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Abstract

Background: The annual risk of tuberculous infection (ARTI) is a key epidemiological indicator of the extent of transmission
in a community. Several methods have been suggested to estimate the prevalence of tuberculous infection using tuberculin
skin test data. This paper explores the implications of using different methods to estimate prevalence of infection and ARTI.
The effect of BCG vaccination on these estimates is also investigated.

Methodology/Principal Findings: Tuberculin surveys among school children in 16 communities in Zambia and 8 in South
Africa (SA) were performed in 2005, as part of baseline data collection and for randomisation purposes of the ZAMSTAR
study. Infection prevalence and ARTI estimates were calculated using five methods: different cut-offs with or without
adjustments for sensitivity, the mirror method, and mixture analysis. A total of 49,835 children were registered for the
surveys, of which 25,048 (50%) had skin tests done and 22,563 (90%) of those tested were read. Infection prevalence was
higher in the combined SA than Zambian communities. The mirror method resulted in the least difference of 7.8%, whereas
that estimated by the cut-off methods varied from 12.2% to 17.3%. The ARTI in the Zambian and SA communities was
between 0.8% and 2.8% and 2.5% and 4.2% respectively, depending on the method used. In the SA communities, the ARTI
was higher among the younger children. BCG vaccination had little effect on these estimates.

Conclusions/Significance: ARTI estimates are dependent on the calculation method used. All methods agreed that there were
substantial differences in infection prevalence across the communities, with higher rates in SA. Although TB notification rates
have increased over the past decades, the difference in cumulative exposure between younger and older children is less
dramatic and a rise in risk of infection in parallel with the estimated incidence of active tuberculosis cannot be excluded.
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Introduction

The annual risk of tuberculous infection (ARTI) is an

epidemiological index derived from tuberculin skin test (TST)

surveys among children to measure the extent of TB transmission

in a community. It is the probability of acquiring new tuberculous

infection or reinfection over a period of one year. ARTI trends are

a critical indicator for progress, or lack thereof, in tuberculosis

control in a community. In the recent past, ARTI estimates were

used by TB control programmes to estimate the incidence of

smear positive TB at a population level by using the Styblo rule

[1]. However, it is now widely accepted that this assumed fixed

mathematical relationship between ARTI and the incidence of TB

is no longer valid [2]. In addition, ARTI trends have been used to

assess the impact of the HIV epidemic on TB transmission [3,4]

although it is still argued that the risk of infection in children allows

little insight on the impact that HIV may exert on the burden of

active tuberculosis in a population [5].

Despite the huge experience gathered over the past century, the

operating characteristics of the TST ensure that there will always

be a trade-off between sensitivity and specificity and that these will

vary with the prevalence of infection with M. tuberculosis and other

mycobacteria, including Bacille Calmette-Guerin (BCG) in the

population. The predictive value of the test will also depend on the

prevalence of tuberculous infection in the particular population

[6]. Recent discussion has focused on the use of new technologies

to determine who is infected [7] and on more sophisticated

statistical methodologies in the interpretation of TST data to

estimate the infection prevalence [8–10].

The most straightforward method is to use a predetermined cut-

off value above which individuals are presumed to be infected with

M.tuberculosis. The value proposed for the cut-off may take into
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account the prior probability of being infected or the immune status

of the individual [11]. A less arbitrary variant on this approach

defines the cut-off in order to produce a high specificity among an

unexposed population and then increases the calculated prevalence

of infection by a factor derived from the observed sensitivity of the

chosen cut-off in a population of patients with proven tuberculosis,

who must therefore already have tuberculous infection [12].

Mirror methods are used to define prevalence in a population

and do not assign all individuals to infected or non-infected states.

The principal assumption is that the frequency distribution of

indurations caused by tuberculous infection will be symmetrically

distributed. The first approach assumes that the mode of the

distribution reflects infection due to M.tuberculosis so that the

prevalence of infection can be calculated by doubling the

frequency of individuals whose induration is greater than the

mode and adding those whose induration equals the mode [13]. A

related approach is to use a value derived from previous data on

the distribution in different populations and to assume this value to

be the mode of the frequency distribution attributable to

M.tuberculosis regardless of the observed distribution in the

population [14].

Most recently, mathematical modelling approaches have been

used which examine the likelihood of different theoretical

populations being mixed together to produce the observed

distribution [9,15,16]. Within such ‘‘mixture methods’’, it is then

assumed that one population reflects infection, while one (or more)

populations reflect non-specific reactions to BCG, environmental

mycobacteria or background noise in the test’s operating

characteristics. There is also currently growing interest in another

type of mixture model, called a latent class model, for analysing

the results of multiple dichotomised tests [10].

