
b

a
a+
)

,

which again is in H2 (D∗) and has constant term b−(∞) = 0. Thus we see that
(a−, b−) is in H

∗
0.

To check that (a+, b+) and (a−, b−) are indeed in H and H∗
0, it remains to show

that a∗+ and b+ share no common nontrivial inner factor g on D, and likewise for a∗−
and b∗−. Suppose first that g is an inner function such that a∗+g−1 and b+g−1 are both
in H2(D). Then by (7.8), we have

a∗g−1 = a∗−a∗+g−1 − b∗−b+g−1, (7.22)

which is an H2(D) function. Thus g is an inner factor of a∗. But a∗ is outer as observed
near (7.5). This implies that |g(0)| = 1 because otherwise

log |a∗(0)| < log |a∗g−1(0)| ≤
∫
T

log |a∗g−1| =
∫
T

log |a∗|, (7.23)
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a contradiction. By the maximum principle, g is constant. Hence a∗+ and b+ share no
common inner factor and so (a+, b+) ∈ H. Similar reasoning with (7.22) and (7.23)
shows a∗− and b− share no common inner factor, and hence (a−, b−) is in H∗

0. ��
Given ε > 0, let Bε be the subset of all elements (a, b) of B which satisfy

inf
z∈D

|a(z)| ≥ 2− 1
2 + ε. (7.24)

Lemma 3 Let ε ∈ (0, 1 − 2− 1
2 ) and let (a, b) ∈ Bε . Then for η ≡ 3

3
2 2−1 we have

ess supz∈T
|b(z)|
|a(z)| ≤ 1 − ηε. (7.25)

Proof For x in the interval I ≡ (2− 1
2 , 1), define the positive function

f (x) ≡
√
x−2 − 1.

Then

f ′(x) = −x−3

√
x−2 − 1

= −1√
x4 − x6

achieves its maximum on I when x4 − x6 achieves its maximum. Because

(x4 − x6)′ = 4x3 − 6x5 = −6x3
(
x − 2

1
2 3− 1

2

) (
x + 2

1
2 3− 1

2

)
,

then x4 − x6, and hence f ′(x), achieves its maximum on I at x = 2
1
2 3− 1

2 .
Now, let (a, b) ∈ Bε . Using first (6.2) and then our assumption (7.24), we write

ess supz∈T
|b(z)|
|a(z)| = ess supz∈T

√
|a(z)|−2 − 1 ≤

√(
2− 1

2 + ε
)−2 − 1 = f (2− 1

2 + ε).

By the mean value theorem, there exists ξ ∈ (2− 1
2 , 2− 1

2 + ε) for which this equals

f (2− 1
2 ) + f ′(ξ)ε ≤ f (2− 1

2 ) + f ′ (2 1
2 3− 1

2

)
ε = 1 − 3

3
2 2−1ε .

��
Theorem 12 If we endow bothBε andH with the metric fromH, then the map sending
(a, b) ∈ Bε to the right factor (a+, b+) ∈ H of (7.8) in Theorem 11 is Lipschitz with

constant at most (2
5
2 + 4)(ηε)− 3

2 , where η is the constant in (7.25).
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Proof For the fixed point (A, B) of the map (7.14) we obtain

∥∥∥∥
(
A
B

)∥∥∥∥H
≤
∥∥∥∥
(

0 −PD∗ b∗
a∗

PD
b
a 0

)∥∥∥∥
H→H

∥∥∥∥
(
A
B

)∥∥∥∥H
+
∥∥∥∥
(
1
0

)∥∥∥∥H
≤ (1 − ηε)

∥∥∥∥
(
A
B

)∥∥∥∥H
+ 1, (7.26)

where we used (7.25) and the fact that PD and PD∗ have operator norm 1 on L2(T).
Collecting the norms of (A, B)T on the left hand side and dividing by ηε, we obtain

∥∥∥∥
(
A
B

)∥∥∥∥H
≤ 1

ηε
. (7.27)

By the mean value property and the Cauchy-Schwarz inequality, we obtain further

|A (∞)| =
∣∣∣∣∣∣

∫

T

A

∣∣∣∣∣∣
≤ ‖A‖L2(T) ≤ 1

ηε
. (7.28)

To see that the map from Bε to the fixed point of (7.14) is Lipschitz, let
(a, b), (c, d) ∈ Bε , and let (A, B) and (C, D) be the respective fixed points, i.e.,

(
A
B

)
=
(
1
0

)
+
(

0 −PD∗ b∗
a∗

PD
b
a 0

)(
A
B

)
, (7.29)

