ArticlePDF Available

Quantitative Determination of Biogenic Element Contents and Phytochemicals of Broccoli (Brassica oleracea var. italica) Cooked Using Different Techniques

MDPI
Plants
Authors:

Abstract and Figures

In this study, the effect of different cooking techniques on broccoli moisture, total phenolic, total flavonoid, and radical scavenging capacity results, polyphenol contents, and their quantitative values was investigated. The total phenolic quantities of fresh and cooked broccoli samples were assessed to be between 36.32 (conventional boiling) and 423.39 mg GAE/100 g (microwave heating). The radical scavenging activities of the broccoli samples were reported between 2.55 (conventional boiling) and 4.99 mmol/kg (microwave heating). In addition, catechin and rutin quantities of the fresh and cooked broccoli samples were measured to be between 2.24 (conventional boiling) and 54.48 mg/100 g (microwave heating), and between 0.55 (conventional boiling) and 16.33 mg/100 g (microwave heating), respectively. The most abundant elements in fresh and cooked broccoli samples were K, Ca, P, S, and Mg. The results showed some changes depending on cooking techniques compared to the control. The bioactive properties of broccoli samples cooked by means of conventional boiling, boiling in vacuum bag, and high-pressure boiling were established to be lower compared to the fresh sample. Catechin, 3,4-dihydroxybenzoic acid, rutin, and gallic acid were the key phenolic compounds of fresh and cooked broccoli samples. The phenolic components of broccoli were significantly affected by the applied cooking techniques. The highest protein in broccoli samples was determined in the broccoli sample cooked by boiling in a vacuum bag. There were statistically significant changes among the mineral results of broccoli cooked with different cooking methods.
Content may be subject to copyright.
Plants2024,13,1283.https://doi.org/10.3390/plants13101283www.mdpi.com/journal/plants
Article
QuantitativeDeterminationofBiogenicElementContentsand
PhytochemicalsofBroccoli(Brassica oleracea var. italica)
CookedUsingDierentTechniques
FahadAlJuhaimi
1
,IsamA.MohamedAhmed
1
,MehmetMusaÖzcan
2,
*andNurhanUslu
2
andZainabAlbakry
3
1
DepartmentofFoodScienceandNutrition,CollegeofFoodandAgriculturalSciences,KingSaud
University,POBox2460,Riyadh11451,SaudiArabia;faljuhaimi@ksu.edu.sa(F.A.);
iali@ksu.edu.sa(I.A.M.A.)
2
DepartmentofFoodEngineering,FacultyofAgriculture,SelcukUniversity,Konya42031,Turkey ;
nurhanuslu.gmuh@gmail.com
3
CollegeofOceanFoodandBiologicalEngineering,JimeiUniversity,Xiamen361021,China;
20236100007@jmu.edu.cn
*Correspondence:mozcan@selcuk.edu.tr;Tel. :+90-332-2232933
Abstract:Inthisstudy,theeectofdierentcookingtechniquesonbroccolimoisture,totalphe-
nolic,totalavonoid,andradicalscavengingcapacityresults,polyphenolcontents,andtheirquan-
titativevalueswasinvestigated.Thetotalphenolicquantitiesoffreshandcookedbroccolisamples
wereassessedtobebetween36.32(conventionalboiling)and423.39mgGAE/100g(microwave
heating).Theradicalscavengingactivitiesofthebroccolisampleswerereportedbetween2.55(con-
ventionalboiling)and4.99mmol/kg(microwaveheating).Inaddition,catechinandrutinquantities
ofthefreshandcookedbroccolisamplesweremeasuredtobebetween2.24(conventionalboiling)
and54.48mg/100g(microwaveheating),andbetween0.55(conventionalboiling)and16.33mg/100
g(microwaveheating),respectively.Themostabundantelementsinfreshandcookedbroccolisam-
pleswereK,Ca,P,S,andMg.Theresultsshowedsomechangesdependingoncookingtechniques
comparedtothecontrol.Thebioactivepropertiesofbroccolisamplescookedbymeansofconven-
tionalboiling,boilinginvacuumbag,andhigh-pressureboilingwereestablishedtobelowercom-
paredtothefreshsample.Catechin,3,4-dihydroxybenzoicacid,rutin,andgallicacidwerethekey
phenoliccompoundsoffreshandcookedbroccolisamples.Thephenoliccomponentsofbroccoli
weresignificantlyaffectedbytheappliedcookingtechniques.Thehighestproteininbroccolisamples
wasdeterminedinthebroccolisamplecookedbyboilinginavacuumbag.Therewerestatistically
significantchangesamongthemineralresultsofbroccolicookedwithdifferentcookingmethods.
Keywords:broccoli;cookingmethods;bioactivecompounds;antioxidantcapacity;polyphenols;
elements;HPLC
1.Introduction
Broccoli(Brassicaoleraceavar.italica),whichisnativetotheEasternMediterranean
basinandItaly,andamemberoftheBrassicaceaefamily,isahorticulturalandafavorite
wintervegetablewithhighnutritionalvalue,bioactivecompounds,andantioxidantprop-
erties[1–5].Phenoliccompounds,phenolicacidssuchaskaempferolandascorbicacid
inbroccolihaveantioxidantcapacity[6,7],Broccolicontainssignicantamountsofhealth-
benecialcompounds,whichhasincreaseditsconsumptionbypeople[8].Theconsump-
tionofbroccolihasapositiveeectonhumanhealththankstosomeminerals,phenolics,
xanthophylls,sulforaphane,phenolics,anduniquebioactivecompounds[6].Broccolicon-
tainssignicantamountsofhealth-benecialcompounds,whichhasincreaseditscon-
sumptionbypeople.Mineralsarethebuildingblocksofbones,teeth,blood,andmuscle
Citation:AlJuhaimi,F.;Mohamed
Ahmed,I.A.;Özcan,M.M.;Uslu,N.;
Albakry,Z.Quantitative
DeterminationofBiogenicElement
ContentsandPhytochemicalsof
Broccoli(Brassicaoleraceavar.italica)
CookedUsingDierentTechniques.
Plants2024,13,1283.hps://doi.org/
10.3390/plants13101283
AcademicEditor:Nicoleta-Gabriela
Hădărugă
Received:27March2024
Revised:24April2024
Accepted:1May2024
Published:7May2024
Copyright:©2024bytheauthors.
Submiedforpossibleopenaccess
publicationunderthetermsandcon-
ditionsoftheCreativeCommonsAt-
tribution(CCBY)license(hps://cre-
ativecommons.org/licenses/by/4.0/).
Plants2024,13,12832of12
cells,andincreasetheusefulnessofvitamins[9–11].Phenoliccompoundsplayacrucial
roleinexertingawidevarietyofbiochemicalandpharmacologicaleects[12,13].
Thephenoliccomponentsoffoods,andthereforetheirpotentialantioxidantactivi-
ties,areaectedbydomesticprocessingproceduressuchascooking[14,15]andthermal
treatments[16,17].Ifoxidativeenzymesarenotinactivatedduringcooking,theycanin-
creasethechemicalorenzymaticdegradationofphenoliccompoundsorcausechemical
changesthatmayaectqualityproperties[18,19].Steaminghasbeenreportedtobemore
benecialforcertainhealth-promotingcompoundsinfruitsandvegetables[20].Inaddi-
tiontocausingchangesinthechemicalcompositionofgreenleafyvegetables,cooking
processescanalsocausechangesintheconcentrationsofbioactivecompounds[21–24].
Amongthemainfactorsthatcanchangethelevelofphytochemicalsinvegetablesbefore
consumption,themostimportantonesareheat-involvingpreparation/processing,ther-
maldegradation,oxidation,leaching,andmatrixdegradation[25].Broccolicookedwith
variouscookingmethodscanalsobeusedinsaladsorsidedishes.Althoughthemost
commoncookingmethodsareusuallyboilingandsteaming,theuseofsousvidehasre-
centlybecomewidespreadinordertopreservethecontentandincreasethebioavailability
ofbioactivecompoundsinvegetables[20,26,27].Variousheattreatmentsarewidelyap-
pliedtogreenleafyvegetables,whicharecommonlyconsumedraworcooked/processed,
toneutralizemicroorganismsandenzymesandincreaseavor,thusincreasingproduct
safetyandquality[26,28].Vegetablesandfruitsarefoodstusthathaveanimportant
placeinnutrition.Theycontributetohumanhealthnotonlywiththevitaminsandmin-
eralstheycontain,butalsowiththeirphenoliccomponents.Combinedphytochemicalsin
plantfoodsactthroughvariousmechanismssuchasantioxidantactivity,cellregenera-
tion,andtumorsuppression[29,30].Vegetabl esareconsumedrawaswellasprocessed
andconsumedasvariousproducts.Sinceitisdicultforvegetablestobestoredfora
longtimewithoutspoilinginfreshform,itispossibletostorethemforalongtimeby
applyingprocessessuchasboilinganddrying[31].Boilingisappliedtopreventenzy-
maticchangeincannedfoodproductionuntilheattreatment,topreventthenegativeef-
fectsofenzymesinthedryingprocessuntiltheendofdrying,andtopreventtheeectof
enzymesuntilconsumptioninfreezingpreservation.Enzymesarerenderedinactiveby
theseprocesses.Thus,therawmaterialispreventedfromundergoingenzymaticchanges
untilitissterilized.Inaddition,themicroorganismloadisalsoreducedbyboiling[32].