We present data from two tuberculin skin test surveys

conducted in 2005 as baseline studies of a large community

randomised trial [17,18] called ZAMSTAR (Zambia South Africa

TB and AIDS Reduction). The ZAMSTAR study evaluates two

public health interventions that aim to reduce the prevalence of

TB at community level across 16 communities in Zambia and 8

communities in the Western Cape Province of South Africa (SA).

These tuberculin surveys served three objectives: to characterize

ZAMSTAR communities with regards to tuberculous infection; to

inform the randomization of the communities into the four

intervention arms [18]; and to provide data for one of

ZAMSTAR’s secondary outcomes.

The primary objective of this paper is to estimate the prevalence

of tuberculous infection and ARTI among school children aged

6–11 years in 24 communities in Zambia and South Africa using

five methods. We also explore whether these methods alter the

ranking of our communities, with regards to tuberculous infection.

Finally, we examine the effect of BCG vaccination on prevalence

of infection estimates.

Materials and Methods

Ethics statement
Written consent for tuberculin testing was obtained from the

parent or guardian of every child. The study protocol was

approved by the Ethics committees of the University of Zambia

and Stellenbosch University as well as the London School of

Hygiene and Tropical Medicine.

Study setting
The study was conducted in 24 selected communities in Zambia

and Western Cape, South Africa. The term ‘‘community’’ (unit of

randomisation) was defined as the population (minimum size of

25,000) accessing one TB diagnostic centre. Study communities

were selected based on TB notification rates greater than 400/

100,000 per annum, high HIV seroprevalence and proximity to a

TB diagnostic centre. The communities selected were in five

provinces of Zambia and in Western Cape Province of South

Africa and included both urban and rural communities. Multi-

stage purposive sampling for choosing communities was used.

ZAMSTAR study community ranking
The details of the design and randomization of the ZAMSTAR

study are described elsewhere [17,18]. However, briefly for the

randomization of the ZAMSTAR trial, we used stratification and

restriction to randomize 24 clusters into four intervention arms in

a 262 factorial design. To ensure that intervention effects were not

distorted due to baseline imbalances between intervention groups,

communities were ranked according to their TST prevalence

estimates within country. Stratification was by country and

tuberculous infection prevalence and restriction by tuberculous

infection prevalence, HIV prevalence, urban/rural, social context,

and geographical location.

Survey design and sample size
The primary schools that served the children within the

community and closest to the TB diagnostic centre were selected.

The TST surveys were conducted in 98 schools (56 in Zambia and

42 in SA), in the 24 communities. Our target sample size was 800

children aged between 5–9 years (grade 1–3) per community

(19,200 in total). This target sample size was based on estimations

for one of ZAMSTAR study secondary outcomes and has been

explained in detail elsewhere [17].

Tuberculin skin testing
All children enrolled in grades 1 to 3 were eligible for inclusion in

the survey. Survey staff were trained in the placement and reading

of tuberculin skin tests according to the standard IUATLD protocol

[19]. Training included exchange visits between Zambia and SA so

that the trainers were using the same methods throughout. To

standardise the reading of the tests healthy volunteers and TB

patients were used. In SA, one team conducted the survey in all the

8 communities, while in Zambia, 6 teams located in the different

geographical areas conducted the survey. Permission was obtained

from the Ethics committees, departments of health and education,

school authorities and community leaders.

Children were listed with their age, sex and address on a data

collection form based on the school register. The size of the

induration and the presence of a BCG scar as verified by a nurse

were also recorded. Children were included in the survey whether

they had a BCG scar or not. The skin testing was conducted using

2TU (Tuberculin Units) of PPD RT23 with Tween, supplied by the

Statens Serum Institut (Copenhagen, Denmark). A single batch was

prepared for these surveys. A dose of 0.1 ml was injected

intradermally on the left forearm. Skin reactions were read using

callipers 72 hours later. All pupils with reactions of $15 mm were

referred to the clinic to be investigated for TB disease. In keeping

with national guidelines, as the children were older than 5 years,

they were not referred for prophylaxis. Data was dually entered.

Different methods to estimate prevalence of infection
Histograms of induration sizes were inspected for evidence of

digit-preference and multi-modality of distributions. Tuberculous

infection prevalence was calculated as the proportion of all

children with a TST positive result over the total number of

children with an administered and read skin test. TST positivity

ARTI Using Different Methods
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was defined using cut-off, mirror and mixture analysis methods

suggested by the literature, ranging from the simple cut-off value

[12,14,20] approaches to the more sophisticated mixture analysis

[9,15,16]. For randomization of the ZAMSTAR study, we

determined the balance between the study arms using each

method. Our sample size allowed us to dissect the data, when

using mixture analysis, at the country but not the community level,

because larger numbers of non-zero observations were required

for the models to converge. With all other approaches, we

investigated variation of infection prevalence at the community

level. Tuberculous infection estimates at the country level were

calculated as unweighted averages of community level estimates

using the cut-off and mirror methods. In addition, 95% confidence

intervals were calculated in order to account for the clustering

effect at community level [21].

