Article

Parallel and coded control of multi layered longitudinal piezo engine for nano biomedical research

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

The multi-layer longitudinal piezo engine with parallel and coded control is used for nano biomedical research. The characteristics of the multi-layer longitudinal piezo engine with parallel and coded control are determined for nano biomedical research. The characteristics of the multi-layer longitudinal piezo engine are obtained by applied method of mathematical physics.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

Article
The structural schemes of electroelastic engine micro and nano displacement are determined for applied bionics and biomechanics. The structural scheme of electroelastic engine is constructed by method mathematical physics. The displacement matrix of electroelastic engine micro and nano displacement is determined.
Article
Full-text available
In the work is calculated of the piezoactuator for astrophysics. The structural scheme of the piezoactuator is determined for astrophysics. The matrix equation is constructed for the piezoactuator. The mechanical characteristic is determined. The parameters of the piezoactuator are obtained in nano control systems for astrophysics.
Article
Full-text available
The sufficient condition of absolute stability system with nano piezoengine by using the derivative of the hysteretic piezoengine deformation is determined for the randomly influences. The set of equilibrium positions of the piezoengine in the control system is stable relative to mathematical expectations, when the condition of absolute stability with the maximum piezo module is met. The statistical linearization method is using for the determination condition of absolute stability control system with the nano piezoengine.
Article
Full-text available
The structural model of the nano piezoengine is determined for applied biomechanics and biosciences. The structural scheme of the nano piezoengine is obtained. For calculation nano systems the structural model and scheme of the nano piezoengine are used, which reflect the conversion of electrical energy into mechanical energy of the control object. The matrix equation is constructed for the nano piezoengine in applied biomechanics and biosciences.
Article
Full-text available
The manipulator is the key component of the micromanipulator. Using the axial expansion and contraction properties, the piezoelectric tube can drive the manipulator to achieve micro-motion positioning. It is widely used in scanning probe microscopy, fiber stretching and beam scanning. The piezoceramic tube actuator used to have continuous electrodes inside and outside. It is polarized along the radial direction. There are relatively high polarization voltages, but poor axial mechanical properties. A new tubular actuator is presented in this paper by combining interdigitated electrodes and piezoceramic tubes. The preparation, polarization and mesoscopic mechanical properties were investigated. Using Lead Zirconate Titanate (PZT-52) as a substrate, the preparation process of interdigitated electrodes by screen printing was studied. For initial polarization voltage determination, the local characteristic model of the actuator was extracted and the electric field was analyzed by a finite element method. By measuring the actuator’s axial displacement, we measured the actuator’s polarization effect. Various voltages, times and temperatures were evaluated to determine how polarization affects the actuator’s displacement. Optimal polarization conditions are 800 V, 60 min and 150 °C, with a maximum displacement of 0.88 μm generated by a PZT-52 tube actuator with interdigitated electrodes. PZT-52 tube actuators with a continuous electrode cannot be polarized under these conditions. The maximum displacement is 0.47 μm after polarization at 4 kV. Based on the results, the new actuator has a more convenient polarization process and a greater axial displacement from an application standpoint. It provides technical guidance for the preparation and polarization of the piezoceramic tube actuator. There is potential for piezoelectric tubular actuators to be used in a broader range of applications.
Article
Full-text available
This work determines the coded control of a sectional electroelastic engine at the elastic–inertial load for nanomechatronics systems. The expressions of the mechanical and adjustment characteristics of a sectional electroelastic engine are obtained using the equations of the electroelasticity and the mechanical load. A sectional electroelastic engine is applied for coded control of nanodisplacement as a digital-to-analog converter. The transfer function and the transient characteristics of a sectional electroelastic engine at elastic–inertial load are received for nanomechatronics systems.
