Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants

INTEMA, Universidad Nacional del Mar del Plata - CONICET, Juan B. Justo 4302.B7608FDQ, Mar del Plata, Argentina.
Acta biomaterialia (Impact Factor: 6.03). 10/2009; 6(4):1601-9. DOI: 10.1016/j.actbio.2009.10.015
Source: PubMed


In this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass-ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10mol.% SiO(2) samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone.

Download full-text


Available from: Josefina Ballarre, Feb 11, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to design implant surfaces that attach less to bone but at the same time improve osseous healing for use as temporary bone fracture plates. The strategy was to combine the nonadhesive properties of smooth titanium (Ti) surfaces with the differentiative and anti-inflammatory properties of eicosapentaenoic acid (EPA). Machined Ti implant surfaces coated with a layer of EPA, with or without UV irradiation, were characterized by X-ray photoelectron spectroscopy, and their in vivo performance was evaluated in New Zealand White rabbits. The performance of the functionalised implants was analyzed after 10 weeks of healing by mechanical pull-out testing, molecular biology, and histological and microcomputed tomography analysis. The results indicate that surface functionalization with UV light can reduce bone attachment and volumetric bone mineral density in the peri-implant bone tissue. The presence of EPA on the surfaces enhanced this effect further. Gene expression of bone formation markers showed a trend toward higher mRNA levels in all EPA treated groups. The histological analyses demonstrated lower inflammation in the UV-irradiated group and immature bone formation in all the groups. In conclusion, surface functionalization of Ti implants with UV light and EPA could be a biocompatible coating for reduced bone bonding ability of Ti while promoting bone formation.
    No preview · Article · Jan 2011 · Journal of Biomedical Materials Research Part A
  • [Show abstract] [Hide abstract]
    ABSTRACT: The biocompatibility and microstructural variation of Fe–Al–Mn (FAM)-based alloys have been investigated clearly. The ((Fe,Mn)3AlCx) carbide (κ′-carbide) and Fe0.6Mn5.4C2 carbide (κ-carbide) as well as Cr7C3 (Cr-carbide) were formed on FAM alloy, following phase transformation by heat treatment and surface functionalization. These carbides have important role in forming nanostructure and oxidation layer. Moreover, it was found that the albumin adsorbed onto the surface increased with increasing nano-metal carbides. Therefore, heat treatment and surface functionalization such as electro-discharging and anodization not only generates a nanostructural precipitates, but also converts the alloy surface into a nanostructured oxide surface, then increasing the alloy biocompatibility.
    No preview · Article · Jan 2011 · Journal of Alloys and Compounds
  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of implant stability in bone tissue remains difficult to assess because remodeling phenomena at the bone-implant interface are still poorly understood. The characterization of the biomechanical properties of newly formed bone tissue in the vicinity of implants at the microscopic scale is of importance in order to better understand the osseointegration process. The objective of this study is to investigate the potentiality of micro-Brillouin scattering techniques to differentiate mature and newly formed bone elastic properties following a multimodality approach using histological analysis. Coin-shaped Ti-6Al-4V implants were placed in vivo at a distance of 200 μm from rabbit tibia leveled cortical bone surface, leading to an initially empty cavity of 200 μm×4.4 mm. After 7 weeks of implantation, the bone samples were removed, fixed, dehydrated, embedded in methyl methacrylate, and sliced into 190 μm thick sections. Ultrasonic velocity measurements were performed using a micro-Brillouin scattering device within regions of interest (ROIs) of 10 μm diameter. The ROIs were located in newly formed bone tissue (within the 200 μm gap) and in mature bone tissue (in the cortical layer of the bone sample). The same section was then stained for histological analysis of the mineral content of the bone sample. The mean values of the ultrasonic velocities were equal to 4.97×10(-3) m/s in newly formed bone tissue and 5.31×10(-3) m/s in mature bone. Analysis of variance (p=2.42×10(-4)) tests revealed significant differences between the two groups of measurements. The standard deviation of the velocities was significantly higher in newly formed bone than in mature bone. Histological observations allow to confirm the accurate locations of the velocity measurements and showed a lower degree of mineralization in newly formed bone than in the mature cortical bone. The higher ultrasonic velocity measured in newly formed bone tissue compared with mature bone might be explained by the higher mineral content in mature bone, which was confirmed by histology. The heterogeneity of biomechanical properties of newly formed bone at the micrometer scale may explain the higher standard deviation of velocity measurements in newly formed bone compared with mature bone. The results demonstrate the feasibility of micro-Brillouin scattering technique to investigate the elastic properties of newly formed bone tissue.
    No preview · Article · Feb 2011 · Journal of Biomechanical Engineering
Show more