Fixed cut-off points at 10 mm or 15 mm. Infection

prevalence was calculated using 10 mm and 15 mm cut-off

points. The 10 mm criterion is the most widely used that

considers all reactions $10 mm to be a marker of infection

[20,22]. The 15 mm cut-off point has also been used elsewhere

[20,23]. To adjust for sensitivity, a cut-off of 14 mm was used and

the number multiplied by 1.22 to correct for false negatives

[12,14]. The factor 1.22 has been established by data from

population of infected individuals in Tanzania [12].

Mirror method. The mirror method was used to estimate

prevalence using the mode as a mirror and a fixed mirror at 17 mm.

The mode of the TST distribution was identified after smoothing (to

adjust for obvious digit-preference bias) the crude count of TST

indurations by a centred moving average of five successive reaction

sizes. The total number of children with true reactions was

calculated by adding the number of children showing reaction

sizes equal to the mode to double the number with reaction sizes

larger than the mode to determine the numerator [13,15]. The fixed

mirror method considers all reactions of 17 mm counted once and

indurations of $17 mm counted twice to obtain the estimated

number of infections [12,14,24].

Mixture analysis. Three parametric models (normal,

lognormal and Weibull distributions) describing infection with

M. tuberculosis, and two (lognormal and Weibull distributions)

describing those who reacted due to infection with environmental

mycobacteria were tested to determine the best model.

A Bayesian Markov Chain Monte Carlo simulation approach

[25] and programme codes for the R software were utilised for this

analysis. The Metropolis-Gibbs sampler was used to calculate

posterior distribution of mixture model parameters. The simula-

tion programme initially ran for a burn-in period of 15,000

iterations the results of which were discarded. Following the burn-

in period a thinned sample of 2,000 from 20,000 was used to

summarise the posterior distribution of the model parameters. The

validity of the model was assessable by how well it fitted the data.

Models with maximum log likelihood values were used to quantify

the fit. Comparisons between predicted and observed frequencies

via posterior predictive model checks solidified the choice of

model. For a model to be consistent with data, the posterior

predictive failure rate was close to 5%. Tuberculous infection

estimates at the country level were presented along with 95%

confidence intervals unadjusted for the clustering effect of

community level, as this was not possible using this method.

Estimating the annual risk of tuberculous infection
We calculated the annual risk of infection from the prevalence

of infection estimates. We used the standard formula

R = 12(12Prevalence) 1/A +0.5 where R is the probability of

being infected in any one year and A is the mean age [8,19].

Because the age (in full years) of each child at their last birthday

was used, 0.5 was added to the mean age for the calculation of

ARTI. Furthermore, two critical assumptions in the ARTI

calculation were made. Firstly, we assumed that the ARTI was

independent of the age of the person at risk of infection while

exposure to TB is likely to change as people grow older. The

second key assumption was that the ARTI was constant over time,

which may not be the case. Because our surveys were done in

children aged about 6 to11 years we estimated ARTI for each of

the groups of 6, 7, 8, 9, 10 and 11-year-olds.

Impact of age and BCG
Indirectly standardised prevalence estimates using the total

school children population whose consent was sought as the

standard population, were calculated using the formula below:

TSTindirect~

P

i

ri

P

i

niPi

+
Where

ri is the number of children positive in the ith age group

ni is the number of children in the ith age group

Pi is the proportion of children positive in the ith age group in the

standard population

The age specific prevalence of infection were stratified by

country only and estimated using all methods apart from the

mirror method due to inadequate numbers. In the mixture

analysis, age was included as a covariate in the models.

The infection prevalence was also compared between children

with a BCG scar and those without using all methods (apart from

mixture analysis) and age group. A mixture model was not used to

compare children with a BCG scar and those without because the

data restricted us from including an additional factor in the model.

Results

Survey participation
A total of 49,835 eligible children aged between 4–18 years were

registered in the TST surveys. Of those registered 25,048 (50%) had

skin tests done and 22,563 (90%) of children tested were read. There

was little difference in mean age and sex distribution among

children sought, administered and read (Table 1). Analysis was

restricted to 6–11 year-olds (94% of children read) because

frequencies in the youngest and oldest age groups were small. In

Zambia, this age range corresponds to primary school (7–13 years)

gross attendance rate of 98.2% and 87.2% in urban and rural areas

respectively [26] while in Western Cape an overall of 97% [27].