Dryingisoneoftherstpreservationmethodsusedbyhumanitytopreservefood.Today,
inparallelwiththeincreasingconsumptiontrendofready-madefoods,theimportanceof
driedvegetables,whichisoneofthebasicingredientsofsuchfoods,isincreasingallover
theworld.AlthoughvegetablesaregenerallyconsumedasfreshinTurkey,vegetables
driedbyvariousmethodsarealsodemandedbynalconsumersandfoodindustrycom-
panies.Thedriedvegetablesectorhasbecomeoneoftheimportantsub-sectorsofthefood
industrywiththemoderndryingmethodsitusesaswellasthetraditionalsundrying
method[30,33].Boilingandsteamingarethemostwidelyusedtraditionalcookingmeth-
ods.Traditionalcookingmethodscanleadtoalossofnutrientsandavorelements[34].
Newcookingmethodsarebeingstudiedtominimizetheselosses.Theobjectiveofthis
investigationwastomonitortheeectofdierentcookingtechniquesonbroccolimois-
ture,totalphenolic,totalavonoid,andradicalscavengingcapacityresults,polyphenol
contents,andtheirquantitativevalues.
2.ResultsandDiscussion
2.1.TotalPhenolicandTotalFlavonoidAmounts,andAntioxidantActivityValue sofBroccoli
CookedwithDierentCookingTechn iques
Themoisturequantitiesandbioactivepropertiesofbroccolioretscookedwithdif-
ferentcookingtechniquesaredisplayedinTable1.Theresultsshowedsomechangesde-
pendingoncookingtechniquescomparedtothecontrol.Themoisturequantitiesoffresh
andcookedbroccolisampleswerefoundtobebetween50.84(microwave)and91.82%
Plants2024,13,12833of12
(conventionalboiling).Ingeneral,themoisturequantitiesofbroccolicookedbymeansof
conventionalboiling(openpot),boilinginavacuumbag,andhigh-pressureboilingwere
establishedtobehigherwhencomparedtofresh,whilethemoistureamountsofbroccoli
samplescookedwithconventionalheatingandmicrowaveheatingapplicationarefound
tobelowerthanthoseoffreshones.
Tab le1.Bioactivepropertiesofbroccolicookedusingdierenttechniques.
ProcessMoistureContent
(%)
TotalPhenolic
Content(mg/100g)
TotalFlavonoid
Content(mg/100g)
AntioxidantActivity
(mmol/kg)
Fresh86.93±0.09*d116.69±0.74c157.30±5.06b4.75±0.02c
Conventionalboiling91.82±0.50a**36.32±0.46f60.16±0.90f2.55±0.10f
Boilinginavacuumbag89.58±0.05c75.63±1.24d92.86±0.78d3.75±0.05d
High-pressureboiling90.41±0.70b65.05±1.95e73.81±0.78e3.60±0.04e
Conventionalheating72.84±0.68e148.04±4.32b147.78±2.50c4.99±0.00a
Microwaveheating50.84±1.81f423.39±3.96a409.68±3.67a4.79±0.00b
*Standarddeviation;**valueswithineachcolumnfollowedbydierentleersaresignicantly
dierent:p<0.05”.
Whilethetotalphenolicamountsofcookedbroccolisampleswerefoundtobebe-
tween36.32(conventionalboiling)and423.39mgGAE/100g(microwaveheating),the
totalphenolicquantityoffreshbroccolisampleswas116.69mgGAE/100g.Also,thetotal
avonoidquantityoffreshbroccolisampleswasrecordedas157.30mg/100g,whilethe
totalavonoidquantitiesofcookedbroccolisamplesrangedbetween60.16(conventional
boiling)and409.68mg/100g(microwaveheating).Inaddition,theantioxidantactivities
offreshandcookedbroccolisampleswereassessedtobebetween2.55(conventionalboil-
ing)and4.99mmol/kg(microwaveheating).Whilethetotalphenolandtotalavonoid
quantitiesandtheantioxidantactivitiesofbroccolisamplescookedbymeansofconven-
tionalboiling,boilinginavacuumbag,andhigh-pressureboilingwerefoundtobelower
comparedtothefreshsample,thetotalphenol,totalavonoid,andantioxidantactivities
ofbroccolisamplescookedinconventionalheatingandmicrowaveheatingwereestab-
lishedtobehigherthantheresultsofbothfreshbroccoliandbroccolicookedusingthe
otherthreecookingtechniques.Thefactthatthetotalphenolandtotalavonoidquanti-
ties,andtheradicalscavengingcapacityvaluesofbroccolisamplescookedusingconven-
tionalandmicrowaveheatingwerehigherthantheothersisprobablycausedbyMaillard
reactionproductsthatmayoccurasaresultofdryheating.Theamountoftotalphenols
andavonoidsinbroccolisamplescookedbymeansofboilinginavacuumbag,high-
pressureboiling,andconventionalboilingmayhavedecreasedduetothedeterioration
oftheirstructure.Therewerestatisticallysignicantchangesamongthebioactivecharac-
teristicsofbroccolicookedwithdierentcookingmethods(p<0.05).Manyphysicaland
chemicalchangesandthermaldeteriorationsmayoccurinthestructureofmostvegeta-
blescookedusingboiling,microwaveoven,steaming,orbakingmethods[35].Inaddition,
Maillardreactionproducts,formedasaresultofheattreatment,canproducestronger
antioxidantproducts[36,37].Themoisturecontentsoffreshbroccoli,water-boiledbroc-
coli,steamedbroccoli,andmicrowavedbroccoliwere89.86%,93.26%,91.87%,and93.27%,
respectively[38].Theproteincontents(dw)offreshbroccoli,water-boiledbroccoli,
steamedbroccoli,andmicrowavedbroccoliwere3.34%,2.27%,2.68%,and2.26%,respec-
tively[38].Inadditiontothese,thetotalphenoliccontentofbroccolirangedfrom412to
987mgGAE/100ginfreshsamples[34,39].Thetotalphenoliccontentsofrawbroccoliand
broccolicookedusingMW,boiling,andsteamingwere169.6mgGAE/100g,164.3–185.8
mgGAE/100g,164.2–171.3mgGAE/100g,and67.9–139.3mgGAE/100g,respectively[40].
Thetotalphenoliccontentandradicalscavengingactivityofrawbroccoliwerefoundto
be2282.97mgGAE/kgand0.189mmolTE/g,respectively[5].Thetotalphenolicresultand
radicalscavengingactivitiesofrawbroccolicookedusingthesousvidemethodat
Plants2024,13,12834of12
dierenttimes(5,10,and15min.)rangedbetween1845.88and2098.96mgGAE/kg,and
between0.119and0.158mmolTE/g,respectively[5].Thetotalphenolicandantioxidant
activityresultsofrawbroccolicookedusingthesteamingmethodatdierenttimes(5,10,
and15min.)rangedbetween1981and2188.3mgGAE/kg,andbetween0.144and0.174
mmolTE/g,respectively[5].Thetotalphenoliccontentandantioxidantactivitiesofraw
broccolicookedusingtheboilingmethodatdierenttimes(5,10,and15min.)ranged
between926.56and1692.47mgGAE/kg,andbetween0.069and0.133mmolTE/g,respec-
tively[5].Thetotalphenoliccontentofvegetablesdecreasedusingbothconventionaland
sousvidecookingmethods[41].Theantioxidantactivityvaluesofrawbroccoliandbroc-
colicookedusingMW,steaming,andboilingwere637,563–692,599–732,and249–617
µmolTE/100g,respectively[40].Turkmenetal.[42]pointedoutthatthecookingmethod
withthehighesttotalphenolcontentofbroccoliwasmicrowavecooking.Inaprevious
study,therewerenodierencesinantioxidantactivitybetweenfreshandcookedbroccoli
[43].Ithasbeenstatedthattherearedierencesevenintheantioxidantcapacityresults
ofdierentpartsofbroccoli[44,45].Findingspointedoutsomeuctuationscomparedto
theresultsofseveralstudies.Thesechangesinresultsareprobablyduetothegenetic
variationofthesample,dierentclimaticfactors,plantparts,boilingtimesandtypes,ag-
ronomicalconditions,harvesttime,variety,andanalyticalconditionssuchassolventused
andextractiontypes.