Article
Full-text available
A electroelastic engine with a longitudinal piezoeffect is widely used in nanotechnology for nanomanipulators, laser systems, nanopumps, and scanning microscopy. For these nanomechatronics systems, the transition between individual positions of the systems in the shortest possible time is relevant. It is relevant to solve the problem of optimizing the nanopositioning control system with a minimum control time. This work determines the optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect and minimal control time for an optimal nanomechatronics system. The expressions of the control function and switching line are obtained with using the Pontryagin maximum principle for the optimal control system of the multilayer electroelastic engine at a longitudinal piezoeffect with an ordinary second-order differential equation of system. In this optimal nanomechatronics system, the control function takes only two values and changes once.
Article
Full-text available
We obtained the condition absolute stability on the derivative for the control system of electromagnetoelastic actuator for communication equipment. We applied the frequency methods for Lyapunov stable control system to calculate the condition absolute stability control system of electromagnetoelastic actuator. We used Yakubovich criterion absolute stability system with the condition on the derivative. The aim of this work is to determine the condition of the absolute stability on the derivative for the control system of electromagnetoelastic actuator. We received the stationary set of the control system of the hysteresis deformation of the electromagnetoelastic actuator. The stationary set is the segment of the straight line.
Article
Full-text available
In this work, the parametric structural schematic diagrams of a multilayer electromagnetoelastic actuator and a multilayer piezoactuator for nanomechanics were determined in contrast to the electrical equivalent circuits of a piezotransmitter and piezoreceiver, the vibration piezomotor. The decision matrix equation of the equivalent quadripole of the multilayer electromagnetoelastic actuator was used. The structural-parametric model, the parametric structural schematic diagram, and the matrix transfer function of the multilayer electromagnetoelastic actuator for nanomechanics were obtained.
Article
Full-text available
Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.
Article
Full-text available
The generalized parametric structural schematic diagram, the generalized structural-parametric model, and the generalized matrix transfer function of an electromagnetoelastic actuator with output parameters displacements are determined by solving the wave equation with the Laplace transform, using the equation of the electromagnetolasticity in the general form, the boundary conditions on the loaded working surfaces of the actuator, and the strains along the coordinate axes. The parametric structural schematic diagram and the transfer functions of the electromagnetoelastic actuator are obtained for the calculation of the control systems for the nanomechanics. The structural-parametric model of the piezoactuator for the transverse, longitudinal, and shift piezoelectric effects are constructed. The dynamic and static characteristics of the piezoactuator with output parameter displacement are obtained.
Book
Full-text available
The field of mechatronics using piezoelectric and electrostrictive materials is growing rapidly with applications in many areas, including MEMS, adaptive optics, and adaptive structures. Piezoelectric Actuators and Ultrasonic Motors provides in-depth coverage of the theoretical background of piezoelectric and electrostrictive actuators, practical materials, device designs, drive/control techniques, typical applications, and future trends in the field. Industry engineers and academic researchers in this field will find Piezoelectric Actuators and Ultrasonic Motors an invaluable source of pertinent scientific information, practical details, and references. In the classroom, this book may be used for graduate level courses on ceramic actuators.
Chapter
An electromagnetoelastic actuator is electromagnetomechanical device, intended for actuation of mechanisms, systems or management, based on the piezoelectric, piezomagnetic, electrostriction, magnetostriction effects, converts electric or magnetic signals into mechanical movement and force. The piezo actuator is used in vibration compensation and absorption systems in aircraft and rotorcraft elements, in nanotechnology research for scanning microscopy, in laser systems and ring gyroscopes. The structural scheme of an electromagnetoelastic actuator for nanotechnology research is constructed by using the equation of electromagnetoelasticity and the linear ordinary second-order differential equation of the actuator under various boundary conditions. An electromagnetoelastic actuator is using in nanotechnology, microelectronics, nanobiology, astronomy, nanophysics for the alignment, the reparation of the gravitation and temperature deformations. The nanomanipulator with the piezo actuator is applied in the matching systems in nanotechnology. In the present work, the problem of building the structural scheme of the electromagnetoelastic actuator is solving in difference from Mason’s electrical equivalent circuit. The transformation of the structural scheme under various boundary conditions of the actuator is considered. The matrix transfer function is calculated from the set of equations for the structural scheme of the electromagnetoelastic actuator in control system. This matrix transfer function for the deformation of the actuator is used in nanotechnology research. The structural schemes and the elastic compliances of the piezo actuators are obtained by voltage or current control. The structural scheme of the magnetostriction actuator is constructed for nanotechnology research. The characteristics of the piezo actuator are determined. The structural scheme of the piezo actuator with the back electromotive force is obtained. The transformation of the elastic compliances of the piezo actuators is considered for the voltage and current control.
