ArticlePDF Available

Cryptic diversity within two widespread diadromous freshwater fishes (Teleostei: Galaxiidae)

Wiley
Ecology and Evolution
Authors:

Abstract and Figures

Identification of taxonomically cryptic species is essential for the effective conservation of biodiversity. Freshwater‐limited organisms tend to be genetically isolated by drainage boundaries, and thus may be expected to show substantial cryptic phylogenetic and taxonomic diversity. By comparison, populations of diadromous taxa, that migrate between freshwater and marine environments, are expected to show less genetic differentiation. Here we test for cryptic diversity in Australasian populations (both diadromous and non‐diadromous) of two widespread Southern Hemisphere fish species, Galaxias brevipinnis and Galaxias maculatus. Both mtDNA and nuclear markers reveal putative cryptic species within these taxa. The substantial diversity detected within G. brevipinnis may be explained by its strong climbing ability which allows it to form isolated inland populations. In island populations, G. brevipinnis similarly show deeper genetic divergence than those of G. maculatus, which may be explained by the greater abundance of G. maculatus larvae in the sea allowing more ongoing dispersal. Our study highlights that even widespread, ‘high‐dispersal’ species can harbour substantial cryptic diversity and therefore warrant increased taxonomic and conservation attention.
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e11201. 
|
1 of 16
https://doi.org/10.1002/ece3.11201
www.ecolevol.org
Received:4July2023 
|
Revised:3March2024 
|
Accepted:19March2024
DOI: 10.10 02/ece3.11201
RESEARCH ARTICLE
Cryptic diversity within two widespread diadromous
freshwater fishes (Teleostei: Galaxiidae)
Charlotte Jense1| Mark Adams2,3 | Tarmo A. Raadik4| Jonathan M. Waters5|
David L. Morgan6| Leon A. Barmuta1| Scott A. Hardie1| Bruce E. Deagle7|
Christopher P. Burridge1
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
providedtheoriginalworkisproperlycited.
©2024TheAuthors.Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.
1DisciplineofBiologicalSciences,School
ofNaturalSciences,Universit yof
Tasmania,Hobart,Tasmania,Australia
2EvolutionaryBiologyUnit,South
AustralianMuseum,Adelaide,South
Australia,Australia
3SchoolofBiologicalSciences,The
UniversityofAdelaide,Adelaide,South
Australia,Australia
4DepartmentofEnergy,Environmentand
ClimateAction,ArthurRylahInstitute
forEnvironmentalResearch,Heidelberg,
Victoria,Australia
5DepartmentofZoology,Universityof
Otago,Dunedin,NewZealand
6CentreforSustainableAquatic
Ecosystems,HarryButlerInstitute,
MurdochUniversity,Murdoch,Western
Australia,Australia
7AustralianNationalFishCollec tion,
CSIRONationalResearchCollections
Australia,Hobart,Tasmania,Australia
Correspondence
CharlotteJense,DisciplineofBiological
Sciences,SchoolofNaturalSciences,
UniversityofTasmania,LifeSciences
Building,BiologicalSciencesPrivateBag
55,Hobart,TAS7001,Australia.
Email:charlotte.jense@utas.edu.au
Funding information
UniversityofTasmania;Commonwealth
ScientificandIndustrialResearch
Organisation
Abstract
Identificationoftaxonomicallycrypticspeciesisessentialfortheeffectiveconserva-
tionofbiodiversity.Freshwater-limitedorganismstendtobe genetically isolatedby
drainageboundaries,andthusmaybeexpectedtoshowsubstantialcrypticphyloge-
neticandtaxonomicdiversity.By comparison, populationsofdiadromoustaxa,that
migrate bet ween freshwater and ma rine environment s, are expected to sh ow less
geneticdifferentiation.HerewetestforcrypticdiversityinAustralasianpopulations
(bothdiadromousandnon-diadromous)oftwowidespreadSouthernHemispherefish
species,Galaxias brevipinnisandGalaxias maculatus.BothmtDNAandnuclearmarkers
revealputativecryptic specieswithinthesetaxa.The substantialdiversity detected
withinG. brevipinnismaybeexplainedbyitsstrongclimbingabilitywhichallowsitto
formisolatedinlandpopulations.Inislandpopulations,G. brevipinnissimilarly show
deepergeneticdivergencethanthoseofG. maculatus,whichmaybeexplainedbythe
greaterabundanceofG. maculatuslarvaeintheseaallowingmoreongoingdispersal.
Ourstudyhighlightsthatevenwidespread,‘high-dispersal’speciescanharboursub-
stantialcrypticdiversity andthereforewarrantincreasedtaxonomicand conserva-
tionattention.
KEYWORDS
colonisation,delineation,Galaxias,geneflow,geographicalbarriers,imperilled,species
boundaries
TAXONOMY CLASSIFICATION
Biogeography,Conservationecology,Phylogenetics
2 of 16 
|
   JENSE et al.
1  | INTRODUCTIO N
Amajorimpedimenttotheconservationofbiodiversityisthepres-
enceofcrypticspecies,whichistheoccurrenceofmultiplespecies
erroneouslyclassifiedasasinglespeciesduetoa lackof observed
or quantified genetic and/or morphologic differentiation (Delić
etal., 2017). Accurate species designation andidentificationisim-
portantforestimatingtheimpactofthreatsonpopulationsandbio-
diversity (Fiser et al., 2018)and the effectiveness of conservation
actions (Hoekzema & Sidlauskas, 2014). Spe cies' ranges and are a
of occurrence are generally overestimated when cr yptic species
arepresent,potentiallydiminishingtheirconservationstatus(Delić
etal.,2017).Despitetheiroften-closeevolutionaryaffinities,cryptic
species may also have different environmental needs and provide
differentecosystemservices(Fiseretal.,2018).Crypticspeciescan
contribute to the underestimation of anthropogenic extinctions,
whichimpedesourunderstandingoftheseprocessesandtheirpo-
tentialmitigation(Delićetal.,2017 ).
Identification of cryptic diversity has increased largely due
to the application of molecular systematic approaches to both
neglected and well-studied taxa (Brown et al., 20 07;Kochanova
etal.,2021;Pfenninger&Schwenk,2007;Rocaetal.,2001).For
example,ninelineageswerefoundintheGehyra nanaspeciescom-
plex of geckos withoverlapping distributions inseveral lineages
across the Australian Monsoonal Tropics (Moritz et al., 2018).
Widespread, polymorphic species appear particularly prone to
the presence of cryptic diversity (Adams et al., 20 14; Hammer
etal.,2013),andmanycrypticspecieshavebecomemorphologi-
callydiagnosable once theirexistence was revealedusingmolec-
ular genet ic or other data (H ammer et al., 2013; Raadik , 2014).
However, in some ins tances cr yptic spec ies remain mor phologi-
callyundiagnosable(Craigetal.,2009;Egge&Simons,2006; Eitel
etal.,2013;Konetal.,20 07),andsomeresearchersquestionthe
meritofformallydescribingcandidatespeciessolelyonmolecular
data(Strucketal.,2018).
MitochondrialDNA(mtDNA)isoftenusedtoresolvetaxonomic
uncertainties and determine populationstructure in many animals
because of its high rates of mutation and genetic drift (Ardren
etal.,2010;Konetal.,20 07;Lietal.,2006).However,hybridisation
andincompletelineagesortingcaneachresultinmtDNAgenetrees
being incongruent with their underlying species tree (Frankham
etal.,2002).Surveysofnucleargeneticmarkersinconjunctionwith
mtDNA are therefore desirable to provide multiple independent
perspectivesontaxonomic uncertainties (Grechko, 2013;Hammer
et al., 2013; Wan et al., 2004). Historically, allozymes were the
most wid ely used nuclear ma rkers for delinea ting species due to
theeaseofscreening~30–60independentloci(Adamsetal.,2014;
Hammeretal.,2007,2013).Althoughnowlargelyreplacedbyhigh-
throughputDNAsequencingofnuclearmarkers,allozymeshavestill
proveninsightfulfordelineatingspeciesandmajorphylogeographic
breakswithinspecies(Hammeretal.,2019;Unmacketal.,2017).
Molecular assessment of cryptic diversity is important for
freshwater biodiversity. Although freshwater environments only
compromise~0.3% of theEarth'ssurface,they harbour dispropor-
tionallyhighbiodiversity(e.g.,almost50%ofalldescribedfishspe-
cies;Reidetal.,2013). Despitethislimitedextentofhabitat,many
freshwaterfishspeciesremainundocumented,with~300newspe-
ciesdescribedannually(Dudgeonetal.,2006).Thishiddendiversity
isparticularlysignificant giventhat freshwater habitats areamong
the most imperilled in the world, with greater rates of population
decline and species extinction than terrestrial and marine taxa
(Reidetal., 2013).Fortypercentofknown freshwater fishspecies
areonthe IUCNRedList ofthreatened species (Reid et al.,2013),
with 20 41spe cies categori sed as vulnera ble, endange red or criti-
cally endangered in 2013 (Lintermans,2013). Keythreatening pro-
cesses comprise habitat degradation and fragmentation, invasive
species , climate change, overex ploitation and po llution (Dudgeon
etal.,2006;Jelksetal.,2008;Lintermansetal.,2020).
Freshwater-limited fish lineages often experience isolation
duetotheirhabitat constraints,leadingtogeneticdifferentiation.
However,cryptic diversity isalso a feature of diadromousfishes—
those thatmigrate between marine and freshwaters—despitetheir
typicallylargerpopulationsizesandhighergeneflow,which might
be expected to reduce diversification. Indeed, while diadromous
fishestypicallyexhibitcomparativelylowpopulationgeneticstruc-
turing(Allibone&Wallis,1993;Burridge&Waters,2020;DeWoody
&Avise,2000;Wardetal.,1994),diadromycanalsopotentiallyfacil-
itatelongdistancecolonisationandsubsequentfounderspeciation
(Burridge&Waters,2020).Notably,forsomefishspeciesdiadromy
can be fa cultative rat her than oblig ate (Closs et al., 2003; Feutr y
et al., 2013; Hicks et al., 2017). Diadromous species can also har-
bourlandlocked(freshwaterlimited)populationsthatexhibitgenetic
andmorphologicaldifferencesfromtheirdiadromouscounterparts
(Chapman et al.,20 06;Rojoetal.,2020;Tigano&Russello, 2022).
Speciation is also considered a common outcome from landlock-
ing(Lingetal.,2001; Ovenden&White,1990; Walliset al.,20 01).
Therefore,thepotentialforcrypticdiversitywithindiadromoustaxa
maybeunder-appreciated,andthusextinctionrisksunderestimated.
Galaxias brevipinnisand Galaxias maculatusarewidelydistrib-
uted diadr omous fishes tha t exhibit morphol ogical and life his-
tory variation throughout their range, including the presence of
landlockedpopulations.Galaxias brevipinnisisfoundintemperate
southeast Australia (including Tasmania) and throughout New
Zealandanditssub-Antarcticislands.Galaxias maculatusoccursin
South America, Australia andNewZealandaswellasneighbour-
ing island s such as the Falkla nds/Malvinas , Lord Howe, and th e
ChathamIslands.Galaxias maculatusoccupieslowelevationfresh-
water sys tems (Bice et al., 2019), whil e G. brevipinnishasgreat
climbing abilities and adults can penetrate farther inland (100's
kminland and elevations up to 1200 m)(Atlas of LivingAustralia
website, n.d.; Jung et al., 2009; McDowall, 2003; McDowall &
Suren, 1995). Bothspecieshave experiencedmajor declines due
tohabitat lossand degradationand are targeted by fisheriesfor
their ‘whitebait’ larvae (Bice et al., 2019; Raadik et al., 2019).
Introduced salmonids can also dramatically reduce the abun-
dance of G. brevipinnis through predation and displacement
   
|
3 of 16
JENSE et al.
(Rowe et al., 20 02).Bothspecies may be experiencinglocalised
extirpationinlandlockedorisolatedpopulations(Biceetal.,2019;
Raadiketal.,2019).Therefore,itiscriticaltoclarifythepotential
presenceofcrypticdiversitywithinthesespecieswhichmaywar-
rantconservationactions.
Both G. brevipinnis and G. maculatus have been consi dered to
harbour cryptic species (Delgado et al., 2019; Jung et al., 2009;
Raadik, 2005; R aadik et al., 2019). Both speciesexhibitdeepmo-
leculardivergenceamong landmasses, suggestiveofcryptic diver-
sity (Watersetal., 2000,2010). DNA-basedphylogenieshavealso
rejectedmonophyly forAustralian andNew Zealand G. brevipinnis
(Campbelletal.,2022;Watersetal.,2010;Waters&Wallis,2001a),
and for all G. maculatus based on the placement of G. rostratus
(Burrid ge et al., 2012). Gene tic and morph ological di vergence has
alsobeenobservedamonglandlockedanddiadromouspopulations
in both spe cies (Campbel l et al., 2022; Carrea e t al., 2013; Dunn
et al., 2020; King et al., 2003; McDowall & Frankenberg, 1981;
Raadik, 2005; Rojo et al., 2020).However,despitetheseprevious
studiestherehasasofyetbeenlimitedinvestigationofregionalge-
neticvariationamongpopulationswithinAustraliaandNewZealand.
Thiscontrastsagainststudiesofnon-diadromousgalaxiids,inwhich
atleast 15 cryptic species have beenidentifiedwithinGalaxias oli-
duss.l.fromAustraliaand12crypticspeciesfromG. vulgariss.l.in
NewZealand, manyofwhichareextremelyrestrictedinrange and
highlythreatened(Campbelletal.,2022;Lintermans&Raadik,2019;
Raadik,2014 ,2019a,2019b).
1.1  | Aims
Theprimary aim of thisstudyistoaddresstheknowledgegap re-
gardinggeneticdivergenceamongpopulationsofG. brevipinnisand
G. maculatus within Aus tralia and New Ze aland. This in cludes the
first a ssessments fo r associated islan d populations in cluding Lord
Howe, Chath am, and New Zeala nd Subantarc tic islands . Both mi-
tochondrial DNAand nuclear allozymemarkerswere used for the
first timetoassessthe presence of candidates forcrypticspecies.