2.2.ThePhenolicCompoundsofFreshandCookedBroccoliSamples
Thephenolicprolesandtheirquantitativeresultsoffreshandcookedbroccolisam-
plesaredisplayedinTabl e2.Catechin,3,4-dihydroxybenzoicacid,rutin,andgallicacid
werethekeyphenoliccompoundsoffreshandcookedbroccolisamples(Figure1).Itwas
observedthatthephenoliccomponentsofbroccoliweresignicantlyaectedbytheap-
pliedcookingtechniques.Itwasdeterminedthattheamountofphenoliccomponentsof
cookedbroccolisignicantlydecreasedwhencomparedtothefreshsample.However,
theamountsofsomephenolicprolesdiereddependingonthecookingtechnique.The
phenoliccomponentsofbroccolisamplescookedwithconventionalheatingandmicro-
waveheatingwerehigherwhencomparedtotheresultsoffreshbroccoliandbroccoli
cookedusingothercookingtechniques.Whilethegallicacidquantitiesofbroccoliorets
variedbetween0.52(conventionalboiling)and4.29mg/100g(microwaveheating),the
3,4-dihydroxybenzoicacidquantitiesofbroccolisampleswereassessedtobebetween0.41
(conventionalboiling)and15.17mg/100g(microwaveheating).Inaddition,thecatechin
andrutinquantitiesoffreshandcookedbroccolisampleswereassessedtobebetween
2.24(conventionalboiling)and54.48mg/100g(microwaveheating),andbetween0.55
(conventionalboiling)and16.33mg/100g(microwaveheating),respectively.Thehighest
caeic(7.07),syringic(6.21),p-coumaricacid(2.03),ferulicacid(4.72),resveratrol(1.11),
quercetin(4.68),cinnamicacid(0.78),andkaempferol(5.12mg/100g)werefoundinbroc-
colicookedinthemicrowave.Asignicantpartofthephenoliccompoundsinbroccoli
wereadverselyaectedbyconventionalboiling,boilinginavacuumbag,andhigh-pres-
sureboilingmethods.Thecatechincontentsofbroccolicookedbymeansofboilingina
vacuumbag,high-pressureboiling,andconventionalboilingwerehigherthanbroccoli
cookedusingconventionalboiling.Therewerestatisticallysignicantchangesamongthe
phenoliccompoundsofbroccolicookedwithdierentcookingmethods(p<0.05).Gun-
athilakeetal.[46]pointedoutthatthereisadecreaseintotalpolyphenoliccompounds
duringthecookingofsomevegetables,andthisdecreaseisprobablyduetothediusion
ofpolyphenoliccompoundsintoboilingwater.Theeectofcookingmethodsonthere-
leaseofphenolicconstituentsshowedthatheattreatmentscauseapartialhydrolysisof
conjugatedpolyphenols.Thereleaseofpolyphenolsintofreephenoliccompoundstrig-
geredbyheattreatmenthasbeenreported[23,35].Caeicacid,chlorogenicacid,andne-
ochlorogenicacidwerethemajorphenolicacidsfoundinbroccoli[45,47].Freshbroccoli
andbroccolicookedinthemicrowavecontained1.845and0.173µg/gquercetin,1.230and
0.474isorhamnetin,4.976and7.252trans-ferulicacid,0.262and1.258p-coumaricacid,and
Plants2024,13,12835of12
52.158and46.489µg/gchlorogenicacid,respectively[48].Lopez-Hernandezetal.[40]
reportedthat0.27mg/kggallicacid,16.43chlorogenicacid,0.97caeicacid,10.89isoquer-
citrin,0.16myricetin,0.30luteolin,and0.12quercetinwereidentiedinrawbroccoli.
Also,0.28–0.32and0.29–0.35mg/kggallicacid,11.97–18.76and15.25–25.84chlorogenic
acid,0.72–1.06and0.93–1.27caeicacid,10.49–11.16and9.87–12.86isoquercitrin,0.14–
0.18and0.14–0.18myricetin,0.31–0.37and0.39–15.01luteolin,and0.10–0.13and0.11–
0.15mg/kgquercetinweredetectedinbroccolicookedusingMWandsteaming,respec-
tively[40].Inanotherstudy,adequateamountsofchlorogenic,neochlorogenic,andferu-
licacidsweredetectedinthreebroccolisamples(stem,leaf,andower),whilecaeicand
p-coumaricacidsweremeasuredinbroccolileafextracts.Inaddition,gallicacidandva-
nillicacidweredetectedinbroccolistemsandowerextracts,whilesinapicacidwasde-
tectedonlyinbroccolileavesandowerextracts[49].Ourndingsillustratedsomeuc-
tuationscomparedtotheresultsofpreviousstudies.Thesechangesarelikelyduetobroc-
colivariety,agriculturalandclimaticfactors,harvesttime,usedparts,solventtypes,ex-
tractionmethods,andsomeotherfactorssuchasanalyticalconditions,storage,andcook-
ingtimesandtypes.
Broccoli—Uncooked(control)
Broccoli—Conventionalboiling
010 20 30 40 min
-10
0
10
20
30
40
50
60
mAU
280nm,4nm (1.00)
Gallic acid
3,4-Dihydroxybenzoic acid
Cate chin
Caffe ic acid
Syrin gic a cid
Rutin
p-Coumaric acid
Ferulic a cid
Resveratrol
Quercetin
Cinnamic acid
Kaempferol
010 20 30 40 min
-5
0
5
10
15
20
25
30
mAU
280nm,4nm (1.00)
Gallic acid
3,4-Dihydroxybenzoic acid
Cate chin
Caffe ic acid
Syringic acid
Rutin
p-Coumaric acid
Ferulic a cid
Resveratrol
Quercetin
Cinnamic acid
Kaempferol
Plants2024,13,12836of12
Broccoli—Boilinginavacuumbag
Broccoli—High-pressureboiling
Broccoli—Conventionalheating
010 20 30 40 min
0
5
10
15
mAU
280nm,4nm (1.00)
Gallic acid
3,4-Dihydroxybenzoic acid
Cate chin
Caffe ic acid
Syrin gic a cid
Rutin
p-Coumaric acid
Ferulic a cid
Resveratrol
Quercetin
Cinnamic acid
Kaempferol
010 20 30 40 min
-5
0
5
10
15
20
mAU
280nm,4nm (1.00)
Gallic acid
3,4-Dihydroxybenzoic acid
Cate chin
Caffe ic acid
Syringic acid
Rutin
p-Coumaric acid
Feru lic acid
Resveratrol
Quercetin
Cin namic acid
Kaempferol
010 20 30 40 min
0
50
100
150
200
mAU
280nm,4nm (1.00)
Gallic acid
3,4-Dih ydroxybenzoic acid
Cate ch in
Caf fe ic ac id
Syringic acid
Rut in
p-Coumaric acid
Ferulic acid
Resv era tro l
Quercet in
Cinnamic acid
Kaempferol
Plants2024,13,12837of12
Broccoli—Microwaveheating
Figure1.Phenolicchromatogramsofbroccolisamples.
Tab le2.Phenoliccompoundsofbroccolicookedusingdierenttechniques.
PhenolicCompounds
(mg/100g)FreshConventional
Boiling
Boilingina
VacuumBag
HighPressure
Boiling
Conventional
Heating
Microwave
Heating
Gallicacid1.53±0.43*c0.52±0.01f1.91±0.57b1.02±0.36d0.66±0.22e4.29±0.94a
3,4-Dihydroxybenzoic
acid3.48±0.36b
**0.41±0.10f2.13±0.26d1.77±0.22e2.83±0.91c15.17±0.21a
Catechin24.00±2.11b2.24±0.49f10.93±1.48d7.01±1.43e13.36±2.69c54.48±0.75a
Caffeicacid0.83±0.30b0.13±0.02d0.15±0.06c0.06±0.0e0.86±0.36b7.07±0.17a
Syringicacid0.60±0.06c0.08±0.02e0.19±0.02d0.16±0.04d0.92±0.49b6.21±0.17a
Rutin4.16±0.77b0.55±0.06f1.29±0.17d0.62±0.14e2.56±0.69c16.33±1.58a
p
-Coumaricacid0.21±0.06e0.02±0.00f0.08±0.01d0.06±0.01e0.36±0.14b2.03±0.06a
Ferulicacid0.21±0.04d0.07±0.03f0.12±0.02e0.26±0.09c0.59±0.27b4.72±0.21a
Resveratrol0.44±0.03b0.07±0.01e0.31±0.01c0.13±0.03d0.46±0.08b1.11±0.22a
Quercetin0.67±0.04b0.62±0.11c0.50±0.08d0.40±0.05e0.38±0.10f4.68±0.52a
Cinnamicacid0.16±0.03d0.15±0.03d0.09±0.03e0.30±0.04c0.33±0.04b0.78±0.04a
Kaempferol0.23±0.06e0.31±0.08d0.21±0.06
ef0.51±0.06c0.74±0.02b5.12±0.47a
*standarddeviation;**valueswithineachrowfollowedbydierentleersaresignicantlydif-
ferentatp<0.05.
