Access to this full-text is provided by Wiley.
Content available from Ecology and Evolution
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2024;14:e11201.
|
1 of 16
https://doi.org/10.1002/ece3.11201
www.ecolevol.org
Received:4July2023
|
Revised:3March2024
|
Accepted:19March2024
DOI: 10.10 02/ece3.11201
RESEARCH ARTICLE
Cryptic diversity within two widespread diadromous
freshwater fishes (Teleostei: Galaxiidae)
Charlotte Jense1 | Mark Adams2,3 | Tarmo A. Raadik4 | Jonathan M. Waters5 |
David L. Morgan6 | Leon A. Barmuta1 | Scott A. Hardie1 | Bruce E. Deagle7 |
Christopher P. Burridge1
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
providedtheoriginalworkisproperlycited.
©2024TheAuthors.Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.
1DisciplineofBiologicalSciences,School
ofNaturalSciences,Universit yof
Tasmania,Hobart,Tasmania,Australia
2EvolutionaryBiologyUnit,South
AustralianMuseum,Adelaide,South
Australia,Australia
3SchoolofBiologicalSciences,The
UniversityofAdelaide,Adelaide,South
Australia,Australia
4DepartmentofEnergy,Environmentand
ClimateAction,ArthurRylahInstitute
forEnvironmentalResearch,Heidelberg,
Victoria,Australia
5DepartmentofZoology,Universityof
Otago,Dunedin,NewZealand
6CentreforSustainableAquatic
Ecosystems,HarryButlerInstitute,
MurdochUniversity,Murdoch,Western
Australia,Australia
7AustralianNationalFishCollec tion,
CSIRONationalResearchCollections
Australia,Hobart,Tasmania,Australia
Correspondence
CharlotteJense,DisciplineofBiological
Sciences,SchoolofNaturalSciences,
UniversityofTasmania,LifeSciences
Building,BiologicalSciencesPrivateBag
55,Hobart,TAS7001,Australia.
Email:charlotte.jense@utas.edu.au
Funding information
UniversityofTasmania;Commonwealth
ScientificandIndustrialResearch
Organisation
Abstract
Identificationoftaxonomicallycrypticspeciesisessentialfortheeffectiveconserva-
tionofbiodiversity.Freshwater-limitedorganismstendtobe genetically isolatedby
drainageboundaries,andthusmaybeexpectedtoshowsubstantialcrypticphyloge-
neticandtaxonomicdiversity.By comparison, populationsofdiadromoustaxa,that
migrate bet ween freshwater and ma rine environment s, are expected to sh ow less
geneticdifferentiation.HerewetestforcrypticdiversityinAustralasianpopulations
(bothdiadromousandnon-diadromous)oftwowidespreadSouthernHemispherefish
species,Galaxias brevipinnisandGalaxias maculatus.BothmtDNAandnuclearmarkers
revealputativecryptic specieswithinthesetaxa.The substantialdiversity detected
withinG. brevipinnismaybeexplainedbyitsstrongclimbingabilitywhichallowsitto
formisolatedinlandpopulations.Inislandpopulations,G. brevipinnissimilarly show
deepergeneticdivergencethanthoseofG. maculatus,whichmaybeexplainedbythe
greaterabundanceofG. maculatuslarvaeintheseaallowingmoreongoingdispersal.
Ourstudyhighlightsthatevenwidespread,‘high-dispersal’speciescanharboursub-
stantialcrypticdiversity andthereforewarrantincreasedtaxonomicand conserva-
tionattention.
KEYWORDS
colonisation,delineation,Galaxias,geneflow,geographicalbarriers,imperilled,species
boundaries
TAXONOMY CLASSIFICATION
Biogeography,Conservationecology,Phylogenetics
2 of 16
|
JENSE et al.
1 | INTRODUCTIO N
Amajorimpedimenttotheconservationofbiodiversityisthepres-
enceofcrypticspecies,whichistheoccurrenceofmultiplespecies
erroneouslyclassifiedasasinglespeciesduetoa lackof observed
or quantified genetic and/or morphologic differentiation (Delić
etal., 2017). Accurate species designation andidentificationisim-
portantforestimatingtheimpactofthreatsonpopulationsandbio-
diversity (Fiser et al., 2018)and the effectiveness of conservation
actions (Hoekzema & Sidlauskas, 2014). Spe cies' ranges and are a
of occurrence are generally overestimated when cr yptic species
arepresent,potentiallydiminishingtheirconservationstatus(Delić
etal.,2017).Despitetheiroften-closeevolutionaryaffinities,cryptic
species may also have different environmental needs and provide
differentecosystemservices(Fiseretal.,2018).Crypticspeciescan
contribute to the underestimation of anthropogenic extinctions,
whichimpedesourunderstandingoftheseprocessesandtheirpo-
tentialmitigation(Delićetal.,2017 ).
Identification of cryptic diversity has increased largely due
to the application of molecular systematic approaches to both
neglected and well-studied taxa (Brown et al., 20 07;Kochanova
etal.,2021;Pfenninger&Schwenk,2007;Rocaetal.,2001).For
example,ninelineageswerefoundintheGehyra nanaspeciescom-
plex of geckos withoverlapping distributions inseveral lineages
across the Australian Monsoonal Tropics (Moritz et al., 2018).
Widespread, polymorphic species appear particularly prone to
the presence of cryptic diversity (Adams et al., 20 14; Hammer
etal.,2013),andmanycrypticspecieshavebecomemorphologi-
callydiagnosable once theirexistence was revealedusingmolec-
ular genet ic or other data (H ammer et al., 2013; Raadik , 2014).
However, in some ins tances cr yptic spec ies remain mor phologi-
callyundiagnosable(Craigetal.,2009;Egge&Simons,2006; Eitel
etal.,2013;Konetal.,20 07),andsomeresearchersquestionthe
meritofformallydescribingcandidatespeciessolelyonmolecular
data(Strucketal.,2018).
MitochondrialDNA(mtDNA)isoftenusedtoresolvetaxonomic
uncertainties and determine populationstructure in many animals
because of its high rates of mutation and genetic drift (Ardren
etal.,2010;Konetal.,20 07;Lietal.,2006).However,hybridisation
andincompletelineagesortingcaneachresultinmtDNAgenetrees
being incongruent with their underlying species tree (Frankham
etal.,2002).Surveysofnucleargeneticmarkersinconjunctionwith
mtDNA are therefore desirable to provide multiple independent
perspectivesontaxonomic uncertainties (Grechko, 2013;Hammer
et al., 2013; Wan et al., 2004). Historically, allozymes were the
most wid ely used nuclear ma rkers for delinea ting species due to
theeaseofscreening~30–60independentloci(Adamsetal.,2014;
Hammeretal.,2007,2013).Althoughnowlargelyreplacedbyhigh-
throughputDNAsequencingofnuclearmarkers,allozymeshavestill
proveninsightfulfordelineatingspeciesandmajorphylogeographic
breakswithinspecies(Hammeretal.,2019;Unmacketal.,2017).
Molecular assessment of cryptic diversity is important for
freshwater biodiversity. Although freshwater environments only
compromise~0.3% of theEarth'ssurface,they harbour dispropor-
tionallyhighbiodiversity(e.g.,almost50%ofalldescribedfishspe-
cies;Reidetal.,2013). Despitethislimitedextentofhabitat,many
freshwaterfishspeciesremainundocumented,with~300newspe-
ciesdescribedannually(Dudgeonetal.,2006).Thishiddendiversity
isparticularlysignificant giventhat freshwater habitats areamong
the most imperilled in the world, with greater rates of population
decline and species extinction than terrestrial and marine taxa
(Reidetal., 2013).Fortypercentofknown freshwater fishspecies
areonthe IUCNRedList ofthreatened species (Reid et al.,2013),
with 20 41spe cies categori sed as vulnera ble, endange red or criti-
cally endangered in 2013 (Lintermans,2013). Keythreatening pro-
cesses comprise habitat degradation and fragmentation, invasive
species , climate change, overex ploitation and po llution (Dudgeon
etal.,2006;Jelksetal.,2008;Lintermansetal.,2020).
Freshwater-limited fish lineages often experience isolation
duetotheirhabitat constraints,leadingtogeneticdifferentiation.
However,cryptic diversity isalso a feature of diadromousfishes—
those thatmigrate between marine and freshwaters—despitetheir
typicallylargerpopulationsizesandhighergeneflow,which might
be expected to reduce diversification. Indeed, while diadromous
fishestypicallyexhibitcomparativelylowpopulationgeneticstruc-
turing(Allibone&Wallis,1993;Burridge&Waters,2020;DeWoody
&Avise,2000;Wardetal.,1994),diadromycanalsopotentiallyfacil-
itatelongdistancecolonisationandsubsequentfounderspeciation
(Burridge&Waters,2020).Notably,forsomefishspeciesdiadromy
can be fa cultative rat her than oblig ate (Closs et al., 2003; Feutr y
et al., 2013; Hicks et al., 2017). Diadromous species can also har-
bourlandlocked(freshwaterlimited)populationsthatexhibitgenetic
andmorphologicaldifferencesfromtheirdiadromouscounterparts
(Chapman et al.,20 06;Rojoetal.,2020;Tigano&Russello, 2022).
Speciation is also considered a common outcome from landlock-
ing(Lingetal.,2001; Ovenden&White,1990; Walliset al.,20 01).
Therefore,thepotentialforcrypticdiversitywithindiadromoustaxa
maybeunder-appreciated,andthusextinctionrisksunderestimated.
Galaxias brevipinnisand Galaxias maculatusarewidelydistrib-
uted diadr omous fishes tha t exhibit morphol ogical and life his-
tory variation throughout their range, including the presence of
landlockedpopulations.Galaxias brevipinnisisfoundintemperate
southeast Australia (including Tasmania) and throughout New
Zealandanditssub-Antarcticislands.Galaxias maculatusoccursin
South America, Australia andNewZealandaswellasneighbour-
ing island s such as the Falkla nds/Malvinas , Lord Howe, and th e
ChathamIslands.Galaxias maculatusoccupieslowelevationfresh-
water sys tems (Bice et al., 2019), whil e G. brevipinnishasgreat
climbing abilities and adults can penetrate farther inland (100's
kminland and elevations up to 1200 m)(Atlas of LivingAustralia
website, n.d.; Jung et al., 2009; McDowall, 2003; McDowall &
Suren, 1995). Bothspecieshave experiencedmajor declines due
tohabitat lossand degradationand are targeted by fisheriesfor
their ‘whitebait’ larvae (Bice et al., 2019; Raadik et al., 2019).
Introduced salmonids can also dramatically reduce the abun-
dance of G. brevipinnis through predation and displacement
|
3 of 16
JENSE et al.
(Rowe et al., 20 02).Bothspecies may be experiencinglocalised
extirpationinlandlockedorisolatedpopulations(Biceetal.,2019;
Raadiketal.,2019).Therefore,itiscriticaltoclarifythepotential
presenceofcrypticdiversitywithinthesespecieswhichmaywar-
rantconservationactions.
Both G. brevipinnis and G. maculatus have been consi dered to
harbour cryptic species (Delgado et al., 2019; Jung et al., 2009;
Raadik, 2005; R aadik et al., 2019). Both speciesexhibitdeepmo-
leculardivergenceamong landmasses, suggestiveofcryptic diver-
sity (Watersetal., 2000,2010). DNA-basedphylogenieshavealso
rejectedmonophyly forAustralian andNew Zealand G. brevipinnis
(Campbelletal.,2022;Watersetal.,2010;Waters&Wallis,2001a),
and for all G. maculatus based on the placement of G. rostratus
(Burrid ge et al., 2012). Gene tic and morph ological di vergence has
alsobeenobservedamonglandlockedanddiadromouspopulations
in both spe cies (Campbel l et al., 2022; Carrea e t al., 2013; Dunn
et al., 2020; King et al., 2003; McDowall & Frankenberg, 1981;
Raadik, 2005; Rojo et al., 2020).However,despitetheseprevious
studiestherehasasofyetbeenlimitedinvestigationofregionalge-
neticvariationamongpopulationswithinAustraliaandNewZealand.
Thiscontrastsagainststudiesofnon-diadromousgalaxiids,inwhich
atleast 15 cryptic species have beenidentifiedwithinGalaxias oli-
duss.l.fromAustraliaand12crypticspeciesfromG. vulgariss.l.in
NewZealand, manyofwhichareextremelyrestrictedinrange and
highlythreatened(Campbelletal.,2022;Lintermans&Raadik,2019;
Raadik,2014 ,2019a,2019b).