(
C
D

)
=
(
1
0

)
+
(

0 −PD∗ d∗
c∗

PD
d
c 0

)(
C
D

)
. (7.30)

We subtract the second equation from the first to get an equation for

X =
(
A
B

)
−
(
C
D

)
,

namely

X =
(

0 −PD∗ b∗
a∗

PD
b
a 0

)
X +

(
PD∗

(
d∗
c∗ − b∗

a∗
)
D

PD
( b
a − d

c

)
C

)
. (7.31)

This equation is analogous to (7.26), and the same bootstrapping argument as there
leading to (7.27), combined with the fact that PD, PD∗ have operator norm 1, gives

‖X‖H ≤ 1

ηε

∥∥∥∥∥

(
PD∗

(
d∗
c∗ − b∗

a∗
)
D

PD
( b
a − d

c

)
C

)∥∥∥∥∥H
≤ 1

ηε

∥∥∥∥∥

((
d∗
c∗ − b∗

a∗
)
D( b

a − d
c

)
C

)∥∥∥∥∥H
. (7.32)

123



M. Alexis et al.

By (7.17), (7.20), we have that C and D are almost everywhere bounded on T by

|C (∞)| 12 ≤ (ηε)−
1
2 ,

where the last inequality follows from (7.28). Moreover, a and c are bounded below

by 2− 1
2 by assumption. Hence (7.32) gives

‖X‖H ≤ (ηε)−
3
2

∥∥∥∥
( d∗

c∗ − b∗
a∗

b
a − d

c

)∥∥∥∥
H

≤ 2(ηε)−
3
2

∥∥∥∥
(
d∗a∗ − b∗c∗
bc − da

)∥∥∥∥H
.

Adding and subtracting terms as in bc− ad = c(b− d) + d(c− a), and using that
a, b, c, d are all bounded above by 1 on T, we obtain

‖X‖H ≤ 4(ηε)−
3
2

∥∥∥∥
(
a
b

)
−
(
c
d

)∥∥∥∥H
. (7.33)

By (7.21), we have

∥∥∥∥
(
a+
b+

)
−
(
c+
d+

)∥∥∥∥H
=
∥∥∥∥∥

1

A(∞)
1
2

(
A
B

)
− 1

C(∞)
1
2

(
C
D

)∥∥∥∥∥H
≤ 1

A(∞)
1
2

‖X‖H +
∥∥∥∥
(
C
D

)∥∥∥∥H

∣∣∣∣∣
1

C(∞)
1
2

− 1

A(∞)
1
2

∣∣∣∣∣ .

(7.34)

Using (7.3) and (7.24) the fact that a− (∞) ≤ 1, we have

∣∣∣A(∞)
1
2

∣∣∣ = |a+ (∞) | =
∣∣∣∣
a (∞)

a− (∞)

∣∣∣∣ ≥ 2− 1
2 (7.35)

and analogously for C(∞). Further, as (c, d) ∈ L, we have

∥∥∥∥∥
1

C(∞)
1
2

(
C
D

)∥∥∥∥∥H
=
∥∥∥∥
(
c
d

)∥∥∥∥H
= 1, (7.36)

and using (7.35), in particular

C(∞)
1
2 + A(∞)

1
2 ≥ 2

1
2 ,

we get

∣∣∣∣∣1 − C(∞)
1
2

A(∞)
1
2

∣∣∣∣∣ = |C(∞) − A(∞)|
A(∞)

1
2

(
A(∞)

1
2 + C(∞)

1
2

) ≤ |A(∞) − C(∞)| ≤
∫

T

|A − C |
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≤ ‖X‖H . (7.37)

Using (7.27) and the above estimates (7.35), (7.36), and (7.37), we obtain from
(7.34) and (7.33)

∥∥∥∥
(
a+
b+

)
−
(
c+
d+

)∥∥∥∥H
≤ (2

1
2 + 1) ‖X‖H ≤ 4(2

1
2 + 1)(ηε)−

3
2

∥∥∥∥
(
a
b

)
−
(
c
d

)∥∥∥∥H
.

This proves Theorem 12. ��
Theorem 13 The map sending (a, b) to the coefficient F0 of the sequence F as in
Theorem 11 is Lipschitz on Bε endowed with the metric H. The Lipschitz constant is

at most (8 + 2
5
2 )(ηε)− 3

2 , where η is the constant in (7.25).