Article
For astrophysics equipment and composite telescope the parameters and the characteristics of the nanopiezoactuator are obtained. The functions of the nanopiezoactuator are determined. The mechanical characteristic of the nanopiezoactuator is received.
Article
For the nano piezoactuator with hysteresis in control system its set of equilibrium positions is the segment of line. By applying Yakubovich criterion for system with the nano piezoactuator the condition absolute stability of system is evaluated.
Chapter
An electroelastic actuator on the piezoelectric or electrostriction effect is applied in nanotechnology, nanobiology, biomechanics and adaptive optics for the precision matching in nanomechatronics systems. For the analysis and calculation of nanomechatronics systems is used the harmonious linearization of the hysteresis characteristic for an electroelastic actuator. The piezo actuator works on the basis of the inverse piezoelectric effect due to its deformation when the electric field strength is applied. To increase the range of movement of the piezo actuator to tens of micrometers, the multilayer piezo actuator is applied. The piezo actuator is used in nanomechatronics systems for nanodisplacement in adaptive optics, nanotechnology, scanning microscopy, nanobiomechanics, multicomponent telescopes. The coefficients of harmonious linearization for the basic loop characteristic are determined by the method of the theory of nonlinear automatic systems. On the characteristic of the piezo actuator deformation from the electric field strength, the initial curve is observed, on which the vertices of the basic hysteresis loops lie. The basic hysteresis loops have a symmetric change in the electric field strength relative to zero, and partial loops have an asymmetric change in the strength relative to zero. The expressions for the hysteresis basic and local loops of piezo actuator are received. The coefficients of harmonious linearization for the basic loop characteristic of the piezo actuator for nanomechatronics systems are obtained. The basic and local loops for hysteresis characteristics of the piezo actuator are proposed. The expression is determined for the generalized frequency transfer function of the nonlinear link with the hysteresis characteristic of the basic hysteresis loop for the piezo actuator.KeywordsHarmonious linearizationHysteresisBasic and partial loopsDeformationElectroelastic actuatorPiezo actuatorNanomechatronics system
Article
The mathematical models of a piezoengine are determined for nanomedicine and applied bionics. The structural scheme of a piezoengine is constructed. The matrix equation is obtained for a piezoengine.
Article
We received the structural circuit of the multilayer piezo engine for nanomedicine research. The characteristics of the multilayer piezo engine are obtained
Article
We received the characteristics of the electroelastic engine for nanobiomechanics. We obtained the mechanical and control characteristics of the electroelastic engine. We investigated the regulation characteristic of the multilayer piezo engine for the elastic load.
Book
This book presents new approaches to R&D of piezoelectric actuators and generators of different types based on established, original constructions and contemporary research into framework of theoretical, experimental, and numerical methods of physics, mechanics, and materials science. Improved technical solutions incorporated into the devices demonstrate high output values of voltage and power, allowing application of the goods in various areas of energy harvesting. The book is divided into seven chapters, each presenting main results of the chapter, along with a brief exposition of novel findings from around the world proving context for the author’s results. It presents particular results of the Soviet and Russian schools of Mechanics and Material Sciences not previously available outside of Russia.
Chapter
We developed a structural-parametric models, obtained solution for the wave equation of electroelastic actuators and constructed their transfer functions. Effects of geometric and physical parameters of electroelastic actuators and external loading on their dynamic characteristics determined. For calculation of automatic control systems for nanometric movements with electroelastic actuators, we obtained the parametric structural schematic diagrams and the transfer functions of piezoactuators. Static and dynamic characteristics of piezoactuators determined.