2.3.MineralandProteinContentsofBroccoliCookedwithDierentCookingTechn iques
Themineralandproteinresultsoffreshandcookedbroccolisamplesaredepictedin
Table3.ThemostabundantelementsinfreshandcookedbroccolisampleswereK,Ca,P,
S,andMg.TheelementwiththehighestamountamongthemicroelementswasFe,fol-
lowedbyZn,Mn,B,andCuindecreasingorder.WhilethePamountsoffreshandcooked
broccolisamplesrangedbetween3114.94(fresh)and4383.36mg/kg(conventionalboil-
ing),theKquantitiesofbroccolisampleswereassessedtobebetween19,638.27(conven-
tionalboiling)and32,729.06mg/kg(boilinginvacuumbag).Also,theCaandMgamounts
offreshandcookedbroccolisampleswerefoundtobebetween3555.67(fresh)and
6052.mg/kg(conventionalboiling),andbetween1197.02(fresh)and5039.27mg/kg(con-
ventionalheating),respectively.Inaddition,theSquantitiesoffreshandcookedbroccoli
samplesvariedbetween3167.03(conventionalboiling)and5112.97mg/kg(microwave
heating).Lookingatthemicroelements,theFeandZnquantitiesoffreshandcookedbroc-
colisampleswereassessedtobebetween41.46(boilinginvacuumbag)and55.99mg/kg
(conventionalheating),andbetween11.88(fresh)and17.53mg/kg(conventionalheating),
respectively.Also,whiletheCuresultsoffreshandcookedbroccolisamplesrangedbe-
tween2.56(conventionalheating)and3.55mg/kg(boilinginvacuumbag),theMn
amountsofbroccolisamplesweremeasuredtobebetween9.61(fresh)and15.22mg/kg
(high-pressureboiling).Ingeneral,themineralcontentofbroccolisamplescookedby
010 20 30 40 min
0
25
50
75
100
mAU
280nm,4nm (1.00)
Gallic acid
3,4-Dihydro xybenzoic acid
Cat ech in
Caf fe ic a cid
Syringic acid
Rut in
p-Coumaric acid
Ferulic acid
Resv era tro l
Quercet in
Cinnamic acid
Kaempferol
Plants2024,13,12838of12
dierentmethodsincreasedwhencomparedtothecontrol(fresh).Partialreductionswere
observedinsomeoftheappliedcookingtechniques.Theproteincontentsoffreshand
cookedbroccolisamplesrangedbetween13.35%(fresh)and17.27%(boilinginavacuum
bag).Therefore,thehighestproteininbroccolisampleswasdeterminedtobeinthebroc-
colisamplecookedbymeansofboilinginavacuumbag,followedbythesamplecooked
usingconventionalboiling,high-pressureboiling,microwaveheating,conventionalheat-
ing,andthefreshsampleindescendingorder.Therewerestatisticallysignicantchanges
amongthemineralresultsofbroccolicookedwithdierentcookingmethods(p<0.05).
BroccoliisagoodsourceofelementssuchasCa,Mg,Na,K,Ca,Cl,P,andS,andtrace
elementssuchasFe,Zn,MnandCu,whichareessentialforhumannutrition[7,50].Fresh
broccoli,water-boiledbroccoli,steamedbroccoli,andmicrowavedbroccolicontained
8.67,8.01,8.11,and8.61mg/100gZn;2.66,1.68,2.33,and1.78mg/100gFe;112.52,28.52,
94.21,and63.79mg/100gCa;562.22,275.37,447.72,and205.20mg/100gMg;3992.2943.76,
3796.3,and2460.02mg/100gK;576.52,235.45,379.58,and256.61mg/100gNa;respec-
tively[38].Freshbroccolicontained562.22Mg,3992.4K,576.52Na,8.67Zn,2.66Fe,and
112.52Camg/100g(dw)[38].Ourresultsshowedsomedierenceswithresultsdescribed
byFarnhametal.[50],Mukherjeeetal.[7],andMansouretal.[38],whostatedthatbroc-
coliisagoodalternativesourceofCa,K,andNa.Itwasthoughtthatthebioactiveprop-
erties,phenoliccompounds,andmineralandproteinquantitiesoffreshandcookedbroc-
colisamplesprobablyvarydependingongrowingconditions,theharvesttimeofbroccoli,
soilplantnutrientelements,cookingtechniques,cookingtime,andanalyticalconditions.
Tab le3.Mineral(mg/kg)andcrudeprotein(%)contentsofbroccolicookedusingdierenttech-
niques.
Treatment
sPKCaMgSFeCuMnZnBProtein
Control
(Fresh)
3114.94±
21.59f
29730.49
±299.48
*c
3555.67±
54.46f
1197.02±
50.90f
3935.51±
34.56e
46.60±
1.40e
2.73±
0.03d
9.61±
0.55f
11.88±
0.11f
2.76±
0.04d
13.35±
0.32f
Conventio
nalboiling
4383.36±
159.37a
19638.27
±526.42
f**
6052.69±
150.03a
1610.79±
37.84b
3167.03±
43.75f
51.59±
1.14c
3.28±
0.34b
13.07±
0.54e
13.48±
0.09e
2.21±
0.41e
15.75±
0.43b
Boilingin
avacuum
b
ag
3787.59±
30.86d
32729.06
±998.34a
4731.34±
240.78c
1508.55±
30.02c
4208.92±
60.08c
41.46±
0.24f
3.55±
0.10a
14.54±
0.05d
16.30±
0.02b
6.13±
0.72a
17.27±
0.47a
High-
pressure
b
oiling
3908.20±
16.18c
21876.31
±463.36e
5598.51±
32.73b
1326.53±
0.88e
4015.41±
19.26d
53.06±
2.11b
2.97±
0.40c
15.22±
0.13a
14.34±
0.12d
1.70±
0.02f
15.61±
0.12c
Conventio
nalheating
3658.44±
85.05e
28322.47
±1190.18
d
3791.24±
127.93e
5039.27±
557.90a
4969.11±
137.71b
55.99±
5.31a
2.56±
0.11f
14.89±
1.05c
17.53±
1.16a
5.12±
0.22b
13.85±
0.83e
Microwave
heating
3934.30±
51.88b
30420.44
±211.57b
4156.85±
73.95d
1392.06±
42.53d
5112.97±
70.60a
48.51±
0.36d
2.64±
0.13e
15.04±
0.71b
15.39±
1.71c
4.41±
0.68c
14.02±
0.80d
*standarddeviation;**valueswithineachcolumnfollowedbydierentleersaresignicantly
dierentatp<0.05.
3.MaterialandMethods
3.1.Material
BroccolisampleswerepurchasedfromalocalmarketinKonyaprovinceinTurkey.
Thesampleswerebroughtincoolconditionstothelaboratory,washed,anddividedinto
orets.Thebroccolioretshadstemsandwereapproximately3–4cmwideand6–7cm
long.
Plants2024,13,12839of12
3.2.Methods
3.2.1.BoilingandHeatingProcesses
Broccolisampleswerecookedusingconventionalboiling,boilinginavacuumbag,
apressurecooker,conventionalheating,andmicrowaveheatingfor13,13,7,10,and10
min.Inthepressurecooker,7minwastakenintoaccountasthecookingtimefromthe
steamexit.Intheoven,afterthetemperaturewasadjustedto200°C,acookingtimeof10
minwasapplied.Thesousvideprocesswascarriedoutusing100gbroccoliinplastic
packagingat100°C/10min.Conventionalboilingwascarriedoutinanopenpot.Also,
broccolisampleswereheatedinamicrowaveat720Wfor10min.
3.2.2.DeterminationofMoistureResultsofBroccoliSamples
ThemoistureresultsofbroccolisampleswererecordedusingtheKERN&SOHN
GmbHinfraredmoistureanalyser.