Proof Let (a, b) and (c, d) in Bε be the nonlinear Fourier series of (Fn) and (Gn). Let
(a+, b+) and (c+, d+) be as in the proof of Theorem 11. We have

2− 1
2 ≤ a+ (∞), c+ (∞) ≤ 1,

the upper bound for general elements in L and the lower bound by (7.3) and
assumptions on a and c. By (6.13), we have

1

2
|F0 − G0| = 1

2

∣∣∣∣
b+(0)

a+(∞)
− d+(0)

c+(∞)

∣∣∣∣ ≤ |b+(0)c+(∞) − d+(0)a+(∞)|
≤ |(b+(0) − d+(0))c+(∞)| + |d+(0)(c+(∞) − a+(∞))|
≤ |b+(0) − d+(0)| + |c+(∞) − a+(∞)| ≤

∫
T

|b+ − d+| +
∫
T

|c+ − a+|

≤ 2
1
2

∥∥∥∥
(
a+
b+

)
−
(
c+
d+

)∥∥∥∥H
≤ (8 + 2

5
2 )(ηε)−

3
2

∥∥∥∥
(
a
b

)
−
(
c
d

)∥∥∥∥H
.

Here the last inequality followed from Theorem 12. This proves Theorem 13. ��

8 Proof of themain Theorem 1

Let f be given as in Theorem 1. Extend f to an even function on [−1, 1].
We first show existence of the sequence � by construction. Define b(z) = i f (x)

where x = cos θ for θ ∈ [0, π ] given by z = e2iθ . As f is even, b(z) = b(z−1)

for z ∈ T, and in particular b(z) is well-defined at z = 1 because f (−1) = f (1).

Moreover, b is purely imaginary and is bounded in absolute value by 2− 1
2 − ε. By

Theorem 10, there is an a such that (a, b) ∈ Bε . By Theorem 11, there is a sequence
F = (Fn) ∈ �2 (Z) so that (a, b) is the nonlinear Fourier series of F .

The reflection symmetry of the purely imaginary b implies F−n = Fn and
F̄n = Fn for all n. Indeed, by (3.11), extended to infinite sequences, and the fact

123



M. Alexis et al.

that b(z−1) = b(z), the sequence (F−n) has nonlinear Fourier series (a∗(z−1), b(z)).
By the uniqueness part of Theorem 10, this implies

a∗(z−1) = a(z).

Thus (a, b) is the nonlinear Fourier series of both (Fn) and (F−n), which by the
uniqueness part of Theorem 11 implies Fn = F−n . And by (3.12) extended to infinite
sequences, the sequence F̄n has nonlinear Fourier series

(a∗(z−1), b∗(z−1)) = (a(z),−b(z)),

which by (3.10), again extended to infinite sequences, is the nonlinear Fourier series
of −Fn . Again by uniqueness part of Theorem 11, we conclude that F̄n = −Fn , i.e.,
Fn is purely imaginary.

We define ψn ∈ (−π
2 , π

2 ) for n ∈ N by

ψn ≡ arctan

(
Fn
i

)
.

Wenowshow thedesiredproperties of the sequence�.Webeginwith thePlancherel
identity (1.6). We compute

1

π

1∫

−1

log
(
1 − f (x)2

) dx√
1 − x2

= 1

π

∫ π

0
log(1 − f (cosϕ)2) dϕ

=
∫

T

log
(
1 − |b|2

)
= 2

∫

T

log |a| = 2 log
∣∣a∗ (0)

∣∣ ,

where the last equality follows from a being outer. By (7.4), the last term equals

−
∑
k∈Z

log(1 + |Fk |2) = −
∑
k∈Z

log(1 + tan2 ψ|k|).

This proves (1.6).
Next we show convergence of �(ud (�, x) to f in the norm (1.2). Let (ad , bd) be

the nonlinear Fourier series of the truncated sequence (Fn1{|n|≤d}). Then by Lemma
2, we have

bd (z) = � (ud (�, x)) ,

wherewe again recall that the right side is an even function on [−1, 1]. By the reasoning
just above (7.4), the sequence (ad , bd) converges to (a, b) inL, and hence b converges
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to bd in L2 (T). As

⎛
⎝ 1

π

1∫

−1

|�ud (�, x) − f (x)|2 dx√
1 − x2

⎞
⎠

1
2

= ‖bd − b‖L2(T) , (8.1)

which converges to 0 as d → ∞ by the remarks just above (7.4), we then have
convergence of �ud (�, x) to f in the norm (1.2).

