Article

Assessing phage-host population dynamics by reintroducing virulent viruses to synthetic microbiomes

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... sensitive to the effects of phages, the addition of phages to complex communities sometimes only reduces the overall bacterial abundance without significantly affecting community structure and function [14][15][16][17][18]. Moreover, the coexistence of highly dynamic phage communities with relatively stable bacterial communities has been observed in marine [19] and anaerobic digesters [20]. ...
Article
Bacteria have evolved various antiviral defense systems to protect themselves, but how defense systems respond to the variation of bacteriophages in complex bacterial communities and whether defense systems function effectively in maintaining the stability of bacterial community structure and function remain unknown. Here, we conducted a long-term metagenomic investigation on the composition of bacterial and phage communities of monthly collected activated sludge samples from two full-scale wastewater treatment plants over six years and found that defense systems were widespread in activated sludge, with 91.1% of metagenome-assembled genomes having more than one complete defense system. The stability of the bacterial community was maintained under the fluctuations of the phage community, and defense system abundance and phage abundance were strongly positively correlated; there was a 0-3-month time lag in the responses of defense Downloaded from https://academic.oup.com 3 systems to phage fluctuations. The rapid turnover of CRISPR spacer repertoires further highlighted the dynamic nature of bacterial defense mechanisms. A pan-immunity phenomenon was also observed, with nearly identical metagenome-assembled genomes showing significant differences in defense system composition, which contributed to community stability at the species level. This study provides novel insights into the complexity of phage-bacteria interactions in complex bacterial communities, and reveals the key roles of defense systems in stabilizing bacterial community structure and function.
... Therefore, it is essential to construct robust SynComs by exploring mechanisms such as genetic oscillation, synchronized DNA cycles, and biological memory is essential for constructing robust SynComs [82][83][84]. Furthermore, including nonbacterial microorganisms, such as viruses, in GIT microbiota also needs consideration [85]. Currently, utilizing tools such as quorum sensing molecules (QS), it is feasible to establish small-scale SynComs [86,87]. ...
Article
Full-text available
Recent advancements in analytical techniques have unveiled the spatiotemporal diversity of the gastrointestinal tract (GIT) microbiota and their associations with host well‐being. Despite these insights, the precise regulation of GIT microbiota remains a significant challenge. Currently, microbial regulatory strategies, including fecal microbiota transplantation (FMT), synthetic microbial communities (SynComs), genetically engineered microorganisms (GEMs), phages, and nanomaterials, are increasingly utilized for their precise influence on GIT microbiota. This review emphasizes the necessity for developing targeted regulatory strategies in GIT and provides a comprehensive summary and comparison of these approaches to explore their regulatory potential. We discuss recent advancements in these strategies, focusing on their mechanisms, efficacy, safety considerations, clinical trials, and optimization at the application level. Finally, we highlight support methods for optimizing modulation strategies, including the timing of microbial regulation, the selection of microbial targets, and the importance of monitoring the gastrointestinal environment to guide effective microbial interventions.
Article
Full-text available
Introduction Bacteriophages influence interactions between bacterial symbionts and their hosts by exerting parasitic pressure on symbiont populations and facilitating bacterial evolution through selection, gene exchange, and prophage integration. Host organisms also modulate phage-bacteria interactions, with host-specific contexts potentially limiting or promoting phage access to bacterial symbionts or driving alternative phenotypic or evolutionary outcomes. Methods To better elucidate tripartite phage-bacteria-host interactions in real-time, we expanded the Dictyostelium discoideum-Paraburkholderia symbiosis system to include Paraburkholderia-specific phages. We isolated six environmental Paraburkholderia phages from soil samples using a multi-host enrichment approach. We also identified a functional prophage from monocultures of one of the Paraburkholderia symbiont strains implemented in the enrichment approach. These phages were evaluated across all three amoeba-associated Paraburkholderia symbiont species. Finally, we treated Paraburkholderia infected amoeba lines with select phage isolates and assessed their effects on symbiont prevalence and host fitness. Results The isolated phages exhibited diverse plaquing characteristics and virion morphologies, collectively targeting Paraburkholderia strains belonging to each of the amoeba-symbiotic species. Following amoeba treatment experiments, we observed that phage application in some cases reduced symbiont infection prevalence and alleviated host fitness impacts, while in others, no significant effects were noted. Notably, phages were able to persist within the symbiont-infected amoeba populations over multiple culture transfers, indicating potential long-term interactions. Discussion These findings highlight the variability of phage-symbiont interactions within a host environment and underscore the complex nature of phage treatment outcomes. The observed variability lays the foundation for future studies exploring the long-term dynamics of tripartite systems, suggesting potential mechanisms that may shape differential phage treatment outcomes and presenting valuable avenues for future investigation.