Despite the wide spread use of BCG, many children had no

reaction to the TST (76% in Zambia and 69% SA). The frequency

distribution of non-zero indurations is shown for each country

(Figure 1). The Zambian distribution showed evidence of digit

preference, but despite this, is still less symmetrical than the SA

one, with a larger frequency of children with induration less than

the mode than above it. The mode of the Zambian distribution, at

12 mm (discounting the 10 mm bin), was also 3 mm less than the

SA 15 mm mode.

Infection prevalence and ARTI estimates
Table 2 compares the infection prevalence estimates, at the

community and country level, using all methods. For two of the

ARTI Using Different Methods
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communities with few non-zero readings, the frequency distribution

did not have a single mode above 10 mm, so no value was calculated

for the mirror method. Using these infection prevalence estimates,

we calculated the ARTI for the Zambian communities to be as

follows: 0.8% (15 mm); 2.0% (10 mm); 1.3% (14 mm*1.22); 2.8%

(mirror); 0.8% (fixed mirror); 1.2% (mixture). The ARTI for the SA

communities were as follows: 2.5% (15 mm); 4.2 % (10 mm); 3.8%

(14 mm*1.22); 4.2% (mirror); 2.5% (fixed mirror); 4.2% (mixture).

For the mixture analysis method for the Zambian population, the

best model fit was given by distributional assumption made for the

Table 1. Children involved in the baseline tuberculin skin test surveys for all 24 ZAMSTAR communities.

Code Geography Consent sought N (% female) [mean age] Administered N (% female) [mean age] Read N (% female) [mean age]

Z1 Lusaka 2,914 (51) [9.4] 936 (56) [9.5] 806 (56) [9.5]

Z2 Copperbelt 2,287 (52) [8.2] 919 (53) [8.4] 903 (53) [8.4]

Z3 Copperbelt 3,011(52) [8.4] 1,145 (49) [8.2] 937 (49) [8.2]

Z4 Lusaka 2,901(50) [9.4] 956 (50) [9.5] 785 (51) [9.5]

Z5 Copperbelt 2,013(48) [9.5] 1,139 (47) [9.7] 927 (47) [9.7]

Z6 Lusaka 3,049(52) [9.6] 924 (52) [9.5] 806 (52) [9.5]

Z7 Lusaka 2,535(51) [9.2] 753 (51) [9.2] 704 (51) [9.2]

Z8 Southern 1,577(53) [7.9] 886 (55) [8.0] 788 (56) [8.0]

Z9 Southern 1,524(51) [8.0] 895 (51) [8.1] 759 (51) [8.1]

Z10 Central 2,171(51) [9.1] 1,286 (53) [9.1] 1,187 (53) [9.1]

Z11 Luapula 1,950(51) [8.8] 1,179 (52) [9.0] 1,064 (52) [9.0]

Z12 Copperbelt 2,115(51) [8.5] 936 (53) [8.6] 829 (54) [8.6]

Z13 Central 1,470(61) [8.3] 863 (63) [8.3] 830 (63) [8.3]

Z14 Southern 1,518(48) [8.7] 901 (48) [8.6] 872 (48) [8.6]

Z15 Luapula 1,663(51) [9.1] 933 (52) [9.2] 827 (52) [9.2]

Z16 Southern 1,732(50) [8.3] 949 (52) [8.2] 763 (53) [8.2]

SA1 Province 2,277(48) [7.5] 1,399 (49) [7.5] 1,319 (50) [7.5]

SA2 Province 1,678(46) [8.3] 913 (49) [8.2] 796 (47) [8.2]

SA3 Metropole 2,607(49) [8.1] 1,550 (50) [8.2] 1,438 (51) [8.2]

SA4 Metropole 1,626(48) [8.4] 1,028 (51) [8.3] 962 (51) [8.3]

SA5 Metropole 2,057(47) [7.5] 1,286 (48) [7.6] 1,232 (48) [7.6]

SA6 Province 890(48) [8.3] 561 (48) [8.4] 537 (48) [8.4]

SA7 Metropole 2,314(49) [8.2] 1,421 (49) [8.2] 1,292 (49) [8.2]

SA8 Metropole 1,956(46) [7.6] 1,290 (46) [7.6] 1,200 (46) [7.6]

TOTAL 49,835 (50) [8.6] 25,048 (51) [8.5] 22,563 (51) [8.5]

doi:10.1371/journal.pone.0007749.t001

Figure 1. Histogram of frequencies of observed non-zero indurations as reactions to TST by country.
doi:10.1371/journal.pone.0007749.g001
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observed cross-reaction/ tuberculous infection of Weibull/Lognor-

mal and the prevalence was 10.8% ( 95% credible interval (CI): 9.1–

12.1). For the SA population the Lognormal/Weibull and Normal/

Weibull assumption both fit the model well and the prevalence was

30.3% (95% CI: 29.4–31.1).The distribution of observed (histo-

gram), mixture distribution and component distribution of tuber-

culous infection and cross-reactions by country is shown in Figure 1.

