Existing computational design tools for steel connection design predominantly employ a point-based design (PBD) approach, which requires iterative re-evaluation whenever there are changes in design specifications. This paper introduces a new framework that adopts a set-based design (SBD) approach, aiming to substantially reduce the iteration and time cost associated with steel connection design and rework. The framework integrates a component-set connection design model with a database storage and query-based data retrieval method. The first method enables the flexible and efficient generation of a large connection design space from all possible component combinations, and automated identification of valid connection configurations within it. The latter method allows for automated design space refinement from preference-based evaluation of connection design efficiency and high-speed comparison and selection of optimal connection designs. To evaluate the relative performance of SBD and PBD approaches, the framework is applied to a steel floor system design case study with 62 connections. Results showed that the SBD approach achieved near-instantaneous connection design automation, with a total execution time of fewer than 55 milliseconds, making it over 10 times faster than the corresponding PBD approach.