1.1 | Aims
Theprimary aim of thisstudyistoaddresstheknowledgegap re-
gardinggeneticdivergenceamongpopulationsofG. brevipinnisand
G. maculatus within Aus tralia and New Ze aland. This in cludes the
first a ssessments fo r associated islan d populations in cluding Lord
Howe, Chath am, and New Zeala nd Subantarc tic islands . Both mi-
tochondrial DNAand nuclear allozymemarkerswere used for the
first timetoassessthe presence of candidates forcrypticspecies.
Inbothspecies,crypticdiversitymayrelateprimarilytomarinebar-
riers(e.g.,rangedisjunctionswithinlandmassesandamongislands).
However,wealso predictagreaterpropensity ofcryptic diversity
in G. brevipinnis dueto its greater climbing abilityand penetrance
inland(sensuRaadik,2005).
2 | METHODS
2.1 | Sample collection
Atotal of 259 G. brevipinnisindividuals were utilisedfor allozymes
(n = 149) and mtDNA (n = 149), including 14 GenBank sequences,
with 39 individuals in common across data sets. The G. macula-
tus samples comprised 117 individuals: allozymes n = 75, mtDNA
n = 71(this includes 17GenBanksequences),with28individualsin
commonacrossdatasets. WesampledthroughouttheirAustralian
ranges (52sitesforG. brevipinnis;50sitesforG. maculatus)and in-
cludedlocalitiesinNewZealand(30sitesforG. brevipinnis;foursites
forG. maculatus).AmongthesesiteswereNewZealandSubantarctic
Islands(CampbellIslandandAucklandIsland)forG. brevipinnis,Lord
HoweIslandforG. maculatus,andChathamIslandsforbothG. brevi-
pinnis and G. maculatus including PittIsland for G. brevipinnis (see
Figure 1; Tables S1and S2).Sampleswere preservedin95%etha-
nolorsnap-frozenusingliquidnitrogenandstoredattheAustralian
BiologicalTissuesCollection,basedattheSouthAustralianMuseum
orattheUniversityofTasmania.
2.2 | Allozyme laboratory procedures
Allozyme electrophoresis was undertaken on muscle homogen-
atesasdetailedpreviously(Adamsetal.,2 014;Morganetal.,2016;
Ovenden etal., 1993). Asearlier studieshaveshown thatG . brevi-
pinnis and G. maculatus are not close relat ives, each specie s was
screenedseparately.Outgroups comprised G. olidus (n = 4) for the
G. brevipinnisstudyandG. rostratus (n = 3)forG. maculatus.Thefol-
lowingenzymesandnon-enzymaticproteinsweresuccessfullysur-
veyedin one orboth species: ACON,ACP,ACYC, ADA, ADH,AK,
ALD,AP,CA, CK,DIA,ENOL,EST,FDP,FUM,G6PD, GAPD,GDA,
GLO, GOT, GP,GP I, GSR, IDH , LDH, MDH, ME, M PI, NDPK, NP,
PGAM, 6PGD, PGK, PGM, PK, PEPA, PEPB, PEPD, SOD, SORDH,
TPIandUGPP.Detailsofenzyme/locusabbreviations,enzymecom-
missionnumbers, electrophoretic conditions and stain recipes are
presentedinHammeretal.(20 07)andRichardsonetal.(1986).
2.3 | Analysis of allozyme data
Each allozyme data set was subjected to two types of analysis.
Initially,weemployedthemultivariateordinationtechniqueofprin-
cipal coordinates analysis(PCoA)in a stepwise manner toidentify
distinctgeneticlineagesandinstancesofputativegeneticadmixture
from fir st princip les, that is usin g individual s as the unit of anal y-
sisand withoutapriorireferencetolocality or mtDNAhaplotype.
Fulldetailsofthephilosophyandimplementationofthisprocedure
are prese nted in Adams et al . (2014). Thereafter,individualswere
assigned to their primary genetic lineage and furthergroupedinto
siteswithin eachprimarylineage—provided therewasnoevidence
ofgenetic heterogeneitywithinasite.Siteand/orlineage-specific
quantificationswerethen performed: (1)the numberofdiagnostic
differencesbetweenlineages(i.e.,fixeddifferences,allowingamaxi-
mumtoleranceof10%foranysharedalleleswhensummedtogether
fo ral o cus;seeA dams etal .(2014)fortherationaleunderpinningthis
approach),and(2)Nei'sunbiasedgeneticdistance(Nei'sD)between
sites. A neighbour-joining (NJ)tree wasalso constructed basedon
Nei's D. All methodological details for generating fixed difference
counts,Nei'sD,andNJtreesare providedinHammer etal.(20 07)
andAdamsetal.(2014).
4 of 16
|
JENSE et al.
2.4 | DNA extraction and PCR
DNAwasextractedusingtwomethods:aChelexextractionmethod
with 200 μLof 5% Chelex and40 μg Proteinase Kwhere the sam-
ples were i ncubated at 56°C for 2 h or usi ng the Qiagen DNe asy
tissue kit according to the manufactures spin-column protocol
for animal tissue. DNA extracts were used for the amplification
of the mtDNA cytochrome b gene using the following primers:
Cytb-Glu 5′-GAAAAACCACCGTTGTTATTCA-3′andCytb-Thr5′-
CGACT TCCGGATTACAAGACT-3′ (Waters & Wallis, 2001a). PCR
was performed in 25 μL volumes containing 1x Readymix Buffer
(Sigma-AldrichCo.LLC),0.5 μMofeachprimerand2 μLofDNAtem-
plate.Thermocyclingcomprised95°Cfor3 minfollowedby34 cycles
of95°Cfor15 s, 55°Cor 52°C for15 sand 72°C for30 s. Galaxias
maculatussamplesfromwe stAus tra liaweredegraded,andas hor ter
fragmentof 399 bp was amplified usingprimers L147245′-CGAAG
CTTGATATG A A AA ACC ATCGT TG-3′andH151495′-AAACTGCAG
CCCCTCAGA ATGATATTTGTCCTCA-3′(Streelmanetal.,20 02)and
2.5 mMMgCl2.Thermocyclingwasinitiatedwith7 cyclesof95°Cfor
30s,45°Cfor30sand72°Cfor1 minpriortothe34 cyclesdescribed
abovebutwith a48°Cannealingtemperature.PCR productswere
sent to Macrogen (Seoul, S. Korea –h t t p : / / d n a . m a c r o g e n . c o m ) for
purifi cation and seque ncing using Cytb- Glu and L14724 for their
specificamplicons.
2.5 | Mitochondrial sequence analysis
Sequenceswereeditedandalignedtoareferencesequencewith
Geneious Prime version 2021.2 (h t t p s : / / w w w . g e n e i o u s . c o m ).
Individualcytochromebsequencesrangedfrom 367to 1145 bp,
andanym issingdat ainthealignmentwasco dedas‘ N’.J Mode lte st
FIGURE 1 MapdepictingthelocationofGalaxias brevipinnis(a,b)andGalaxias maculatus(c,d)samplesanalysedusingallozymesand
mitochondrialDNA(mtDNA).(a,c)samplelocationsinAustralia;(b,d)samplelocationsinNewZealand.(e)Overviewoflocationsof
samplesites.Coloursofthemapmatchesotherfigures.AmoredetailedmapofNth1andNth2canbefoundinFigure S1.SeeSupporting
Informationformoredetails.
|
5 of 16
JENSE et al.
version 2.1 was used to identify the best-fit model of nucleo-
tide substitution from 88 candidates using the default settings
basedon thecorrectedakaikeinformationcriterion(Burnham &
Anderson,2004).Phylogenetic analyses were performedusing a
Bayesian inf erence strateg y implemented i n BEAST vers ion 2.6
(Bouckaertetal.,2019).BEAUti wasusedtocreateaninput file
forBEASTusingthebest-fit modelasdeterminedby jModelTest
2(Darribaetal.,2012;Guindon&Gascuel,2003),witharelaxed-
log-normal-clockmodelandaMCMCchainlengthof50,000,000
generations.TwotreepriorswereusedtocreateBayesianphylog-
enies: a Co alescent cons tant populat ion size tree prio r,suit able
for intra specific analy ses, and a Yule tree pr ior,w hich assumes
a consta nt rate of speciat ion and is often u sed for intersp ecific
analyses.Twoindependentruns wereconducted to testforsta-
tionarity and convergence of parameters, adequacy of burn-in,
andasufficienteffectivesamplesize(>200)usingTracerVersion
1.7(Rambautetal.,2018).Afteritwasestablishedeachruncon-
verged, LogCombinerwasused to combineoutputfrom the two
independentrunsusingaburn-inof10%.Tre eAnnotatorwasuse d
toprocessthetree,andFigtreeversion1.4(h t t p : / / t r e e . b i o . e d . a c .
u k / s o f t w a r e / f i g t r e e / )forvisualisation.
Phylogenies were also inferred using maximum likelihood in
IQ-TREE2(Minhetal.,2020),with1000bootstrapreplicatesand
twoindependentrunsusingthebest-fitmodelasdeterminedby
jMode lTest2a saforemen tio ned.Additi ona lly,MrBaye swa sru nas
analternativeBayesianinterferencestrategybecauseitallowsfor
multifurcation(Huelsenbeck&Ronquist,2001).MrBayesversion
3.2.6wasrunasplugininGeneiousPrime,usingthesubstitution
modelmostsimilartothoseselectedbyjModelTest2.ForG. bre-
vipinnisaMCMCchainlengthof2,000,000generationswasused
subsamp ling every 500 ge nerations. For G. maculatus a MCMC
chain length of 1,100,000 generations was used subsampling
every 20 0 generatio ns. Stationar ity and conver gence of param-
eters, adequacyofburn-inand a sufficienteffective samplesize
(>200)werecheckedinGeneiousPrime.TreeAnnotatorwasused
toprocessthetreeusingaburn-inof10%,andFigtreeversion1.4
forvisualisation.
Toprovidecontexttothegeographicclusteringobservedinthe
mtDNA phylogeny, genetic distances were estimated among and
within geographically concordant clades.The p-distancehas been
showntobe more appropriateforquantifyinggenetic distancesin
barcodingstudiesthanKimura2-parameterdistance(Srivathsan&
Meier,2012) and was quantified inMEGA X (Stecher etal., 2020)
usingthedefaultsettings.BecausethewestAustralianG. maculatus
sequenceswere~400 bp,we also calculatedthe genetic distances
withthealignmentprunedto400 bp.
As previous phylogenetic analyses havesuggested that G. bre-
vipinnis from Australia and New Zealand may not be monophy-
letic (Burridge et al., 2012; Burridge & Waters, 2020; Campbell
et al., 2022; Waters e t al., 2010), we i ncluded mtDN A sequences
from near relatives for context, along with outgroup sequences
from: G. vulgaris s. l . group (OQ738806–O Q73880 8), G. johnstoni
(OQ738646)andG. auratus(JN232629.1).WealsoincludedG. occi-
dentalis(OQ738863)andG. rostratus(JN232631.1)asoutgroupsfor
G. maculatusandtoprovideacontrastintermsofinterspecificand
intraspecificdivergences.
3 | RESULTS
3.1 | Galaxias brevipinnis
3.1.1 | Allozymedataset
Thefinal datasetforG. brevipinniscomprised 149individuals(plus
fourG. olidus)genotypedfor57putativeallozymeloci.Apreliminary
PCoAonallG. brevipinnis (Figure S2)confirmedthegeneticdistinc-
tivenessoftheNewZealand and Australianlineagesandidentified
discrete ‘southern’ and ‘northern’ clusters among the Australian
sites. We fur ther explor ed this heterogen eity through a s eries of
follow-upPCoAs,eachtargetingvarioussubsetsofthefullallozyme
dataset.
Aninitial PCoAofall135Australianfish (Figure 2a)revealed
three pr imary cluster s, correspond ing to a ‘southern’ grou p for
mostsitesplustwo‘northern’clustersforthe12sitesrepresent-
ing the northern-most catchments where G. brevipinnis occurs
(sitedetailsinTable S1).APCoAofthebroadlydistributed‘south-
ern’cluster(Figure 2b)subsequently identifiedtwo distinctsub-
groups:onewidespreadonmainlandAustraliaandonerestricted
toTasmania,hereinreferredtoas‘WIDE’and‘TAS’,respectively.