The mode of the distributions for presumed tuberculous infection

given by the mixture analyses is 15 mm for both datasets.

For each method there was considerable variation in infection

prevalence (Table 2) and ARTI (Figure 2) estimates among the

communities and between countries. The mirror methods showed

the highest and lowest infection prevalence estimates for Zambia.

Infection prevalence estimates for the Zambian communities varied

from 7.0% using the fixed mirror method to 22.5% using the mirror

method. Similarly, for the SA communities, infection prevalence

estimates varied from 19.2% using the fixed mirror method to

30.3% using mirror, mixture, or the 10 mm cut-off methods.

The differences in infection prevalence between the Zambian

and SA communities varied from 7.8% using the mirror method to

19.5% using the mixture method. All methods suggested that the

prevalence of infection was considerably higher in the SA

communities than the Zambian ones (Table 2). However, with

the methods using a cut-off, there was no overlap in the range of

estimated prevalences, whereas when the mirror methods were

used, many Zambian communities were estimated to have

prevalences similar to those found in the SA communities

(Table 2).

For the Zambian communities, there was little variation in the

ARTI estimates across the different age groups (Figure 2)

However, for the SA communities there was a downward trend

in estimated ARTI with increasing age until the final (11 year old)

cohort.

Using a linear regression model with ARTI as calculated by the

fixed mirror method the slope of the line was 20.1% (95%

CI:20.3%, 0.1%; p = 0.3), indicating a small downward, but

inconclusive, trend. Exploring the data further, and recognising

the limitation of sub-group analyses, when we excluded 11 year-

olds (as the smallest group) the slope was 20.2% (95% CI:20.3%,

20.1%; p = 0.02), with clear evidence supporting a steeper

Table 2. Tuberculous infection prevalence estimates by community and country.

15 mm 15 mm 10 mm 10 mm 14 mm*1.22 Mirror Fixed Mirror Mixture

Community code Crude Adjusted + Crude Adjusted +

Z16 1.8 1.8 6.0 6.1 3.0 N/A* 0.7 N/A*

Z15 2.8 2.8 6.1 6.0 4.5 8.2 4.1 N/A*

Z13 2.8 2.8 14.1 14.2 7.3 19.5 0.7 N/A*

Z14 3.6 3.6 8.1 8.1 5.7 N/A* 3.5 N/A*

Z12 3.9 3.9 14.9 14.9 6.7 18.1 4.0 N/A*

Z10 4.8 4.8 19.3 19.2 8.7 25.2 2.1 N/A*

Z11 5.1 5.1 9.6 9.5 6.3 10.3 4.3 N/A*

Z9 6.4 6.5 16.9 17.2 10.3 21.9 4.7 N/A*

Z8 7.6 7.6 17.3 17.5 11.4 20.8 6.4 N/A*

Z3 8.5 8.6 19.8 20.0 13.4 24.3 7.9 N/A*

Z2 9.7 9.7 21.3 21.3 13.8 29.5 10.0 N/A*

Z1 10.8 10.7 22.1 21.7 16.0 33.2 11.5 N/A*

Z5 11.4 11.3 23.9 23.4 15.9 31.5 13.3 N/A*

Z6 11.9 11.8 21.5 21.0 17.1 22.6 17.0 N/A*

Z7 12.0 12.0 23.8 23.4 17.6 26.5 5.7 N/A*

Z4 13.0 12.9 21.9 21.4 18.8 24.2 15.6 N/A*

Zambia
(95%CI)

7.3
(5.4–9.1)

7.2
(5.5–9.0)

16.7
(11.9–21.4)

16.5
(12.0–21.1)

11.0
(7.8–14.3)

22.5
(15.5–29.6)

7.0
(3.8–10.2)

10.8
(9.1–12.1*)

SA8 14.2 14.3 26.0 26.5 21.6 24.8 10.8 N/A*

SA7 14.7 14.8 24.8 24.9 22.1 18.6 13.8 N/A*

SA5 17.0 17.0 28.5 29.0 24.9 23.8 18.1 N/A*

SA6 17.1 17.2 26.3 26.3 23.9 31.8 18.7 N/A*

SA2 18.7 18.7 31.7 31.8 29.6 32.8 17.0 N/A*

SA3 22.3 22.4 32.0 32.1 32.4 29.4 19.9 N/A*

SA1 22.6 22.7 30.4 31.1 30.8 33.8 27.4 N/A*

SA4 27.1 27.1 42.4 42.6 39.0 47.8 27.9 N/A*

South Africa
(95%CI)