3.2.3.DeterminationofProteinQuantitiesofBroccoliSamples
TheproteincontentsofthebroccolisampleswereestablishedaccordingtotheAOAC
[51]method.
3.2.4.ExtractionProcedure
BroccolisampleswereextractedaccordingtothestudyrecognizedbyGirginandEl
[52].After3gpowderedbroccolisampleswasaddedto20mLofsolvent(methanol–wa-
ter,80:20,v/v),thesolutionwasstoredinanultrasonicbathfor30min.Then,itwascen-
trifugedfor10min.Thesupernatantwasremovedandthesestepswerecarriedouttwice
with20mLofsolvent.Thecombinedextractswereusedforanalyses.
3.2.5.TotalPhenolicResultsofBroccoliSamples
TheFolin–Ciocalteu(FC)reagentwasusedtodeterminethetotalphenoliccontents
ofbroccoliextractaccordingtoYooetal.[53].FC(1mL)andNa2CO3(10mL)wereadded
totheextractandmixedusingavortexmixer.Deionizedwaterwasaddeduntilthenal
volumewas25mL,andthesamplewaskeptindarknessfor1h.Afterpre-processing,the
absorbancevalueofthesamplewasrecordedat750nm.Thendingsarestatedasmg
gallicacidequivalent/100g.
3.2.6.TotalFlavonoidContentofBroccoliSamples
Thetotalavonoidresultsofbroccolisampleswereobtainedaccordingtothework
recognizedbyHoganetal.[54].Afterpre-processing,theabsorbanceresultofthemixture
wasmeasuredat510nm.Thendingsobtainedaregivenasmgquercetin(QE)/100g.
3.2.7.AntioxidantActivityResultsofBroccoliSamples
1.1-diphenyl-2-picrylhydrazyl(DPPH)wasappliedfortheantioxidantactivityre-
sultsofbroccoliextracts[55].Theextractwasaddedto2mLofamethanolicsolutionof
DPPH,andwasthenvortexedandkeptindarknessfor30min;theabsorbanceofextracts
wasobtainedat517nm.Theresultsobtainedaregivenasmmoltrolox(TE)/kg.
3.2.8.PhenolicCompounds
AHighPerformanceLiquidChromatographyunitmountedonaPDAdetectorand
anInertsilODS-3(5µm;4.6×250mm)columnwereusedforthechromatographicsepa-
rationofthephenoliccompoundsofbroccolisamples.Theinjectionvolumewas20µL.
Thepeakswererecognizedat280usingaPDAdetector.Themobilephasewasamixture
of0.05%aceticacidinwater(A)andacetonitrile(B)withaowrateof1mL/minat30°C.

Plants2024,13,128310of12
3.2.9.DeterminationofMineralsofBroccoliSamples
After0.5gbroccolipowder,driedat70°C,wasincineratedbyusing5mlof65%
HNO3and2mLof35%H2O2inaclosedmicrowave,itsvolumewascompletedwith20
mLdistilledwater.MineralsweremeasuredusingICP-AES[56].
3.3.StatisticalAnalyses
TheJMPversion9.0statisticalanalysismethodwasusedfortheanalysisofvariance.
Themeanofthetriplicateanalysisdatawassubjectedtoanalysisofvariance.Thesigni-
cantdierencesamongthevaluesofcontrolandcookingtypesweredeterminedusing
Duncan’sMultipleRangeTest(p<0.05).
4.Conclusions
Cookingmethodsaectthebioactivesubstances,phenolicproles,mineralresult,
andantioxidantactivityobservedinbroccoli.Thetotalphenol,totalavonoid,andradical
scavengingcapacityresultsofbroccolisamplescookedusingconventionalboiling,boiling
inavacuumbag,andboilinginasteamcookerwerefoundtobelowercomparedtothe
freshsample.Theconventionalandmicrowaveheatingmethodscanberecommendedas
heattreatmentsthatbeerpreservetheoriginalcontentofbenecialsubstancesinbroc-
coli.Morestudiesareneededtopreservethecontentofhealth-promotingnutrientsin
consumedbroccoli,gainnewinsights,andoptimizethewaybroccoliiscooked.Cooking
techniquesandtimeshadsignicanteectsonthebioactivecomponents,antioxidantac-
tivities,polyphenolcontents,mineralresults,andproteinvaluesofbroccoli.Thebioactive
propertiesofbroccolisamplescookedusingconventionalheatingandmicrowaveheating
wereestablishedtobehigherthantheresultsofbothfreshbroccoliandbroccolicooked
usingtheotherthreecookingtechniques.Thephenolicconstituentsofbroccolisamples
cookedwithconventionalheatingandmicrowaveheatingwerehigherwhencompared
totheresultsoffreshbroccoliandbroccolicookedusingtheothercookingtechniques.
Therefore,thehighestproteininbroccolisampleswasdeterminedtobeinthebroccoli
samplecookedbymeansofboilinginavacuumbag,followedbythesamplecookedusing
conventionalboiling,boilinginasteamcooker,microwaveheating,conventionalheating,
andthefreshsampleindescendingorder.
AuthorContributions:F.A.:methodologyandvalidation;I.A.M.A.:validation,software,editing,
andstatisticalanalysis;M.M.Ö.:supervision,formalanalysis,andwriting—reviewing;N.U.:inves-
tigation,methodology,andformalanalysis,Z.A.:investigationanddatacuration.Allauthorshave
readandagreedtothepublishedversionofthemanuscript.
Funding:ThisworkwassupportedandfundedbytheKingSaudUniversity,Riyadh,SaudiArabia.
DataAvailabilityStatement:Datasupportingtheresultsofthisstudyareavailablefromthecorre-
spondingauthoruponreasonablerequest.
Acknowledgments:TheauthorsextendtheirappreciationtoResearchersSupportingProjectNum-
ber(RSP2024R083),KingSaudUniversity,Riyadh,SaudiArabia.
ConictsofInterest:Theauthorsdeclarenoconictsofinterest.
References
1. Podsedek,A.;Sosnowska,D.;Redzynia,M.;Anders,B.AntioxidantcapacityandcontentofBrassicaoleraceadietary
antioxidants.Int.J.FoodSci.Technol.2006,41(Suppl.1),49–58.
2. Wagner,A.E.;Terschluesen,A.M.;Rimbach,G.Healthpromotingeffectsofbrassica-derivedphytochemicals:Fromchemopre-
ventiveandanti-inflammatoryactivitiestoepigeneticregulation.OxidativeMed.Cell.Longev.2013,2013,964539.
3. Ciancaleoni,S.;Chiarenza,G.L.;Raggi,L.;Branca,F.;Negri,V.Diversitycharacterisationofbroccoli(BrassicaoleraceaL.var.
italicaPlenck)landracesfortheiron-farm(insitu)safeguardanduseinbreedingprograms.Genet.Res.CropEvol.2014,61,451–
464.
4. Thapa,U.;Prasad,P.H.;Rai,R.Studiesongrowth,yieldandqualityofbroccoli(BrassicaoleraceaitalicaPlenck)asinfluencedby
boronandmolybdenum.J.PlantNutr.2016,39,261–267.
Plants2024,13,128311of12
5. Özer,Ç.Influenceofdifferentcookingmethodsonbioactıvepropertiesofbroccoli.Int.J.Contemp.Tour.Res.2016,1,69–76.
6. Moreno,D.A.;Carvajal,M.;Lopez-Berenguer,C.;García-Viguera,C.Chemicalandbiologicalcharacterisationofnutraceutical
compoundsofbroccoli.J.Pharm.Biomed.Anal.2006,41,1508–1522.
7. Mukherjee,V.;Mishra,P.K.Broccoli-anunderexploitedneutraceutical.Sci.Res.Report.2012,2,291–294.
8. Ares,A.M.;Nozal,M.J.;Bernal,J.Extraction,chemicalcharacterizationandbiologicalactivitydeterminationofbroccolihealth
promotingcompounds.J.Chromatograp.A2013,1313,78–95.
9. Chen,A.Y.;Chen,Y.C.AReviewoftheDietaryFlavonoid,KaempferolonHumanHealthandCancerChemoprevention.Food
Chem.2013,138,2099–2107.
10. Miekus,N.;Marszałek,K.;Podlacha,M.;Iqbal,A.;Puchalski,C.;Swiergiel,A.H.healthbenefitsofplant-derivedsulfur
compounds,Glucosinolates,andOrganosulfurCompounds.Molecules2020,25,3804.