Inbothspecies,crypticdiversitymayrelateprimarilytomarinebar-
riers(e.g.,rangedisjunctionswithinlandmassesandamongislands).
However,wealso predictagreaterpropensity ofcryptic diversity
in G. brevipinnis dueto its greater climbing abilityand penetrance
inland(sensuRaadik,2005).
2  |METHODS
2.1  | Sample collection
Atotal of 259 G. brevipinnisindividuals were utilisedfor allozymes
(n= 149) and mtDNA (n= 149), including 14 GenBank sequences,
with 39 individuals in common across data sets. The G. macula-
tus samples comprised 117 individuals: allozymes n= 75, mtDNA
n= 71(this includes 17GenBanksequences),with28individualsin
commonacrossdatasets. WesampledthroughouttheirAustralian
ranges (52sitesforG. brevipinnis;50sitesforG. maculatus)and in-
cludedlocalitiesinNewZealand(30sitesforG. brevipinnis;foursites
forG. maculatus).AmongthesesiteswereNewZealandSubantarctic
Islands(CampbellIslandandAucklandIsland)forG. brevipinnis,Lord
HoweIslandforG. maculatus,andChathamIslandsforbothG. brevi-
pinnis and G. maculatus including PittIsland for G. brevipinnis (see
Figure 1; Tables S1and S2).Sampleswere preservedin95%etha-
nolorsnap-frozenusingliquidnitrogenandstoredattheAustralian
BiologicalTissuesCollection,basedattheSouthAustralianMuseum
orattheUniversityofTasmania.
2.2  | Allozyme laboratory procedures
Allozyme electrophoresis was undertaken on muscle homogen-
atesasdetailedpreviously(Adamsetal.,2 014;Morganetal.,2016;
Ovenden etal., 1993). Asearlier studieshaveshown thatG . brevi-
pinnis and G. maculatus are not close relat ives, each specie s was
screenedseparately.Outgroups comprised G. olidus (n= 4) for the
G. brevipinnisstudyandG. rostratus (n= 3)forG. maculatus.Thefol-
lowingenzymesandnon-enzymaticproteinsweresuccessfullysur-
veyedin one orboth species: ACON,ACP,ACYC, ADA, ADH,AK,
ALD,AP,CA, CK,DIA,ENOL,EST,FDP,FUM,G6PD, GAPD,GDA,
GLO, GOT, GP,GP I, GSR, IDH , LDH, MDH, ME, M PI, NDPK, NP,
PGAM, 6PGD, PGK, PGM, PK, PEPA, PEPB, PEPD, SOD, SORDH,
TPIandUGPP.Detailsofenzyme/locusabbreviations,enzymecom-
missionnumbers, electrophoretic conditions and stain recipes are
presentedinHammeretal.(20 07)andRichardsonetal.(1986).
2.3  | Analysis of allozyme data
Each allozyme data set was subjected to two types of analysis.
Initially,weemployedthemultivariateordinationtechniqueofprin-
cipal coordinates analysis(PCoA)in a stepwise manner toidentify
distinctgeneticlineagesandinstancesofputativegeneticadmixture
from fir st princip les, that is usin g individual s as the unit of anal y-
sisand withoutapriorireferencetolocality or mtDNAhaplotype.
Fulldetailsofthephilosophyandimplementationofthisprocedure
are prese nted in Adams et al . (2014). Thereafter,individualswere
assigned to their primary genetic lineage and furthergroupedinto
siteswithin eachprimarylineage—provided therewasnoevidence
ofgenetic heterogeneitywithinasite.Siteand/orlineage-specific
quantificationswerethen performed: (1)the numberofdiagnostic
differencesbetweenlineages(i.e.,fixeddifferences,allowingamaxi-
mumtoleranceof10%foranysharedalleleswhensummedtogether
fo ral o cus;seeA dams etal .(2014)fortherationaleunderpinningthis
approach),and(2)Nei'sunbiasedgeneticdistance(Nei'sD)between
sites. A neighbour-joining (NJ)tree wasalso constructed basedon
Nei's D. All methodological details for generating fixed difference
counts,Nei'sD,andNJtreesare providedinHammer etal.(20 07)
andAdamsetal.(2014).
4 of 16 
|
   JENSE et al.
2.4  | DNA extraction and PCR
DNAwasextractedusingtwomethods:aChelexextractionmethod
with 200 μLof 5% Chelex and40 μg Proteinase Kwhere the sam-
ples were i ncubated at 56°C for 2 h or usi ng the Qiagen DNe asy
tissue kit according to the manufactures spin-column protocol
for animal tissue. DNA extracts were used for the amplification
of the mtDNA cytochrome b gene using the following primers:
Cytb-Glu 5-GAAAAACCACCGTTGTTATTCA-3andCytb-Thr5-
CGACT TCCGGATTACAAGACT-3 (Waters & Wallis, 2001a). PCR
was performed in 25 μL volumes containing 1x Readymix Buffer
(Sigma-AldrichCo.LLC),0.5 μMofeachprimerand2 μLofDNAtem-
plate.Thermocyclingcomprised95°Cfor3 minfollowedby34 cycles
of95°Cfor15 s, 55°Cor 52°C for15 sand 72°C for30 s. Galaxias
maculatussamplesfromwe stAus tra liaweredegraded,andas hor ter
fragmentof 399 bp was amplified usingprimers L147245-CGAAG
CTTGATATG A A AA ACC ATCGT TG-3andH151495-AAACTGCAG
CCCCTCAGA ATGATATTTGTCCTCA-3(Streelmanetal.,20 02)and
2.5 mMMgCl2.Thermocyclingwasinitiatedwith7 cyclesof95°Cfor
30s,45°Cfor30sand72°Cfor1 minpriortothe34 cyclesdescribed
abovebutwith a48°Cannealingtemperature.PCR productswere
sent to Macrogen (Seoul, S. Korea –h t t p : / / d n a . m a c r o g e n . c o m ) for
purifi cation and seque ncing using Cytb- Glu and L14724 for their
specificamplicons.
2.5  | Mitochondrial sequence analysis
Sequenceswereeditedandalignedtoareferencesequencewith
Geneious Prime version 2021.2 (h t t p s : / / w w w . g e n e i o u s . c o m ).
Individualcytochromebsequencesrangedfrom 367to 1145 bp,
andanym issingdat ainthealignmentwasco dedas‘ N’.J Mode lte st
FIGURE 1 MapdepictingthelocationofGalaxias brevipinnis(a,b)andGalaxias maculatus(c,d)samplesanalysedusingallozymesand
mitochondrialDNA(mtDNA).(a,c)samplelocationsinAustralia;(b,d)samplelocationsinNewZealand.(e)Overviewoflocationsof
samplesites.Coloursofthemapmatchesotherfigures.AmoredetailedmapofNth1andNth2canbefoundinFigure S1.SeeSupporting
Informationformoredetails.
   
|
5 of 16
JENSE et al.
version 2.1 was used to identify the best-fit model of nucleo-
tide substitution from 88 candidates using the default settings
basedon thecorrectedakaikeinformationcriterion(Burnham &
Anderson,2004).Phylogenetic analyses were performedusing a
Bayesian inf erence strateg y implemented i n BEAST vers ion 2.6
(Bouckaertetal.,2019).BEAUti wasusedtocreateaninput file
forBEASTusingthebest-fit modelasdeterminedby jModelTest
2(Darribaetal.,2012;Guindon&Gascuel,2003),witharelaxed-
log-normal-clockmodelandaMCMCchainlengthof50,000,000
generations.TwotreepriorswereusedtocreateBayesianphylog-
enies: a Co alescent cons tant populat ion size tree prio r,suit able
for intra specific analy ses, and a Yule tree pr ior,w hich assumes
a consta nt rate of speciat ion and is often u sed for intersp ecific
analyses.Twoindependentruns wereconducted to testforsta-
tionarity and convergence of parameters, adequacy of burn-in,
andasufficienteffectivesamplesize(>200)usingTracerVersion
1.7(Rambautetal.,2018).Afteritwasestablishedeachruncon-
verged, LogCombinerwasused to combineoutputfrom the two
independentrunsusingaburn-inof10%.Tre eAnnotatorwasuse d
toprocessthetree,andFigtreeversion1.4(h t t p : / / t r e e . b i o . e d . a c .
u k / s o f t w a r e / f i g t r e e / )forvisualisation.
Phylogenies were also inferred using maximum likelihood in
IQ-TREE2(Minhetal.,2020),with1000bootstrapreplicatesand
twoindependentrunsusingthebest-fitmodelasdeterminedby
jMode lTest2a saforemen tio ned.Additi ona lly,MrBaye swa sru nas
analternativeBayesianinterferencestrategybecauseitallowsfor
multifurcation(Huelsenbeck&Ronquist,2001).MrBayesversion
3.2.6wasrunasplugininGeneiousPrime,usingthesubstitution
modelmostsimilartothoseselectedbyjModelTest2.ForG. bre-
vipinnisaMCMCchainlengthof2,000,000generationswasused
subsamp ling every 500 ge nerations. For G. maculatus a MCMC
chain length of 1,100,000 generations was used subsampling
every 20 0 generatio ns. Stationar ity and conver gence of param-
eters, adequacyofburn-inand a sufficienteffective samplesize
(>200)werecheckedinGeneiousPrime.TreeAnnotatorwasused
toprocessthetreeusingaburn-inof10%,andFigtreeversion1.4
forvisualisation.
Toprovidecontexttothegeographicclusteringobservedinthe
mtDNA phylogeny, genetic distances were estimated among and
within geographically concordant clades.The p-distancehas been
showntobe more appropriateforquantifyinggenetic distancesin
barcodingstudiesthanKimura2-parameterdistance(Srivathsan&
Meier,2012) and was quantified inMEGA X (Stecher etal., 2020)
usingthedefaultsettings.BecausethewestAustralianG. maculatus
sequenceswere~400 bp,we also calculatedthe genetic distances
withthealignmentprunedto400 bp.
As previous phylogenetic analyses havesuggested that G. bre-
vipinnis from Australia and New Zealand may not be monophy-
letic (Burridge et al., 2012; Burridge & Waters, 2020; Campbell
et al., 2022; Waters e t al., 2010), we i ncluded mtDN A sequences
from near relatives for context, along with outgroup sequences
from: G. vulgaris s. l . group (OQ738806–O Q73880 8), G. johnstoni
(OQ738646)andG. auratus(JN232629.1).WealsoincludedG. occi-
dentalis(OQ738863)andG. rostratus(JN232631.1)asoutgroupsfor
G. maculatusandtoprovideacontrastintermsofinterspecificand
intraspecificdivergences.
3  |RESULTS
3.1  |Galaxias brevipinnis
3.1.1  |  Allozymedataset
Thefinal datasetforG. brevipinniscomprised 149individuals(plus
fourG. olidus)genotypedfor57putativeallozymeloci.Apreliminary
PCoAonallG. brevipinnis (Figure S2)confirmedthegeneticdistinc-
tivenessoftheNewZealand and Australianlineagesandidentified
discrete ‘southern’ and ‘northern’ clusters among the Australian
sites. We fur ther explor ed this heterogen eity through a s eries of
follow-upPCoAs,eachtargetingvarioussubsetsofthefullallozyme
dataset.
Aninitial PCoAofall135Australianfish (Figure 2a)revealed
three pr imary cluster s, correspond ing to a ‘southern’ grou p for
mostsitesplustwo‘northern’clustersforthe12sitesrepresent-
ing the northern-most catchments where G. brevipinnis occurs
(sitedetailsinTable S1).APCoAofthebroadlydistributed‘south-
ern’cluster(Figure 2b)subsequently identifiedtwo distinctsub-
groups:onewidespreadonmainlandAustraliaandonerestricted
toTasmania,hereinreferredtoas‘WIDE’and‘TAS’,respectively.
The pres ence of two distinc tive lineages, he rein referred to as
‘Nth1’ and ‘Nth2’, was al so further c onfirmed for t he ‘northe rn’
sites (Figure 2c).Therewasnoevidenceofgeneticheterogeneity
betwee n the two NZ sites , located in the e ast and west of th e
South Island (analysis not shown). The five clusters (NZ, TAS,
WIDE,Nth1,Nth2)ultimatelyidentifiedbyPCoAwerefullydiag-
nosableby2–12fixeddifferences(Table 1).
The only additional substructure found via PCoA was within
Nth1(Figure S3),withindividualsclustering into oneofthree geo-
graphicallydefinedregions,namely(1)allsitesintheClarenceRiver
Basin, (2) al l but one site in the B ellinger River B asin, and (3) the
‘NeverNever’site,closetotheboundaryofthesetwoadjacentRiver
Basins(Figure S1).The geographicstructure within Nth1was sup-
portedby1–3fixeddifferencesamongthethreeclustersidentified
(Figure S3). A summar y of the allozy me profiles fo r the five main
groupsandthethreegeographicclusterswithinNth1arepresented
inTable S3.
Givennoevidenceofgeneticheterogeneitywithinanysite,the
genetic affinitiesamong individualsiteswere visualised usingaNJ
tree (Figure S4).Thegeneticgroupingsdepictedarelargelyconcor-
dantwiththoseidentifiedusingPCoA,withtwoexceptions:(1)The
TASsub-groupisnestedwithintheWidegroup, and (2)the‘Never
Never’siteisnestedwithintheClarencegroup,insteadofappearing
asdistinctentities.
6 of 16 
|
   JENSE et al.
3.1.2  |  Mitochondrialsequences
The mtDNA sequences were 618–1145 bp with an alignment
lengthof 1145 bp across 149 sequences from G. brevipinnis,three
from the G. vulgaris s. l. group,and single sequences fromG. aura-
tus and G. johnstoni.jModelTest2 selected Tamura-Nei+ Γ as the
optimal model of sequence evolution. Three geographically con-
cordantcladeswereevident fromallfourmtDNAphylogenies, de-
scribed here following previously defined allozyme descriptions:
(i) New Zealand, (ii) s outhern Austr alia (WIDE and TAS togeth er)
and(iii)northern-mostAustralia(Nth1andNth2together).TheNew
Zealandandnorthern-mostAustraliancladeswereeachsupported
withposteriorprobabilities>0.95in theBayesian phylogeniesand
withbootstrapvaluesof≥70%inthemaximumlikelihoodphylogeny
(Figure 3and Figures S5–S7).While the southern Australian clade
wassupportedwithaposteriorprobabilityof1.00intheCoalescent
Bayesianphylogenyandabootstrapsupportof88%inthemaximum
likelihoodphylogeny,itwas unsupportedintheother phylogenies.