19.2
(14.4–24.0)

19.3
(14.4–24.1)

30.3
(22.6–38.0)

30.5
(22.9–38.2)

28.0
(19.2–36.9)

30.3
(11.6–49.1)

19.2
(10.5–28.9)

30.3
(29.4–31.1*)

* Non-assessable.
+ Indirect age-standardized estimate using the total as the standard population
Country level estimates are calculated as unweighted averages of community estimates and 95% confidence intervals (CI) account for the clustering effect at the
community level. Communities are ordered in ascending 15 mm cut-off method order.
doi:10.1371/journal.pone.0007749.t002
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downward trend. Broadly similar results were drawn when using

ARTI estimates calculated from the other four methods.

Effect of BCG
Scars typical of BCG vaccination were recorded in 74% of

Zambian and 85% of SA children. Similar proportions of children

within each country of both sexes (data not shown) and all ages

had BCG scars.

There was a 1–3% difference in infection prevalence estimates

among children with a BCG scar and those without using country

level estimates when different methods were compared

(Table 3).The 10 mm cut off method showed the largest difference

in infection prevalence estimates between children with a BCG

scar and those without for SA whereas for Zambia and overall the

largest respective difference was given by the mirror method.

There was no convincing evidence of a greater effect in younger

children in either country for any of the methods used (Figure 3

and Figure 4).

Impact of different methods on community ranking in
the ZAMSTAR study

Regardless of the approach used for the determination of

tuberculous infection prevalence, there was little difference

between the ZAMSTAR study intervention arms produced by

the randomization procedures (Table 4). Absolute differences

between approaches were present. To evaluate the association of

community ranks by method, a correlation matrix of the ranks

according to the five different methods was used (data not shown).

Cut-off methods ranks tended to have very high correlation

(r = 0.960 for ranks 10 mm vs. 15 mm; r = 0.987 for ranks 15 mm

vs. 14 mm*1.22), whereas their comparison with mirror methods

was not so (r = 0.681 for ranks 15 mm vs. mirror; r = 0.757 for

ranks 10 mm vs. mirror).

Discussion

This is the first time tuberculin survey data of this magnitude

have been collected and presented from Zambia whereas, our data

from Cape Town, largely agree with previous studies from the

Western Cape of SA [28,29]. These surveys have reported ARTI

estimates ranging from 0.8% to 2.8% and 2.5% to 4.2% for

Zambia and SA communities respectively, depending on the

method we used. These ARTI estimates confirm that TB

transmission is high in these communities, irrespective of the

method used to define it. In addition, they remain comparatively

higher than those reported in other African countries where TST

Figure 2. Annual risk of tuberculous infection, as calculated using five methods, by country and age.
doi:10.1371/journal.pone.0007749.g002

Table 3. Tuberculous infection prevalence estimates (95% confidence intervals) by country and overall.

Zambia Zambia South Africa South Africa Overall* Overall*

BCG present (N = 8,453) BCG absent (N = 3,043) BCG present (N = 6,745) BCG absent (N = 1,181) BCG present (N = 15,198) BCG absent (N = 4,224)

15 mm 7.4 (5.4–9.4) 7.3 (4.5–10.1) 19.6 (15.0–24.2) 17.7 (8.5–26.9) 11.5 (7.3–15.6) 10.8 (6.7–14.9)

10 mm 17.0 (12.0–22.0) 16.6 (8.9–24.4) 31.0 (22.8–39.2) 27.8 (11.0–44.7) 21.7 (15.0–28.3) 20.4 (13.1–27–7)

14 mm*1.22 11.2 (7.9–14.4) 10.9 (5.1–16.7) 28.6 (19.5–37.7) 25.7 (11.5–39.9) 17.0 (8.9–25.0) 15.8 (7.9–23.8)

Mirror 23.2 (14.5–31.9) 22.4 (10.9–33.9) 25.9 (0.7–51.1) 24.1 (0.0–49.9) 26.0 (19.1–32.9) 24.1 (16.3–32.0)

Fixed mirror 6.5 (4.0–9.1) 8.2 (0.3–16.2) 19.4 (12.3–26.6) 16.8 (0.0–42.0) 10.8 (5.8–15.8) 11.1 (3.7–18.5)

* 2,135 observations with unknown or doubtful BCG status
Country level and overall estimates are unweighted averages of community estimates and 95% Confidence intervals.
doi:10.1371/journal.pone.0007749.t003
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surveys have been conducted [3,4,30] or worldwide [31–33]. Two

recent TST surveys in Cape Town both showed an ARTI of 4.1%

[28,29] using the 10 mm cut off, largely agreeing with findings in

this study.

