Chronic Reduction of the Cytosolic or Mitochondrial NAD(P)-malic Enzyme Does Not Affect Insulin Secretion in a Rat Insulinoma Cell Line

Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 10/2009; 284(51):35359-67. DOI: 10.1074/jbc.M109.040394
Source: PubMed


The cytosolic malic enzyme (ME1) has been suggested to augment insulin secretion via the malate-pyruvate and/or citrate-pyruvate shuttles, through the production of NADPH or other metabolites. We used selectable vectors expressing short hairpin RNA (shRNA) to stably decrease Me1 mRNA levels by 80-86% and ME1 enzyme activity by 78-86% with either of two shRNAs in the INS-1 832/13 insulinoma cell line. Contrary to published short term ME1 knockdown experiments, our long term targeted cells showed normal insulin secretion in response to glucose or to glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. We found no increase in the mRNAs and enzyme activities of the cytosolic isocitrate dehydrogenase or glucose-6-phosphate dehydrogenase, which also produce cytosolic NADPH. There was no compensatory induction of the mRNAs for the mitochondrial malic enzymes Me2 or Me3. Interferon pathway genes induced in preliminary small interfering RNA experiments were not induced in the long term shRNA experiments. We repeated our study with an improved vector containing Tol2 transposition sequences to produce a higher rate of stable transferents and shortened time to testing, but this did not alter the results. We similarly used stably expressed shRNA to reduce mitochondrial NAD(P)-malic enzyme (Me2) mRNA by up to 95%, with severely decreased ME2 protein and a 90% decrease in enzyme activity. Insulin release to glucose or glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid remained normal. The maintenance of robust insulin secretion after lowering expression of either one of these malic enzymes is consistent with the redundancy of pathways of pyruvate cycling and/or cytosolic NADPH production in insulinoma cells.

9 Reads
  • Source
    • "Several studies, but not all [31], have shown that reduction of MEc expression in INS 832/13 cells, MIN6 cells and in mouse islets impaired GIIS and correlated with a decrease in NADPH level [24], [25], [26], [32]. In rat islets, siRNA knockdown of MEc mRNA did not affect GIIS. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α-ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD(+) from NADP(+) and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP(+) levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS.
    Full-text · Article · Oct 2013 · PLoS ONE
  • Source
    • "Selection was maintained until testing. All transfections included an equimolar amount of the pCMV-Tol2 vector, which encodes the Tol2 transposase, to increase efficiency of transfection [7] [8]. Target sequences are shown in Supplementary "
    [Show abstract] [Hide abstract]
    ABSTRACT: There are three isocitrate dehydrogenases (IDHs) in the pancreatic insulin cell; IDH1 (cytosolic) and IDH2 (mitochondrial) use NADP(H). IDH3 is mitochondrial, uses NAD(H) and was believed to be the IDH that supports the citric acid cycle. With shRNAs targeting mRNAs for these enzymes we generated cell lines from INS-1 832/13 cells with severe (80%-90%) knockdown of the mitochondrial IDHs separately and together in the same cell line. With knockdown of both mitochondrial IDH's mRNA, enzyme activity and protein level, but not with knockdown of one mitochondrial IDH, glucose- and BCH (an allosteric activator of glutamate dehydrogenase)-plus-glutamine-stimulated insulin release were inhibited. Cellular levels of citrate, α-ketoglutarate, malate and ATP were altered in patterns consistent with blockage at the mitochondrial IDH reactions. We were able to generate only 50% knockdown of Idh1 mRNA in multiple cell lines (without inhibition of insulin release) possibly because greater knockdown of IDH1 was not compatible with cell line survival. The mitochondrial IDHs are redundant for insulin secretion. When both enzymes are severely knocked down, their low activities (possibly assisted by transport of IDH products and other metabolic intermediates from the cytosol into mitochondria) are sufficient for cell growth, but inadequate for insulin secretion when the requirement for intermediates is certainly more rapid. The results also indicate that IDH2 can support the citric acid cycle. As almost all mammalian cells possess substantial amounts of all three IDH enzymes, the biological principles suggested by these results are probably extrapolatable to many tissues.
    Full-text · Article · Jul 2013 · Biochimica et Biophysica Acta
  • Source
    • "The fact that ME1-repressed cells could not survive in a glucose-free medium supplied with pyruvate revealed the vital role of ME1 in NADPH production in CNE-2 cells. A study conducted in rat insulinoma cells has shown that there were no differences in the activity of G6PD and IDH1 between ME1-repressed and control cells[33]. However, this result could be due to differences between species or various tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A large amount of nicotinamide adenine dinucleotide phosphate (NADPH) is required for fatty acid synthesis and maintenance of the redox state in cancer cells. Malic enzyme 1 (ME1)-dependent NADPH production is one of the three pathways that contribute to the formation of the cytosolic NADPH pool. ME1 is generally considered to be overexpressed in cancer cells to meet the high demand for increased de novo fatty acid synthesis. In the present study, we found that glucose induced higher ME1 activity and that repressing ME1 had a profound impact on glucose metabolism of nasopharyngeal carcinoma cells. High incorporation of glucose and an enhancement of the pentose phosphate pathway were observed in ME1-repressed cells. However, there were no obvious changes in the other two pathways for glucose metabolism: glycolysis and oxidative phosphorylation. Interestingly, NADPH was decreased under low-glucose conditions in ME1-repressed cells relative to wild-type cells, whereas there was no significant difference under high-glucose conditions. ME1-repressed cells had significantly decreased tolerance to low glucose conditions. Moreover, NADPH produced by ME1 was not only important for fatty acid synthesis but also essential for maintenance of the intracellular redox state and the protection of cells from oxidative stress. Furthermore, diminished migration and invasion were observed in ME1-repressed cells due to a reduced level of Snail protein. Collectively, these results suggest an essential role for ME1 in the production of cytosolic NADPH and maintenance of cellular migratory and invasive abilities in nasopharyngeal carcinoma cells.
    Full-text · Article · Nov 2012 · Chinese journal of cancer
Show more