ThephylogeniesdonotrecoverallG. brevipinnisasmonophyletic,as
NewZealandG. brevipinnisaresistertootherNewZealandGalaxias
withstrongsupportinallbuttheYuletreepriorphylogeny.Further
structuringwas observed withinNewZealand,with one claderep-
resenting both Auckland and Campbell Islands, and three sepa-
rate clad es representing S outh Island, No rth Island and Ch atham
Islands(includingPittIsland).Theseclades weresupported across
allphylogenieswith exception of the Chathams cladeforMrBayes
andthe Yule treeprior phylogeny.Relationshipsamongthese four
NewZealandcladesvariedacrossphylogeniesandmostlyreceived
lowsupport. Acrossall of G. brevipinnis,theminimumbetweendi-
vergence between clades mentioned above was 1.33% between
southernAustraliaandnorthern-mostAustralia,whilethemaximum
within-clade divergence was 2.51% for northern-most Australia
(Table 2).
3.2  |Galaxias maculatus
3.2.1  |  Allozymedataset
Thefinal allozyme datasetforG. maculatuscomprised 52putative
loci for 75 indi viduals from ac ross eastern A ustralia plu s three G.
rostratus.As the raw dataclearly demonstratedthatthesetwosis-
terspecies were unequivocallydiagnosableatnumerousloci(eight
fixeddifferences;Table S4),theinitia lP CoA(Figure 4)wasrestricted
to G. maculatus. Two marginally distinctive clusters were evide nt
within G. maculatus, corresponding to (1) the L ake Hiawatha site
inNewSouthWales, Australia,and(2) all othersites.PCoA onthe
latterclusterdidnotrevealanyfurthergeneticdiscontinuities.The
twogroupsweredistinguishedbyasinglefixeddifferenceatGpand
major differencesinallelefrequency (Δp > 40%)atAcon,Got2 and
Pgm2 (Table S4).However,theNJtreedidnotdistinguishthesetwo
groups (Figure S8).
3.2.2  |  Mitochondrialsequences
The mtDNA sequences were 367–1141 bp with an alignment of
1141 bp and comprising 71 G. maculatus sequences from across
Australia(includingwestAustralia),alongwithsequencesfromNew
Zealand,andSouthAmerica,plusoutgroupsequencesfromG. ros-
tratusand G. occidentalis.jModelTest2 selectedthebest-fitmodel
to be Tamura-Nei + I +Γ. Three mostly geographically concordant
FIGURE 2 Scatterplotsforthefirsttwodimensionsfromthe
PrincipalCoordinatesAnalyses(PCoA;dimension1onthex- a x i s
anddimension2onthey-axis)oftheallozymedataforAustralian
Galaxias brevipinnis.Axesarescaledtoreflecttherelative
percentagecontributionofeachdimension(showninbrackets).(a)
initialPCoAofall135Australianfish;(b)PCoAofthe72individuals
comprisingthe‘southern’cluster;(c)PCoAofthe63individuals
referabletothetwo‘northern’clusters.
TAB LE 1  Pairwisemeasuresofdiagnosabilityandgenetic
divergenceamongthefivecandidatetaxaidentifiedfromthe
Galaxias brevipinnisallozymedatasetwithmaximumsamplesizes
foreachtaxoninbrackets.Lowerlefttriangle = numberoffixed
differences;upperrighttriangle = unbiasedNei'sD.
Lineage
NZ
(14)
Nth1
(45)
Nth2
(18)
WIDE
(68) TA S ( 4)
NZ 0.17 0.18 0 .14 0.28
Nth#1 70.07 0.07 0.20
Nth#2 7 2 0.08 0.20
Wide 5 4 4 0.14
TAS 12 9 9 4
   
|
7 of 16
JENSE et al.
clades were evident from all four phylogenies: South America,
New Zealand, and Australia (Figure 5 and Figures S9–S11). Each
of these gr oups received supp ort except for th e Australian cla de
in the Yule tree prior phylogeny (0.92 posterior probability).In all
four phylo genies, two se quences from t he Chatham Isla nds (New
Zealand) and the two from Lord Howe Island clustered closest to
easter n Australia n sequences , representi ng the disrupt ion to geo-
graphicconcordance. All phylogenies did notrecover G. maculatus
as monophyletic given the placement of G. rostratus as sister to
Australian and NewZealand,although topologicalsupport for this
waslowfromtheYuletreepriorphylogeny.Eachofthephylogenies
recognised west Australia as monophyletic with topological sup-
port.However,the placementofwestAustraliaassistertoalleast
Australianindividualswasonlyrecoveredandsupportedbythecoa-
lescentBayesianphylogeny(clusteringwithineastAustraliacannot
be refuted). The minimum divergence between the east and west
Australiansequenceswas2.56%(2.75%basedon400 bp)whilethe
maximumwithindivergencewas3.73%(3.85%basedon400 bp)for
SouthAmerica (Table 3).In contrast to allozymes,individuals from
LakeHiawathadidnotformtheirownclusterrelativetoothereast
Australiasequences.
4  |DISCUSSION
Freshwater-limited fishes have become well known for their
crypticdiversity (Adams et al., 2013,2014; Hammer et al.,2014;
Jerr y, 2008; Kir chner et al., 2021). However, such hidden diver-
sityislessexpectedfordiadromousfishes given theirgreaterdis-
persalabilities.Nevertheless,afewstudieshaverevealed cryptic
diversityindiadromousspecies(e.g.,Galván-Quesadaetal.,2016;
McMahan et al., 2013, 2021). Here, based on fixed differences
in allozymes and relationships and divergences estimated from
mtDNAsequences,wehaveidentifiedcrypticdiversitywithintwo
widespreadandwell-studieddiadromousfishesandsuggestcandi-
datesfordistincttaxa.
For both all ozymes and mtDN A cryptic dive rsity is sugge sted
within Australian G. brevipinnis, with two groups delineated: one
lineageinsouthernAustralia(TASandWIDE)andoneinthenorth
(Nth1 and Nth2). Allozymes further delineate the two northern-
mostgroups.Itisnotknown if thetwonorthern candidates(Nth1
and Nth2) are diadromous, nevertheless their catchments have
significant marine separation (>300 km) from other catchments
harbouring G. brevipinnis (Raadik,2005). Bot h candidate t axa also
display distinctive morphology from each other and from their
southern counterparts (Raadik, unpublished). Species distribution
modelsbasedonthelocationofotherG. brevipinnispopulationsand
including10environmental factors(e.g., averagerainfall,tempera-
ture,slopeandelevation),failedtopredicttheoccurrenceofthese
FIGURE 3 BayesianestimateofphylogenyforGalaxias
brevipinnisusingaCoalescentpriorinBEASTinferredfromthe
cytochromebregionofmitochondrialDNAandrootedusingG.
auratus(notshown).Numbersrepresentposteriorprobabilitiesand
thehorizontalbarsatnodesrepresentthe95%highestposterior
densityofthenodeheight.Thecoloursrepresentthecandidate
taxa(blue = TAS,pink = WIDE,purple = Nth1,orange = Nth2,
green = NZ).
8 of 16 
|
   JENSE et al.
northern-most populatio ns (Growns & West, 2008). This suggest
the northern-most populations could belocally adapted ecotypes,
howevermoreextensivesamplingwouldbeneededtofullyresolve
thetaxonomy and reject phenotypic plasticity.Thenorthern-most
candidatetaxaalsooccupythesame catchmentandmayhavepar-
titionedtheavailablehabitatatthescaleofstreamreaches.Similar
geographicpatternshavebeenobservedbetweenNewZealandG.
‘southern’andG. gollumoides,with apparentpartitioningofhabitat
atafinescaleintherivernetworktheyinhabit(Crowetal.,2010).
The Tasmania (TAS) group is also somewhat distinctive from
the other s outhern mainl and populations ( WIDE), with fou r fixed
differences and their isolation by a marine distance of ~250 km.
However, it is neste d within these WI DE populations in t he allo-
zyme tree and lacks supportfrom mtDNA.The recognitionofthe
TAS group has been made based on previous mtDNA evidence
(Waters&Wallis,2001a).Galaxias coxii(Macleay1880)andG. wee-
doni(Johnston 1883) have precedence for mainland Australia and
Tasmania,respectively,butweresynonymisedwithG. brevipinnisby
McDowallandFrankenberg(1981).Itwouldbebeneficialforfuture
molecularandmorphologicalanalysestoemployincreasedsampling
of locations and loci to further assess the distinctiveness of the
Tasmanianpopulation(TASgroup).
Incomparisonwithallozymes,ourmtDNAanalyseswereunable
to disting uish the two nor thern-m ost (Nth1 and Nth2) Aust ralian
candidatetaxafromeachother.Thisoutcomemostlikelyreflectsthe
mtDNA genetree/speciestree discordancethat isoften observed
among closely relatedspecies (e.g., Hammer et al., 2014; Unmack
et al., 2019). Furthermore, minimum between-clade mtDNA dis-
tanceswerenotappreciablylargerthanmaximumwithin-cladedis-
tances(e.g.,1.33%amongAustraliancladesversus1.90%withinthe
southernAustralianclade).Likewise,inthecaseoftheG. oliduscom-
plex,15speciesweresuggestedbasedonfixedallozymeplusmor-
phological differences, butonly eight of these were monophyletic
formtDNA,andtwodidnotreceiveanytopologicalsupport(Adams
et al., 2014). Underestimation of species diversity from mtDNA
relative to a llozymes coul d reflect introg ressive hybridis ation and
mtDNAcapture(Moore,1995)orincompletelineagesorting(Avise
etal.,1986).Regardless,thelevelofamongcladecytochromeb di-
vergence in G. brevipinnisis comparablewith othercryptic species
complexe s (Bronaugh et al. , 2020;H oekzema & Sidlauskas, 2014;
Jirsova et al., 2019), including several freshwater-limited galaxiid
radiations (Adams et al., 2014; Chakona et al., 2013; Vanhaecke
etal.,2012;Waters&Wallis,2001b;Wishartetal.,2006).
WithrespecttoNewZealandG. brevipinnis,ourresultssupport
previous suggestions that G. brevipinnis contains cryptic diversit y.
Additionally,ourobservedmtDNArelationshipsamongNewZealand
andnearbyislandG. brevipinnispopulationsalsoraise the potential
significance of marinebarriers for cryptic diversity in this lineage.
Fourreciprocallymonophyleticcladesareevident:(i)Aucklandand
CampbellIsland,(ii)ChathamIslands,(iii)SouthIslandNewZealand
and (iv) Nor th Island New Ze aland. That not al l clades were sup-
portedcanbeexplainedbytheshallowdivergenceobservedamong
themanddoes not preclude completebutrecent geneticisolation.
While our s tudy lacked allozyme data for all these localities, we
predictfixeddifferencesgivenobservationsoftheirgreaterresolv-
ing power elsewhere in this (described above) and other studies
(Adams et al.,2014;Hammeretal., 2014).Furthermore,thediver-
gence among the subantarctic islands, Chatham Islands and the
South IslandNewZealandaresupportedbynuclearSNPevidence
(Darestanietal.,2023).However,non-diadromousSouthIslandLake
populat ions also exhibit nuclear SNP d istinction fro m each other
and diadromous populations (Darestani et al., 2023), which raises
thepossibilitythatdivergencesobservedduringthatstudymayre-
flect intraspecificspatialpopulation genetic structure, rather than
TAB LE 2  RangeofcytochromebDNAsequencep-distanceforGalaxias brevipinnisandnearrelativesamong(lowertriangle)andwithin
(diagonal)clades.
G. auratus New Zealand Southern Australia Northern- most Australia G. vulga ris group
G. auratus
NewZealand 0.152–0 .163 0.000–0.021
SouthernAustralia 0.154–0 .172 0.057–0.079 0.000–0.019
Northern-mostAustralia 0.166–0.171 0.061–0.084 0.013–0.043 0.000–0.025
G. vulgaris group 0.162–0.167 0.057–0.079 0.070–0.090 0.080–0.095 0.041–0.047
G. johnstoni 0.160 0.070–0.086 0.054–0.072 0.061–0.073 0.083–0.088
FIGURE 4 FirsttwodimensionsfortheinitialPrincipal
CoordinatesAnalysisofallozymevariationfrom75Galaxias
maculatus.Therelativecontributionofeachdimensionisshown
alongsideeachaxis.BasesymbolasforFigure 1;individualsfrom
theLakeHiawathasiteareoverlainwiththeletter‘H’.
   
|
9 of 16
JENSE et al.
FIGURE 5 BayesianestimateofphylogenyforGalaxias maculatususingaCoalescentpriorinBEASTinferredfromcytochromebregion
ofmitochondrialDNA,rootedusingG . occidenta lis(notshown).Numbersrepresentposteriorprobabilitiesandthehorizontalbarsatnodes
representthe95%HighestPosteriorDensityofthenodeheight.Coloursrepresentthecandidatetaxa(red = Australia,green = NewZealand).
10 of 16 
|
   JENSE et al.
supportforcrypticspecies.Nevertheless,werecommendfurther
geneticassessments(includingmorevigoroussamplingoftheNorth
Island)toassessthetaxonomicdistinctionoftheselineages.
Our analyses of G. maculatusalsorevealedcandidatesfor
cryptic diversity.Weconfirmthelargegeneticdivergencespre-
viously observed among South American, New Zealand and
AustralianG. maculatus(Pavuk,1997;Watersetal.,2000;Waters
& Burridge, 1999), for which different subspecies have been
suggested (Stokell, 1966). We also detected large divergence
(2.6%–6.6%)betweeneastandwestAustralia,spatiallyseparated
by~1500 km.This geneticdivergencecontrasts withgenetic ho-
mogeneitywithineastAustralianG. maculatusatcomparablespa-
tialscales(seealsoO'Dwyer etal., 2021),withonly somesubtle
divergenceevident in the landlockedHiawatha Lake population.