Asymmetrical distributions, such as that seen in the Zambian

communities have been reported from Tanzania [12] and are

presumed to be due to a larger number of children being sensitised

to environmental mycobacteria as found in places where the

climate is more tropical. The mixture methods of analysis are

designed to provide a better estimate of prevalence of infection in

such situations than a simple cut-off based approach. A recent

large prevalence survey of tuberculosis disease done in Zambia

identified a large number of non-tuberculous mycobacteria

[34].The rather symmetrical distribution seen in the cooler

temperate areas of Cape Town has also been reported in other

TST surveys [29]. In this situation, mixture methods are

redundant since the distinction between infected and uninfected

children is easily made and there are few children with

intermediate results.

These TST surveys also confirm the difficulty in estimating

absolute prevalence rates for tuberculous infection and highlight

the danger in making comparisons across countries with different

geographical and environmental conditions. The estimated

absolute prevalence for each community or country varied widely.

Our results are similar to other studies showing that estimates of

infection prevalence vary widely depending on the method used to

Figure 4. Prevalence of tuberculous infection with 95% binomial exact CIs, as calculated using five methods, by BCG and age for
South Africa.
doi:10.1371/journal.pone.0007749.g004

Figure 3. Prevalence of tuberculous infection with 95% binomial exact CIs, as calculated using five methods, by BCG and age for
Zambia.
doi:10.1371/journal.pone.0007749.g003
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calculate them [10,16]. Although various methodological ap-

proaches for the analysis of TST data have been suggested, more

work on how to best interpret the results comparatively across

different populations is needed.

The variability between populations in patterns of exposure and

reactivity to different mycobacterial species means that judgement

will remain an important element in the analysis and interpreta-

tion of such data [35].The conventional method of analyzing such

data consists of presentation of tuberculin reaction sizes as a

frequency distribution curve and locating an anti-mode on the

curve, which is considered as the cut-off point for identification of

the sub-group infected with M.tuberculosis [36]. However, a clear

anti-mode is not always evident, especially in communities with

high prevalence of cross-sensitivity to tuberculin. In such

situations, mirror-image technique is used for estimating the

prevalence of infection. However, identification of this mode poses

further problems in communities with low prevalence of infection

and high prevalence of cross-reactors [36]. Other statistical

techniques for estimating the proportion of individuals infected

with M.tuberculosis can then be employed such as mixture model

analysis. The mixture model has been proposed as a possible

solution to overcome problems in the interpretation of tuberculin

surveys due to difficulties commonly encountered in the

identification of modes and anti-modes of reactions due to

infection with tubercle bacilli on the frequency distributions of

reactions [37]. However, lack of supporting epidemiological

evidence to show that mixture analysis is better than traditional

methods has been raised by others [35].

When the communities are aggregated by country, the

difference in tuberculous infection prevalence estimates between

the Zambian and SA communities using mixture analysis is

greater compared to other methods and the mode of the

distribution of presumed infection is the same for both countries.

Unfortunately, our non-zero induration data at the community

level were not enough for conclusive results. As expected from the

frequency distribution of induration in the SA children with very

little cross-reaction, the mixture, the mirror and 10 mm cut-off

methods give very similar results. Whereas in Zambia, with

evident cross-reaction of environmental mycobacterial, the

mixture method estimates are only similar to the 14 mm*1.22

method. Infection prevalence estimates obtained from mixture

models have been shown to be lower [9,32].or fairly concordant

[9] with those from cut-off methods depending on the presence of

environmental mycobacterial.

The mirror method shows the highest estimates of infection

prevalence when countries are compared. When community level

estimates are used, for both countries at the 15 mm cut-off point

and at the 10 mm for the Zambian communities, the mirror

method still showed higher estimates. At the 10 mm cut-off point,

the SA communities show higher estimates by the mirror method

in 50% of communities. The mirror method shows higher

estimates than the 15 mm cut off method, for instance, since it

counts as infected almost exactly twice the number of subjects

when the assumed mode of the underlying distribution is 15 mm.

In a study [15], using a range of chosen modes ,the mirror method

yielded a wide variation in the estimates of the prevalence, a well-

recognised problem. For the three cut off methods, infection

prevalence was highest and lowest for the 10 mm and 15 mm cut

off methods for each country. Several reasons have been raised for

challenging the traditional cut-off approach to estimate infection

prevalence [9].

The different methods did not greatly alter the ranking of the

ZAMSTAR communities, and when used to stratify randomisa-

tion for the ZAMSTAR study, the infection prevalence estimates

within each intervention arm differed very little, irrespective of

method used. We have clearly demonstrated that the differences in

method do not interfere with using any one method across 24

communities for randomization.