This shows existence of �. To see uniqueness, let �̃ be any sequence satisfying
the properties of the theorem. Set F̃n = i tan ψ̃|n|. By (1.6), the sequence F̃ is square
summable. Let (ã, b̃) be its non-linear Fourier series, and (ãd , b̃d) the non-linear
Fourier series of its truncations. By the remarks just above (7.4), b̃d converges to b̃,
and it also converges to b by definition of b and the convergence assumption of the
theorem. Hence b = b̃. Because

∣∣∣∣∣
ã∗
a∗

∣∣∣∣∣ = 1

on T and 1
a∗ ∈ H2(D), then ã∗

a∗ is an inner function onD. By (7.4), (1.6), the definition
of the function b = i f and then the definition (7.7) of the outer function a, we have

ã(∞) =
∏
n∈Z

(1 + |F̃n|2)− 1
2 = 1

2

∫

T

log(1 − |b̃|2) =
∫

T

log(|a|) = a(∞) .

Thus ã(∞)
a(∞)

= 1 and by the maximum principle, the inner function ã∗
a∗ must be constant

1, i.e., a = ã. By the uniqueness part of Theorem 11, we have F̃n = Fn . Hence �̃ = �

since for each j we have ψ j , ψ̃ j ∈ (−π
2 , π

2 ), an interval on which tan is injective.
Now we show that the map sending f to� is Lipschitz. It suffices to show for each

k ≥ 0 that the map from f to ψk is Lipschitz.
Wewrite this map as a composition of threemaps. By Theorem 13, themap sending

(a, b) in Bε to F0 is Lipschitz. As the shift (a, b) �→ (a, bz) is an isometry in Bε , the
same holds for Fk with k ∈ Z and we have for (a, b) and (ã, b̃) in Bε ,

∣∣∣Fk − F̃k
∣∣∣ ≤ (8 + 2

5
2 )(ηε)−

3
2

∥∥∥∥
(
a
b

)
−
(
ã
b̃

)∥∥∥∥H
, (8.2)

where η is as in (7.25).
As arctan (x) has slope between −1 and 1, we have

∣∣∣ψk − ψ̃k

∣∣∣ ≤
∣∣∣Fk − F̃k

∣∣∣ . (8.3)
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It remains to obtain a Lipschitz bound for the map sending f to (a, b). By the
cosine theorem, with θ(z) the angle between a(z) and ã(z)

|a − ã|2 = |a|2 + |ã|2 − 2|a||ã| cos θ = (|a| − |ã|)2 + 2|a||ã|(1 − cos θ)

≤ (|a| − |ã|)2 + 2(1 − cos θ) ≤ (|a| − |ã|)2 + θ2. (8.4)

Here we used that |a|, |ã| ≤ 1, and that 2(1 − cos θ) vanishes of order two at θ = 0
and has second derivative less than or equal to two.

The angle θ is given by the imaginary part of log(a) − log(ã). As log(a) and
log(ã) have analytic extensions to D

∗ that are real at ∞, the angle θ is dominated
in absolute value by the imaginary part of log(a) − log(ã), which in turn is given as
−H(log |a| − log |ã|) for the Hilbert transform H . Recall that the Hilbert transform
has operator norm bounded by 1 on L2(T).

Inequality (8.4) yields

‖a − ã‖2L2(T)
≤ ‖|a| − |ã|‖2L2(T)

+ ‖H(log |a| − log |ã|)‖2L2(T)
,

≤
∥∥∥∥
√
1 − |b|2 −

√
1 − |b̃|2

∥∥∥∥
2

L2(T)

+ 1

4

∥∥∥log
∣∣∣1 − |b|2

∣∣∣− log |1 − |b̃|2|
∥∥∥2
L2(T)

,

(8.5)

Using that on the interval [0, 2− 1
2 ], the map x �→ log(1 − x2) has slope bounded by

2
3
2 and x �→ √

1 − x2 has slope bounded by 2
1
2 , we estimate the (8.5) by

≤ 4
∥∥∥|b| −

∣∣∣b̃
∣∣∣
∥∥∥2
L2(T)

≤ 4
∥∥∥b − b̃

∥∥∥2
L2(T)

.

We obtain

∥∥∥∥
(
a
b

)
−
(
ã
b̃

)∥∥∥∥
2

H
≤ 5

∥∥∥b − b̃
∥∥∥2
L2(T)

= 5

π

1∫

−1

∣∣∣ f (x) − f̃ (x)
∣∣∣2 dx√

1 − x2
. (8.6)

Combining (8.2), (8.3) and (8.6), we obtain

∣∣∣ψ0 − ψ̃0

∣∣∣ ≤ 5
1
2 (8 + 2

5
2 )(ηε)−

3
2

⎛
⎝ 1

π

1∫

−1

∣∣∣ f (x) − f̃ (x)
∣∣∣2 dx√

1 − x2

⎞
⎠

1
2

.

The bound for η from Lemma 3 yields the Lipschitz constant above is at most 7.3ε− 3
2 ,

which completes the proof of Theorem 1.
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