The pres ence of two distinc tive lineages, he rein referred to as
‘Nth1’ and ‘Nth2’, was al so further c onfirmed for t he ‘northe rn’
sites (Figure 2c).Therewasnoevidenceofgeneticheterogeneity
betwee n the two NZ sites , located in the e ast and west of th e
South Island (analysis not shown). The five clusters (NZ, TAS,
WIDE,Nth1,Nth2)ultimatelyidentifiedbyPCoAwerefullydiag-
nosableby2–12fixeddifferences(Table 1).
The only additional substructure found via PCoA was within
Nth1(Figure S3),withindividualsclustering into oneofthree geo-
graphicallydefinedregions,namely(1)allsitesintheClarenceRiver
Basin, (2) al l but one site in the B ellinger River B asin, and (3) the
‘NeverNever’site,closetotheboundaryofthesetwoadjacentRiver
Basins(Figure S1).The geographicstructure within Nth1was sup-
portedby1–3fixeddifferencesamongthethreeclustersidentified
(Figure S3). A summar y of the allozy me profiles fo r the five main
groupsandthethreegeographicclusterswithinNth1arepresented
inTable S3.
Givennoevidenceofgeneticheterogeneitywithinanysite,the
genetic affinitiesamong individualsiteswere visualised usingaNJ
tree (Figure S4).Thegeneticgroupingsdepictedarelargelyconcor-
dantwiththoseidentifiedusingPCoA,withtwoexceptions:(1)The
TASsub-groupisnestedwithintheWidegroup, and (2)the‘Never
Never’siteisnestedwithintheClarencegroup,insteadofappearing
asdistinctentities.
6 of 16
|
JENSE et al.
3.1.2 | Mitochondrialsequences
The mtDNA sequences were 618–1145 bp with an alignment
lengthof 1145 bp across 149 sequences from G. brevipinnis,three
from the G. vulgaris s. l. group,and single sequences fromG. aura-
tus and G. johnstoni.jModelTest2 selected Tamura-Nei+ Γ as the
optimal model of sequence evolution. Three geographically con-
cordantcladeswereevident fromallfourmtDNAphylogenies, de-
scribed here following previously defined allozyme descriptions:
(i) New Zealand, (ii) s outhern Austr alia (WIDE and TAS togeth er)
and(iii)northern-mostAustralia(Nth1andNth2together).TheNew
Zealandandnorthern-mostAustraliancladeswereeachsupported
withposteriorprobabilities>0.95in theBayesian phylogeniesand
withbootstrapvaluesof≥70%inthemaximumlikelihoodphylogeny
(Figure 3and Figures S5–S7).While the southern Australian clade
wassupportedwithaposteriorprobabilityof1.00intheCoalescent
Bayesianphylogenyandabootstrapsupportof88%inthemaximum
likelihoodphylogeny,itwas unsupportedintheother phylogenies.
ThephylogeniesdonotrecoverallG. brevipinnisasmonophyletic,as
NewZealandG. brevipinnisaresistertootherNewZealandGalaxias
withstrongsupportinallbuttheYuletreepriorphylogeny.Further
structuringwas observed withinNewZealand,with one claderep-
resenting both Auckland and Campbell Islands, and three sepa-
rate clad es representing S outh Island, No rth Island and Ch atham
Islands(includingPittIsland).Theseclades weresupported across
allphylogenieswith exception of the Chathams cladeforMrBayes
andthe Yule treeprior phylogeny.Relationshipsamongthese four
NewZealandcladesvariedacrossphylogeniesandmostlyreceived
lowsupport. Acrossall of G. brevipinnis,theminimumbetweendi-
vergence between clades mentioned above was 1.33% between
southernAustraliaandnorthern-mostAustralia,whilethemaximum
within-clade divergence was 2.51% for northern-most Australia
(Table 2).
3.2 | Galaxias maculatus
3.2.1 | Allozymedataset
Thefinal allozyme datasetforG. maculatuscomprised 52putative
loci for 75 indi viduals from ac ross eastern A ustralia plu s three G.
rostratus.As the raw dataclearly demonstratedthatthesetwosis-
terspecies were unequivocallydiagnosableatnumerousloci(eight
fixeddifferences;Table S4),theinitia lP CoA(Figure 4)wasrestricted
to G. maculatus. Two marginally distinctive clusters were evide nt
within G. maculatus, corresponding to (1) the L ake Hiawatha site
inNewSouthWales, Australia,and(2) all othersites.PCoA onthe
latterclusterdidnotrevealanyfurthergeneticdiscontinuities.The
twogroupsweredistinguishedbyasinglefixeddifferenceatGpand
major differencesinallelefrequency (Δp > 40%)atAcon,Got2 and
Pgm2 (Table S4).However,theNJtreedidnotdistinguishthesetwo
groups (Figure S8).
3.2.2 | Mitochondrialsequences
The mtDNA sequences were 367–1141 bp with an alignment of
1141 bp and comprising 71 G. maculatus sequences from across
Australia(includingwestAustralia),alongwithsequencesfromNew
Zealand,andSouthAmerica,plusoutgroupsequencesfromG. ros-
tratusand G. occidentalis.jModelTest2 selectedthebest-fitmodel
to be Tamura-Nei + I + Γ. Three mostly geographically concordant
FIGURE 2 Scatterplotsforthefirsttwodimensionsfromthe
PrincipalCoordinatesAnalyses(PCoA;dimension1onthex- a x i s
anddimension2onthey-axis)oftheallozymedataforAustralian
Galaxias brevipinnis.Axesarescaledtoreflecttherelative
percentagecontributionofeachdimension(showninbrackets).(a)
initialPCoAofall135Australianfish;(b)PCoAofthe72individuals
comprisingthe‘southern’cluster;(c)PCoAofthe63individuals
referabletothetwo‘northern’clusters.
TAB LE 1 Pairwisemeasuresofdiagnosabilityandgenetic
divergenceamongthefivecandidatetaxaidentifiedfromthe
Galaxias brevipinnisallozymedatasetwithmaximumsamplesizes
foreachtaxoninbrackets.Lowerlefttriangle = numberoffixed
differences;upperrighttriangle = unbiasedNei'sD.
Lineage
NZ
(14)
Nth1
(45)
Nth2
(18)
WIDE
(68) TA S ( 4)
NZ —0.17 0.18 0 .14 0.28
Nth#1 7—0.07 0.07 0.20
Nth#2 7 2 —0.08 0.20
Wide 5 4 4 —0.14
TAS 12 9 9 4—
|
7 of 16
JENSE et al.
clades were evident from all four phylogenies: South America,
New Zealand, and Australia (Figure 5 and Figures S9–S11). Each
of these gr oups received supp ort except for th e Australian cla de
in the Yule tree prior phylogeny (0.92 posterior probability).In all
four phylo genies, two se quences from t he Chatham Isla nds (New
Zealand) and the two from Lord Howe Island clustered closest to
easter n Australia n sequences , representi ng the disrupt ion to geo-
graphicconcordance. All phylogenies did notrecover G. maculatus
as monophyletic given the placement of G. rostratus as sister to
Australian and NewZealand,although topologicalsupport for this
waslowfromtheYuletreepriorphylogeny.Eachofthephylogenies
recognised west Australia as monophyletic with topological sup-
port.However,the placementofwestAustraliaassistertoalleast
Australianindividualswasonlyrecoveredandsupportedbythecoa-
lescentBayesianphylogeny(clusteringwithineastAustraliacannot
be refuted). The minimum divergence between the east and west
Australiansequenceswas2.56%(2.75%basedon400 bp)whilethe
maximumwithindivergencewas3.73%(3.85%basedon400 bp)for
SouthAmerica (Table 3).In contrast to allozymes,individuals from
LakeHiawathadidnotformtheirownclusterrelativetoothereast
Australiasequences.
4 | DISCUSSION
Freshwater-limited fishes have become well known for their
crypticdiversity (Adams et al., 2013,2014; Hammer et al.,2014;
Jerr y, 2008; Kir chner et al., 2021). However, such hidden diver-
sityislessexpectedfordiadromousfishes given theirgreaterdis-
persalabilities.Nevertheless,afewstudieshaverevealed cryptic
diversityindiadromousspecies(e.g.,Galván-Quesadaetal.,2016;
McMahan et al., 2013, 2021). Here, based on fixed differences
in allozymes and relationships and divergences estimated from
mtDNAsequences,wehaveidentifiedcrypticdiversitywithintwo
widespreadandwell-studieddiadromousfishesandsuggestcandi-
datesfordistincttaxa.
For both all ozymes and mtDN A cryptic dive rsity is sugge sted
within Australian G. brevipinnis, with two groups delineated: one
lineageinsouthernAustralia(TASandWIDE)andoneinthenorth
(Nth1 and Nth2). Allozymes further delineate the two northern-
mostgroups.Itisnotknown if thetwonorthern candidates(Nth1
and Nth2) are diadromous, nevertheless their catchments have
significant marine separation (>300 km) from other catchments
harbouring G. brevipinnis (Raadik,2005). Bot h candidate t axa also
display distinctive morphology from each other and from their
southern counterparts (Raadik, unpublished). Species distribution
modelsbasedonthelocationofotherG. brevipinnispopulationsand
including10environmental factors(e.g., averagerainfall,tempera-
ture,slopeandelevation),failedtopredicttheoccurrenceofthese
FIGURE 3 BayesianestimateofphylogenyforGalaxias
brevipinnisusingaCoalescentpriorinBEASTinferredfromthe
cytochromebregionofmitochondrialDNAandrootedusingG.
auratus(notshown).Numbersrepresentposteriorprobabilitiesand
thehorizontalbarsatnodesrepresentthe95%highestposterior
densityofthenodeheight.Thecoloursrepresentthecandidate
taxa(blue = TAS,pink = WIDE,purple = Nth1,orange = Nth2,
green = NZ).
8 of 16
|
JENSE et al.
northern-most populatio ns (Growns & West, 2008). This suggest
the northern-most populations could belocally adapted ecotypes,
howevermoreextensivesamplingwouldbeneededtofullyresolve
thetaxonomy and reject phenotypic plasticity.Thenorthern-most
candidatetaxaalsooccupythesame catchmentandmayhavepar-
titionedtheavailablehabitatatthescaleofstreamreaches.Similar
geographicpatternshavebeenobservedbetweenNewZealandG.
‘southern’andG. gollumoides,with apparentpartitioningofhabitat
atafinescaleintherivernetworktheyinhabit(Crowetal.,2010).
The Tasmania (TAS) group is also somewhat distinctive from
the other s outhern mainl and populations ( WIDE), with fou r fixed
differences and their isolation by a marine distance of ~250 km.
However, it is neste d within these WI DE populations in t he allo-
zyme tree and lacks supportfrom mtDNA.The recognitionofthe
TAS group has been made based on previous mtDNA evidence
(Waters&Wallis,2001a).Galaxias coxii(Macleay1880)andG. wee-
doni(Johnston 1883) have precedence for mainland Australia and
Tasmania,respectively,butweresynonymisedwithG. brevipinnisby
McDowallandFrankenberg(1981).Itwouldbebeneficialforfuture
molecularandmorphologicalanalysestoemployincreasedsampling
of locations and loci to further assess the distinctiveness of the
Tasmanianpopulation(TASgroup).
Incomparisonwithallozymes,ourmtDNAanalyseswereunable
to disting uish the two nor thern-m ost (Nth1 and Nth2) Aust ralian
candidatetaxafromeachother.Thisoutcomemostlikelyreflectsthe
mtDNA genetree/speciestree discordancethat isoften observed
among closely relatedspecies (e.g., Hammer et al., 2014; Unmack
et al., 2019). Furthermore, minimum between-clade mtDNA dis-
tanceswerenotappreciablylargerthanmaximumwithin-cladedis-
tances(e.g.,1.33%amongAustraliancladesversus1.90%withinthe
southernAustralianclade).Likewise,inthecaseoftheG. oliduscom-
plex,15speciesweresuggestedbasedonfixedallozymeplusmor-
phological differences, butonly eight of these were monophyletic
formtDNA,andtwodidnotreceiveanytopologicalsupport(Adams
et al., 2014). Underestimation of species diversity from mtDNA
relative to a llozymes coul d reflect introg ressive hybridis ation and
mtDNAcapture(Moore,1995)orincompletelineagesorting(Avise
etal.,1986).Regardless,thelevelofamongcladecytochromeb di-
vergence in G. brevipinnisis comparablewith othercryptic species
complexe s (Bronaugh et al. , 2020;H oekzema & Sidlauskas, 2014;
Jirsova et al., 2019), including several freshwater-limited galaxiid
radiations (Adams et al., 2014; Chakona et al., 2013; Vanhaecke
etal.,2012;Waters&Wallis,2001b;Wishartetal.,2006).