There was little difference among children that had BCG scar

and those without, adding to the growing literature that when

BCG is given at birth, little difference can be detected when using

tuberculin skin test in children, adolescents or adults [22,28,38].

However, the 1–3% difference in infection prevalence estimates

among children with a BCG scar and those without may be

significant in countries with a low prevalence of tuberculous

infection.

There is a lively debate about whether the rising incidence of

active tuberculosis seen over the past decades in Southern Africa

has led to higher risks of infection among children [39,40]. It has

been postulated that this rise in TB notification rates in adults is

not well reflected by a corresponding increase in ARTI probably

due to the less infectiousness of HIV positive individuals compared

to HIV negative ones [40]. The youngest children in our surveys

were exposed to tuberculosis from 1999, when they were born,

until 2005 when the survey was performed. The oldest children

were exposed from 1994 to 2005. Since the ARTI is calculated

from the cumulative incidence of infection over the lifetime of the

child, the differences in expected cumulative exposure are less

dramatic than the changes in the incidence of tuberculosis. The

WHO estimates that the incidence of tuberculosis reached a peak

in Zambia in 2003, whereas it was still rising in South Africa in

2007 [41]. For the Zambian communities all methods agreed that

the estimates of ARTI hardly vary for children of different ages,

whereas there is a tendency for younger South African children to

have higher estimates of ARTI. This is what would be expected if

there was a direct relationship between cumulative incidence of

Table 4. Average tuberculous infection prevalence estimates by intervention arm based on estimated prevalence calculated by
various published methods.

ZAMSTAR Intervention arm [18] 15 mm 10 mm 14 mm*1.22 Mirror Fixed mirror

Arm A 11.3 22.0 16.9 28.7 (n = 5)+ 11.2

Arm B 11.4 20.5 16.8 25.8 (n = 5) + 11.6

Arm C 11.8 21.5 17.4 23.9 11.2

Arm D 10.5 20.7 15.7 23.7 10.1

+These estimates are based on five and not six prevalence estimates as all other estimates in the table. This is because for two communities we could not clearly define a
‘‘true’’ mode of TST induration. Both these communities have low prevalence estimates as calculated by all other methods and would most probably produce low
infection prevalence estimates for the mirror method too. We believe the observed differences in between intervention arms averages are an artefact of what we
describe here.

doi:10.1371/journal.pone.0007749.t004
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tuberculosis and risk of infection. However, despite the much

larger sample size in this study than the study that sparked the

debate [29], we are not able to confirm or reject the hypothesis

that 5-fold rise in tuberculosis rates in the whole of South Africa is

reflected in higher infection risks for the younger cohorts in Cape

Town.

Our study has some limitations. There is clear evidence of digit

preference in the Zambian data despite efforts to standardise

training and reading across the two country teams which may lead

to under or overestimation of prevalence of infection. The use of

six teams in Zambia may have also contributed to inter-reader

variability. In addition, not all children vaccinated with BCG leave

a scar and the scar may wane with time. Since the surveys were

primarily conducted to obtain estimates to rank communities they

were not necessarily a representative sample of the district or

province from which they were drawn nor can the differences be

extrapolated to compare Zambia and SA at the country level.

Although only 50% of registered children were injected and read,

we believe that this has not lead to major bias in the interpretation of

our results since there was no difference by age and sex among

children registered, administered and read (Table 1). In Zambia,

surveys of this nature were virtually unknown before ours and

therefore our teams had initial difficulties in recruiting children

which improved with increased community sensitization. Further-

more, since most large tuberculin surveys are often an integral part

of the National Tuberculosis programs in countries with a high

incidence of tuberculosis [24,42], these do not require written

consent, unlike ours. Parental written and informed consent often

necessitates parents attending meetings where the study can be

explained and this is difficult to achieve.

Conclusion
Estimates of the annual risk of tuberculous infection are heavily

dependent on the method used for calculating prevalence of

infection and quantitative comparisons, particularly across large

distances and different climate zones are likely to be flawed.

Among the communities selected for the ZAMSTAR study, there

are large variations in the prevalence of tuberculous infection, with

substantially higher estimates in the SA communities than in the

Zambian ones. TB transmission remains very high in these

communities. We cannot exclude the possibility that the increasing

tuberculosis notification rates, fuelled by the HIV epidemic in sub-

Saharan Africa, have led to an increased risk of infection among

school-children.

Our data add to the consensus that in settings where BCG is

given at birth, results of tuberculin skin tests are not much affected

by whether a child has been vaccinated or not. In this regard, the

loss of specificity that is often cited as a reason to move to IGRAs

[7] may be less important in typical African settings [43].
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