Althou gh we lacked allozy me data for sout h-west Aust ralian G.
maculatus, Pavuk (1997 ) observed that allozyme distinction of
this popu lation exceeded t hat between ea st Australia a nd New
Zealand, albeit based only a handful of allozyme loci, none of
whichdisplayedfixeddifferences.Afollow-upassessmentof the
taxonomicdistinctiveness of south-west AustralianG. maculatus
basedonadditionalnuclear loci is clearly desirable, despitenot
beingflaggedtoharbourcrypticdiversityduringconventionaltax-
onomictreatment(McDowall&Frankenberg,1981).
The divergence of the south-west Australian G. maculatus
population may reflect marine isolation, here representing the
complete absence ofrivers inthe intervening Euclabasin, span-
ning~1500 km (Unmack, 2001;Unmack et al.,2012). Thisregion
has also been implicated for divergences of terrestrial animals
and plants (Guay et al., 2010; Schmidt et al., 2014), although
other freshwater taxa appear to have surmounted it (Unmack
et al., 2011). Al ternatively, the re putedly land locked lifec ycle of
south-west Australian G. maculatus (Morgan et al., 2006) may
havepromotedgeneticdivergence, similar to that suggested for
south-west Australian Galaxias truttaceus (Morgan e t al., 2016),
andother populationsofG. maculatusinsouth-easternAustralia
(McDowall&Frankenberg,1981;Pollard,1971a,1971b)andSouth
Americaatmuchsmallerspatialscales(downto~2 km;McDowall
& Frankenberg, 1981; Pollar d, 1971a, 1971b; Rojo et al., 2020;
Zatt ara & Premoli, 2005). H owever, larv al gene flow from eas t
Australiawouldalsobeimpededbytheeast-flowingLeeuwincur-
rent,withoce ancurrentsalsoimplicatedforgeneticstr ucturingin
SouthAmericanG. maculatus(González-Wevaretal.,2015).
AcrosstheiroverlappingAustralianrange,wesuggestthreepu-
tativecrypticcandidatetaxawithinG. brevipinnis(southernAustralia
(TAS and WIDE together), Nth1, Nth2) and highlight largegenetic
divergencewithintheG. maculatusgroup.Thisisconsistentwithour
expectationsbasedonthegreaterclimbingability ofG. brevipinnis,
allowingittopenetratefartherinlandandformisolatedpopulations.
Incontrast,G. maculatusareunabletoovercome3 mslopedpassages
orotherinlandbarriersthatarereadilysurmountable byG. brevip-
innis(Doehringetal.,2012).Thisdifferenceinnumberofcandidate
cryptic taxa also mirrorsdifferences in the diversity of their close
relatives.Galaxias brevipinnishas12closerelativesinNewZealand,
representedbyG. vulgaris s.l. lineages (Campbelletal., 2022), plus
G. johnstoniandG. pedderensisinTasmania(Burridgeetal.,2012).In
contrast, over a much broader spatial scale onmainlandAustralia,
the only cl ose relatives of G. maculatus are G. occidentalis and G.
rostratus(Burridge et al., 2012). These observations match expec-
tations if the ancestors of the ‘maculatus’ and ‘brevipinnis’ groups
haddispersalabilitiessimilartoG. maculatusandG. brevipinnistoday,
respectively.
Differencesin marine dispersal ability couldalsoexplainthe
different levels of cryptic diversity within G. brevipinnis and G.
maculatus.While both species have similar lifecycles, with juve-
niles fro m diadromous pop ulations spendin g 4–6 months at sea
(Jung et al ., 2009), G. maculatus populations on oceanic islands
(Lord Howe, Chatham islands) provided genetic evidence for
dispers al across large ma rine barrier s, as shown by the t wo in-
dividualsfrom bothChathamand LordHowethat cluster within
Australiansamples. Watersetal.(2000)alsofound G. maculatus
TAB LE 3  CytochromebDNAsequencedivergenceestimates(p-distance)forGalaxias maculatusandnearrelativesamongidentified
(lowertriangle)andwithin(diagonal)clades.Divergenceestimatesfortheprunedalignmentareshowninparentheses.ThetwoChatham
islandsindividualsthatclusteredwithAustraliawerenotincludedhere,becauseitnotablychangedthedivergenceestimates.
G. occidentalis South America New Zealand East Australia West Australia
G. occidentalis
SouthAmerica 0.165–0.192 0.003–0.037
(0.167–0.185) (0.000–0.038)
NewZealand 0.179–0.201 0.112–0.154 0.000–0.015
(0.170–0 .176) (0.121–0.143) (0.000–0.013)
EastAustralia 0.162–0.197 0.122–0.172 0.047–0.103 0.000–0.026
(0.158–0.178) (0.129–0.172) (0.049–0.070) (0.000–0.026)
WestAustralia 0.158– 0.176 0.127–0.157 0.036–0.093 0.026–0.066 0.000–0.030
(0.156–0.173) (0.132–0.157 ) (0.038–0.093) (0.027–0.068) (0.000–0.030)
G. rostratus 0.199(0.178) 0.125– 0.148 0.070–0.097 0.077–0.094 0.085–0.093
(0.133–0.143) (0.074–0.083) (0.078–0.083) (0.088–0.093)
   
|
11 of 16
JENSE et al.
individualsfromNewZealand withcloseraffiliationtoTasmania.
Incontrast,monophyly was observed forG. brevipinnisinsimilar
settings,suchasforTasmania,ChathamIslandsandNewZealand
sub-Antarcticislands(AucklandandCampbellIsland).Otolithsig-
natures also suggestthatthemajorityofdiadromousG. brevipin-
nisinNewZealand recruit to theirnatalstream,with larvae and
juveniles potentially orientating into nearshore river plumes to
limitdispersal (Augspurgeretal.,2021).Inmoreinsularsettings,
G. brevipinnisthatstraymayhavelimitedprobabilityofrecruiting
elsewhere.Additionally, even if they dorecruitelsewhere, they
maynotleavelong-term geneticsignatures(Waters etal., 2013).
Furthermore, G. maculatus appear to have greater larval abun-
dance at sea a s they dominate the w hitebait (larv ae) fishery in
NewZealand (McDowall, 1965;Yungnickel et al.,2020),andthis
confersgreatergeneflow.
5  |CONCLUSIONS AND TAXONOMIC
RECOMMENDATIONS
This study demonstrates additional cryptic diversity within two
widespreaddiadromousfishesoftheSouthernHemisphere.Based
onthesefindings, wesuggestthepresenceofseveralputativeun-
describedtaxa.We recommend futuresteps followtheintegrative
sp e cies deli n eati o nfra m ewo r kpro p osedbyUn macketal .(2021)and
include morphologicalanalyses such asthose described by Raadik
(2014). However, it shoul d be noted that a lack of mo rphologica l
distinctiondoes notnecessarilyprecludethe presenceofmultiple
species,northebenefitsoftheirrecognitionduringinvestigationsof
evolutionaryhistoryandecology(Delićetal.,2017 ).Thedifferentia-
tionweobservedwithinG. brevipinnisandG. maculatuscouldbea
resultof(geographic)isolation,habitatcomplexityorecologicaland
life history differences such as dispersal abilities andrecruitment.
Assessingthemigratorystatusofthetwonorthern-mostcandidate
taxaofG. brevipinnis,forexampleisessentialtounderstandpoten-
tial drive rs of diversifi cation. Thes e two north ern-mos t candidate
taxa of G. brevipinnis require more detailed stud y (morphological
andgenetic)butbasedoncurrentdata,G. brevipinnisinthat region
shouldberecognisedasaconservationunitseparatefromtheother
Australianpopulationsasaprecautionarymeasure.Whilewedonot
currentlysuggestsouth-westAustralia G. maculatusasacandidate
taxon,thelargegeneticdivergencewarrantsfurthergeneticassess-
mentand supportsits recognition as a separate conservationunit.
Therecognitionofsuchconservationunitswillhelpmaintainpoten-
tially important genetic diversity. While this study covers a broad
geographic range, finer geographic coverage may uncover other
regionallydistinctlineages.Indeed,withdiadromousfishesparticu-
larly vulnerabletohabitatlossand degradationinboth freshwater
andmarineenvironments, it is essentialthatsuch cryptic diversity
beidentifiedandconserved(Jungetal.,2009).
Cryptic diversity has beenpreviously suggestedin widespread
and vagil e taxa—those that ar e less affected by b arriers. This i n-
cludes both non-migratory and migratory bird species (Irwin
et al., 2011; Lohman et al., 2 010), planktonic marine copepods
(Halber t et al., 2013), an d marine and fre shwater bony and ca rti-
laginousfishes (D'Aloia et al., 2 017; Fahmi et al., 2021;Neilson &
Stepien,2009).For example,migratorypopulationsoftheWilson's
warbler (a bird) exhibit strong genetic differentiation, perhaps re-
flectingdifferencesinmigratorypatterns(Irwinetal.,2011).Similar
to diadromous fishes harbouring landlocked populations as a re-
sultofthelossoftheirmarinemigratoryphase,othertaxa,suchas
birds,experiencelossofmigrationresultinginresidentpopulations
that may livein sympatry but are reproductively isolated (Gómez-
Bahamónetal.,2020).Withenvironmentalchange,lossorchanges
inmigrationpathwaysacrosstaxaaretobeexpectedandcouldpro-
mote diversification (deZoeten &Pulido, 2020). Our resultshigh-
lightthatwidespreadandvagilespeciesshouldbeassessedtoavoid
erroneousrecognitionofspecies boundaries,theunderestimation
ofendemism(Lohmanet al., 2010),andinappropriatemanagement
andconservationpriorities.Suchassessmentsmaycorrectprevious
over-esti mation of species a bundance and ran ge. Genetic stu dies
such as ours can depict population structure andidentify popula-
tionsorconservationunitswithnovelgeneticdiversity tomaintain
andhighlightwhereecologicalworkandmanagementeffortsshould
befocussed.
AUTHOR CONTRIBUTIONS
Charlotte Jense:Conceptualization(equal);datacuration(equal);for-
malanalysis(lead);visualization(lead);writing–originaldraft(lead);
writing–reviewandediting(lead).Mark Adams:Conceptualization
(equal); data curation (equal); formal analysis (lead); visualization
(lead); writing –originaldraft(equal);writing– reviewand editing
(equal). Tarmo A. Raadik: Conceptualization (equal); data curation
(equal);writing–originaldraft (equal);writing–reviewandediting
(equal).Jonathan M. Waters:Datacuration(equal);writing–original
draft(equal);writing–reviewandediting(equal).David L. Morgan:
Data curation (equal); writing –originaldraft (equal);writing – re-
viewand editing(equal).Leon A. Barmuta:Writing–originaldraft
(equal); writing – reviewand editing (equal). Scott A. Hardie: Data
curation(equal);writing–originaldraft(equal);writing–reviewand
editing(equal).Bruce E. Deagle:Conceptualization(equal);datacu-
ration (equal); writing – original draft (equal);writing–review and
editing (equal). Christopher P. Burridge:Conceptualization (equal);
datacuration(equal);writing–originaldraft(equal);writing–review
andediting(equal).
ACKNOWLEDGEMENTS
This research was supported by the University of Tasmaniaand
byCommonwealthScientificandIndustrialResearchOrganization
(CSIRO). CJwasfunded by aCollegeofScience and Engineering
ResearchTrainingProgram(RTP)ScholarshipfromtheUniversity
ofTasmaniaand partiallybyaCSIROScienceLeader Fellowship
(R-91460) awarded to BED. Open access publishing facilitated
by Universi ty of Tasmania, as part of t he Wiley - Univers ity of
Tasmania agreement via the Council of Australian University
Librarians.
12 of 16 
|
   JENSE et al.
The authors would like to acknowledge Travis Ingram, Grace
Fortune-Kellyand Tania Kingforprovidingadditional G. maculatus
sample s from the Chath am Islands. T he authors al so thank Grac e
SimandReikaTakeuchifortheirassistanceinthelab.
CONFLICT OF INTEREST STATEMENT
Theauthorsdeclarethattheyhavenoconflictofinterest.
DATA AVAIL AB ILI T Y STAT E MEN T
ThemtDNAsequencedata are availableonGenBankunderacces-
sionnumbersOQ738671–OQ738862.
ORCID
Charlotte Jense https://orcid.org/0000-0002-6902-2289
Mark Adams https://orcid.org/0000-0002-6010-7382
Bruce E. Deagle https://orcid.org/0000-0001-7651-3687
Christopher P. Burridge https://orcid.org/0000-0002-8185-6091
REFERENCES
Adams, M ., Page, T., Hurwood, D., & Hughes , J. (2013). A molecular
assessm ent of species boun daries and phylogenetic affinities in
Mogurnda(Eleotridae): Acase study ofcryptic biodiversityinthe
Australianfreshwaterfishes. Marine and Freshwater Research, 64,
920.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 1 2 2 3 7
Adams,M.,Raad ik ,T.A .,Burri dg e,C.P.,&G eorges, A.(2014).Glo balbio-
diversi ty assess ment and hype r-crypt ic species co mplexes: Mo re
thanonespeciesofelephantintheroom?Systematic Biology,63(4),
518–533. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o / s y u 0 1 7
Allibone, R.M., & Wallis, G. P.(1993).Genetic variation and diadromy
in some native New Zealand galaxiids (Teleostei: Galaxiidae).
Biological Journal of the Linnean Society,50(1), 19–33. h t t p s : // d o i .
o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 3 1 2 . 1 9 9 3 . t b 0 0 9 1 6 . x
Ardren,W.,Baumsteiger,J.,&Allen,C.(2010).Geneticanalysisandun-
certain taxonomic st atus of threatened Foskett spring speckled
dace. Conservation Genetics, 11, 1299–1315. https:// doi. org/ 10.
