Disease-causing Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator Determine the Functional Responses of Alveolar Macrophages

Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 10/2009; 284(51):35926-38. DOI: 10.1074/jbc.M109.057372
Source: PubMed


Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933-944). Lysosomes and phagosomes in murine cftr(-/-) AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, DeltaF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR DeltaF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr(-/-), as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung.

Download full-text


Available from: Ludmila Deriy, Jan 04, 2016
  • Source
    • "pHrodo-E.coli particles are known to internalize through an energy-dependent phagocytosis1136. On the contrary, uptake of pHrodo-SAFs into macrophages at 4°C was comparable with the uptake at 37°C (Fig. 4b and a, respectively), suggesting an energy-independent process. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted delivery of drugs and sensors into cells is an attractive technology with both medical and scientific applications. Existing delivery vehicles are generally limited by the complexity of their design, dependence on active transport, and inability to function within cellular compartments. Here, we developed self-assembled nanofibrous hydrogel fibers using a biologically inert, low-molecular-weight amphiphile. Self-assembled nanofibrous hydrogels offer unique physical/mechanical properties and can easily be loaded with a diverse range of payloads. Unlike commercially available E. coli membrane particles covalently bound to the pH reporting dye pHrodo, pHrodo encapsulated in self-assembled hydrogel-fibers internalizes into macrophages at both physiologic (37°C) and sub-physiologic (4°C) temperatures through an energy-independent, passive process. Unlike dye alone or pHrodo complexed to E. coli, pHrodo-SAFs report pH in both the cytoplasm and phagosomes, as well the nucleus. This new class of materials should be useful for next-generation sensing of the intracellular milieu.
    Full-text · Article · Mar 2014 · Scientific Reports
  • Source
    • "As well as the contribution of epithelial cells to CF lung disease, other immune cells that are either resident or recruited appear to contribute to lung defence. Although they lack the characteristic CF lung disease, murine models, in particular, provide evidence of reduced elimination of intracellular P. aeruginosa by macrophages [14], [15] and alterations in macrophage signalling that contribute to elevated inflammatory responses [16]. In line with these observations, we have recently demonstrated that human MDMs from CF patients infected by P. aeruginosa show a significant increase in intracellular bacteria survival compared to non-CF cells [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF) patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR) dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS) production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    • "CFTR dysfunction results in constitutive, elevated NF-κB activation resulting in increased production of the proinflammatory chemokine, interleukin-8 (Vij et al., 2009; Belcher and Vij, 2010; Bodas and Vij, 2010; Hunter et al., 2010). Moreover, the lack of functional CFTR in macrophages has been reported to increase their responsiveness to inflammatory stimuli via uncontrolled TLR4 signaling (Bruscia et al., 2009, 2011) and to affect their capacity to kill Pseudomonas aeruginosa (Di et al., 2006; Deriy et al., 2009; Zhang et al., 2010; Del Porto et al., 2011). These findings support the role of CFTR dysfunction in favoring bronchopulmonary inflammation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation.
    Full-text · Article · Jan 2013 · Frontiers in Pharmacology
Show more