WithrespecttoNewZealandG. brevipinnis,ourresultssupport
previous suggestions that G. brevipinnis contains cryptic diversit y.
Additionally,ourobservedmtDNArelationshipsamongNewZealand
andnearbyislandG. brevipinnispopulationsalsoraise the potential
significance of marinebarriers for cryptic diversity in this lineage.
Fourreciprocallymonophyleticcladesareevident:(i)Aucklandand
CampbellIsland,(ii)ChathamIslands,(iii)SouthIslandNewZealand
and (iv) Nor th Island New Ze aland. That not al l clades were sup-
portedcanbeexplainedbytheshallowdivergenceobservedamong
themanddoes not preclude completebutrecent geneticisolation.
While our s tudy lacked allozyme data for all these localities, we
predictfixeddifferencesgivenobservationsoftheirgreaterresolv-
ing power elsewhere in this (described above) and other studies
(Adams et al.,2014;Hammeretal., 2014).Furthermore,thediver-
gence among the subantarctic islands, Chatham Islands and the
South IslandNewZealandaresupportedbynuclearSNPevidence
(Darestanietal.,2023).However,non-diadromousSouthIslandLake
populat ions also exhibit nuclear SNP d istinction fro m each other
and diadromous populations (Darestani et al., 2023), which raises
thepossibilitythatdivergencesobservedduringthatstudymayre-
flect intraspecificspatialpopulation genetic structure, rather than
TAB LE 2 RangeofcytochromebDNAsequencep-distanceforGalaxias brevipinnisandnearrelativesamong(lowertriangle)andwithin
(diagonal)clades.
G. auratus New Zealand Southern Australia Northern- most Australia G. vulga ris group
G. auratus
NewZealand 0.152–0 .163 0.000–0.021
SouthernAustralia 0.154–0 .172 0.057–0.079 0.000–0.019
Northern-mostAustralia 0.166–0.171 0.061–0.084 0.013–0.043 0.000–0.025
G. vulgaris group 0.162–0.167 0.057–0.079 0.070–0.090 0.080–0.095 0.041–0.047
G. johnstoni 0.160 0.070–0.086 0.054–0.072 0.061–0.073 0.083–0.088
FIGURE 4 FirsttwodimensionsfortheinitialPrincipal
CoordinatesAnalysisofallozymevariationfrom75Galaxias
maculatus.Therelativecontributionofeachdimensionisshown
alongsideeachaxis.BasesymbolasforFigure 1;individualsfrom
theLakeHiawathasiteareoverlainwiththeletter‘H’.
|
9 of 16
JENSE et al.
FIGURE 5 BayesianestimateofphylogenyforGalaxias maculatususingaCoalescentpriorinBEASTinferredfromcytochromebregion
ofmitochondrialDNA,rootedusingG . occidenta lis(notshown).Numbersrepresentposteriorprobabilitiesandthehorizontalbarsatnodes
representthe95%HighestPosteriorDensityofthenodeheight.Coloursrepresentthecandidatetaxa(red = Australia,green = NewZealand).
10 of 16
|
JENSE et al.
supportforcrypticspecies.Nevertheless,werecommendfurther
geneticassessments(includingmorevigoroussamplingoftheNorth
Island)toassessthetaxonomicdistinctionoftheselineages.
Our analyses of G. maculatusalsorevealedcandidatesfor
cryptic diversity.Weconfirmthelargegeneticdivergencespre-
viously observed among South American, New Zealand and
AustralianG. maculatus(Pavuk,1997;Watersetal.,2000;Waters
& Burridge, 1999), for which different subspecies have been
suggested (Stokell, 1966). We also detected large divergence
(2.6%–6.6%)betweeneastandwestAustralia,spatiallyseparated
by~1500 km.This geneticdivergencecontrasts withgenetic ho-
mogeneitywithineastAustralianG. maculatusatcomparablespa-
tialscales(seealsoO'Dwyer etal., 2021),withonly somesubtle
divergenceevident in the landlockedHiawatha Lake population.
Althou gh we lacked allozy me data for sout h-west Aust ralian G.
maculatus, Pavuk (1997 ) observed that allozyme distinction of
this popu lation exceeded t hat between ea st Australia a nd New
Zealand, albeit based only a handful of allozyme loci, none of
whichdisplayedfixeddifferences.Afollow-upassessmentof the
taxonomicdistinctiveness of south-west AustralianG. maculatus
basedonadditionalnuclear loci is clearly desirable, despitenot
beingflaggedtoharbourcrypticdiversityduringconventionaltax-
onomictreatment(McDowall&Frankenberg,1981).
The divergence of the south-west Australian G. maculatus
population may reflect marine isolation, here representing the
complete absence ofrivers inthe intervening Euclabasin, span-
ning~1500 km (Unmack, 2001;Unmack et al.,2012). Thisregion
has also been implicated for divergences of terrestrial animals
and plants (Guay et al., 2010; Schmidt et al., 2014), although
other freshwater taxa appear to have surmounted it (Unmack
et al., 2011). Al ternatively, the re putedly land locked lifec ycle of
south-west Australian G. maculatus (Morgan et al., 2006) may
havepromotedgeneticdivergence, similar to that suggested for
south-west Australian Galaxias truttaceus (Morgan e t al., 2016),
andother populationsofG. maculatusinsouth-easternAustralia
(McDowall&Frankenberg,1981;Pollard,1971a,1971b)andSouth
Americaatmuchsmallerspatialscales(downto~2 km;McDowall
& Frankenberg, 1981; Pollar d, 1971a, 1971b; Rojo et al., 2020;
Zatt ara & Premoli, 2005). H owever, larv al gene flow from eas t
Australiawouldalsobeimpededbytheeast-flowingLeeuwincur-
rent,withoce ancurrentsalsoimplicatedforgeneticstr ucturingin
SouthAmericanG. maculatus(González-Wevaretal.,2015).
AcrosstheiroverlappingAustralianrange,wesuggestthreepu-
tativecrypticcandidatetaxawithinG. brevipinnis(southernAustralia
(TAS and WIDE together), Nth1, Nth2) and highlight largegenetic
divergencewithintheG. maculatusgroup.Thisisconsistentwithour
expectationsbasedonthegreaterclimbingability ofG. brevipinnis,
allowingittopenetratefartherinlandandformisolatedpopulations.
Incontrast,G. maculatusareunabletoovercome3 mslopedpassages
orotherinlandbarriersthatarereadilysurmountable byG. brevip-
innis(Doehringetal.,2012).Thisdifferenceinnumberofcandidate
cryptic taxa also mirrorsdifferences in the diversity of their close
relatives.Galaxias brevipinnishas12closerelativesinNewZealand,
representedbyG. vulgaris s.l. lineages (Campbelletal., 2022), plus
G. johnstoniandG. pedderensisinTasmania(Burridgeetal.,2012).In
contrast, over a much broader spatial scale onmainlandAustralia,
the only cl ose relatives of G. maculatus are G. occidentalis and G.
rostratus(Burridge et al., 2012). These observations match expec-
tations if the ancestors of the ‘maculatus’ and ‘brevipinnis’ groups
haddispersalabilitiessimilartoG. maculatusandG. brevipinnistoday,
respectively.
Differencesin marine dispersal ability couldalsoexplainthe
different levels of cryptic diversity within G. brevipinnis and G.
maculatus.While both species have similar lifecycles, with juve-
niles fro m diadromous pop ulations spendin g 4–6 months at sea
(Jung et al ., 2009), G. maculatus populations on oceanic islands
(Lord Howe, Chatham islands) provided genetic evidence for
dispers al across large ma rine barrier s, as shown by the t wo in-
dividualsfrom bothChathamand LordHowethat cluster within
Australiansamples. Watersetal.(2000)alsofound G. maculatus
TAB LE 3 CytochromebDNAsequencedivergenceestimates(p-distance)forGalaxias maculatusandnearrelativesamongidentified
(lowertriangle)andwithin(diagonal)clades.Divergenceestimatesfortheprunedalignmentareshowninparentheses.ThetwoChatham
islandsindividualsthatclusteredwithAustraliawerenotincludedhere,becauseitnotablychangedthedivergenceestimates.
G. occidentalis South America New Zealand East Australia West Australia
G. occidentalis
SouthAmerica 0.165–0.192 0.003–0.037
(0.167–0.185) (0.000–0.038)
NewZealand 0.179–0.201 0.112–0.154 0.000–0.015
(0.170–0 .176) (0.121–0.143) (0.000–0.013)
EastAustralia 0.162–0.197 0.122–0.172 0.047–0.103 0.000–0.026
(0.158–0.178) (0.129–0.172) (0.049–0.070) (0.000–0.026)
WestAustralia 0.158– 0.176 0.127–0.157 0.036–0.093 0.026–0.066 0.000–0.030
(0.156–0.173) (0.132–0.157 ) (0.038–0.093) (0.027–0.068) (0.000–0.030)
G. rostratus 0.199(0.178) 0.125– 0.148 0.070–0.097 0.077–0.094 0.085–0.093
(0.133–0.143) (0.074–0.083) (0.078–0.083) (0.088–0.093)
|
11 of 16
JENSE et al.
individualsfromNewZealand withcloseraffiliationtoTasmania.
Incontrast,monophyly was observed forG. brevipinnisinsimilar
settings,suchasforTasmania,ChathamIslandsandNewZealand
sub-Antarcticislands(AucklandandCampbellIsland).Otolithsig-
natures also suggestthatthemajorityofdiadromousG. brevipin-
nisinNewZealand recruit to theirnatalstream,with larvae and
juveniles potentially orientating into nearshore river plumes to
limitdispersal (Augspurgeretal.,2021).Inmoreinsularsettings,
G. brevipinnisthatstraymayhavelimitedprobabilityofrecruiting
elsewhere.Additionally, even if they dorecruitelsewhere, they
maynotleavelong-term geneticsignatures(Waters etal., 2013).
Furthermore, G. maculatus appear to have greater larval abun-
dance at sea a s they dominate the w hitebait (larv ae) fishery in
NewZealand (McDowall, 1965;Yungnickel et al.,2020),andthis
confersgreatergeneflow.
5 | CONCLUSIONS AND TAXONOMIC
RECOMMENDATIONS
This study demonstrates additional cryptic diversity within two
widespreaddiadromousfishesoftheSouthernHemisphere.Based
onthesefindings, wesuggestthepresenceofseveralputativeun-
describedtaxa.We recommend futuresteps followtheintegrative
sp e cies deli n eati o nfra m ewo r kpro p osedbyUn macketal .(2021)and
include morphologicalanalyses such asthose described by Raadik
(2014). However, it shoul d be noted that a lack of mo rphologica l
distinctiondoes notnecessarilyprecludethe presenceofmultiple
species,northebenefitsoftheirrecognitionduringinvestigationsof
evolutionaryhistoryandecology(Delićetal.,2017 ).Thedifferentia-
tionweobservedwithinG. brevipinnisandG. maculatuscouldbea
resultof(geographic)isolation,habitatcomplexityorecologicaland
life history differences such as dispersal abilities andrecruitment.
Assessingthemigratorystatusofthetwonorthern-mostcandidate
taxaofG. brevipinnis,forexampleisessentialtounderstandpoten-
tial drive rs of diversifi cation. Thes e two north ern-mos t candidate
taxa of G. brevipinnis require more detailed stud y (morphological
andgenetic)butbasedoncurrentdata,G. brevipinnisinthat region
shouldberecognisedasaconservationunitseparatefromtheother
Australianpopulationsasaprecautionarymeasure.Whilewedonot
currentlysuggestsouth-westAustralia G. maculatusasacandidate
taxon,thelargegeneticdivergencewarrantsfurthergeneticassess-
mentand supportsits recognition as a separate conservationunit.
Therecognitionofsuchconservationunitswillhelpmaintainpoten-
tially important genetic diversity. While this study covers a broad
geographic range, finer geographic coverage may uncover other
regionallydistinctlineages.Indeed,withdiadromousfishesparticu-
larly vulnerabletohabitatlossand degradationinboth freshwater
andmarineenvironments, it is essentialthatsuch cryptic diversity
beidentifiedandconserved(Jungetal.,2009).