1 0 0 7 / s 1 0 5 9 2 - 0 0 9 - 9 9 5 9 - 0
AtlasofLivingAustraliawebsite.(n.d.).Species page. h t t p s : / / b i e . a l a . o r g .
a u / s p e c i e s / h t t p s : / / b i o d i v e r s i t y . o r g . a u / a f d / t a x a / 6 d 3 3 6 d 3 8 - 6 2 4 9 - 
4 b 4 2 - 9 4 6 2 - 3 0 f 7 3 3 1 f c 7 d d
Augspu rger, J., Jarvis, M ., Wallis, G., Ki ng, T., Ingram, T., Hicks , A., &
Closs,G.(2021).Landscapebiogeographyandpopulationstructur-
ingofafacultativelyamphidromousgalaxiidfish,Galaxias brevipin-
nis. h t t p s : / / d o i . o r g / 1 0 . 2 2 5 4 1 / a u . 1 6 2 2 8 3 8 0 9 . 9 2 6 1 6 1 8 1 / v 1
Avise, J. C., Ellis, D., Clarke, B. C., Robertson, A., &Jeffreys, A.J. (1986).
Mitochondrial DNA and the evolutionarygenetics of higher animals.
Philosophical Transactions of the Royal Society of London. B, Biological
Sciences,312(1154),325–342.https://doi.org/10.1098/rstb.1986.0011
Bice,C., Raadik,T.,David, B.,West,D., Franklin,P.,Allibone, R., Ling, N.,
Hitchmough,R.,&Crow,S.(2019).Galaxias maculatus.TheIUCNRed
List ofThreatened Species, 2019, e.T197279A129040788. https://
doi.org/10.2305/IUCN.UK.2019-3.RLTS.T197279A129040788.en
Bouckaert,R.,Vaughan, T.G.,Barido-Sottani,J.,Duchêne,S.,Fourment,
M., Gavr yushkina, A ., Heled, J., J ones, G., Kühne rt, D., De Maio,
N., Mat schiner, M., Men des, F. K., Mülle r,N. F., Ogil vie, H. A. , du
Plessis,L., Popinga, A.,Rambaut, A ., Rasmussen, D., Siveroni,I., …
Drumm ond,A.J.(2019).BE AST2.5:Anadvancedsoftw arepl at form
forBayesianevolutionaryanalysis.PLoS Computational Biology,15(4),
e1006650 . h t t p s : / / d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p c b i . 1 0 0 6 6 5 0
Bronaugh, W. M., Swar tz, E. R., & Sidlauskas, B. L. (2020). Bet ween
an ocean a nd a high place: Coas tal drainage i solation gener ates
endemic cryptic species in the cape kurper Sandelia capensis
(Anabantiformes:Anabantidae),caperegion,SouthAfrica.Journal
of Fish Biol ogy,96(5),1087–1099.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j f b . 1 4 1 8 2
Brown, D. M.,Brenneman, R.A., Koepfli, K.-P.,Pollinger,J. P.,Milá, B.,
Georgiadis,N.J.,Louis,E.E.,Grether,G.F.,Jacobs,D.K.,&Wayne,
R.K.(2007).Extensivepopulationgenetic structureinthegiraffe.
BMC Biology,5(1),57.https: // doi. o rg / 10. 118 6/ 1741- 7007- 5- 57
Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference:
UnderstandingAICandBICinmodelselection.Sociological Methods
& Research,33(2), 261–304. h t t p s : / /d o i . o r g / 1 0 . 1 1 7 7 / 0 0 4 9 1 2 41 0 4
26864 4
Burrid ge, C., McDo wall, R., C raw, D., Wilson, M ., & Waters, J. (201 2).
Marine dispersal as a pre-requisite for Gondwanan vicariance
amongelementsofthegalaxiidfishfauna.Journal of Biogeography,
39,306–321.https:// doi. org/ 10. 2307/ 41440554
Burridge,C.P.,&Waters,J.M.(2020).Doesmigrationpromoteorinhibit
diversi fication? A ca se study invo lving the do minant radi ation of
temperatesouthernhemispherefreshwaterfishes.Evolution,74(9),
1954–1965.h tt ps :// doi. or g/ 10. 1111/ evo. 14 06 6
Campb ell, C., Dut oit, L., Kin g, T., Craw, D., Burridge , C., Wallis, G ., &
Waters, J.(2022). Genome-wide analysisresolvestheradiationof
NewZealand'sfreshwaterGalaxias vulgariscomplexandreveals a
candidatespeciesobscuredbymitochondrialcapture.Diversity and
Distributions,28,2255–2267.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / d d i . 1 3 6 2 9
Carre a, C., Cussa c, V. E., & Ruz zante, D. E. (2013). Gen etic and phe-
notypic variation among Galaxias maculatus populations reflects
contrasting landscape effects between northern and southern
Patagonia. Freshwater Biology, 58(1), 36–49. https:// doi. org/ 10.
1111/fwb.120 36
Chakona,A.,Swartz,E.R., &Gouws,G.(2013).Evolutionary drivers of
diversificationanddistributionofasoutherntemperatestreamfish
assemblage:Testingtheroleofhistoricalisolationandspatialrange
expansion.PLoS One, 8(8), e70953. h t t p s : / / d o i . o r g / 1 0 . 1 3 7 1 / j o u r n
a l . p o n e . 0 0 7 0 9 5 3
Chapman,A., Morgan, D.L., Beatty,S.J.,&Gill, H. S. (2006).Variation
in life history of land-locked lacustrine and riverine popula-
tions of Galaxias maculatus (Jenyns 1842) in Western Australia.
Environmental Biology of Fishes, 77(1), 21–37. https:// doi. org/ 10.
1 0 0 7 / s 1 0 6 4 1 - 0 0 6 - 9 0 5 1 - 2
Closs, G. P., Smith, M., Barry, B., & Markwitz, A . (2003). Non-
diadromousrecruitmentin coastal populationsofcommonbully
(Gobiomorphus cotidianus). New Zealand Journal of Marine and
Freshwater Research, 37(2), 301–313. htt ps:// doi. or g/ 10. 1080/
0 0 2 8 8 3 3 0 . 2 0 0 3 . 9 5 1 7 1 6 8
Craig, M., Graham, R., Torres, R., Hyde, J., Freitas, M., Ferreira, B.,
Hostim-Silva,M.,Gerhardinger,L.,Bertoncini, Á.,&Robertson,D.
R.(2009).Howmanyspeciesofgoliathgrouperarethere?Cryptic
geneticdivergenceinathreatenedmarinefishandtheresurrection
ofa geopolitical species. Endangered Species Research,7,167–174.
htt ps:// doi. org / 10. 3354/ esr00117
Crow, S. K. , Closs, G. P., Waters, J. M. , Booker, D. J., & Wallis, G. P.
(2010).Nichepartitioning and the effectofinterspecificcompe-
titiononmicrohabitatusebytwosympatricgalaxiidstreamfishes.
Freshwater Biology,55(5),967–982.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 
2 4 2 7. 2 0 0 9 . 0 2 3 3 0 . x
D'Aloia,C.C.,Bogdanowicz,S.M.,Harrison,R.G.,&Buston,P.M.(2017).
Crypticgeneticdiversity and spatial patterns of admixturewithin
Belizea n marine reser ves. Conservation Genetics, 18(1), 211–223 .
h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 9 2 - 0 1 6 - 0 8 9 5 - 5
Darest ani, M. M., Dutoit , L., Augspurger, J., Waters, J., & Ingram, T.
(2023). Effects of landlocking on the genome- wide divergence of
Galaxias brevipinnis populations in the South Island of New Zealand.
Authorea.
Darriba,D.,Taboada,G. L., Doallo, R.,& Posada, D.(2012). jModelTest
2: More models, new heuristics and parallel computing. Nature
Methods,9(8),772.h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / n m e t h . 2 1 0 9
   
|
13 of 16
JENSE et al.
deZoeten,T.,&Pulido,F.(2020). How migratory populationsbecome
resident.Proceedings of the Royal Society B: Biological Sciences,287,
20193011.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 8 / r s p b . 2 0 1 9 . 3 0 1 1
Delgado,M.L.,Górski,K.,Habit,E.,&Ruzzante,D.E.(2019).Theeffects
ofdiadro myandit slossongenomicdiverge nce:Thecaseofamphi-
dromousGalaxias maculatuspopulations.Molecular Ecology,28(24),
5217–5231. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 5 2 9 0
Delić,T.,Trontelj, P.,Rendoš, M., & Fišer,C.(2017).The importanceof
namingcrypticspeciesandtheconservationofendemicsubterra-
neanamphipods. Scientific Reports, 7(1), 3391.https:// doi. org/ 10.
1 0 3 8 / s 4 1 5 9 8 - 0 1 7 - 0 2 9 3 8 - z
DeWoody,J.A .,&Avise,J.C.(2000).Microsatellitevariationinmarine,
freshwaterand anadromousfishescomparedwith other animals.
Journal of Fish Biology, 56(3), 461–473. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j .
1 0 9 5 - 8 6 4 9 . 2 0 0 0 . t b 0 0 7 4 8 . x
Doehring,K., Young,R.G., &McIntosh,A .R.(2012).Facilitationofup-
streampassageforjuvenilesof aweakly swimmingmigratory gal-
axiid.New Zealand Journal of Marine and Freshwater Research,46(3),
303–313. h t t p s : / / d o i . o r g / 1 0 . 1 0 8 0 / 0 0 2 8 8 3 3 0 . 2 0 1 1 . 6 3 9 7 8 7
Dudgeon,D.,Arthington,A.H.,Gessner,M.O.,Kawabata,Z.-I.,Knowler,
D. J., Lévêqu e, C., Naiman, R . J., Prieur-R ichard, A.-H., S oto, D.,
Stiassny,M.L.J.,&Sullivan, C.A.(2006).Freshwaterbiodiversity:
Importance,threats,statusandconservationchallenges.Biological
Reviews, 81(2), 163–182. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 7 / S 1 4 6 4 7 9 3 1 0
5006950
Dunn, N ., O'Brien , L., Burrid ge, C., & Closs , G. (2020). Mo rphologic al
convergenceand divergence in galaxias fishes i n lentic and loti c
habitats.Diversity,12,1–25.h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / d 1 2 0 5 0 1 8 3
Egge, J. J. D., & Simons, A. M. (2006). The challenge of truly cryp-
tic diver sity: Dia gnosis and de scriptio n of a new madtom c atfish
(Ictaluridae:Noturus).Zoologica Scripta,35(6),581–595.h t t p s : // doi .
o r g / 1 0 . 1 1 1 1 / j . 1 4 6 3 - 6 4 0 9 . 2 0 0 6 . 0 0 2 4 7 . x
Eitel, M.,Osigus,H.-J.,DeSalle, R.,&Schier water, B. (2013). Global di-
versityofthePlacozoa.PLoS One,8(4),e57131.https:// doi. org/ 10.
1 3 7 1 / j o u r n a l . p o n e . 0 0 5 7 1 3 1
Fahmi, Tibbetts, I. R., Bennett, M. B., & Dudgeon, C. L. (2021).
Delimitingcrypticspecieswithinthebrown-bandedbambooshark,
Chiloscyllium punctatum in the Indo-Australian region with mito-
chondrial DNAand genome-wide SNP approaches. BMC Ecology
and Evolution, 21(1), 121. https:// doi. org/ 10. 1186/ s1286 2- 021-
01852 - 3
Feutry, P., Vergnes, A., Broderick, D., Lambourdiere, J., Keith, P., &
Ovenden, J. R. (2013). Stretched to the limit; cana short pelagic
larvaldurationconnectadultpopulationsofanindo-Pacificdiadro-
mous fis h (Kuhlia rupestris)? Molecular Ecology, 22(6), 1518–15 30.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 2 1 9 2
Fiser,C.,Robinson,C.T.,&Malard,F.(2018).Crypticspeciesasawindow
intothe paradigm shiftofthespeciesconcept[review].Molecular
Ecology,27(3),613–635.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 4 4 8 6
Frankham, R., Ballou, S. E. J. D., Briscoe, D. A., & Ballou, J. D. (2002).
Introduction to conservation genetics.CambridgeUniversityPress.
Galván-Quesada,S.,Doadrio,I.,Alda,F.,Perdices,A.,Reina,R.G.,García
Varela, M., Hernández,N.,CamposMendoza,A.,Bermingham, E.,
&Domínguez-Domínguez,O.(2016).Molecularphylogenyandbio-
geographyof the amphidromous fish genusDormitator Gill 1861
(Teleostei:Eleotridae).PLoS One,11(4),e0153538.https:// doi. org/
1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 1 5 3 5 3 8
Gómez-Bah amón, V., Márque z, R., Jah n, A. E., Mi yaki, C. Y., Tuero, D.
T.,Laverde-R,O.,Restrepo,S.,&Cadena,C.D. (2020).Speciation
associatedwith shif ts in migratorybehaviorinanavian radiation.
Current Biology, 30(7), 1312–1321. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . c u b .
2020. 01. 064
González-Weva r,C .,Salinas,P.,Hüne,M.,Segovia,N.,Vargas-Chacoff,
L.,Oda,E.,&Poulin,E.(2015).Contrastinggeneticstructureand
diversityofGalaxias maculatus(Jenyns,1848)alongtheChilean
coast: Stock identification for fishery management. Journal of
Heredity, 106(S1), 439–447. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / j h e r e d /
esv005
Grechko , V. V. (2013). Th e problems of mol ecular phyloge netics with
the example of squamate reptiles: Mitochondrial DNA markers.
Molecular Biology, 47(1), 55–74. https:// doi. org/ 10. 1134/ s0 026
8 9 3 3 1 3 0 1 0 0 5 6
Growns, I., & West, G. (2008). Classification of aquatic bioregions
through the use of distributional modelling of freshwater fish.