11. Miglio,C.;Chiavaro,E.;Visconti,A.;Fogliano,V.;Pellegrini,N.Effectsofdifferentcookingmethodsonnutritionaland
physicochemicalcharacteristicsofselectedvegetables.J.Agric.FoodChem.2008,56,139–147.
12. Pellegrini,N.;Chiavaro,E.;Gardana,C.;Mazzeo,T.;Contino,D.;Gallo,M.;Riso,P.;Fogliano,V.;Porrini,M.Effectofdifferent
cookingmethodsoncolor,phytochemicalconcentration,andantioxidantcapacityofrawandfrozenBrassicavegetables.J.Agric.
FoodChem.2010,58,4310–4321.
13. Tomás-Barberán,F.A.;Selma,M.V.;Espín,J.C.Interactionsofgutmicrobiotawithdietarypolyphenolsandconsequencesto
humanhealth.CurrentOpinioninClin.Nutr.Metab.Care2016,19,471–476.
14. Ng,Z.X.;Chai,J.W.;Kuppusamy,U.R.Customizedcookingmethodimprovestotalantioxidantactivityinselectedvegetables.
Int.J.FoodSci.Nutr.2011,62,158–163.
15. Diamante,M.S.;VanzBorges,C.;Minatel,I.O.;Jacomino,A.P.;Basílio,L.S.P.;Monteiro,G.C.;Corrêa,C.R.;deOliveira,R.A.;
PacePereiraLima,G.Domesticcookingpracticesinfluencethecarotenoidandtocopherolcontentincoloredcauliflower.Food
Chem.2021,340,127901.
16. Amakura,Y.;Umino,Y.;Tsuji,S.;Tonogai,Y.Influenceofjamprocessingontheradicalscavengingactivityandphenolic
contentinberries.J.Agric.FoodChem.2001,48,6292–6297.
17. Ghafoor,K.;AlJuhaimi,F.;Özcan,M.M.;Uslu,N.;Ahmed,I.A.M.;Babiker,E.E.Theeffectofboiling,germinationandroasting
onbioactiveproperties,phenoliccompounds,fattyacidsandmineralsofchiaseed(SalviahispanicaL.)andoils.Int.J.Gastron.
FoodSci.2022,27,100447.
18. Vallejo,F.;Tomas-Barberan,F.A.;Garcia-Viguera,C.Phenoliccompoundcontentsinediblepartsofbroccoliinflorescencesafter
domesticcooking.J.Sci.FoodAgric.2003,83,1511–1516.
19. Price,K.R.;Bacon,J.R.;Rhodes,M.J.C.Effectofstorageanddomesticprocessingonthecontentandcompositionofflavonol
glucosidesinonion(Alliumcepa).J.Agric.FoodChem.1997,45,938–942.
20. Vallejo,F.;Tomas-Barberan,F.A.;Garcia-Viguera,C.GlucosinolatesandvitaminCcontentinediblepartsofbroccoli
inflorescencesafterdomesticcooking.Eur.FoodRes.Technol.2002,215,310–316.
21. Ramirez,D.;Abellán-Victorio,A.;Beretta,V.;Camargo,A.;Moreno,D.A.FunctionalIngredientsfromBrassicaceaeSpecies:
OverviewandPerspectives.Int.J.Mol.Sci.2020,21,1998.
22. Do,T.N.;Hwang,E.Effectsofdifferentcookingmethodsonbioactivecompoundcontentandantioxidantactivityofwater
spinach(Ipomoeaaquatica).FoodSci.Biotechnol.2015,24,799–806.
23. Zhan,L.;Pang,L.;Ma,Y.;Zhang,C.Thermalprocessingaffectingphytochemicalcontentsandtotalantioxidantcapacityin
broccoli(BrassicaoleraceaL.).J.FoodProcess.Preserv.2017,42,e13548.
24. Zhao,C.;Liu,Y.;Lai,S.;Cao,H.;Guan,Y.;SanCheang,W.;Liu,B.;Zhao,K.;Miao,S.;Riviere,C.;etal.Effectsofdomestic
cookingprocessonthechemicalandbiologicalpropertiesofdietaryphytochemicals.TrendsFoodSci.Technol.2019,85,55–66.
25. Putriani,N.;Perdana,J.;Meiliana;Nugrahedi,P.Y.Effectofthermalprocessingonkeyphytochemicalcompoundsingreen
leafyvegetables:AReview.FoodRev.Int.2020,2020,783–811.
26. Puupponen-Pimia,R.;Häkkinen,S.T.;Aarni,M.;Suortti,T.;Lampi,A.-M.;Eurola,M.;Piironen,V.;Nuutila,A.M.;Oksman-
Caldentey,K.-M.Blanchingandlong-termfreezingaffectvariousbioactivecompoundsofvegetablesindifferentways.J.Sci.
FoodAgric.2003,83,1389–1402.
27. Williams,D.J.;Edwards,D.;Hamernig,I.;Jian,L.;James,A.P.;Johnson,S.K.;Tapsell,L.C.Vegetablescontaining
phytochemicalswithpotentialanti-obesityproperties:AReview.FoodRes.Int.2013,52,323–333.
28. Perdana,J.;denBesten,H.M.W.;Aryani,D.C.;Kutahya,O.;Fox,M.B.;Kleerebezem,M.;Boom,R.M.;Schutyser,M.A.I.
InactivationofLactobacillusplantarumWCFS1duringSprayDryingandStorageAssessedwithComplementaryViability
DeterminationMethods.FoodRes.Int.2014,64,212–217.
29. Liu,R.H.Potentialsynergyofphytochemicalsincancerprevention:mechanismofaction.J.Nutr.2004,134,3479S–3485S.
30. Şat,İ.G.;Öz,Ö.HaşlamaveKurutmanınBazıSebzelerinBileşimiÜzerineEtkisi.AdıyamanÜniv.Mühendis.Bilim.Derg.2015,3,
54–62.
31. Nartea,A.;Fanesi,B.;Giardinieri,A.;Campmajó,G.;Lucci,P.;Saurina,J.;Pacetti,D.;Fiorini,D.;Frega,N.G.;Núñez,O.
GlucosinolatesandPolyphenolsofColoredCauliflowerasChemicalDiscriminantsBasedonCookingProcedures.Foods2022,
11,3041.
32. Cemeroğlu,B.MeyveveSebzeİşlemeTeknolojisi,5thed.;NobelAkademikYayıncılık:Ankara,Turkey,2011;s.728.
33. Karabayır,C.KurutulmuşSebzeler;İhracatıGeliştirmeEtüdMerkezi(İGEME):Ankara,Turkey,2007.
Plants2024,13,128312of12
34. dosReis,L.C.R.;deOliveira,V.R.;Hagen,M.E.K.;Jablonski,A.;Flôres,S.H.;deOliveiraRios,A.Carotenoids,flavonoids,
chlorophylls,phenoliccompoundsandantioxidantactivityinfreshandcookedbroccoli(Brassicaoleraceavar.avenger)and
cauliflowerBrassicaoleraceavar.alphinaF1).FoodSci.Technol.2015,63,177–183.
35. Palermo,M.;Pellegrini,N.;Fogliano,V.Theeffectofcookingonthephytochemicalcontentofvegetables.J.Sci.FoodAgric.
2014,94,1057–1070.
36. Amarowicz,R.AntioxidantactivityofMaillardreactionproducts.Eur.J.LipidSci.Technol.2009,111,109–111.
37. Liu,H.M.;Han,Y.F.;Wang,N.N.;Zheng,Y.Z.;Wang,X.D.Formationandantioxidantactivityofmaillardreactionproducts
derivedfromdifferentsugar-aminoacidaqueousmodelsystemsofsesameroasting.J.OleoSci.2020,69,391–401.
38. Mansour,A.A.;Elshimy,N.M.;Shekib,L.A.;Sharara,M.S.Effectofdomesticprocessingmethodsonthechemicalcomposition
andorganolepticpropertiesofBroccoliandCauliflower.Am.J.FoodNutr.2015,3,125–130.
39. Gawlik-Dziki,U.;Jeżyna,M.;Świeca,M.;Dziki,D.;Baraniak,B.;Czyż,J.Effectofbioaccessibilityofphenoliccompoundsonin
vitroanticanceractivityofbroccolisprouts.FoodRes.Int.2012,49,469–476.
40. López-Hernández,A.A.;Ortega-Villarreal,A.S.;Rodríguez,J.A.V.;Lomelí,M.L.C.;González-Martínez,B.E.Applicationofdif-
ferentcookingmethodstoimprovenutritionalqualityofbroccoli(Brassicaoleraceavar.italica)regardingitscompoundscontent
withantioxidantactivity.Int.J.Gastron.FoodSci.2022,28,100510.
