Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population

Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 11/2009; 106(48):20365-70. DOI: 10.1073/pnas.0911580106
Source: PubMed


A major concern about the ongoing swine-origin H1N1 influenza virus (S-OIV) outbreak is that the virus may be so different from seasonal H1N1 that little immune protection exists in the human population. In this study, we examined the molecular basis for pre-existing immunity against S-OIV, namely the recognition of viral immune epitopes by T cells or B cells/antibodies that have been previously primed by circulating influenza strains. Using data from the Immune Epitope Database, we found that only 31% (8/26) of B-cell epitopes present in recently circulating H1N1 strains are conserved in the S-OIV, with only 17% (1/6) conserved in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In contrast, 69% (54/78) of the epitopes recognized by CD8(+) T cells are completely invariant. We further demonstrate experimentally that some memory T-cell immunity against S-OIV is present in the adult population and that such memory is of similar magnitude as the pre-existing memory against seasonal H1N1 influenza. Because protection from infection is antibody mediated, a new vaccine based on the specific S-OIV HA and NA proteins is likely to be required to prevent infection. However, T cells are known to blunt disease severity. Therefore, the conservation of a large fraction of T-cell epitopes suggests that the severity of an S-OIV infection, as far as it is determined by susceptibility of the virus to immune attack, would not differ much from that of seasonal flu. These results are consistent with reports about disease incidence, severity, and mortality rates associated with human S-OIV.

Download full-text


Available from: Jason A Greenbaum
  • Source
    • "Vaccines containing HAs with small antigenic changes from the prior years' influenza strains have a high probability of inducing memory B cells to classswitch and secrete IgG anti-HA antibodies. In contrast, pandemic strains are defined by low antigenic homology to prior vaccines and previously circulating influenza strains, and evade the human adaptive immune response6789. Every individual has a different history of influenza vaccine and infection exposure, and thus has a unique pattern of heterosubtypic immunity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the use of classical and metric multidimensional scaling methods for graphical representation of the proximity between collections of data consisting of cases characterized by multidimensional attributes. These methods can preserve metric differences between cases, while allowing for dimensional reduction and projection to two or three dimensions ideal for data exploration. We demonstrate these methods with three datasets for: (i) the immunological similarity of influenza proteins measured by a multidimensional assay; (ii) influenza protein sequence similarity; and (iii) reconstruction of airport-relative locations from paired proximity measurements. These examples highlight the use of proximity matrices, eigenvalues, eigenvectors, and linear and nonlinear mappings using numerical minimization methods. Some considerations and caveats for each method are also discussed, and compact Mathematica programs are provided.
    Full-text · Article · Dec 2015
  • Source
    • "Several patterns were evident. For example , one subject had very high titers against the A/California/09 antibody, likely from by prior infection rather than vaccination [9]. However, we observed a moderate rise in vaccine-specific anti-A/California/04/2009 IgA despite minimal further increases in levels of anti-A/California/ 04/2009 IgG. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic) immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI) assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA) from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum) were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV) of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA's, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA's. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the mPlex-Flu assay provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination.
    Full-text · Article · Jun 2015 · PLoS ONE
  • Source
    • "In April 2009, an acute febrile respiratory illness that spread rapidly across Mexico and the United States [1], was reported. This aetiological pathogenic virus was later identified as a new influenza A strain (referred to as A(H1N1)pdm09 virus in this article), a re-assorted variant of North American and Eurasian swine lineages which was immunologically distinct from the circulating seasonal influenza A strain H1N1s [2]. The geographic dispersion of this virus resulted in high numbers of new cases that overwhelmed laboratories and the clinical capacity of many nations, compelling the WHO to issue a pandemic alert on June, 11th 2009 [1]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Following the 2009 swine flu pandemic, a cohort for pandemic influenza (CoPanFlu) study was established in Djibouti, the Horn of Africa, to investigate its case prevalence and risk predictors' at household level. From the four city administrative districts, 1,045 subjects from 324 households were included during a face-to-face encounter between 11th November 2010 and 15th February 2011. Socio-demographic details were collected and blood samples were analysed in haemagglutination inhibition (HI) assays. Risk assessments were performed in a generalised estimating equation model. In this study, the indicator of positive infection status was set at an HI titre of >= 80, which was a relevant surrogate to the seroconversion criterion. All positive cases were considered to be either recent infections or past contact with an antigenically closely related virus in humans older than 65 years. An overall sero-prevalence of 29.1% and a geometrical mean titre (GMT) of 39.5% among the residents was observed. Youths, <= 25 years and the elderly, >=65 years had the highest titres, with values of 35.9% and 29.5%, respectively. Significantly, risk was high amongst youths <= 25 years, (OR 1.5-2.2), residents of District 4(OR 2.9), students (OR 1.4) and individuals living near to river banks (OR 2.5). Belonging to a large household (OR 0.6), being employed (OR 0.5) and working in open space-outdoor (OR 0.4) were significantly protective. Only 1.4% of the cohort had vaccination against the pandemic virus and none were immunised against seasonal influenza. Despite the limited number of incident cases detected by the surveillance system, A(H1N1)pdm09 virus circulated broadly in Djibouti in 2010 and 2011. Age-group distribution of cases was similar to what has been reported elsewhere, with youths at the greatest risk of infection. Future respiratory infection control should therefore be tailored to reach specific and vulnerable individuals such as students and those working in groups indoors. It is concluded that the lack of robust data provided by surveillance systems in southern countries could be responsible for the underestimation of the epidemiological burden, although the main characteristics are essentially similar to what has been observed in developed countries.
    Full-text · Article · Jan 2014 · Virology Journal
Show more