Ecological Modelling, 217(1), 79–86. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
ecolmodel.2008.06.009
Guay, P.J. , Chesser, R. T., Muld er,R . A., Af ton, A. D., Pa ton, D. C., &
McCracken,K.G.(2010).East-westgeneticdifferentiationinmusk
ducks (Biziura lobata)ofAustralia suggests late Pleistocenediver-
gence at th e Nullarbor Pl ain. Conservation Genetics, 11(6), 2105–
2120. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 9 2 - 0 1 0 - 0 0 9 7 - 5
Guindon,S.,&Gascuel,O.(2003).Asimple,fast,andaccuratealgorithmto
estimatelargephylogeniesbymaximumlikelihood.Systematic Biology,
52(5),696–704.https://doi.org/10.1080/10635150390235520
Halbert,K.M.K.,Goetze,E.,&Carlon,D.B.(2013).High crypticdiver-
sityacrosstheglobalrangeofthemigratoryplanktoniccopepods
Pleuromamma pisekiandP. gracilis. PLoS One,8(10),e77011.ht tp s ://
d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 0 7 7 0 1 1
Hammer, M. P., Adams, M ., & Hughes , J. M. (2013). Evoluti onary pr o-
cessesandbiodiversity.InP.Humphries&K.Walker(Eds.),Ecology
of Australian freshwater fishe s(pp.49–80).CSIROPublishing.
Hammer,M.P.,Adams,M.,Thacker,C.E.,Johnson,J.B.,&Unmack,P.J.
(2019).Comparison of genetic structure in co-occurringfreshwa-
tereleotrids (Actinopterygii:Philypnodon)revealscryptic species,
likelytranslocationand regionalconservationhotspots.Molecular
Phylogene tics and Evolution,139,106556.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
y m p e v . 2 0 1 9 . 1 0 6 5 5 6
Hammer,M. P.,Adams, M., Unmack, P.J.,&Walker,K.F.(2007).Are-
think on Retropinna:Conservationimplicationsofa newtaxa and
significant genetic sub-structure in Australian smelts (Pisces:
Retropinnidae). Marine and Freshwater Research, 58, 327–341.
h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 0 5 2 5 8
Hammer, M. P.,Unmack, P.J., Adams, M., Raadik, T.A., & Johnson, J.
B.(2014).A multigene molecular assessmentofcryptic biodiver-
sityintheiconicfreshwaterblackfishes(Teleostei:Percichthyidae:
Gadopsis)ofsouth-easternAustralia.Biological Journal of the Linnean
Society,111(3),521–540.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / b i j . 1 2 2 2 2
Hicks, A. S., Jarvis, M. G.,David, B. O., Waters, J.M., Norman,M. D.,
& Closs, G . P.(2017). L ake and spec ies specif ic pattern s of non-
diadromousrecruitmentinamphidromousfish:Theimportanceof
localrecruitmentandhabitatrequirements.Marine and Freshwater
Research,68(12),2315–2323.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 1 6 3 8 7
Hoekzema, K.,& Sidlauskas,B. L. (2014).Molecular phylogenetics and
microsatellite analysis reveal cryptic species of speckled dace
(Cyprinidae:Rhinichthys osculus)inOregon'sGreatBasin.Molecular
Phylogene tics and Evolution,77,238–250.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
ympev.2014.04.027
Huelsenbeck,J.P.,&Ronquist,F.(2001).MRBAYES:Bayesianinference
of phyloge netic trees . Bioinformatics, 17(8), 75 4–755. ht t p s : // doi.
o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / 1 7 . 8 . 7 5 4
Irwin,D.E.,Irwin,J.H.,&Smith,T.B.(2011).Geneticvariationandsea-
sonalmigratoryconnectivityinWilson'swarblers(Wilsonia pusilla):
Species-level differences in nuclear DNA between western and
easternpopulations.Molecular Ecology,20(15),3102–3115.ht t p s : //
d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 9 4 X . 2 0 1 1 . 0 5 1 5 9 . x
Jelks,H.L.,Walsh, S. J.,Burkhead, N. M.,Contreras-Balderas,S., Diaz-
Pardo,E.,Hendrickson,D.A.,Lyons,J.,Mandrak,N.E.,McCormick,
F.,Nelson,J.S.,Platania,S.P.,Porter,B.A.,Renaud,C.B.,Schmitter-
Soto,J.J.,Taylor,E.B.,&Warren,M.L.(2008).Conser vationstatus
of imperi led North A merican fre shwater and diadr omous fishes .
Fisheries, 33(8), 372–407. https:// doi. org/ 10. 1577/ 1548- 8446-
33.8. 372
14 of 16 
|
   JENSE et al.
Jerry, D. (2008). Phylogeography of the freshwater catfish Tandanus
tandanus(Plotosidae):Amodelspeciestounderstandevolutionof
theeasternAustralianfreshwaterfishfauna.Marine and Freshwater
Research,59,351.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 0 7 1 8 7
Jirsova,D.,Stefka,J.,Blazek,R.,Malala,J.O.,Lotuliakou,D.E.,Mahmoud,
Z. N., & Jirku, M. (2019).From taxonomic deflation tonewlyde-
tected c ryptic sp ecies: Hidde n diversity i n a widesprea d African
squeakercatfish[correction].Scientific Report s,9(2),19907.ht tps://
d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 1 9 - 5 6 3 4 8 - 4
Jung, C.A .,Barbee, N. C.,& Swearer,S.E.(2009).Post-settlementmi-
gratory behaviour and growth-related costs in two diadromous
fishspecies,Galaxias maculatusandGalaxias brevipinnis. Journal of
Fish Biology,75 (3),503–515.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 6 4 9 .
2 0 0 9 . 0 2 2 7 5 . x
King,K.J.,Young,K.D.,Waters,J.M.,&Wallis,G.P.(2003).Preliminary
gene tican aly sisofkoar o( Galaxias brevipinnis)inNewZealandlakes:
Evidenceforallopatricdifferentiationamonglakesbutlittlepopu-
lation subdivisionwithinlakes. Journal of the Royal Society of New
Zealand,33(3),591–60 0.https:// doi. org/ 10. 1080/ 03014 223. 2003.
9517747
Kirchn er, S., Sat tmann, H., Ha ring, E., Vic tor, R., & Kruckenh auser, L.
(2021).Hiddendiversity-delimitation of cryptic species and phy-
logeography of the cyprinid Garra species complex in northern
Oman. Journal of Zoological Systematics and Evolutionary Research,
59(2),411–427.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j z s . 1 2 4 3 8
Kochanov a, E., Nair, A., Sukh ikh, N., Vainola, R., & Hus by, A. (2021).
Patternsofcrypticdiversityandphylogeographyinfourfreshwater
copepodcrustaceansinEuropeanlakes.Diversity- Basel,13(9),448.
h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / d 1 3 0 9 0 4 4 8
Kon, T., Yoshino, T., Mukai, T., & Nis hida, M. (20 07). DNA sequen ces
identifynumerouscrypticspeciesofthevertebrate:Alessonfrom
thegobioidfishSchindleria.Molecular Phylogenetics and Evolution,
44(1),53–62.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . y m p e v . 2 0 0 6 . 1 2 . 0 0 7
Li, G., Jones, G., Rossiter, S. J., Chen, S. F.,Parsons, S., & Zhang, S. Y.
(2006).PhylogeneticsofsmallhorseshoebatsfromEastAsiabased
onmitochondrialDNAsequencevariation.Journal of Mammalogy,
87(6),1234–1240.h t t p s : / / d o i . o r g / 1 0 . 1 6 4 4 / 0 5 - m a m m - a - 3 9 5 r 2 . 1
Ling,N.,Gleeson,D.M.,Willis,K.J.,&Binzegger,S.U.(2001).Creating
and destroying species: The ‘new’ biodiversity and evolutionarily
signifi cant units am ong New Zealand 's galaxiid fis hes. Journal of
Fish Biology, 59, 209–222. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 6 4 9 .
2 0 0 1 . t b 0 1 3 8 7 . x
Lintermans, M. (2013). A review of on-ground recovery actions for
threatened freshwater fish in Australia. Marine and Freshwater
Research,64(9),775–791.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 1 2 3 0 6
Lintermans,M.,Geyle,H.M.,Beatty,S.,Brown,C.,Ebner,B.C.,Freeman,
R., Hammer, M. P., Humphreys, W. F., Kennard, M. J., Kern, P.,
Martin, K.,Morgan, D. L., Raadik, T. A., Unmack, P.J., Wager, R.,
Woinarski,J.C.Z.,&Garnett,S.T.(2020).Bigtroubleforlittlefish:
Identif yingAustralianfreshwaterfishesinimminentriskofextinc-
tion. Pacific Conservation Biology, 26(4), 365–377. https:// doi. org/
1 0 . 1 0 7 1 / P C 1 9 0 5 3
Lintermans, M., & Raadik, T. (2019). Galaxias brevissimus, Short-
tailed galaxias. The IUCN Red List of Threatened Species.
2019,T122902298A123382111. h t t p s : / /d o i . o r g / 1 0 . 2 3 0 5 / I U C N .
U K . 2 0 1 9 - 3 . R L T S . T 1 2 2 9 0 2 2 9 8 A 1 2 3 3 8 2 1 11 . e n
Lohman,D.J.,Ingram,K.K.,Prawiradilaga,D.M.,Winker,K.,Sheldon,
F.H., Moyle, R. G., Ng, P.K. L., Ong, P.S., Wang, L. K., Braile,
T. M., Astut i, D., & Meier, R. (2010). Cr yptic genetic d iversity
in “widespread” southeast Asian bird species suggests that
Philippineavianendemismisgravelyunderestimated.Biological
Conservation, 143 (8), 1885–1890. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . b i o -
c o n . 2 0 1 0 . 0 4 . 0 4 2
McDowall, B. (2003). The key to climbing in the Koaro. Water &
Atmosphere,11,16–17.
McDowal l, R. M. (1965). The composition of the New Zealand whitebait
catch, 1964.NZMarineDepartment.
McDowall, R. M., & Frankenb erg, R. S. (1981). The galax iid fishes of
Australia (Pisces: Galaxiidae). Records of the Australian Museum,
33(10), 443–605. h t t p s : / / d o i . o r g / 1 0 . 3 8 5 3 / j . 0 0 6 7 - 1 9 7 5 . 3 3 . 1 9 8 1 .
195
McDowall, R. M., & Suren, A . M. (1995). Emigrating larvae of koaro,
Galaxias brevipinnisGünther(Teleostei:Galaxiidae),fromtheOtira
River,NewZealand.New Zealand Journal of Marine and Freshwater
Research, 29(2), 271–275. https:// doi. org/ 10. 1080/ 00288 330.
1995.9516660
McMahan, C. D., Davis, M. P., Domínguez-Domínguez, O., García-de-
León, F. J., Doadrio,I., & Piller, K. R . (2013). Fromthe mountains
tothesea:Phylogeographyandcrypticdiversitywithinthemoun-
tain mul let, Agonostomus monticola(Teleostei:Mugilidae).Journal
of Biogeogra phy,40(5),894–904.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j b i . 1 2 0 3 6
McMahan,C.D.,Elías,D.J.,Li,Y.,Domínguez-Domínguez,O.,Rodriguez-
Machado,S.,Morales-Cabrera,A.,Velásquez-Ramírez,D.,Piller,K.
R., Chakrabarty, P., & Matamoros, W. A. (2021). Molecular sys-
tematic s of the Awaous ba nana comple x (river gobies; Teleo stei:
Oxudercidae).Journal of Fish Biolog y, 99(3), 970–979.h t tps:// d o i .
o r g / 1 0 . 1 1 1 1 / j f b . 1 4 7 8 3
Minh,B.Q.,Schmidt,H.A.,Chernomor,O.,Schrempf,D.,Woodhams,M.
D.,vonHaeseler,A.,&Lanfear,R .(2020).IQ-TREE2:Newmodels
andefficientmethods for phylogeneticinferencein the genomic
era.Molecular Biolog y and Evolution,37(5),1530–1534.h t t p s : // d o i .
o r g / 1 0 . 1 0 9 3 / m o l b e v / m s a a 0 1 5
Moore, W. S. (1995). Inferring phylogenies from mtDNA variation:
Mitochondrial-gene trees versus nuclear-gene trees. Evolution,
49(4), 718–726. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 5 5 8 - 5 6 4 6 . 1 9 9 5 . t b 0 2 3
0 8 . x
Morgan , D., Chapman , A., Bea tty, S., & Gill , H. (200 6). Distribu tion of
thespottedminnow(Galaxias maculatus(Jenyns,1842))(Teleostei:
Galaxi idae) in Western Aus tralia includi ng range extensions and
sympatric species. Records of the Australian Museum, Records,
23(Part 1), 7–11. h t t p s : / / d o i . o r g / 1 0 . 1 8 1 9 5 / i s s n . 0 3 1 2 - 3 1 6 2 . 2 3 ( 1 ) .
2006. 007- 011
Morgan , D. L., Beatt y, S. J., Clo se, P. G ., Allen, M. G ., Unmack, P. J.,
Hammer,M.P.,&Adams,M.(2016).Resolvingthetaxonomy,range
andecologyofbiogeographicallyisolatedandcriticallyendangered
populat ions of an Austr alian freshwate r galaxiid, Galaxias trutta-
ceus. Pacific Conservation Biology,22(4), 350–359.https:// doi. org/
1 0 . 1 0 7 1 / P C 1 5 0 4 3
Moritz,C.C.,Pratt,R.C.,Bank,S.,Bourke,G.,Bragg,J.G.,Doughty,P.,
Keogh,J.S.,Laver,R.J.,Potter,S.,Teasdale,L.C.,Tedeschi,L.G.,&
Oliver,P.M.(2018).Crypticlineagediversity,bodysizedivergence,
and sympatryinaspecies complex of Australianlizards(Gehyra).
Evolution,72(1),54–66.ht tps:// doi . org/ 10. 1111/ evo. 13380
Neilson, M. E., & Stepien, C . A. (2009). Evolution and phylogeography
of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei):
Evidence fornew cryptic species.Biological Journal of the Linnean
Society, 96(3), 664–684. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 3 1 2 .
2 0 0 8 . 0 1 1 3 5 . x
O'Dwyer,J.E.,Murphy,N., Tonkin, Z., Lyon,J.,Koster,W., Dawson,D.,
Amtstaetter,F.,&Harrisson, K.A. (2021).Aninvestigationofge-
netic connectivity shines a light on the relative roles of isolation
bydistanceandoceaniccurrentsinthreediadromousfishspecies.