Cryptic diversity has beenpreviously suggestedin widespread
and vagil e taxa—those that ar e less affected by b arriers. This i n-
cludes both non-migratory and migratory bird species (Irwin
et al., 2011; Lohman et al., 2 010), planktonic marine copepods
(Halber t et al., 2013), an d marine and fre shwater bony and ca rti-
laginousfishes (D'Aloia et al., 2 017; Fahmi et al., 2021;Neilson &
Stepien,2009).For example,migratorypopulationsoftheWilson's
warbler (a bird) exhibit strong genetic differentiation, perhaps re-
flectingdifferencesinmigratorypatterns(Irwinetal.,2011).Similar
to diadromous fishes harbouring landlocked populations as a re-
sultofthelossoftheirmarinemigratoryphase,othertaxa,suchas
birds,experiencelossofmigrationresultinginresidentpopulations
that may livein sympatry but are reproductively isolated (Gómez-
Bahamónetal.,2020).Withenvironmentalchange,lossorchanges
inmigrationpathwaysacrosstaxaaretobeexpectedandcouldpro-
mote diversification (deZoeten &Pulido, 2020). Our resultshigh-
lightthatwidespreadandvagilespeciesshouldbeassessedtoavoid
erroneousrecognitionofspecies boundaries,theunderestimation
ofendemism(Lohmanet al., 2010),andinappropriatemanagement
andconservationpriorities.Suchassessmentsmaycorrectprevious
over-esti mation of species a bundance and ran ge. Genetic stu dies
such as ours can depict population structure andidentify popula-
tionsorconservationunitswithnovelgeneticdiversity tomaintain
andhighlightwhereecologicalworkandmanagementeffortsshould
befocussed.
AUTHOR CONTRIBUTIONS
Charlotte Jense:Conceptualization(equal);datacuration(equal);for-
malanalysis(lead);visualization(lead);writing–originaldraft(lead);
writing–reviewandediting(lead).Mark Adams:Conceptualization
(equal); data curation (equal); formal analysis (lead); visualization
(lead); writing –originaldraft(equal);writing– reviewand editing
(equal). Tarmo A. Raadik: Conceptualization (equal); data curation
(equal);writing–originaldraft (equal);writing–reviewandediting
(equal).Jonathan M. Waters:Datacuration(equal);writing–original
draft(equal);writing–reviewandediting(equal).David L. Morgan:
Data curation (equal); writing –originaldraft (equal);writing – re-
viewand editing(equal).Leon A. Barmuta:Writing–originaldraft
(equal); writing – reviewand editing (equal). Scott A. Hardie: Data
curation(equal);writing–originaldraft(equal);writing–reviewand
editing(equal).Bruce E. Deagle:Conceptualization(equal);datacu-
ration (equal); writing – original draft (equal);writing–review and
editing (equal). Christopher P. Burridge:Conceptualization (equal);
datacuration(equal);writing–originaldraft(equal);writing–review
andediting(equal).
ACKNOWLEDGEMENTS
This research was supported by the University of Tasmaniaand
byCommonwealthScientificandIndustrialResearchOrganization
(CSIRO). CJwasfunded by aCollegeofScience and Engineering
ResearchTrainingProgram(RTP)ScholarshipfromtheUniversity
ofTasmaniaand partiallybyaCSIROScienceLeader Fellowship
(R-91460) awarded to BED. Open access publishing facilitated
by Universi ty of Tasmania, as part of t he Wiley - Univers ity of
Tasmania agreement via the Council of Australian University
Librarians.
12 of 16
|
JENSE et al.
The authors would like to acknowledge Travis Ingram, Grace
Fortune-Kellyand Tania Kingforprovidingadditional G. maculatus
sample s from the Chath am Islands. T he authors al so thank Grac e
SimandReikaTakeuchifortheirassistanceinthelab.
CONFLICT OF INTEREST STATEMENT
Theauthorsdeclarethattheyhavenoconflictofinterest.
DATA AVAIL AB ILI T Y STAT E MEN T
ThemtDNAsequencedata are availableonGenBankunderacces-
sionnumbersOQ738671–OQ738862.
ORCID
Charlotte Jense https://orcid.org/0000-0002-6902-2289
Mark Adams https://orcid.org/0000-0002-6010-7382
Bruce E. Deagle https://orcid.org/0000-0001-7651-3687
Christopher P. Burridge https://orcid.org/0000-0002-8185-6091
REFERENCES
Adams, M ., Page, T., Hurwood, D., & Hughes , J. (2013). A molecular
assessm ent of species boun daries and phylogenetic affinities in
Mogurnda(Eleotridae): Acase study ofcryptic biodiversityinthe
Australianfreshwaterfishes. Marine and Freshwater Research, 64,
920.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 1 2 2 3 7
Adams,M.,Raad ik ,T.A .,Burri dg e,C.P.,&G eorges, A.(2014).Glo balbio-
diversi ty assess ment and hype r-crypt ic species co mplexes: Mo re
thanonespeciesofelephantintheroom?Systematic Biology,63(4),
518–533. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o / s y u 0 1 7
Allibone, R.M., & Wallis, G. P.(1993).Genetic variation and diadromy
in some native New Zealand galaxiids (Teleostei: Galaxiidae).
Biological Journal of the Linnean Society,50(1), 19–33. h t t p s : // d o i .
o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 3 1 2 . 1 9 9 3 . t b 0 0 9 1 6 . x
Ardren,W.,Baumsteiger,J.,&Allen,C.(2010).Geneticanalysisandun-
certain taxonomic st atus of threatened Foskett spring speckled
dace. Conservation Genetics, 11, 1299–1315. https:// doi. org/ 10.
1 0 0 7 / s 1 0 5 9 2 - 0 0 9 - 9 9 5 9 - 0
AtlasofLivingAustraliawebsite.(n.d.).Species page. h t t p s : / / b i e . a l a . o r g .
a u / s p e c i e s / h t t p s : / / b i o d i v e r s i t y . o r g . a u / a f d / t a x a / 6 d 3 3 6 d 3 8 - 6 2 4 9 -
4 b 4 2 - 9 4 6 2 - 3 0 f 7 3 3 1 f c 7 d d
Augspu rger, J., Jarvis, M ., Wallis, G., Ki ng, T., Ingram, T., Hicks , A., &
Closs,G.(2021).Landscapebiogeographyandpopulationstructur-
ingofafacultativelyamphidromousgalaxiidfish,Galaxias brevipin-
nis. h t t p s : / / d o i . o r g / 1 0 . 2 2 5 4 1 / a u . 1 6 2 2 8 3 8 0 9 . 9 2 6 1 6 1 8 1 / v 1
Avise, J. C., Ellis, D., Clarke, B. C., Robertson, A., &Jeffreys, A.J. (1986).
Mitochondrial DNA and the evolutionarygenetics of higher animals.
Philosophical Transactions of the Royal Society of London. B, Biological
Sciences,312(1154),325–342.https://doi.org/10.1098/rstb.1986.0011
Bice,C., Raadik,T.,David, B.,West,D., Franklin,P.,Allibone, R., Ling, N.,
Hitchmough,R.,&Crow,S.(2019).Galaxias maculatus.TheIUCNRed
List ofThreatened Species, 2019, e.T197279A129040788. https://
doi.org/10.2305/IUCN.UK.2019-3.RLTS.T197279A129040788.en
Bouckaert,R.,Vaughan, T.G.,Barido-Sottani,J.,Duchêne,S.,Fourment,
M., Gavr yushkina, A ., Heled, J., J ones, G., Kühne rt, D., De Maio,
N., Mat schiner, M., Men des, F. K., Mülle r,N. F., Ogil vie, H. A. , du
Plessis,L., Popinga, A.,Rambaut, A ., Rasmussen, D., Siveroni,I., …
Drumm ond,A.J.(2019).BE AST2.5:Anadvancedsoftw arepl at form
forBayesianevolutionaryanalysis.PLoS Computational Biology,15(4),
e1006650 . h t t p s : / / d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p c b i . 1 0 0 6 6 5 0
Bronaugh, W. M., Swar tz, E. R., & Sidlauskas, B. L. (2020). Bet ween
an ocean a nd a high place: Coas tal drainage i solation gener ates
endemic cryptic species in the cape kurper Sandelia capensis
(Anabantiformes:Anabantidae),caperegion,SouthAfrica.Journal
of Fish Biol ogy,96(5),1087–1099.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j f b . 1 4 1 8 2
Brown, D. M.,Brenneman, R.A., Koepfli, K.-P.,Pollinger,J. P.,Milá, B.,
Georgiadis,N.J.,Louis,E.E.,Grether,G.F.,Jacobs,D.K.,&Wayne,
R.K.(2007).Extensivepopulationgenetic structureinthegiraffe.
BMC Biology,5(1),57.https: // doi. o rg / 10. 118 6/ 1741- 7007- 5- 57
Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference:
UnderstandingAICandBICinmodelselection.Sociological Methods
& Research,33(2), 261–304. h t t p s : / /d o i . o r g / 1 0 . 1 1 7 7 / 0 0 4 9 1 2 41 0 4
26864 4
Burrid ge, C., McDo wall, R., C raw, D., Wilson, M ., & Waters, J. (201 2).
Marine dispersal as a pre-requisite for Gondwanan vicariance
amongelementsofthegalaxiidfishfauna.Journal of Biogeography,
39,306–321.https:// doi. org/ 10. 2307/ 41440554
Burridge,C.P.,&Waters,J.M.(2020).Doesmigrationpromoteorinhibit
diversi fication? A ca se study invo lving the do minant radi ation of
temperatesouthernhemispherefreshwaterfishes.Evolution,74(9),
1954–1965.h tt ps :// doi. or g/ 10. 1111/ evo. 14 06 6
Campb ell, C., Dut oit, L., Kin g, T., Craw, D., Burridge , C., Wallis, G ., &
Waters, J.(2022). Genome-wide analysisresolvestheradiationof
NewZealand'sfreshwaterGalaxias vulgariscomplexandreveals a
candidatespeciesobscuredbymitochondrialcapture.Diversity and
Distributions,28,2255–2267.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / d d i . 1 3 6 2 9
Carre a, C., Cussa c, V. E., & Ruz zante, D. E. (2013). Gen etic and phe-
notypic variation among Galaxias maculatus populations reflects
contrasting landscape effects between northern and southern
Patagonia. Freshwater Biology, 58(1), 36–49. https:// doi. org/ 10.
1111/fwb.120 36
Chakona,A.,Swartz,E.R., &Gouws,G.(2013).Evolutionary drivers of
diversificationanddistributionofasoutherntemperatestreamfish
assemblage:Testingtheroleofhistoricalisolationandspatialrange
expansion.PLoS One, 8(8), e70953. h t t p s : / / d o i . o r g / 1 0 . 1 3 7 1 / j o u r n
a l . p o n e . 0 0 7 0 9 5 3
Chapman,A., Morgan, D.L., Beatty,S.J.,&Gill, H. S. (2006).Variation
in life history of land-locked lacustrine and riverine popula-
tions of Galaxias maculatus (Jenyns 1842) in Western Australia.
Environmental Biology of Fishes, 77(1), 21–37. https:// doi. org/ 10.
1 0 0 7 / s 1 0 6 4 1 - 0 0 6 - 9 0 5 1 - 2
Closs, G. P., Smith, M., Barry, B., & Markwitz, A . (2003). Non-
diadromousrecruitmentin coastal populationsofcommonbully
(Gobiomorphus cotidianus). New Zealand Journal of Marine and
Freshwater Research, 37(2), 301–313. htt ps:// doi. or g/ 10. 1080/
0 0 2 8 8 3 3 0 . 2 0 0 3 . 9 5 1 7 1 6 8
Craig, M., Graham, R., Torres, R., Hyde, J., Freitas, M., Ferreira, B.,
Hostim-Silva,M.,Gerhardinger,L.,Bertoncini, Á.,&Robertson,D.
R.(2009).Howmanyspeciesofgoliathgrouperarethere?Cryptic
geneticdivergenceinathreatenedmarinefishandtheresurrection
ofa geopolitical species. Endangered Species Research,7,167–174.
htt ps:// doi. org / 10. 3354/ esr00117
Crow, S. K. , Closs, G. P., Waters, J. M. , Booker, D. J., & Wallis, G. P.