Article
The long-term success of introduced populations depends on both their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization dynamics. Here, we investigate how initial population (propagule) size shapes the outcome of community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to neutral ecological theory. Although the composition of the resulting cocultures deviated substantially from neutral expectations, each coculture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer–resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. Strain isolates displayed longer-lasting dose dependence when introduced into diverse communities than in pairwise cocultures, consistent with our model’s prediction that propagule size should have larger, more persistent effects in diverse communities. Our model also successfully predicted that species with similar resource-utilization profiles, as inferred from growth in spent media and untargeted metabolomics, would show stronger dose dependence in pairwise coculture. This work demonstrates that transient, dose-dependent colonization dynamics can emerge from resource competition and exert long-term effects on the outcomes of community coalescence.
Article
Full-text available
Over the last two decades, advancements in sequencing technologies have significantly deepened our understanding of the human microbiome's complexity, leading to increased concerns about the detrimental effects of antibiotics on these intricate microbial ecosystems. Concurrently, the rise in antimicrobial resistance has intensified the focus on how beneficial microbes can be harnessed to treat diseases and improve health and offer potentially promising alternatives to traditional antibiotic treatments. Here, we provide a comprehensive overview of both established and emerging microbe‐centric therapies, from probiotics to advanced microbial ecosystem therapeutics, examine the sophisticated ways in which microbes are used medicinally, and consider their impacts on microbiome homeostasis and health outcomes through a microbial ecology lens. In addition, we explore the concept of rewilding the human microbiome by reintroducing “missing microbes” from nonindustrialized societies and personalizing microbiome modulation to fit individual microbial profiles—highlighting several promising directions for future research. Ultimately, the advancements in sequencing technologies combined with innovative microbial therapies and personalized approaches herald a new era in medicine poised to address antibiotic resistance and improve health outcomes through targeted microbiome management.
Preprint
Full-text available
The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (~1:100), but a much larger ratio of phage genomes to bacterial genomes (~4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage, phage-plasmids, etc.). Fitting a general model of temperate phage dynamics suggested that phage induction and lysis occurs at a low average rate (~0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone, while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.
Article
Full-text available
Bacteriophages are relatively ubiquitous in the environment and are highly abundant in the human microbiome. Phages can be commonly transmitted between close contacts, but the impact that such transmissions may have on their bacteria counterparts in our microbiomes is unknown.
Article
Full-text available
The crAss-like phages are a diverse group of related viruses that includes some of the most abundant viruses of the human gut. To explore their diversity and functional role in human population and clinical cohorts, we analyze gut metagenomic data collected from 1,950 individuals from the Netherlands. We identify 1,556 crAss-like phage genomes, including 125 species-level and 32 genus-level clusters absent from the reference databases used. Analysis of their genomic features shows that closely related crAss-like phages can possess strikingly divergent regions responsible for transcription, presumably acquired through recombination. Prediction of crAss-like phage hosts points primarily to bacteria of the phylum Bacteroidetes, consistent with previous reports. Finally, we explore the temporal stability of crAss-like phages over a 4-year period and identify associations between the abundance of crAss-like phages and several human phenotypes, including depletion of crAss-like phages in inflammatory bowel disease patients.
Article
Full-text available
Background The crAss-like phages are ubiquitous and highly abundant members of the human gut virome that infect commensal bacteria of the order Bacteroidales. Although incapable of lysogeny, these viruses demonstrate long-term persistence in the human gut microbiome, dominating the virome in some individuals. Results Here we show that rapid phase variation of alternate capsular polysaccharides in Bacteroides intestinalis cultures plays an important role in a dynamic equilibrium between phage sensitivity and resistance, allowing phage and bacteria to multiply in parallel. The data also suggests the role of a concomitant phage persistence mechanism associated with delayed lysis of infected cells, similar to carrier state infection. From an ecological and evolutionary standpoint, this type of phage-host interaction is consistent with the Piggyback-the-Winner model, which suggests a preference towards lysogenic or other “benign” forms of phage infection when the host is stably present at high abundance. Conclusion Long-term persistence of bacteriophage and host could result from mutually beneficial mechanisms driving bacterial strain-level diversity and phage survival in complex environments.
