Identification of Isn1 and Sdt1 as Glucose and Vitamin-Regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5'-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside

Biochemistry Graduate Program, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 10/2009; 284(50):34861-9. DOI: 10.1074/jbc.M109.056689
Source: PubMed


Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD+, which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied
nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high
glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites
in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside,
nicotinic acid riboside, and other NAD+ metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that
three yeast enzymes possess nicotinamide mononucleotide 5′-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside
and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5′-nucleotidase, and Sdt1, initially classified
as a pyrimidine 5′-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression
is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD+. Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal
unanticipated and highly regulated steps in NAD+ metabolism.

Download full-text


Available from: Peter Belenky
  • Source
    • "Our studies also demonstrated that utilization of extracellular NMN requires prior conversion to NR mediated by the PHO-regulated periplasmic phosphatase Pho5 [31]. The cytosolic nucleotidase Sdt1, which plays an important role in NR production (by hydrolyzing NMN) [33], has also been suggested to be under PHO regulation [121]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability.
    Full-text · Article · Aug 2014 · DNA Repair
  • Source
    • "A nicotinic acid transporter (CIMG_06071) and a sialate transporter (CIMG_03956) were also upregulated. The nicotinic acid transporter is presumably involved in NAD metabolism [34]; we have been unable to find a role for the sialate transporter in fungi in the literature. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Coccidioides immitis is a dimorphic fungus that causes disease in mammals, including human beings. It grows as a mycelium containing arthroconidia in the soil and in the host arthroconidia differentiates into a unique structure called a spherule. We used a custom open reading frame oligonucleotide microarray to compare the transcriptome of C. immitis mycelia with early (day 2) and late stage (day 8) spherules grown in vitro. All hybridizations were done in quadruplicate and stringent criteria were used to identify significantly differentially expressed genes. Results 22% of C. immitis genes were differentially expressed in either day 2 or day 8 spherules compared to mycelia, and about 12% of genes were differentially expressed comparing the two spherule time points. Oxireductases, including an extracellular superoxide dismutase, were upregulated in spherules and they may be important for defense against oxidative stress. Many signal transduction molecules, including pleckstrin domain proteins, protein kinases and transcription factors were downregulated in day 2 spherules. Several genes involved in sulfur metabolism were downregulated in day 8 spherules compared to day 2 spherules. Transcription of amylase and α (1,3) glucan synthase was upregulated in spherules; these genes have been found to be important for differentiation to yeast in Histoplasma. There were two homologs of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD); transcription of one was up- and the other downregulated. We tested the effect of a 4-HPPD inhibitor, nitisinone, on mycelial and spherule growth and found that it inhibited mycelial but not spherule growth. Conclusions Transcription of many genes was differentially expressed in the process of arthroconidia to spherule conversion and spherule maturation, as would be expected given the magnitude of the morphologic change. The transcription profile of early stage (day 2) spherules was different than late stage (day 8) endosporulating spherules. In addition, very few genes that are important for spore to yeast conversion in other dimorphic fungi are differentially expressed in C. immitis mycelia and spherules suggesting that dimorphic fungi may have evolved different mechanisms to differentiate from mycelia to tissue invasive forms.
    Full-text · Article · May 2013 · BMC Microbiology
  • Source
    • "If strain PAB076 exports NR that cannot be re-imported, this would result in higher extracellular and reduced intracellular NR in this strain. To test this hypothesis, we assayed the intracellular concentrations of the core NAD+ metabolome using a recently developed LC-MS assay [16], [17]. We found that the concentration of NR in yeast lysates is reduced by ∼57% from 42.7±3.5 µM to 18.2±2.0 "
    [Show abstract] [Hide abstract]
    ABSTRACT: NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.
    Full-text · Article · May 2011 · PLoS ONE
Show more