(2010).Nichepartitioning and the effectofinterspecificcompe-
titiononmicrohabitatusebytwosympatricgalaxiidstreamfishes.
Freshwater Biology,55(5),967–982.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 -
2 4 2 7. 2 0 0 9 . 0 2 3 3 0 . x
D'Aloia,C.C.,Bogdanowicz,S.M.,Harrison,R.G.,&Buston,P.M.(2017).
Crypticgeneticdiversity and spatial patterns of admixturewithin
Belizea n marine reser ves. Conservation Genetics, 18(1), 211–223 .
h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 9 2 - 0 1 6 - 0 8 9 5 - 5
Darest ani, M. M., Dutoit , L., Augspurger, J., Waters, J., & Ingram, T.
(2023). Effects of landlocking on the genome- wide divergence of
Galaxias brevipinnis populations in the South Island of New Zealand.
Authorea.
Darriba,D.,Taboada,G. L., Doallo, R.,& Posada, D.(2012). jModelTest
2: More models, new heuristics and parallel computing. Nature
Methods,9(8),772.h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / n m e t h . 2 1 0 9
|
13 of 16
JENSE et al.
deZoeten,T.,&Pulido,F.(2020). How migratory populationsbecome
resident.Proceedings of the Royal Society B: Biological Sciences,287,
20193011.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 8 / r s p b . 2 0 1 9 . 3 0 1 1
Delgado,M.L.,Górski,K.,Habit,E.,&Ruzzante,D.E.(2019).Theeffects
ofdiadro myandit slossongenomicdiverge nce:Thecaseofamphi-
dromousGalaxias maculatuspopulations.Molecular Ecology,28(24),
5217–5231. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 5 2 9 0
Delić,T.,Trontelj, P.,Rendoš, M., & Fišer,C.(2017).The importanceof
namingcrypticspeciesandtheconservationofendemicsubterra-
neanamphipods. Scientific Reports, 7(1), 3391.https:// doi. org/ 10.
1 0 3 8 / s 4 1 5 9 8 - 0 1 7 - 0 2 9 3 8 - z
DeWoody,J.A .,&Avise,J.C.(2000).Microsatellitevariationinmarine,
freshwaterand anadromousfishescomparedwith other animals.
Journal of Fish Biology, 56(3), 461–473. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j .
1 0 9 5 - 8 6 4 9 . 2 0 0 0 . t b 0 0 7 4 8 . x
Doehring,K., Young,R.G., &McIntosh,A .R.(2012).Facilitationofup-
streampassageforjuvenilesof aweakly swimmingmigratory gal-
axiid.New Zealand Journal of Marine and Freshwater Research,46(3),
303–313. h t t p s : / / d o i . o r g / 1 0 . 1 0 8 0 / 0 0 2 8 8 3 3 0 . 2 0 1 1 . 6 3 9 7 8 7
Dudgeon,D.,Arthington,A.H.,Gessner,M.O.,Kawabata,Z.-I.,Knowler,
D. J., Lévêqu e, C., Naiman, R . J., Prieur-R ichard, A.-H., S oto, D.,
Stiassny,M.L.J.,&Sullivan, C.A.(2006).Freshwaterbiodiversity:
Importance,threats,statusandconservationchallenges.Biological
Reviews, 81(2), 163–182. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 7 / S 1 4 6 4 7 9 3 1 0
5006950
Dunn, N ., O'Brien , L., Burrid ge, C., & Closs , G. (2020). Mo rphologic al
convergenceand divergence in galaxias fishes i n lentic and loti c
habitats.Diversity,12,1–25.h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / d 1 2 0 5 0 1 8 3
Egge, J. J. D., & Simons, A. M. (2006). The challenge of truly cryp-
tic diver sity: Dia gnosis and de scriptio n of a new madtom c atfish
(Ictaluridae:Noturus).Zoologica Scripta,35(6),581–595.h t t p s : // doi .
o r g / 1 0 . 1 1 1 1 / j . 1 4 6 3 - 6 4 0 9 . 2 0 0 6 . 0 0 2 4 7 . x
Eitel, M.,Osigus,H.-J.,DeSalle, R.,&Schier water, B. (2013). Global di-
versityofthePlacozoa.PLoS One,8(4),e57131.https:// doi. org/ 10.
1 3 7 1 / j o u r n a l . p o n e . 0 0 5 7 1 3 1
Fahmi, Tibbetts, I. R., Bennett, M. B., & Dudgeon, C. L. (2021).
Delimitingcrypticspecieswithinthebrown-bandedbambooshark,
Chiloscyllium punctatum in the Indo-Australian region with mito-
chondrial DNAand genome-wide SNP approaches. BMC Ecology
and Evolution, 21(1), 121. https:// doi. org/ 10. 1186/ s1286 2- 021-
01852 - 3
Feutry, P., Vergnes, A., Broderick, D., Lambourdiere, J., Keith, P., &
Ovenden, J. R. (2013). Stretched to the limit; cana short pelagic
larvaldurationconnectadultpopulationsofanindo-Pacificdiadro-
mous fis h (Kuhlia rupestris)? Molecular Ecology, 22(6), 1518–15 30.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 2 1 9 2
Fiser,C.,Robinson,C.T.,&Malard,F.(2018).Crypticspeciesasawindow
intothe paradigm shiftofthespeciesconcept[review].Molecular
Ecology,27(3),613–635.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 4 4 8 6
Frankham, R., Ballou, S. E. J. D., Briscoe, D. A., & Ballou, J. D. (2002).
Introduction to conservation genetics.CambridgeUniversityPress.
Galván-Quesada,S.,Doadrio,I.,Alda,F.,Perdices,A.,Reina,R.G.,García
Varela, M., Hernández,N.,CamposMendoza,A.,Bermingham, E.,
&Domínguez-Domínguez,O.(2016).Molecularphylogenyandbio-
geographyof the amphidromous fish genusDormitator Gill 1861
(Teleostei:Eleotridae).PLoS One,11(4),e0153538.https:// doi. org/
1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 1 5 3 5 3 8
Gómez-Bah amón, V., Márque z, R., Jah n, A. E., Mi yaki, C. Y., Tuero, D.
T.,Laverde-R,O.,Restrepo,S.,&Cadena,C.D. (2020).Speciation
associatedwith shif ts in migratorybehaviorinanavian radiation.
Current Biology, 30(7), 1312–1321. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . c u b .
2020. 01. 064
González-Weva r,C .,Salinas,P.,Hüne,M.,Segovia,N.,Vargas-Chacoff,
L.,Oda,E.,&Poulin,E.(2015).Contrastinggeneticstructureand
diversityofGalaxias maculatus(Jenyns,1848)alongtheChilean
coast: Stock identification for fishery management. Journal of
Heredity, 106(S1), 439–447. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / j h e r e d /
esv005
Grechko , V. V. (2013). Th e problems of mol ecular phyloge netics with
the example of squamate reptiles: Mitochondrial DNA markers.
Molecular Biology, 47(1), 55–74. https:// doi. org/ 10. 1134/ s0 026
8 9 3 3 1 3 0 1 0 0 5 6
Growns, I., & West, G. (2008). Classification of aquatic bioregions
through the use of distributional modelling of freshwater fish.
Ecological Modelling, 217(1), 79–86. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
ecolmodel.2008.06.009
Guay, P.J. , Chesser, R. T., Muld er,R . A., Af ton, A. D., Pa ton, D. C., &
McCracken,K.G.(2010).East-westgeneticdifferentiationinmusk
ducks (Biziura lobata)ofAustralia suggests late Pleistocenediver-
gence at th e Nullarbor Pl ain. Conservation Genetics, 11(6), 2105–
2120. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 9 2 - 0 1 0 - 0 0 9 7 - 5
Guindon,S.,&Gascuel,O.(2003).Asimple,fast,andaccuratealgorithmto
estimatelargephylogeniesbymaximumlikelihood.Systematic Biology,
52(5),696–704.https://doi.org/10.1080/10635150390235520
Halbert,K.M.K.,Goetze,E.,&Carlon,D.B.(2013).High crypticdiver-
sityacrosstheglobalrangeofthemigratoryplanktoniccopepods
Pleuromamma pisekiandP. gracilis. PLoS One,8(10),e77011.ht tp s ://
d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l . p o n e . 0 0 7 7 0 1 1
Hammer, M. P., Adams, M ., & Hughes , J. M. (2013). Evoluti onary pr o-
cessesandbiodiversity.InP.Humphries&K.Walker(Eds.),Ecology
of Australian freshwater fishe s(pp.49–80).CSIROPublishing.
Hammer,M.P.,Adams,M.,Thacker,C.E.,Johnson,J.B.,&Unmack,P.J.
(2019).Comparison of genetic structure in co-occurringfreshwa-
tereleotrids (Actinopterygii:Philypnodon)revealscryptic species,
likelytranslocationand regionalconservationhotspots.Molecular
Phylogene tics and Evolution,139,106556.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
y m p e v . 2 0 1 9 . 1 0 6 5 5 6
Hammer,M. P.,Adams, M., Unmack, P.J.,&Walker,K.F.(2007).Are-
think on Retropinna:Conservationimplicationsofa newtaxa and
significant genetic sub-structure in Australian smelts (Pisces:
Retropinnidae). Marine and Freshwater Research, 58, 327–341.
h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 0 5 2 5 8
Hammer, M. P.,Unmack, P.J., Adams, M., Raadik, T.A., & Johnson, J.
B.(2014).A multigene molecular assessmentofcryptic biodiver-
sityintheiconicfreshwaterblackfishes(Teleostei:Percichthyidae:
Gadopsis)ofsouth-easternAustralia.Biological Journal of the Linnean
Society,111(3),521–540.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / b i j . 1 2 2 2 2
Hicks, A. S., Jarvis, M. G.,David, B. O., Waters, J.M., Norman,M. D.,
& Closs, G . P.(2017). L ake and spec ies specif ic pattern s of non-
diadromousrecruitmentinamphidromousfish:Theimportanceof
localrecruitmentandhabitatrequirements.Marine and Freshwater
Research,68(12),2315–2323.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 1 6 3 8 7
Hoekzema, K.,& Sidlauskas,B. L. (2014).Molecular phylogenetics and
microsatellite analysis reveal cryptic species of speckled dace
(Cyprinidae:Rhinichthys osculus)inOregon'sGreatBasin.Molecular
Phylogene tics and Evolution,77,238–250.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .
ympev.2014.04.027
Huelsenbeck,J.P.,&Ronquist,F.(2001).MRBAYES:Bayesianinference
of phyloge netic trees . Bioinformatics, 17(8), 75 4–755. ht t p s : // doi.
o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / 1 7 . 8 . 7 5 4
Irwin,D.E.,Irwin,J.H.,&Smith,T.B.(2011).Geneticvariationandsea-
sonalmigratoryconnectivityinWilson'swarblers(Wilsonia pusilla):
Species-level differences in nuclear DNA between western and
easternpopulations.Molecular Ecology,20(15),3102–3115.ht t p s : //
d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 9 4 X . 2 0 1 1 . 0 5 1 5 9 . x
Jelks,H.L.,Walsh, S. J.,Burkhead, N. M.,Contreras-Balderas,S., Diaz-
Pardo,E.,Hendrickson,D.A.,Lyons,J.,Mandrak,N.E.,McCormick,
F.,Nelson,J.S.,Platania,S.P.,Porter,B.A.,Renaud,C.B.,Schmitter-
Soto,J.J.,Taylor,E.B.,&Warren,M.L.(2008).Conser vationstatus
of imperi led North A merican fre shwater and diadr omous fishes .
Fisheries, 33(8), 372–407. https:// doi. org/ 10. 1577/ 1548- 8446-
33.8. 372
14 of 16
|
JENSE et al.
Jerry, D. (2008). Phylogeography of the freshwater catfish Tandanus
tandanus(Plotosidae):Amodelspeciestounderstandevolutionof
theeasternAustralianfreshwaterfishfauna.Marine and Freshwater
Research,59,351.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 0 7 1 8 7
Jirsova,D.,Stefka,J.,Blazek,R.,Malala,J.O.,Lotuliakou,D.E.,Mahmoud,
Z. N., & Jirku, M. (2019).From taxonomic deflation tonewlyde-
tected c ryptic sp ecies: Hidde n diversity i n a widesprea d African
squeakercatfish[correction].Scientific Report s,9(2),19907.ht tps://
d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 1 9 - 5 6 3 4 8 - 4
Jung, C.A .,Barbee, N. C.,& Swearer,S.E.(2009).Post-settlementmi-
gratory behaviour and growth-related costs in two diadromous
fishspecies,Galaxias maculatusandGalaxias brevipinnis. Journal of
Fish Biology,75 (3),503–515.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 6 4 9 .