Book
This chapter highlights some recent advances in high resolution printing methods, in which a “stamp” forms a pattern of “ink” on the surface it contacts. It focuses on two approaches whose capabilities, level of development, and demonstrated applications indicate a strong potential for widespread use, especially in areas where conventional methods are unsuitable. The first of these, known as microcontact printing, uses a high resolution rubber stamp to print patterns of chemical inks, mainly those that lead to the formation of organic self-assembled monolayers (SAMs). These printed SAMs can be used either as resists in selective wet etching, or as templates in selective deposition to form structures of a variety of materials. The other approach, referred to as nanotransfer printing, uses similar high resolution stamps, but ones inked with solid thin film materials. In this case, SAMs, or other types of surface chemistries, bond these films to a substrate that the stamp contacts. The material transfer that results upon removal of the stamp forms a pattern in the geometry of the relief features, in a purely additive fashion. In addition to providing detailed descriptions of these micro/nanoprinting techniques, this chapter illustrates their use in some areas where these methods may provide attractive alternatives to more established lithographic methods. The demonstrator applications span fields as diverse as biotechnology (intravascular stents), fiber optics (tunable fiber devices), nanoanalytical chemistry (high resolution nuclear magnetic resonance), plastic electronics (paper-like displays), and integrated optics (distributed feedback lasers). The growing interest in nanoscience and nanotechnology motivates research and the development of new methods that can be used for nanofabricating the relevant test structures or devices. The attractive capabilities of the techniques described here, together with the interesting and subtle materials science, chemistry, and physics associated with them, make this a promising area for basic and applied study.
Article
The stability conditions for a system controlling the deformation of an electromagnetoelastic transducer under deterministic and random actions are discussed. Manufacturing high-precision electromechanical drives based on electromagnetoelasticity are offering challenges under the scope of nanotechnology, nanobiology, power engineering, microelectronics, and adaptive optics. High precision drives are operated within operating loads ensuring elastic strains of the executive electromagnetoelastic transducer. A system designed for the control of micro and nanoscale strains of an electromagnetoelastic transducer. The absolute stability conditions for a system with hysteresis nonlinearity are analytically described by using Yakubovic's absolute stability criterion. The absolute stability conditions obtained for a system can be used for stability estimation and the calculation of the characteristics of the control system.
Article
The use of the solution to the wave equation to construct a generalized structural parametric model of an electromagnetoelastic transducer to determine the effect of its geometry and physical parameters is discussed. High-precision electromechanical drives are operated under working loads ensuring elastic strains of the executive device. Piezoelectric transducers are characterized by high piezoelectric moduli and they are frequently used to produce nanoscale displacements. The solution of the wave equation supplemented with the corresponding electromagnetoelasticity equation and boundary conditions on the transducer's two working surfaces allows to construct a structural parametric model of an electromagnetoelastic transducer. The transfer functions of a piezoelectric transducer are derived from its generalized structural parametric model and are obtained as the ratio of the Laplace transform of the transducer face displacement to the Laplace transform of the input electric parameter.
Article
A study was conducted to prepare a structural parametric model of a pie piezoelectric nanodisplacement transducer. The structural parametric model was prepared to investigate the potential application of the piezoelectric transducer in the equipment of nanotechnology, microbiology, microelectronics, astronomy, for high-precision superposition, compensation, and wavefront correction. It was found that the piezoelectric transducer operates on the basis of the inverse piezoelectric effect, in which a displacement is due to the deformation of the piezoelectric element, caused by the application of an external electric voltage. The wave equations also needed to solved, to construct a structural parametric model of the voltage-controlled piezoelectric transducer.
DAC electro elastic engine for nanomedicine
  • S M Afonin
Afonin SM. DAC electro elastic engine for nanomedicine. MOJ App Bio Biomech. 2024;8(1):38-40.
Absolute stability of system with nano piezoengine for biomechanics
  • S M Afonin
Afonin SM. Absolute stability of system with nano piezoengine for biomechanics. MOJ App Bio Biomech. 2023;7(1):211-213.
Characteristics of an electroelastic actuator nano-and microdisplacement for nanotechnology
  • S M Afonin
Afonin SM. Characteristics of an electroelastic actuator nano-and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021:251-266.