Article
Full-text available
Bacteriophages have important roles in the ecology of the human gut microbiome but are under-represented in reference databases. To address this problem, we assembled the Metagenomic Gut Virus catalogue that comprises 189,680 viral genomes from 11,810 publicly available human stool metagenomes. Over 75% of genomes represent double-stranded DNA phages that infect members of the Bacteroidia and Clostridia classes. Based on sequence clustering we identified 54,118 candidate viral species, 92% of which were not found in existing databases. The Metagenomic Gut Virus catalogue improves detection of viruses in stool metagenomes and accounts for nearly 40% of CRISPR spacers found in human gut Bacteria and Archaea. We also produced a catalogue of 459,375 viral protein clusters to explore the functional potential of the gut virome. This revealed tens of thousands of diversity-generating retroelements, which use error-prone reverse transcription to mutate target genes and may be involved in the molecular arms race between phages and their bacterial hosts. Almost 190,000 draft-quality DNA virus genomes are recovered by mining more than 11,000 deposited human stool metagenomes to improve resources for understanding the human gut virome.
Article
Full-text available
Bacteriophages are broadly classified into two distinct lifestyles: temperate and virulent. Temperate phages are capable of a latent phase of infection within a host cell (lysogenic cycle), whereas virulent phages directly replicate and lyse host cells upon infection (lytic cycle). Accurate lifestyle identification is critical for determining the role of individual phage species within ecosystems and their effect on host evolution. Here, we present BACPHLIP, a BACterioPHage LIfestyle Predictor. BACPHLIP detects the presence of a set of conserved protein domains within an input genome and uses this data to predict lifestyle via a Random Forest classifier that was trained on a dataset of 634 phage genomes. On an independent test set of 423 phages, BACPHLIP has an accuracy of 98% greatly exceeding that of the previously existing tools (79%). BACPHLIP is freely available on GitHub (https://github.com/adamhockenberry/bacphlip) and the code used to build and test the classifier is provided in a separate repository (https://github.com/adamhockenberry/bacphlip-model-dev) for users wishing to interrogate and re-train the underlying classification model.
Article
Full-text available
Background The gut phageome comprises a complex phage community of thousands of individual strains, with a few highly abundant bacteriophages. CrAss-like phages, which infect bacteria of the order Bacteroidales, are the most abundant bacteriophage family in the human gut and make an important contribution to an individual’s core virome. Based on metagenomic data, crAss-like phages form a family, with four sub-families and ten candidate genera. To date, only three representatives isolated in pure culture have been reported: ΦcrAss001 and two closely related phages DAC15 and DAC17; all are members of the less abundant candidate genus VI. The persistence at high levels of both crAss-like phage and their Bacteroidales hosts in the human gut has not been explained mechanistically, and this phage-host relationship can only be properly studied with isolated phage-host pairs from as many genera as possible. Results Faeces from a healthy donor with high levels of crAss-like phage was used to initiate a faecal fermentation in a chemostat, with selected antibiotics chosen to inhibit rapidly growing bacteria and selectively enrich for Gram-negative Bacteroidales. This had the objective of promoting the simultaneous expansion of crAss-like phages on their native hosts. The levels of seven different crAss-like phages expanded during the fermentation, indicating that their hosts were also present in the fermenter. The enriched supernatant was then tested against individual Bacteroidales strains isolated from the same faecal sample. This resulted in the isolation of a previously uncharacterised crAss-like phage of candidate genus IV of the proposed Alphacrassvirinae sub-family, ΦcrAss002, that infects the gut commensal Bacteroides xylanisolvens . ΦcrAss002 does not form plaques or spots on lawns of sensitive cells, nor does it lyse liquid cultures, even at high titres. In keeping with the co-abundance of phage and host in the human gut, ΦcrAss002 and Bacteroides xylanisolvens can also co-exist at high levels when co-cultured in laboratory media. Conclusions We report the isolation and characterisation of ΦcrAss002, the first representative of the proposed Alphacrassvirinae sub-family of crAss-like phages. ΦcrAss002 cannot form plaques or spots on bacterial lawns but can co-exist with its host, Bacteroides xylanisolvens , at very high levels in liquid culture without impacting on bacterial numbers.