2 0 0 9 . 0 2 2 7 5 . x
King,K.J.,Young,K.D.,Waters,J.M.,&Wallis,G.P.(2003).Preliminary
gene tican aly sisofkoar o( Galaxias brevipinnis)inNewZealandlakes:
Evidenceforallopatricdifferentiationamonglakesbutlittlepopu-
lation subdivisionwithinlakes. Journal of the Royal Society of New
Zealand,33(3),591–60 0.https:// doi. org/ 10. 1080/ 03014 223. 2003.
9517747
Kirchn er, S., Sat tmann, H., Ha ring, E., Vic tor, R., & Kruckenh auser, L.
(2021).Hiddendiversity-delimitation of cryptic species and phy-
logeography of the cyprinid Garra species complex in northern
Oman. Journal of Zoological Systematics and Evolutionary Research,
59(2),411–427.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j z s . 1 2 4 3 8
Kochanov a, E., Nair, A., Sukh ikh, N., Vainola, R., & Hus by, A. (2021).
Patternsofcrypticdiversityandphylogeographyinfourfreshwater
copepodcrustaceansinEuropeanlakes.Diversity- Basel,13(9),448.
h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / d 1 3 0 9 0 4 4 8
Kon, T., Yoshino, T., Mukai, T., & Nis hida, M. (20 07). DNA sequen ces
identifynumerouscrypticspeciesofthevertebrate:Alessonfrom
thegobioidfishSchindleria.Molecular Phylogenetics and Evolution,
44(1),53–62.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . y m p e v . 2 0 0 6 . 1 2 . 0 0 7
Li, G., Jones, G., Rossiter, S. J., Chen, S. F.,Parsons, S., & Zhang, S. Y.
(2006).PhylogeneticsofsmallhorseshoebatsfromEastAsiabased
onmitochondrialDNAsequencevariation.Journal of Mammalogy,
87(6),1234–1240.h t t p s : / / d o i . o r g / 1 0 . 1 6 4 4 / 0 5 - m a m m - a - 3 9 5 r 2 . 1
Ling,N.,Gleeson,D.M.,Willis,K.J.,&Binzegger,S.U.(2001).Creating
and destroying species: The ‘new’ biodiversity and evolutionarily
signifi cant units am ong New Zealand 's galaxiid fis hes. Journal of
Fish Biology, 59, 209–222. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 6 4 9 .
2 0 0 1 . t b 0 1 3 8 7 . x
Lintermans, M. (2013). A review of on-ground recovery actions for
threatened freshwater fish in Australia. Marine and Freshwater
Research,64(9),775–791.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 1 2 3 0 6
Lintermans,M.,Geyle,H.M.,Beatty,S.,Brown,C.,Ebner,B.C.,Freeman,
R., Hammer, M. P., Humphreys, W. F., Kennard, M. J., Kern, P.,
Martin, K.,Morgan, D. L., Raadik, T. A., Unmack, P.J., Wager, R.,
Woinarski,J.C.Z.,&Garnett,S.T.(2020).Bigtroubleforlittlefish:
Identif yingAustralianfreshwaterfishesinimminentriskofextinc-
tion. Pacific Conservation Biology, 26(4), 365–377. https:// doi. org/
1 0 . 1 0 7 1 / P C 1 9 0 5 3
Lintermans, M., & Raadik, T. (2019). Galaxias brevissimus, Short-
tailed galaxias. The IUCN Red List of Threatened Species.
2019,T122902298A123382111. h t t p s : / /d o i . o r g / 1 0 . 2 3 0 5 / I U C N .
U K . 2 0 1 9 - 3 . R L T S . T 1 2 2 9 0 2 2 9 8 A 1 2 3 3 8 2 1 11 . e n
Lohman,D.J.,Ingram,K.K.,Prawiradilaga,D.M.,Winker,K.,Sheldon,
F.H., Moyle, R. G., Ng, P.K. L., Ong, P.S., Wang, L. K., Braile,
T. M., Astut i, D., & Meier, R. (2010). Cr yptic genetic d iversity
in “widespread” southeast Asian bird species suggests that
Philippineavianendemismisgravelyunderestimated.Biological
Conservation, 143 (8), 1885–1890. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . b i o -
c o n . 2 0 1 0 . 0 4 . 0 4 2
McDowall, B. (2003). The key to climbing in the Koaro. Water &
Atmosphere,11,16–17.
McDowal l, R. M. (1965). The composition of the New Zealand whitebait
catch, 1964.NZMarineDepartment.
McDowall, R. M., & Frankenb erg, R. S. (1981). The galax iid fishes of
Australia (Pisces: Galaxiidae). Records of the Australian Museum,
33(10), 443–605. h t t p s : / / d o i . o r g / 1 0 . 3 8 5 3 / j . 0 0 6 7 - 1 9 7 5 . 3 3 . 1 9 8 1 .
195
McDowall, R. M., & Suren, A . M. (1995). Emigrating larvae of koaro,
Galaxias brevipinnisGünther(Teleostei:Galaxiidae),fromtheOtira
River,NewZealand.New Zealand Journal of Marine and Freshwater
Research, 29(2), 271–275. https:// doi. org/ 10. 1080/ 00288 330.
1995.9516660
McMahan, C. D., Davis, M. P., Domínguez-Domínguez, O., García-de-
León, F. J., Doadrio,I., & Piller, K. R . (2013). Fromthe mountains
tothesea:Phylogeographyandcrypticdiversitywithinthemoun-
tain mul let, Agonostomus monticola(Teleostei:Mugilidae).Journal
of Biogeogra phy,40(5),894–904.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j b i . 1 2 0 3 6
McMahan,C.D.,Elías,D.J.,Li,Y.,Domínguez-Domínguez,O.,Rodriguez-
Machado,S.,Morales-Cabrera,A.,Velásquez-Ramírez,D.,Piller,K.
R., Chakrabarty, P., & Matamoros, W. A. (2021). Molecular sys-
tematic s of the Awaous ba nana comple x (river gobies; Teleo stei:
Oxudercidae).Journal of Fish Biolog y, 99(3), 970–979.h t tps:// d o i .
o r g / 1 0 . 1 1 1 1 / j f b . 1 4 7 8 3
Minh,B.Q.,Schmidt,H.A.,Chernomor,O.,Schrempf,D.,Woodhams,M.
D.,vonHaeseler,A.,&Lanfear,R .(2020).IQ-TREE2:Newmodels
andefficientmethods for phylogeneticinferencein the genomic
era.Molecular Biolog y and Evolution,37(5),1530–1534.h t t p s : // d o i .
o r g / 1 0 . 1 0 9 3 / m o l b e v / m s a a 0 1 5
Moore, W. S. (1995). Inferring phylogenies from mtDNA variation:
Mitochondrial-gene trees versus nuclear-gene trees. Evolution,
49(4), 718–726. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 5 5 8 - 5 6 4 6 . 1 9 9 5 . t b 0 2 3
0 8 . x
Morgan , D., Chapman , A., Bea tty, S., & Gill , H. (200 6). Distribu tion of
thespottedminnow(Galaxias maculatus(Jenyns,1842))(Teleostei:
Galaxi idae) in Western Aus tralia includi ng range extensions and
sympatric species. Records of the Australian Museum, Records,
23(Part 1), 7–11. h t t p s : / / d o i . o r g / 1 0 . 1 8 1 9 5 / i s s n . 0 3 1 2 - 3 1 6 2 . 2 3 ( 1 ) .
2006. 007- 011
Morgan , D. L., Beatt y, S. J., Clo se, P. G ., Allen, M. G ., Unmack, P. J.,
Hammer,M.P.,&Adams,M.(2016).Resolvingthetaxonomy,range
andecologyofbiogeographicallyisolatedandcriticallyendangered
populat ions of an Austr alian freshwate r galaxiid, Galaxias trutta-
ceus. Pacific Conservation Biology,22(4), 350–359.https:// doi. org/
1 0 . 1 0 7 1 / P C 1 5 0 4 3
Moritz,C.C.,Pratt,R.C.,Bank,S.,Bourke,G.,Bragg,J.G.,Doughty,P.,
Keogh,J.S.,Laver,R.J.,Potter,S.,Teasdale,L.C.,Tedeschi,L.G.,&
Oliver,P.M.(2018).Crypticlineagediversity,bodysizedivergence,
and sympatryinaspecies complex of Australianlizards(Gehyra).
Evolution,72(1),54–66.ht tps:// doi . org/ 10. 1111/ evo. 13380
Neilson, M. E., & Stepien, C . A. (2009). Evolution and phylogeography
of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei):
Evidence fornew cryptic species.Biological Journal of the Linnean
Society, 96(3), 664–684. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 3 1 2 .
2 0 0 8 . 0 1 1 3 5 . x
O'Dwyer,J.E.,Murphy,N., Tonkin, Z., Lyon,J.,Koster,W., Dawson,D.,
Amtstaetter,F.,&Harrisson, K.A. (2021).Aninvestigationofge-
netic connectivity shines a light on the relative roles of isolation
bydistanceandoceaniccurrentsinthreediadromousfishspecies.
Marine and Freshwater Research,72(10),1457–1473.https:// doi. org/
1 0 . 1 0 7 1 / m f 2 0 3 2 3
Ovenden,J.R., &White,R .W.(1990). Mitochondrial and allozyme ge-
neticsofincipientspeciationinalandlockedpopulationofGalaxias
truttaceus(Pisces:Galaxiidae).Genetics,124 (3),701–716.
Ovenden,J.R.,White,R.W.G.,&Adams,M.(1993).Mitochondrialand
allozyme genetics of two Tasmanian galaxiids (Galaxias auratus
and G. Tanycephalus, Pisces: Galaxiidae) withrestricted lacustrine
|
15 of 16
JENSE et al.
distributions. Heredity, 70(3), 223–230. https:// doi. or g/ 10. 1038/
h d y . 1 9 9 3 . 3 3
Pavuk, N. C. (1997). Population genetics of selected whitebait species:
Galaxias maculatus (Jenyns) and Lovettia sealii (Johnston).Univeristy
ofTasmania.
Pfenn inger, M., & Schwenk , K. (2007). C ryptic an imal specie s are ho-
mogeneously distributed among taxa and biogeographical re-
gions.BMC Evolutionary Biology,7(1),121.https:// doi. org/ 10. 1186/
1471- 2148- 7- 121
Pollard , D. (1971a). The biolo gy of a landloc ked form of the nor mally
catadromoussalmoniformfishGalaxias maculatus(Jenyns). I. Life
cycle and origin. Marine and Freshwater Research, 22(2), 91–124.
h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 9 7 1 0 0 9 1
Pollard , D. (1971b). The biolog y of a landlocke d form of the nor mally
catadromous salmoniform fish Galaxias maculatus (Jenyns). II.
Morphology and systematic relationships. Marine and Freshwater
Research,22(2),125–138.h t t p s : / / d o i . o r g / 1 0 . 1 0 7 1 / M F 9 7 1 0 1 2 5
Raadik,T.(2005).Dorrigoplateau–Abiodiversity“hot-spot”forgalaxi-
ids. Fishes of Sahul,19,98–107.
Raadik , T.(2019a). Galaxias gunaikurnai, Shaw g alaxias. T he IUCN Red
List of Threatened Species, 2019, e.T122902325A123382116.
h t t p s : / / d o i . o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 1 9 - 3 . R LT S . T 1 2 2 9 0 2 3 2 5
A 1 2 3 3 8 2 1 1 6 . e n
Raadik,T.(2019b).Galaxias longifundus,WestGippslandgalaxias.TheIUCN
red list of t hreatene d species, 2 019, E.T122902339A123382126 .
h t t p s : / / d o i . o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 1 9 - 3 . R L T S . T 1 2 2 9 0 2 3 3 9
A 1 2 3 3 8 2 1 2 6 . e n
Raadik, T., Bice, C., David, B., West, D., Franklin, P., Crow, S., Ling,
N., Allibone, R., & Hitchmough, R. (2019). Galaxias brevipinnis,
Climbinggalaxias.TheIUCNRedListofThreatenedSpecies,2019,
e.T197277A129040345. h t t p s : / / d o i . o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 1 9 -
3 . R L T S . T 1 9 7 2 7 7 A 1 2 9 0 4 0 3 4 5 . e n
Raadik,T.A.(2014).Fifteenfrom one: A revision of the Galaxias olidus
Günther, 1866 complex (Teleostei, Galaxiidae) in south-eastern
Australiarecognisesthreepreviouslydescribedtaxaanddescribes
12newspecies.Zootaxa,3898(1),1–198.https:// doi. org/ 10. 11646/
z o o t a x a . 3 8 9 8 . 1 . 1
Rambaut,A.,Drummond,A.J.,Xie,D.,Baele,G.,&Suchard,M.A.(2018).
