Conference Paper

Sub-Terahertz MassiveMIMO Channel Sounder for 6G Mobile Communication Systems

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The authors of [17] developed a sub-THz massive multipleinput multiple-output (MIMO) channel sounder using 896 antenna elements, offering a high time-spatial channel resolution. The developed channel sounder could determine how many pathways arrived with a lower received power in real time. ...
Article
Full-text available
In this article, we design and implement a multiantenna configured secure multiuser discrete Fourier transform (DFT)-Spread orthogonal frequency division multiplexing (OFDM) system based on frequency-domain spectrum shaping (FDSS) for reconfigurable intelligent surfaces (RISs) and unmanned aerial vehicle (UAV)-assisted terahertz (THz) communications. Our proposed simulated system highlights more suitable performance matrices for a typical case of three users for color image transmission. We introduced a six-dimensional hyperchaotic system-based encryption algorithm to enhance the physical layer security (PLS) of a UAV-to-ground communication network. In addition, the block diagonalization (BD) precoding technique reduces multiuser interference (MUI). Furthermore, we included repeat and accumulate (RA) channel coding with Cholesky decomposition-based zero-forcing (CD-ZF) and minimum mean square error (MMSE) signal detection schemes to improve the bit error rate (BER). We adopted the FDSS scheme and considered null carriers to reduce the out-of-band (OOB) spectrum power. The simulation results demonstrate the effectiveness of the proposed system in terms of PLS enhancement for color image transmission, with a low image structural similarity index of 0.65%, 1.60%, and 0.70% for users 1, 2, and 3, respectively; an achievable OOB power emission of 337 dB; and estimated peak-to-average power ratios (PAPRs) ranging from 7.10 to 7.85 dB at a complementary cumulative distribution function (CCDF) of 1×10-4 for different ground-transmitting channels. At signal-to-noise ratios of 13.7, 9.4, and 7.5 dB, users 1, 2, and 3 achieve a BER of 1×10-3 under RA channel coding, MMSE, and binary phase shift keying (BPSK) digital modulation.
... The authors of [17] developed a sub-THz massive multipleinput multiple-output (MIMO) channel sounder using 896 antenna elements, offering a high time-spatial channel resolution. The developed channel sounder could determine how many pathways arrived with a lower received power in real time. ...
Article
Full-text available
Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.