41. Lafarga,T.;Bobo,G.;Viñas,I.;Zudaire,L.;Simó,J.;Aguiló-Aguayo,I.Steamingandsous-vide:Effectsonantioxidantactivity,
vitaminC,andtotalphenoliccontentofBrassicavegetables.Int.J.Gastron.FoodSci.2018,13,134–139.
42. Turkmen,N.;Sari,F.;Velioglu,Y.Theeffectofcookingmethodsontotalphenolicsandantioxidantactivityofselectedgreen
vegetables.FoodChem.2005,93,713–718.
43. Dolinsky,M.;Agostinho,C.;Ribeiro,D.;Rocha,G.D.S.;Barroso,S.G.;Ferreira,D.Effectofdifferentcookingmethodsonthe
polyphenolconcentrationandantioxidantcapacityofselectedvegetables.J.Culin.Sci.Technol.2016,14,1–12.
44. Drabińska,N.;Ciska,E.;Szmatowicz,B.;Krupa-Kozak,U.Broccoliby-productsimprovethenutraceuticalpotentialofgluten-
freeminispongecakes.FoodChem.2018,267,170–177.
45. Borja-Martínez,M.;Lozano-Sánchez,J.;Borrás-Linares,I.;Pedreño,M.A.;Sabater-Jara,A.B.Revalorizationofbroccoliby-
productsforcosmeticusesusingsupercriticalfluidextraction.Antioxidants2020,9,1195.
46. Gunathilake,K.D.P.P.;Ranaweera,K.K.D.S.;Rupasinghe,H.P.V.Effectofdifferentcookingmethodsonpolyphenols,
carotenoidsandantioxidantactivitiesofselectededibleleaves.Antioxidants2018,7,117.
47. Liu,M.;Zhang,L.;Ser,S.L.;Cumming,J.R.;Ku,K.-M.Comparativephytonutrientanalysisofbroccoliby-products:Thepoten-
tialsforbroccoliby-productutilization.Molecules2018,23,900.
48. Yilmaz,M.S.;Sakiyan,Ö.;Mazi,I.B.;Mazi,B.G.Phenoliccontentandsomephysicalpropertiesofdriedbroccoliasaffectedby
dryingmethod.FoodSci.Technol.Int.2018,25,76–88.
49. García,S.L.R.;Raghavan,V.Microwave-AssistedextractionofphenoliccompoundsfromBroccoli(Brassicaoleracea)stems,
leaves,andflorets:Optimization,characterization,andcomparisonwithmacerationextraction.RecentProgressNutr.2022,1,1–
23.
50. Farnham,M.W.;Grusak,M.A.;Wang,M.Calciumandmagnesiumconcentrationofinbredandhybridbroccoliheads.J.Am.
Soc.Hort.Sci.2000,125,344–349.
51. AOAC.OfficialMethodsofAnalysisofAssociationofOfficialAnalyticalChemistsInternational,18thed.;Horwitz,W.,Ed.;AOAC
Press:Arlington,VA,USA,2005.
52. Girgin,N.;El,S.N.Effectsofcookingoninvitrosinigrinbioaccessibility,totalphenols,antioxidantandantimutagenicactivity
ofcauliflower(BrassicaoleraceaeL.var.Botrytis).J.FoodComp.Anal.2015,37,119–127.
53. Yoo,K.M.;Lee,K.W.;Park,J.B.;Lee,H.J.;Hwang,I.K.VariationinmajorantioxidantsandtotalantioxidantactivityofYuzu
(CitrusjunosSiebexTanaka)duringmaturationandbetweencultivars.J.Agric.FoodChem.2004,52,5907–5913.
54. Hogan,S.;Zhang,L.;Li,J.;Zoecklein,B.;Zhou,K.AntioxidantpropertiesandbioactivecomponentsofNorton(Vitisaestivalis)
andCabernetFranc(Vitisvinifera)winegrapes.LWTFoodSci.Technol.2009,42,1269–1274.
55. Lee,S.K.;Mbwambo,Z.H.;Chung,H.S.;Luyengi,L.;Games,E.J.C.;Mehta,R.G.Evaluationoftheantioxidantpotentialof
naturalproducts.Comb.Chem.HighThroughputScreen.1998,1,35–46.
56. Skujins,S.HandbookforICPAES(VarıanVista);AshortguidetovistaseriesICP-AESoperation;VarianInt.:Zug,Switzerland,
1998.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualau-
thor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto
peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.
... 2, 4-dihydroxybenzoic acid (8), vanillic acid (9), and syringic acid (12) were preliminarily confirmed to be contained in FPs, BHPs, ABPs, and BBPs by comparison of standard products. Additionally, FPs also contained ferulic acid (15), naringin (18), and rosmarinic acid (19). BHPs and BBPs also contained 4-coumaric acid (14) and ferulic acid (15), and vanillin (13) and sinapic acid (16) were found in BBPs. ...
... Additionally, FPs also contained ferulic acid (15), naringin (18), and rosmarinic acid (19). BHPs and BBPs also contained 4-coumaric acid (14) and ferulic acid (15), and vanillin (13) and sinapic acid (16) were found in BBPs. ABPs also contained 4-coumaric acid (14), sinapic acid (16), 3, 4-dihydroxybenzoic acid (2), and p-hydroxybenzoic acid (4). ...
Article
Full-text available
In this study, the total polyphenol content (TPC), total flavonoid content (TFC), and biological activity of yam polyphenols (including free phenolics, conjugated phenolics, and bound phenolics) were investigated during home cooking. Polyphenol components were preliminary detected in raw yam by HPLC, including 2, 4-dihydroxybenzoic acid, syringic acid, vanillic acid, 4-coumaric acid, and sinapic acid. TPC and TFC of soluble conjugated polyphenols were the main phenolic compounds in Ruichang yam. Compared with uncooked yam, cooking times of 80 min and 40 min increased the TPC and TFC of multiple types of polyphenols, while cooking reduced the TPC and TFC of AHP (acid-hydrolyzed soluble conjugated polyphenols). All yam polyphenols exhibited good α-Glucosidase inhibitory activity; α-Glucosidase inhibitory activity was significantly higher for a cooking time of 120 min. Only some types of polyphenols had lower pancreatic lipase half-inhibition concentrations than orlistat when cooked. The pancreatic lipase of FPs (free polyphenols), BHPs (alkali-hydrolyzed soluble conjugated polyphenols), and ABPs (acid-hydrolyzed insoluble bound polyphenols) was the stronges when cooking for 80 min, and the pancreatic lipase inhibitory activity of AHPs and BBPs (alkali-hydrolyzed insoluble bound polyphenols) was strongest when cooking for 40 min. Pearson’s correlation coefficient analysis revealed that the TPC was positively correlated with the TFC, the IC50 value of α-Glucosidase was negatively correlated with the IC50 value of pancreatic lipase, and redox activity was positively correlated with the TPC and TFC, respectively.
Article
Full-text available
The impact of mild oven treatments (steaming or sous vide) and boiling at 10 min, 25 min, or 40 min on health-promoting phytochemicals of orange and violet cauliflower (Brassica oleracea L. var. botrytis) was investigated. For this purpose, targeted ultra-high performance liquid chro-matography-high resolution mass spectrometry analysis of phenolics and glycosylates com-bined with chemometrics was employed. Regardless of cooking time, clear differentiation of cooked samples obtained using different procedures was achieved, thus demonstrating the dis-tinct impact of cooking approaches on sample phytochemical profile (both, compound distribu-tion and content). The main responsible components for the observed discrimination were de-rivatives of hydroxycinnamic acid and kaempferol, organic acids, indolic and aromatic glucos-inolates, with glucosativin that was found, for the first time, as discriminant chemical descriptor in colored cauliflower submitted to steaming and sous-vide. The obtained findings also high-lighted a strict relationship between the impact of the cooking technique used and the type of cauliflower. The boiling process significantly affected phytochemicals in violet cauliflowers whereas orange cauliflower boiled samples were grouped between raw and either steamed or sous-vide cooked samples. Finally, the results confirm that the proposed methodology is capa-ble of discriminating cauliflower samples based on their phytochemical profiles and of identi-fying the cooking procedure able to preserve bioactive constituents.