Posteriorsummarizationinbayesianphylogeneticsusingtracer1.7.
Systematic Biology,67(5),901–904.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o /
syy032
Reid, G. M.,ContrerasMacBeath, T.,&Csatádi, K. (2013).Globalchal-
lengesinfreshwater-fishconser vationrelatedtopublicaquariums
andtheaquariumindustry.International Zoo Yearbook,47(1),6–45.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / i z y . 1 2 0 2 0
Richardson,B.J.,Baverstock,P.R.,&Adams,M.(1986).Allozyme electro-
phoresis: A handbook for animal systematics and population studies.
AcademicPress.
Roca, A . L., Geor giadis, N., Pe con-Slat tery, J., & O'Bri en, S. J. (2001).
Geneti c evidence for t wo species of ele phant in Africa . Science,
293(5534),1473–1477.h t t p s : / / d o i . o r g / 1 0 . 1 1 2 6 / s c i e n c e . 1 0 5 9 9 3 6
Rojo, J. H., Fernández, D. A., Figueroa, D. E., & Boy, C. C. (2020).
Phenotypicandgeneticdifferentiationbetweendiadromousand
landlockedpuyenGalaxias maculatus. Journal of Fish Biology,96(4),
95 6–9 67. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j f b . 1 4 2 8 5
Rowe, D. K., Ko nui, G., & Chr istie, K . D. (2002). Popu lation str ucture,
distribution, reproduction, diet,and relative abundance ofkoaro
(Galaxias brevipinnis) in a New Zealand l ake. Journal of the Royal
Society of New Zealand, 32(2), 275–291. htt ps: // doi. or g/ 10. 1080/
0 3 0 1 4 2 2 3 . 2 0 0 2 . 9 5 1 7 6 9 5
Schmidt, D. J., Grund, R., Williams, M. R., & Hughes, J. M. (2014).
Australian parasitic Ogyris butterflies: East–west divergence of
highly-specialized relicts. Biological Journal of the Linnean Society,
111(2),473–484.h t t p s : / /d o i . o r g / 1 0 . 1 1 1 1 / b i j . 1 2 2 1 0
Srivathsan, A.,& Meier,R. (2012). On the inappropriateuseofKimura-
2-parameter (K2P) divergences in the DNA-barcoding literature.
Cladistics, 28(2), 19 0–194. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 6 - 0 0 3 1 .
2 0 1 1 . 0 0 3 7 0 . x
Stecher,G.,Tamura,K., &Kumar,S.(2020). Molecular evolutionaryge-
neticsanalysis(MEGA)formacOS.Molecular Biology and Evolution,
37(4),1237–1239.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / m o l b e v / m s z 3 1 2
Stokell, G. (1966). Preliminary investigation of systematics of some
Tasmanian Galaxiidae.PapersandProceedingsoftheRoyalSociety
ofTasmania.
Streelman,J.T.,Alfaro,M.,Westneat,M.W.,Bellwood,D.R.,&Karl,S.
A.(2002).Evolutionaryhistoryoftheparrotfishes:Biogeography,
ecomorphology, and comparative diversity. Evolution, 56(5),
961–971.
Struck,T.H.,Feder,J.L.,Bendiksby,M.,Birkeland,S.,Cerca,J.,Gusarov,V.
I.,Kistenich, S., Larsson,K.H.,Liow, L.H.,Nowak,M. D.,Stedje,B.,
Bachmann,L.,&Dimitrov,D.(2018).Finding evolutionaryprocesses
hiddenin cryptic species. Trends in Ecology & Evolution,33(3), 153–
163. https://doi.org/10.1016/j.tree.2017.11.007
Tigano,A.,&Russello,M.A.(2022).Thegenomicbasis ofreproductive
and migratory behaviour in a polymorphic salmonid. Molecular
Ecology,31(24),6588–6604.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 6 7 2 4
Unmack, P. J. (2001). Biogeography of Australian freshwater fishes.
Journal of Biogeography, 28(9), 1053–1089. https:// doi. org/ 10.
1 0 4 6 / j . 1 3 6 5 - 2 6 9 9. 2 0 0 1 . 0 0 6 1 5 . x
Unmack,P.J., Adams,M.,Bylemans,J.,Hardy,C.M.,Hammer,M. P.,&
Georges,A .(2019).Perspectives ontheclonal persistenceof pre-
sumed ‘gho st’ genome s in unisexual o r allopoly ploid taxa a rising
via hybridization. Scientific Reports, 9(1), 473 0. https:// doi. org/ 10.
1 0 3 8 / s 4 1 5 9 8 - 0 1 9 - 4 0 8 6 5 - 3
Unmack , P. J., A dams, M., Hamme r, M. P., Johnson, J. B ., Gruber, B.,
Gilles,A.,Young,M.,&Georges,A.(2021).Plottingforchange:An
analyticalframeworktoaiddecisionsonwhichlineagesarecandi-
datespeciesin phylogenomicspeciesdiscovery.Biological Journal
of the Linnean Society, 135(1), 117–137. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 /
biolinnean/blab095
Unmack,P.J.,Bagley,J.C.,Adams, M., Hammer,M. P.,&Johnson,J. B.
(2012).MolecularphylogenyandphylogeographyoftheAustralian
freshwa ter fish genus Galaxiella, with an e mphasis on dw arf gal-
axias (G. pusilla). PLoS One,7(6),e38433.https:// doi. org/ 10. 1371/
journal.pone.0038433
Unmack,P.J.,Hammer,M.P.,Adams,M.,&Dowling,T.E.(2011).Aphy-
logenetic analysis of pygmy perches (Teleostei: Percichthyidae)
with an ass essment of th e major histo rical infl uences on aqu atic
biogeographyinsouthernAustralia.Systematic Biology,60(6 ), 797–
812. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o / s y r 0 4 2
Unmack,P.J.,Sandoval-Castillo,J.,Hammer,M.P.,Adams,M.,Raadik,T.A.,
&Beheregaray,L. B. (2017). Genome-wideSNPs resolveakeycon-
flictbetweensequenceandallozymedatatoconfirmanotherthreat-
enedcandidatespeciesofriverblackfishes(Teleostei:Percichthyidae:
Gadopsis). Molecular Phylogenetics and Evolution, 109, 415–420.
https://doi.org/10.1016/j.ympev.2017.02.013
Vanhaecke , D., Garcia de Leani z, C., Gajardo, G ., Young, K., San zana,
J., Orellana, G., Fowler, D., Howes, P., Monzon-Arguello, C., &
Consuegra,S.(2012).DNAbarcodingandmicrosatelliteshelpspe-
ciesdelimitation and hybrid identificationinendangeredgalaxiid
fishes. PLoS One, 7(3), e32939. h t t p s : // d o i . o r g / 1 0 . 1 3 7 1 / j o u r n a l .
pone.0032939
Wallis,G.P.,Judge,K.F.,Bland,J.,Waters,J. M., &Berra,T.M. (2001).
Genetic diversity in New Zealand Galaxias vulgaris sensu lato
(Teleoste i: Osmeriforme s: Galaxiidae): A te st of a biogeographic
hypothesis. Journal of Biogeography, 28(1), 59–67.https:// doi. org/
1 0 . 1 0 4 6 / j . 1 3 6 5 - 2 6 9 9 . 2 0 0 1 . 0 0 5 3 5 . x
Wan, Q. H., Wu, H ., Fujihara, T., & Fang , S. G. (200 4). Which gene tic
marker for which conservation genetics issue? Electrophoresis,
25(14),2165–2176.h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / e l p s . 2 0 0 3 0 5 9 2 2
Ward,R. D., Woodwark,M.,&Skibinski, D. O. F.(1994).Acomparison
ofgenetic diversity levelsinmarine,freshwater,andanadromous
16 of 16
|
JENSE et al.
fishes . Journal of Fish Biology, 44(2), 213–232.https:// doi. org/ 10.
1 1 1 1 / j . 1 0 9 5 - 8 6 4 9 . 1 9 9 4 . t b 0 1 2 0 0 . x
Waters, J., Fraser,C., & Hewitt, G. (2013). Founder takes all:Density-
dependent processes structure biodiversity. Trends in Ecology &
Evolution,28,78–85.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . t r e e . 2 0 1 2 . 0 8 . 0 2 4
Waters,J.M.,&Burridge, C. P.(1999).Extremeintraspecificmitochon-
drialDNAsequencedivergenceinGalaxias maculatus (Osteichthys:
Galaxi idae), one of the wo rld's most w idesprea d freshwater f ish.
Molecular Phylogenetics and Evolution, 11 (1),1–12.https:// doi. org/
1 0 . 1 0 0 6 / m p e v . 1 9 9 8 . 0 5 5 4
Waters, J. M.,Dijkstra, L.H., &Wallis, G.P.(2000). Biogeographyofa
southern hemisphere freshwater fish: How important is marine
dispersal?Molecular Ecology,9(11),1815–1821.https:// doi. org/ 10.
1 0 4 6 / j . 1 3 6 5 - 2 9 4 x . 2 0 0 0 . 0 1 0 8 2 . x
Waters, J. M.,Rowe,D.L., Burridge,C .P.,& Wallis,G. P.(2010). Gene
trees versus species trees: Reassessing life-history evolution in
a freshwater fish radiation. Systematic Biology, 59(5), 504–517.
h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / s y s b i o / s y q 0 3 1
Waters, J.M.,&Wallis,G.P.(2001a).Cladogenesisandlossofthema-
rinelife-historyphaseinfreshwatergalaxiidfishes(Osmeriformes:
Galaxiidae). Evolution, 55(3), 587–597. ht tps:// doi. org/ 10. 1554/
0 0 1 4 - 3 8 2 0 ( 2 0 0 1 ) 0 5 5 [ 0 5 8 7 : C a l o t m ] 2 . 0 . C o ; 2
Waters,J.M.,&Wallis,G.P.(2001b).MitochondrialDNAphylogenetics
ofthe Galaxias vulgaris complex fromSouth Island, NewZealand:
Rapid ra diation of a species flock. Journal of Fish Biology, 58(4),
1166–1180. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 6 / j f b i . 2 0 0 0 . 1 5 2 0
Wishart,M., Hughes,J.,Stewart,B.,&Impson, D.(2006).Extremelev-
elsof intra-specificdivergenceamongcape peninsulapopulations
of the cap e galaxias, G alaxias zebratus C astelnau 1861, reve als a
possiblespeciescomplex.African Journal of Aquatic Science, 31(1),
99 –106 .h t t p s : / / d o i . o r g / 1 0 . 2 9 8 9 / 1 6 0 8 5 9 1 0 6 0 9 5 0 3 8 7 6
Yungnickel,M.R.,Hickford,M.J.H.,&Schiel,D.R.(2020).Spatio-temporal
variationinspecies compositionofNewZealand'swhitebaitfishery.
New Zealand Journal of Marine and Freshwater Research,54(4), 679–
694.https:// doi. org/ 10. 1080/ 00288 330. 2020. 1745854
Zatt ara, E. E., & P remoli, A . C. (2005). G enetic str ucturin g in Andean
landlocked populations of Galaxias maculatus: Effect s of biogeo-
graphichistory.Journal of Biogeography,32(1),5–14.
SUPPORTING INFORMATION
Additional supporting information can be found online in the
SupportingInformationsectionattheendofthisarticle.
How to cite this article: Jense,C.,Adams,M.,Raadik,T.A.,
Waters,J.M.,Morgan,D.L.,Barmuta,L.A.,Hardie,S.A.,
Deagle,B.E.,&Burridge,C.P.(2024).Crypticdiversity
withintwowidespreaddiadromousfreshwaterfishes
(Teleostei:Galaxiidae).Ecology and Evolution,14,e11201.
https://doi.org/10.1002/ece3.11201