Article
Full-text available
Background Double-stranded DNA bacteriophages (dsDNA phages) play pivotal roles in structuring human gut microbiomes; yet, the gut virome is far from being fully characterized, and additional groups of phages, including highly abundant ones, continue to be discovered by metagenome mining. A multilevel framework for taxonomic classification of viruses was recently adopted, facilitating the classification of phages into evolutionary informative taxonomic units based on hallmark genes. Together with advanced approaches for sequence assembly and powerful methods of sequence analysis, this revised framework offers the opportunity to discover and classify unknown phage taxa in the human gut. Results A search of human gut metagenomes for circular contigs encoding phage hallmark genes resulted in the identification of 3738 apparently complete phage genomes that represent 451 putative genera. Several of these phage genera are only distantly related to previously identified phages and are likely to found new families. Two of the candidate families, “Flandersviridae” and “Quimbyviridae”, include some of the most common and abundant members of the human gut virome that infect Bacteroides , Parabacteroides , and Prevotella . The third proposed family, “Gratiaviridae,” consists of less abundant phages that are distantly related to the families Autographiviridae , Drexlerviridae , and Chaseviridae . Analysis of CRISPR spacers indicates that phages of all three putative families infect bacteria of the phylum Bacteroidetes. Comparative genomic analysis of the three candidate phage families revealed features without precedent in phage genomes. Some “Quimbyviridae” phages possess Diversity-Generating Retroelements (DGRs) that generate hypervariable target genes nested within defense-related genes, whereas the previously known targets of phage-encoded DGRs are structural genes. Several “Flandersviridae” phages encode enzymes of the isoprenoid pathway, a lipid biosynthesis pathway that so far has not been known to be manipulated by phages. The “Gratiaviridae” phages encode a HipA-family protein kinase and glycosyltransferase, suggesting these phages modify the host cell wall, preventing superinfection by other phages. Hundreds of phages in these three and other families are shown to encode catalases and iron-sequestering enzymes that can be predicted to enhance cellular tolerance to reactive oxygen species. Conclusions Analysis of phage genomes identified in whole-community human gut metagenomes resulted in the delineation of at least three new candidate families of Caudovirales and revealed diverse putative mechanisms underlying phage-host interactions in the human gut. Addition of these phylogenetically classified, diverse, and distinct phages to public databases will facilitate taxonomic decomposition and functional characterization of human gut viromes.
Article
Full-text available
Thousands of new phages have recently been discovered thanks to viral metagenomics. These phages are extremely diverse and their genome sequences often do not resemble any known phages. To appreciate their ecological impact, it is important to determine their bacterial hosts. CRISPR spacers can be used to predict hosts of unknown phages, as spacers represent biological records of past phage–bacteria interactions. However, no guidelines have been established to standardize host prediction based on CRISPR spacers. Additionally, there are no tools that use spacers to perform host predictions on large viral datasets. Here, we developed a set of tools that includes all the necessary steps for predicting the hosts of uncharacterized phages. We created a database of >11 million spacers and a program to execute host predictions on large viral datasets. Our host prediction approach uses biological criteria inspired by how CRISPR–Cas naturally work as adaptive immune systems, which make the results easy to interpret. We evaluated the performance using 9484 phages with known hosts and obtained a recall of 49% and a precision of 69%. We also found that this host prediction method yielded higher performance for phages that infect gut-associated bacteria, suggesting it is well suited for gut-virome characterization.
Article
Full-text available
Bacteriophages drive evolutionary change in bacterial communities by creating gene flow networks that fuel ecological adaptions. However, the extent of viral diversity and its prevalence in the human gut remains largely unknown. Here, we introduce the Gut Phage Database, a collection of ∼142,000 non-redundant viral genomes (>10 kb) obtained by mining a dataset of 28,060 globally distributed human gut metagenomes and 2,898 reference genomes of cultured gut bacteria. Host assignment revealed that viral diversity is highest in the Firmicutes phyla and that ∼36% of viral clusters (VCs) are not restricted to a single species, creating gene flow networks across phylogenetically distinct bacterial species. Epidemiological analysis uncovered 280 globally distributed VCs found in at least 5 continents and a highly prevalent phage clade with features reminiscent of p-crAssphage. This high-quality, large-scale catalog of phage genomes will improve future virome studies and enable ecological and evolutionary analysis of human gut bacteriophages.