Article
Full-text available
Microwave-assisted extraction (MAE) to obtain phenolics from vegetable wastes has been of recent interest. Broccoli is one of the most globally produced vegetables, and around 43% of the harvest is considered waste. Thus, given the significant quantity of broccoli waste generated, the objective of this work was to optimize the MAE, to maximize the total phenolic content (TPC) from broccoli by-products (leaves and stems) and broccoli florets. The Response Surface Analysis was used in the optimization model to evaluate the impacts of methanol concentration, time, and temperature, and their interactions on the TPC of the broccoli extracts. The optimal MAE conditions were found to be 74.54% (methanol), 15.9 min, and 74.45 °C for broccoli stems; 80% (methanol), 10 min, and 73.27 °C for broccoli leaves; and 80% (methanol), 18.9 min, and 75 °C for broccoli florets. Under these conditions, the broccoli leaves exhibited the highest TPC (1940.35 ± 0.794 µg GAE/g DW), followed by the florets (657.062 ± 0.771 µg GAE/g DW) and stems (225.273 ± 0.897 µg GAE/g DW). The antioxidant activity of the broccoli extracts was evaluated under the optimal conditions by DPPH and ABTS assays, and the same behavior was observed in both studies, the broccoli leaves exhibited the highest antioxidant activity, among florets and stems. In addition, vanillic, sinapic, caffeic, chlorogenic, ferulic, gallic, neochlorogenic, and p-coumaric acids in the broccoli extracts were identified and quantified using HPLC. Furthermore, MAE was found to increase the phenolic yield up to 45.70% for broccoli leaves, 133.57% for broccoli florets, and 65.30% for broccoli stems, in less time compared with maceration extraction. MAE proved to be an efficient and sustainable technique to obtain phenolics from broccoli by-products, which can constitute a viable solution for valorizing broccoli wastes.
Article
Full-text available
The agri-food industry is currently one of the main engines of economic development worldwide. The region of Murcia is a reference area in Europe for the cultivation of fruits and vegetables and produces the bulk of Spanish exports of broccoli (Brassica oleracea var. italica). The processing of fresh produce generates a huge number of by-products that represent an important economic and environmental problem when discarded. In this work, an advanced extraction technique using environmentally friendly solvents was applied to assess the revalorization of broccoli by-products, by performing a comparative analysis with conventional extraction. To achieve this goal, supercritical fluid extraction based on response surface methodology was performed using CO2 and ethanol as solvents. The results obtained showed that the supercritical fluid extracts were rich in β-carotene, phenolic compounds, chlorophylls and phytosterols. Moreover, in bioactivity assays, the supercritical fluid extracts exhibited a high antioxidant activity and a cytoprotective effect in a non-tumorigenic keratinocyte cell line exposed to ultraviolet B light. The results indicate that supercritical fluid extracts from broccoli by-products could potentially serve as an ingredient for cosmetic purposes.
Article
Full-text available
The broad spectrum of the mechanism of action of immune-boosting natural compounds as well as the complex nature of the food matrices make researching the health benefits of various food products a complicated task. Moreover, many routes are involved in the action of most natural compounds that lead to the inhibition of chronic inflammation, which results in a decrease in the ability to remove a pathogen asymptomatically and is connected to various pathological events, such as cancer. A number of cancers have been associated with inflammatory processes. The current review strives to answer the question of whether plant-derived sulfur compounds could be beneficial in cancer prevention and therapy. This review focuses on the two main sources of natural sulfur compounds: alliaceous and cruciferous vegetables. Through the presentation of scientific data which deal with the study of the chosen compounds in cancer (cell lines, animal models, and human studies), the discussion of food processing’s influence on immune-boosting food content is presented. Additionally, it is demonstrated that there is still a need to precisely demonstrate the bioavailability of sulfur-containing compounds from various types of functional food, since the inappropriate preparation of vegetables can significantly reduce the content of beneficial sulfur compounds. Additionally, there is an urgent need to carry out more epidemiological studies to reveal the benefits of several natural compounds in cancer prevention and therapy.
Article
Water spinach ( Ipomoea aquatica ), green leafy vegetable, belongs to the morning glory family ( Convolvulaceae ). It is a commonly found in Vietnam and other tropical countries and rich source of phytochemical compounds. Recent studies have reported that water spinach has inhibitory effects against prostaglandin synthesis, liver diseases, eye diseases, and constipation, and has an oral hypoglycemic effect in healthy subjects. Water spinach extract has also been found to alleviate antioxidant‐related disorders, reduce blood sugar, and protect against nosebleed and high blood pressure. Water spinach is usually boiled or steamed, or eaten fresh when prepared as soups. This study aims to determine the effects of different cooking methods (fresh, boiling, and steaming) on total bioactive compounds and evaluate the in vitro antioxidant activity in 80% ethanolic extracts of water spinach by spectrophotometric methods. We identified the best extraction solvent and compared the effects of different cooking methods on phytochemical contents and antioxidant activity of water spinach. Steamed water spinach extracted with 80% ethanol had the highest amounts of 35.0 mg/g total chlorophylls, 7.1 mg/g carotenoids, 35.6 mg/g total polyphenols, and 40.4 mg/g total flavonoids. The steaming process showed higher antioxidant activity than the uncooking or boiling process. The 80% ethanol extract showed a higher level of antioxidant activities than the water extract. The antioxidant activity was measured with the DPPH, ABTS, hydroxyl and superoxide anion racial scavenging assays as well as the reducing power activity assay were increased in a concentration dependent manner. The overall results support that water spinach contains bioactive compounds and they may play a positive role in our health.
Article
The analysis of the effect of different cooking methods (boiling, steaming, and microwaving) and cooking times (0, 1, 3, 5 and 10 min), in phenolic compounds and ascorbic acid concentration and their antioxidant activity in broccoli samples were investigated in this study. The results show that total polyphenol content increased to 12% on microwaving at 5 min and decreased to 60% in boiling at 10 min. Regarding the content of individual phenolic compounds, boiling showed a significant decrease in all the analyzed compounds, while steaming at 10 min showed a significant increase in four compounds. With respect to total ascorbic acid, the highest loss was observed for boiling broccoli at 1, 3, 5, and 10 min (10, 18, 42 and 55%, respectively). DPPH, ABTS and FRAP evaluation in steaming at 10 min, showed an increase in antioxidant activity of 15, 6 and 7%, respectively. Positive correlations were found between phenolic compounds and total ascorbic acid content, and antioxidant activity in broccoli samples. This study presents interesting results about common cooking methods and their effect on improving the nutritional quality of broccoli.
Article
The protein amounts of chia seeds were determined between 27.56% (control) and 28.37% (boiled). Total phenolic and antioxidant activity values of chia seeds treated by several applications changed between 237.70 mgGAE/100g (germinated) and 535 mgGAE/100g (roasted) to 15.27 mmol/kg (roasted) and 15.50 mmol/kg (germinated), respectively. While (+)-catechin amounts of seeds are determined between 15.47 (control) and 60.95 mg/100g (roasted), rutintrihydrate contents of seed extracts were identified between 3.98 mg/100g (control) and 24.92 mg/100g(roasted). While linolenic acid values of oils vary between 62.89% (germinated) and 66.76% (rpasted), linoleic acid amounts of oil samples were identified between 18.55% (control) and 21.04% (roasted). While P contents of chia seeds change between 6103.58 mg/kg(boiled) and 7253.45 mg/kg (control), K amounts of seeds varied between 2534.48 mg/kg (germinated) and 5351.58 mg/kg(roasted). In general, it was observed that the mineral content of boiled chia seeds was low compared to the control and other treated seeds.
Article
Cauliflowers are generally associated with healthy diets due to their positive impact on health. This research aims to evaluate the effects of cooking processes (boiling, steaming and microwaving) and different preparation times, on the content of carotenoids and provitamin A and tocopherols, in cauliflowers and to verify the effect of the cooking process on maintaining the coloring. The results revealed that the thermal process influenced the antioxidant compounds release independent of genotype. The highest content of zeaxanthin and lutein was found in ‘Verde di Macerata’ after boiling for 20 min. ‘Cheddar’ presented the highest content of all carotenoids and when steamed for 20 min, the highest levels of provitamin A were observed. Microwaved and bolied ‘Grafitti’ for longer times showed the highest retention of tocopherol. The cooking did not negatively affect the visual aspect. ‘Verde di Macerata’ and ‘Cheddar’ may be good sources of carotenoids and tocopherols.
Article
Green leafy vegetables are widely cultivated and consumed in South East Asia. These vegetables are rich in phytochemicals, which have been associated to particular health benefits. Preparation/processing, particularly those involving heat, prior to consumption can change the level of phytochemicals in the vegetables following various mechanisms, including thermal breakdown, oxidation, leaching, and matrix degradation. Appropriate processing should minimize degradation of phytochemicals so that the optimum intake toward health promotion be achieved. Better understanding of how processing influence the retention of phytochemical compounds is therefore crucial to provide guidelines on the processing of green leafy vegetables while maximizing their nutritional values.