Marine and Freshwater Research,72(10),1457–1473.https:// doi. org/
1 0 . 1 0 7 1 / m f 2 0 3 2 3
Ovenden,J.R., &White,R .W.(1990). Mitochondrial and allozyme ge-
neticsofincipientspeciationinalandlockedpopulationofGalaxias
truttaceus(Pisces:Galaxiidae).Genetics,124 (3),701–716.
Ovenden,J.R.,White,R.W.G.,&Adams,M.(1993).Mitochondrialand
allozyme genetics of two Tasmanian galaxiids (Galaxias auratus
and G. Tanycephalus, Pisces: Galaxiidae) withrestricted lacustrine
   
|
15 of 16
JENSE et al.
distributions. Heredity, 70(3), 223–230. https:// doi. or g/ 10. 1038/
h d y . 1 9 9 3 . 3 3
Pavuk, N. C. (1997). Population genetics of selected whitebait species:
Galaxias maculatus (Jenyns) and Lovettia sealii (Johnston).Univeristy
ofTasmania.
Pfenn inger, M., & Schwenk , K. (2007). C ryptic an imal specie s are ho-
mogeneously distributed among taxa and biogeographical re-
gions.BMC Evolutionary Biology,7(1),121.https:// doi. org/ 10. 1186/
1471- 2148- 7- 121
Pollard , D. (1971a). The biolo gy of a landloc ked form of the nor mally
catadromoussalmoniformfishGalaxias maculatus(Jenyns). I. Life
cycle and origin. Marine and Freshwater Research, 22(2), 91–124.
h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 9 7 1 0 0 9 1
Pollard , D. (1971b). The biolog y of a landlocke d form of the nor mally
catadromous salmoniform fish Galaxias maculatus (Jenyns). II.
Morphology and systematic relationships. Marine and Freshwater
Research,22(2),125–138.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 9 7 1 0 1 2 5
Raadik,T.(2005).Dorrigoplateau–Abiodiversity“hot-spot”forgalaxi-
ids. Fishes of Sahul,19,98–107.
Raadik , T.(2019a). Galaxias gunaikurnai, Shaw g alaxias. T he IUCN Red
List of Threatened Species, 2019, e.T122902325A123382116.
h t t p s : / / d o i . o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 1 9 - 3 . R LT S . T 1 2 2 9 0 2 3 2 5
A 1 2 3 3 8 2 1 1 6 . e n
Raadik,T.(2019b).Galaxias longifundus,WestGippslandgalaxias.TheIUCN
red list of t hreatene d species, 2 019, E.T122902339A123382126 .
h t t p s : / / d o i . o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 1 9 - 3 . R L T S . T 1 2 2 9 0 2 3 3 9
A 1 2 3 3 8 2 1 2 6 . e n
Raadik, T., Bice, C., David, B., West, D., Franklin, P., Crow, S., Ling,
N., Allibone, R., & Hitchmough, R. (2019). Galaxias brevipinnis,
Climbinggalaxias.TheIUCNRedListofThreatenedSpecies,2019,
e.T197277A129040345. h t t p s : / / d o i . o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 1 9 - 
3 . R L T S . T 1 9 7 2 7 7 A 1 2 9 0 4 0 3 4 5 . e n
Raadik,T.A.(2014).Fifteenfrom one: A revision of the Galaxias olidus
Günther, 1866 complex (Teleostei, Galaxiidae) in south-eastern
Australiarecognisesthreepreviouslydescribedtaxaanddescribes
12newspecies.Zootaxa,3898(1),1–198.https:// doi. org/ 10. 11646/
z o o t a x a . 3 8 9 8 . 1 . 1
Rambaut,A.,Drummond,A.J.,Xie,D.,Baele,G.,&Suchard,M.A.(2018).
Posteriorsummarizationinbayesianphylogeneticsusingtracer1.7.
Systematic Biology,67(5),901–904.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o /
syy032
Reid, G. M.,ContrerasMacBeath, T.,&Csatádi, K. (2013).Globalchal-
lengesinfreshwater-fishconser vationrelatedtopublicaquariums
andtheaquariumindustry.International Zoo Yearbook,47(1),6–45.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / i z y . 1 2 0 2 0
Richardson,B.J.,Baverstock,P.R.,&Adams,M.(1986).Allozyme electro-
phoresis: A handbook for animal systematics and population studies.
AcademicPress.
Roca, A . L., Geor giadis, N., Pe con-Slat tery, J., & O'Bri en, S. J. (2001).
Geneti c evidence for t wo species of ele phant in Africa . Science,
293(5534),1473–1477.h t t p s : / / d o i . o r g / 1 0 . 1 1 2 6 / s c i e n c e . 1 0 5 9 9 3 6
Rojo, J. H., Fernández, D. A., Figueroa, D. E., & Boy, C. C. (2020).
Phenotypicandgeneticdifferentiationbetweendiadromousand
landlockedpuyenGalaxias maculatus. Journal of Fish Biology,96(4),
95 6–9 67. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j f b . 1 4 2 8 5
Rowe, D. K., Ko nui, G., & Chr istie, K . D. (2002). Popu lation str ucture,
distribution, reproduction, diet,and relative abundance ofkoaro
(Galaxias brevipinnis) in a New Zealand l ake. Journal of the Royal
Society of New Zealand, 32(2), 275–291. htt ps: // doi. or g/ 10. 1080/
0 3 0 1 4 2 2 3 . 2 0 0 2 . 9 5 1 7 6 9 5
Schmidt, D. J., Grund, R., Williams, M. R., & Hughes, J. M. (2014).
Australian parasitic Ogyris butterflies: East–west divergence of
highly-specialized relicts. Biological Journal of the Linnean Society,
111(2),473–484.h t t p s : / /d o i . o r g / 1 0 . 1 1 1 1 / b i j . 1 2 2 1 0
Srivathsan, A.,& Meier,R. (2012). On the inappropriateuseofKimura-
2-parameter (K2P) divergences in the DNA-barcoding literature.
Cladistics, 28(2), 19 0–194. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 6 - 0 0 3 1 .
2 0 1 1 . 0 0 3 7 0 . x
Stecher,G.,Tamura,K., &Kumar,S.(2020). Molecular evolutionaryge-
neticsanalysis(MEGA)formacOS.Molecular Biology and Evolution,
37(4),1237–1239.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / m o l b e v / m s z 3 1 2
Stokell, G. (1966). Preliminary investigation of systematics of some
Tasmanian Galaxiidae.PapersandProceedingsoftheRoyalSociety
ofTasmania.
Streelman,J.T.,Alfaro,M.,Westneat,M.W.,Bellwood,D.R.,&Karl,S.
A.(2002).Evolutionaryhistoryoftheparrotfishes:Biogeography,
ecomorphology, and comparative diversity. Evolution, 56(5),
961–971.
Struck,T.H.,Feder,J.L.,Bendiksby,M.,Birkeland,S.,Cerca,J.,Gusarov,V.
I.,Kistenich, S., Larsson,K.H.,Liow, L.H.,Nowak,M. D.,Stedje,B.,
Bachmann,L.,&Dimitrov,D.(2018).Finding evolutionaryprocesses
hiddenin cryptic species. Trends in Ecology & Evolution,33(3), 153–
163. https://doi.org/10.1016/j.tree.2017.11.007
Tigano,A.,&Russello,M.A.(2022).Thegenomicbasis ofreproductive
and migratory behaviour in a polymorphic salmonid. Molecular
Ecology,31(24),6588–6604.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 6 7 2 4
Unmack, P. J. (2001). Biogeography of Australian freshwater fishes.
Journal of Biogeography, 28(9), 1053–1089. https:// doi. org/ 10.
1 0 4 6 / j . 1 3 6 5 - 2 6 9 9. 2 0 0 1 . 0 0 6 1 5 . x
Unmack,P.J., Adams,M.,Bylemans,J.,Hardy,C.M.,Hammer,M. P.,&
Georges,A .(2019).Perspectives ontheclonal persistenceof pre-
sumed ‘gho st’ genome s in unisexual o r allopoly ploid taxa a rising
via hybridization. Scientific Reports, 9(1), 473 0. https:// doi. org/ 10.
1 0 3 8 / s 4 1 5 9 8 - 0 1 9 - 4 0 8 6 5 - 3
Unmack , P. J., A dams, M., Hamme r, M. P., Johnson, J. B ., Gruber, B.,
Gilles,A.,Young,M.,&Georges,A.(2021).Plottingforchange:An
analyticalframeworktoaiddecisionsonwhichlineagesarecandi-
datespeciesin phylogenomicspeciesdiscovery.Biological Journal
of the Linnean Society, 135(1), 117–137. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 /
biolinnean/blab095
Unmack,P.J.,Bagley,J.C.,Adams, M., Hammer,M. P.,&Johnson,J. B.
(2012).MolecularphylogenyandphylogeographyoftheAustralian
freshwa ter fish genus Galaxiella, with an e mphasis on dw arf gal-
axias (G. pusilla). PLoS One,7(6),e38433.https:// doi. org/ 10. 1371/
journal.pone.0038433
Unmack,P.J.,Hammer,M.P.,Adams,M.,&Dowling,T.E.(2011).Aphy-
logenetic analysis of pygmy perches (Teleostei: Percichthyidae)
with an ass essment of th e major histo rical infl uences on aqu atic
biogeographyinsouthernAustralia.Systematic Biology,60(6 ), 797–
812. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o / s y r 0 4 2
Unmack,P.J.,Sandoval-Castillo,J.,Hammer,M.P.,Adams,M.,Raadik,T.A.,
&Beheregaray,L. B. (2017). Genome-wideSNPs resolveakeycon-
flictbetweensequenceandallozymedatatoconfirmanotherthreat-
enedcandidatespeciesofriverblackfishes(Teleostei:Percichthyidae:
Gadopsis). Molecular Phylogenetics and Evolution, 109, 415–420.
https://doi.org/10.1016/j.ympev.2017.02.013
Vanhaecke , D., Garcia de Leani z, C., Gajardo, G ., Young, K., San zana,
J., Orellana, G., Fowler, D., Howes, P., Monzon-Arguello, C., &
Consuegra,S.(2012).DNAbarcodingandmicrosatelliteshelpspe-
ciesdelimitation and hybrid identificationinendangeredgalaxiid
fishes. PLoS One, 7(3), e32939. h t t p s : // d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l .
pone.0032939
Wallis,G.P.,Judge,K.F.,Bland,J.,Waters,J. M., &Berra,T.M. (2001).
Genetic diversity in New Zealand Galaxias vulgaris sensu lato
(Teleoste i: Osmeriforme s: Galaxiidae): A te st of a biogeographic
hypothesis. Journal of Biogeography, 28(1), 59–67.https:// doi. org/
1 0 . 1 0 4 6 / j . 1 3 6 5 - 2 6 9 9 . 2 0 0 1 . 0 0 5 3 5 . x
Wan, Q. H., Wu, H ., Fujihara, T., & Fang , S. G. (200 4). Which gene tic
marker for which conservation genetics issue? Electrophoresis,
25(14),2165–2176.h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / e l p s . 2 0 0 3 0 5 9 2 2
Ward,R. D., Woodwark,M.,&Skibinski, D. O. F.(1994).Acomparison
ofgenetic diversity levelsinmarine,freshwater,andanadromous
16 of 16 
|
   JENSE et al.
fishes . Journal of Fish Biology, 44(2), 213–232.https:// doi. org/ 10.
1 1 1 1 / j . 1 0 9 5 - 8 6 4 9 . 1 9 9 4 . t b 0 1 2 0 0 . x
Waters, J., Fraser,C., & Hewitt, G. (2013). Founder takes all:Density-
dependent processes structure biodiversity. Trends in Ecology &
Evolution,28,78–85.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . t r e e . 2 0 1 2 . 0 8 . 0 2 4
Waters,J.M.,&Burridge, C. P.(1999).Extremeintraspecificmitochon-
drialDNAsequencedivergenceinGalaxias maculatus (Osteichthys:
Galaxi idae), one of the wo rld's most w idesprea d freshwater f ish.
Molecular Phylogenetics and Evolution, 11 (1),1–12.https:// doi. org/
1 0 . 1 0 0 6 / m p e v . 1 9 9 8 . 0 5 5 4
Waters, J. M.,Dijkstra, L.H., &Wallis, G.P.(2000). Biogeographyofa
southern hemisphere freshwater fish: How important is marine
dispersal?Molecular Ecology,9(11),1815–1821.https:// doi. org/ 10.
1 0 4 6 / j . 1 3 6 5 - 2 9 4 x . 2 0 0 0 . 0 1 0 8 2 . x
Waters, J. M.,Rowe,D.L., Burridge,C .P.,& Wallis,G. P.(2010). Gene
trees versus species trees: Reassessing life-history evolution in
a freshwater fish radiation. Systematic Biology, 59(5), 504–517.
h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o / s y q 0 3 1
Waters, J.M.,&Wallis,G.P.(2001a).Cladogenesisandlossofthema-
rinelife-historyphaseinfreshwatergalaxiidfishes(Osmeriformes:
Galaxiidae). Evolution, 55(3), 587–597. ht tps:// doi. org/ 10. 1554/
0 0 1 4 - 3 8 2 0 ( 2 0 0 1 ) 0 5 5 [ 0 5 8 7 : C a l o t m ] 2 . 0 . C o ; 2
Waters,J.M.,&Wallis,G.P.(2001b).MitochondrialDNAphylogenetics
ofthe Galaxias vulgaris complex fromSouth Island, NewZealand:
Rapid ra diation of a species flock. Journal of Fish Biology, 58(4),
1166–1180. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 6 / j f b i . 2 0 0 0 . 1 5 2 0
Wishart,M., Hughes,J.,Stewart,B.,&Impson, D.(2006).Extremelev-
elsof intra-specificdivergenceamongcape peninsulapopulations
of the cap e galaxias, G alaxias zebratus C astelnau 1861, reve als a
possiblespeciescomplex.African Journal of Aquatic Science, 31(1),
99 –106 .h t t p s : / / d o i . o r g / 1 0 . 2 9 8 9 / 1 6 0 8 5 9 1 0 6 0 9 5 0 3 8 7 6
Yungnickel,M.R.,Hickford,M.J.H.,&Schiel,D.R.(2020).Spatio-temporal
variationinspecies compositionofNewZealand'swhitebaitfishery.