Article
Full-text available
CrAssphage is the most abundant human-associated virus and the founding member of a large group of bacteriophages, discovered in animal-associated and environmental metagenomes, that infect bacteria of the phylum Bacteroidetes. We analyze 4907 Circular Metagenome Assembled Genomes (cMAGs) of putative viruses from human gut microbiomes and identify nearly 600 genomes of crAss-like phages that account for nearly 87% of the DNA reads mapped to these cMAGs. Phylogenetic analysis of conserved genes demonstrates the monophyly of crAss-like phages, a putative virus order, and of 5 branches, potential families within that order, two of which have not been identified previously. The phage genomes in one of these families are almost twofold larger than the crAssphage genome (145-192 kilobases), with high density of self-splicing introns and inteins. Many crAss-like phages encode suppressor tRNAs that enable read-through of UGA or UAG stop-codons, mostly, in late phage genes. A distinct feature of the crAss-like phages is the recurrent switch of the phage DNA polymerase type between A and B families. Thus, comparative genomic analysis of the expanded assemblage of crAss-like phages reveals aspects of genome architecture and expression as well as phage biology that were not apparent from the previous work on phage genomics.
Article
Full-text available
Background Viruses are a significant player in many biosphere and human ecosystems, but most signals remain “hidden” in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. Results Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales ). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration unravels novel viral sequences, VirSorter2’s modular design makes it inherently able to expand to new types of viruses via the design of new classifiers to maintain maximal sensitivity and specificity. Conclusion With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various ecosystems. Source code of VirSorter2 is freely available ( https://bitbucket.org/MAVERICLab/virsorter2 ), and VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse ( https://de.cyverse.org/de ).
Article
Full-text available
Millions of new viral sequences have been identified from metagenomes, but the quality and completeness of these sequences vary considerably. Here we present CheckV, an automated pipeline for identifying closed viral genomes, estimating the completeness of genome fragments and removing flanking host regions from integrated proviruses. CheckV estimates completeness by comparing sequences with a large database of complete viral genomes, including 76,262 identified from a systematic search of publicly available metagenomes, metatranscriptomes and metaviromes. After validation on mock datasets and comparison to existing methods, we applied CheckV to large and diverse collections of metagenome-assembled viral sequences, including IMG/VR and the Global Ocean Virome. This revealed 44,652 high-quality viral genomes (that is, >90% complete), although the vast majority of sequences were small fragments, which highlights the challenge of assembling viral genomes from short-read metagenomes. Additionally, we found that removal of host contamination substantially improved the accurate identification of auxiliary metabolic genes and interpretation of viral-encoded functions.
Article
Full-text available
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host’s transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phagebacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Article
Full-text available
A variety of cell surface structures dictate interactions between bacteria and their environment, including their viruses (bacteriophages). Members of the human gut Bacteroidetes characteristically produce several phase-variable capsular polysaccharides (CPSs), but their contributions to bacteriophage interactions are unknown. To begin to understand how CPSs have an impact on Bacteroides–phage interactions, we isolated 71 Bacteroides thetaiotaomicron-infecting bacteriophages from two locations in the United States. Using B. thetaiotaomicron strains that express defined subsets of CPSs, we show that CPSs dictate host tropism for these phages and that expression of non-permissive CPS variants is selected under phage predation, enabling survival. In the absence of CPSs, B. thetaiotaomicron escapes bacteriophage predation by altering expression of eight distinct phase-variable lipoproteins. When constitutively expressed, one of these lipoproteins promotes resistance to multiple bacteriophages. Our results reveal important roles for Bacteroides CPSs and other cell surface structures that allow these bacteria to persist under bacteriophage predation, and hold important implications for using bacteriophages therapeutically to target gut symbionts. Isolation of phages associated with the gut commensal Bacteroides thetaiotaomicron reveals a link between cell surface structures, including phase-variable capsular polysaccharides, lipoproteins and S-layer proteins, and susceptibility to phage infection.