New Zealand Journal of Marine and Freshwater Research,54(4), 679–
694.https:// doi. org/ 10. 1080/ 00288 330. 2020. 1745854
Zatt ara, E. E., & P remoli, A . C. (2005). G enetic str ucturin g in Andean
landlocked populations of Galaxias maculatus: Effect s of biogeo-
graphichistory.Journal of Biogeography,32(1),5–14.
SUPPORTING INFORMATION
Additional supporting information can be found online in the
SupportingInformationsectionattheendofthisarticle.
How to cite this article: Jense,C.,Adams,M.,Raadik,T.A.,
Waters,J.M.,Morgan,D.L.,Barmuta,L.A.,Hardie,S.A.,
Deagle,B.E.,&Burridge,C.P.(2024).Crypticdiversity
withintwowidespreaddiadromousfreshwaterfishes
(Teleostei:Galaxiidae).Ecology and Evolution,14,e11201.
https://doi.org/10.1002/ece3.11201
... Cairnsichthys 1 (1) Hammer et al. (2018) Galaxias 20 A (14) Adams et al. (2014) and Jense et al. (2024) Glossamia 4 (0) Cook et al. (2017) Hypseleotris 9 (6) Unmack et al. (2019), Thacker et al. (2022) and Unmack et al. (2023) Mogurnda 8 (0) Adams et al. (2013) and S. Amini, P. J. Unmack and M. Adams, unpubl. data Philypnodon 8 (0) Hammer et al. (2019b) Retropinna 3 (0) Hammer et al. (2007) and Unmack et al. (2022) Tandanus 2 (2) Jerry (2008) The number in parentheses indicates how many of these species have since been formally described. ...
Article
Full-text available
Recent ecotypic differentiation provides unique opportunities to investigate the genomic basis and architecture of local adaptation, while offering insights into how species form and persist. Sockeye salmon (Oncorhynchus nerka) exhibit migratory and resident (“kokanee”) ecotypes, which are further distinguished into shore‐spawning and stream‐spawning reproductive ecotypes. Here, we analysed 36 sockeye (stream‐spawning) and kokanee (stream‐ and shore‐spawning) genomes from a system where they co‐occur and have recent common ancestry (Okanagan Lake/River in British Columbia, Canada) to investigate the genomic basis of reproductive and migratory behaviour. Examination of the genomic landscape of differentiation, differences in allele frequencies and genotype–phenotype associations revealed three main blocks of sequence differentiation on chromosomes 7, 12 and 20, associated with migratory behaviour, spawning location and spawning timing. Structural variants identified in these same areas suggest they could contribute to ecotypic differentiation directly as causal variants or via maintenance of their genomic architecture through recombination suppression mechanisms. Genes in these regions were related to spatial memory and swimming endurance (SYNGAP, TPM3), as well as eye and brain development (including SIX6), potentially associated with differences in migratory behaviour and visual habitats across spawning locations, respectively. Additional genes (GREB1L, ROCK1) identified here have been associated with timing of migration in other salmonids and could explain variation in timing of O. nerka spawning. Together, these results based on the joint analysis of sequence and structural variation represent a significant advance in our understanding of the genomic landscape of ecotypic differentiation at different stages in the speciation continuum.
Article
Full-text available
Aim Freshwater fish radiations are often characterized by multiple closely related species in close proximity, which can lead to introgression and associated discordance of mitochondrial and nuclear characterizations of species diversity. As a case in point, single locus nuclear versus mitochondrial analyses of New Zealand's stream‐resident Galaxias vulgaris complex have yielded conflicting phylogenies. Our goal is to use genome‐wide divergence patterns among these fishes to evaluate the potential role of mitochondrial capture in obscuring species diversity, and to understand how ancient and anthropogenic drainage modification explain this diversity. Location Freshwater ecosystems of New Zealand. Methods We generate and analyse a genome‐wide dataset comprising 52,352 SNPs across 187 Galaxias specimens to resolve the phylogeny of this recent fish radiation. We conduct phylogenetic, PCA, STRUCTURE, and ABBA‐BABA analyses to evaluate the evolutionary relationships of lineages in the context of natural and anthropogenic river drainage alterations. Results In addition to the 11 previously recognized stream‐resident lineages, genome‐wide data reveal a twelfth candidate species (G. ‘Pomahaka’), apparently obscured by introgressive mitochondrial capture. We identify additional examples of mito‐nuclear discordance and putative mitochondrial capture, likely mediated by geological and anthropogenic modification of drainage boundaries. Main conclusions Our study highlights the need for genome‐wide approaches for delimiting freshwater biodiversity. Genetic data also reveal the influence of drainage history on freshwater biodiversity, including the rapid divergence of recently fragmented fish populations, and the conservation genetic risks of anthropogenic translocations events.
Article
Full-text available
A recent study argued that coalescent-based models of species delimitation mostly delineate population structure, not species, and called for the validation of candidate species using biological information additional to the genetic information, such as phenotypic or ecological data. Here, we introduce a framework to interrogate genomic datasets and coalescent-based species trees for the presence of candidate species in situations where additional biological data are unavailable, unobtainable or uninformative. For de novo genomic studies of species boundaries, we propose six steps: (1) visualize genetic affinities among individuals to identify both discrete and admixed genetic groups from first principles and to hold aside individuals involved in contemporary admixture for independent consideration; (2) apply phylogenetic techniques to identify lineages; (3) assess diagnosability of those lineages as potential candidate species; (4) interpret the diagnosable lineages in a geographical context (sympatry, parapatry, allopatry); (5) assess significance of difference or trends in the context of sampling intensity; and (6) adopt a holistic approach to available evidence to inform decisions on species status in the difficult cases of allopatry. We adopt this approach to distinguish candidate species from within-species lineages for a widespread species complex of Australian freshwater fishes (Retropinna spp.). Our framework addresses two cornerstone issues in systematics that are often not discussed explicitly in genomic species discovery: diagnosability and how to determine it, and what criteria should be used to decide whether diagnosable lineages are conspecific or represent different species.
Article
Full-text available
Comparative phylogeography has become a powerful approach in exploring hidden or cryptic diversity within widespread species and understanding how historical and biogeographical factors shape the modern patterns of their distribution. Most comparative phylogeographic studies so far focus on terrestrial and vertebrate taxa, while aquatic invertebrates (and especially freshwater invertebrates) remain unstudied. In this article, we explore and compare the patterns of molecular diversity and phylogeographic structure of four widespread freshwater copepod crustaceans in European water bodies: the harpacticoids Attheyella crassa, Canthocamptus staphylinus and Nitokra hibernica, and the cyclopoid Eucyclops serrulatus, using sequence data from mtDNA COI and nuclear ITS/18S rRNA genes. The three taxa A. crassa, C. staphylinus and E. serrulatus each consist of deeply diverged clusters and are deemed to represent complexes of species with largely (but not completely) non-overlapping distributions, while in N. hibernica only little differentiation was found, which may however reflect the geographically more restricted sampling. However, the geographical patterns of subdivision differ. The divisions in A. crassa and E. serrulatus follow an east–west pattern in Northern Europe whereas that in C. staphylinus has more of a north–south pattern, with a distinct Fennoscandian clade. The deep mitochondrial splits among populations of A. crassa, C. staphylinus and E. serrulatus (model-corrected distances 26–36%) suggest that divergence of the lineages predate the Pleistocene glaciations. This study provides an insight into cryptic diversity and biogeographic distribution of freshwater copepods.
Article
Full-text available
Understanding connectivity is crucial for the effective conservation and management of biota. However, measuring connectivity directly is challenging and it is often inferred based on assumptions surrounding dispersal potential, such as environmental history and species life history traits. Genetic tools are often underutilised, yet can infer connectivity reliably. Here, we characterise and compare the genetic connectivity and genetic diversity of three diadromous Australian fish species: common galaxias (Galaxias maculatus), tupong (Pseudaphritis urvillii) and Australian grayling (Prototroctes maraena). For each species, we investigate the extent of genetic connectivity across a study region in south-eastern Australia (~700 km). We further determine the potential roles of contemporary ocean currents in shaping the patterns of genetic connectivity observed. Individuals across multiple rivers were sampled and >3000 single nucleotide polymorphisms were genotyped for each species. We found differences in genetic connectivity for the three species: common galaxias were highly connected, and Australian grayling and tupong exhibited patterns of isolation by distance. The degree of genetic connectivity for tupong and Australian grayling appeared unrelated to oceanic currents. This study indicates that the degree of connectivity for different diadromous species can vary greatly despite broadly similar life history strategies, highlighting the potential value of genetic tools for informing species-specific management plans.
Article
Full-text available
Background Delimiting cryptic species in elasmobranchs is a major challenge in modern taxonomy due the lack of available phenotypic features. Employing stand-alone genetics in splitting a cryptic species may prove problematic for further studies and for implementing conservation management. In this study, we examined mitochondrial DNA and genome-wide nuclear single nucleotide polymorphisms (SNPs) in the brown-banded bambooshark, Chiloscyllium punctatum to evaluate potential cryptic species and the species-population boundary in the group. Results Both mtDNA and SNP analyses showed potential delimitation within C. punctatum from the Indo-Australian region and consisted of four operational taxonomic units (OTUs), i.e. those from Indo-Malay region, the west coast of Sumatra, Lesser Sunda region, and the Australian region. Each OTU can be interpreted differently depending on available supporting information, either based on biological, ecological or geographical data. We found that SNP data provided more robust results than mtDNA data in determining the boundary between population and cryptic species. Conclusion To split a cryptic species complex and erect new species based purely on the results of genetic analyses is not recommended. The designation of new species needs supportive diagnostic morphological characters that allow for species recognition, as an inability to recognise individuals in the field creates difficulties for future research, management for conservation and fisheries purposes. Moreover, we recommend that future studies use a comprehensive sampling regime that encompasses the full range of a species complex. This approach would increase the likelihood of identification of operational taxonomic units rather than resulting in an incorrect designation of new species.
Article
Full-text available
Diadromous fishes can exhibit interesting evolutionary and population‐level patterns given their use of freshwater and marine environments as part of their life histories. The River goby genus Awaous are prominent members of riverine ichthyofaunas and occur throughout Atlantic and Pacific slopes of the Americas from the southern United States to Ecuador and Brazil. Here we study the widespread and polymorphic Awaous banana complex to assess phylogeographic patterns and test previous hypotheses that all populations of this species in the Americas belong to the same species. Analysis of sequence data based on the mitochondrial cytochrome oxidase I gene shows multiple clades within the Atlantic and Pacific basins, which correspond to previously described species. Additionally, haplotype analysis demonstrates unique and unconnected networks between these species. Within these clades we document biogeographic patterns that are congruent with results of other co‐occurring diadromous species, as well as a novel biogeographic pattern for the region. Our results support the recognition of distinct species of Awaous in the Atlantic (A. banana and A. tajasica) and Pacific (A. transandeanus) basins. These results are concordant with previously established morphological characters permitting the separation of these species.
Preprint
Landlocking is a process whereby a population of normally diadromous fish becomes limited to freshwater, potentially leading to behavioural, morphological, and genetic changes, and occasionally speciation. The study of recently landlocked populations can shed light on how populations adapt to environmental change, and how such life-history shifts affect population-genetic structure. Kōaro (Galaxias brevipinnis) is a facultatively diadromous Southern Hemisphere galaxiid fish that frequently becomes landlocked in inland lakes. This study compares seven landlocked kōaro populations to diadromous populations from main and offshore islands of New Zealand. Genotyping-by-sequencing was used to obtain genotypes at 18,813 single nucleotide polymorphism sites for each population. Analyses of population structure revealed that most landlocked populations were genetically highly distinct from one another, as well as from diadromous populations. A few particularly isolated island and lake populations were particularly strongly genetically differentiated. Landscape characteristics were measured to test whether lake elevation, size, or distance from the sea predicted genetic diversity or differentiation from diadromous kōaro. While there were no significant relationships indicating isolation-by-distance or isolation-by-environment, we detected a trend toward lower genetic diversity in lakes at higher elevations. Our findings illustrate the critical role that landlocking can play in the structure of intraspecific genetic diversity within and between populations.
Book
This impressive author team brings the wealth of advances in conservation genetics into the new edition of this introductory text, including new chapters on population genomics and genetic issues in introduced and invasive species. They continue the strong learning features for students - main points in the margin, chapter summaries, vital support with the mathematics, and further reading - and now guide the reader to software and databases. Many new references reflect the expansion of this field. With examples from mammals, birds, reptiles, fish, amphibians, plants and invertebrates, this is an ideal introduction to conservation genetics for a broad audience. The text tackles the quantitative aspects of conservation genetics, and has a host of pedagogy to support students learning the numerical side of the subject. Combined with being up-to-date, its user-friendly writing style and first-class illustration programme forms a robust teaching package.
Preprint
Processes responsible for population structuring across spatial and temporal scales represent key components in understanding speciation and evolution. We use a hierarchical approach to investigate the degree and mechanisms of structuring in landlocked and diadromous populations of the facultatively amphidromous fish Galaxias brevipinnis across various temporal and spatial scales in southern New Zealand. To determine long-term structuring, multiple lakes and coastal sites were compared genetically. Short-term structuring was assessed using otolith microchemistry for a subset of sites, and behavioural mechanisms driving population structuring were assessed via larval distributions. Genetic data show that lakes foster divergence of lake-developing populations from each other and from coastal stream populations, whereas there is relatively little structuring within coast or lake populations. However, otolith analyses indicate that on a shorter time scale, most larvae do not disperse, i.e. recruitment is local. Thus, lake and coastal populations show a distinct meta-population structure based on catchment, in contrast to the prevailing assumption of widespread dispersal, with implications for management. Most larvae were distributed in river plumes, suggesting that a simple larval behavioural mechanism, e.g. positive rheotaxis, may result in larval retention within catchments and lakes. However, not all larvae were retained in plumes, creating opportunities for genetic exchange within-lake or among coastal sites. Genetic divergence of lake populations as a consequence of landscape and behaviour provides an insight into the potential of G. brevipinnis to diversify and speciate, when landscape and circumstances align, and also has implications for the management of this and other facultatively amphidromous species.