Article
Full-text available
Background: Viruses are central to microbial community structure in all environments. The ability to generate large metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to tease apart complex microbiome dynamics, but these analyses are currently limited by the tools available for analyses of viral genomes and assessing their metabolic impacts on microbiomes. Design: Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein similarity approach that is not reliant on sequence features for automated recovery and annotation of viruses, determination of genome quality and completeness, and characterization of viral community function from metagenomic assemblies. VIBRANT uses neural networks of protein signatures and a newly developed v-score metric that circumvents traditional boundaries to maximize identification of lytic viral genomes and integrated proviruses, including highly diverse viruses. VIBRANT highlights viral auxiliary metabolic genes and metabolic pathways, thereby serving as a user-friendly platform for evaluating viral community function. VIBRANT was trained and validated on reference virus datasets as well as microbiome and virome data. Results: VIBRANT showed superior performance in recovering higher quality viruses and concurrently reduced the false identification of non-viral genome fragments in comparison to other virus identification programs, specifically VirSorter, VirFinder, and MARVEL. When applied to 120,834 metagenome-derived viral sequences representing several human and natural environments, VIBRANT recovered an average of 94% of the viruses, whereas VirFinder, VirSorter, and MARVEL achieved less powerful performance, averaging 48%, 87%, and 71%, respectively. Similarly, VIBRANT identified more total viral sequence and proteins when applied to real metagenomes. When compared to PHASTER, Prophage Hunter, and VirSorter for the ability to extract integrated provirus regions from host scaffolds, VIBRANT performed comparably and even identified proviruses that the other programs did not. To demonstrate applications of VIBRANT, we studied viromes associated with Crohn's disease to show that specific viral groups, namely Enterobacteriales-like viruses, as well as putative dysbiosis associated viral proteins are more abundant compared to healthy individuals, providing a possible viral link to maintenance of diseased states. Conclusions: The ability to accurately recover viruses and explore viral impacts on microbial community metabolism will greatly advance our understanding of microbiomes, host-microbe interactions, and ecosystem dynamics. Video Abstract.
Article
Full-text available
The gut of healthy human neonates is usually devoid of viruses at birth, but quickly becomes colonized, which—in some cases—leads to gastrointestinal disorders1–4. Here we show that the assembly of the viral community in neonates takes place in distinct steps. Fluorescent staining of virus-like particles purified from infant meconium or early stool samples shows few or no particles, but by one month of life particle numbers increase to 10⁹ per gram, and these numbers seem to persist throughout life5–7. We investigated the origin of these viral populations using shotgun metagenomic sequencing of virus-enriched preparations and whole microbial communities, followed by targeted microbiological analyses. Results indicate that, early after birth, pioneer bacteria colonize the infant gut and by one month prophages induced from these bacteria provide the predominant population of virus-like particles. By four months of life, identifiable viruses that replicate in human cells become more prominent. Multiple human viruses were more abundant in stool samples from babies who were exclusively fed on formula milk compared with those fed partially or fully on breast milk, paralleling reports that breast milk can be protective against viral infections8–10. Bacteriophage populations also differed depending on whether or not the infant was breastfed. We show that the colonization of the infant gut is stepwise, first mainly by temperate bacteriophages induced from pioneer bacteria, and later by viruses that replicate in human cells; this second phase is modulated by breastfeeding.
Article
Full-text available
Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world’s countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.
Article
Full-text available
The human gut microbiome is comprised of densely colonizing microorganisms including bacteriophages, which are in dynamic interaction with each other and the mammalian host. To address how bacteriophages impact bacterial communities in the gut, we investigated the dynamic effects of phages on a model microbiome. Gnotobiotic mice were colonized with defined human gut commensal bacteria and subjected to predation by cognate lytic phages. We found that phage predation not only directly impacts susceptible bacteria but also leads to cascading effects on other bacterial species via interbacterial interactions. Metabolomic profiling revealed that shifts in the microbiome caused by phage predation have a direct consequence on the gut metabolome. Our work provides insight into the ecological importance of phages as modulators of bacterial colonization, and it additionally suggests the potential impact of gut phages on the mammalian host with implications for their therapeutic use to precisely modulate the microbiome.
Article
Full-text available
CrAssphages are an extensive and ubiquitous family of tailed bacteriophages, predicted to infect bacteria of the order Bacteroidales. Despite being found in ~50% of individuals and representing up to 90% of human gut viromes, members of this viral family have never been isolated in culture and remain understudied. Here, we report the isolation of a CrAssphage (ΦCrAss001) from human faecal material. This bacteriophage infects the human gut symbiont Bacteroides intestinalis, confirming previous in silico predictions of the likely host. DNA sequencing demonstrates that the bacteriophage genome is circular, 102 kb in size, and has unusual structural traits. In addition, electron microscopy confirms that ΦcrAss001 has a podovirus-like morphology. Despite the absence of obvious lysogeny genes, ΦcrAss001 replicates in a way that does not disrupt proliferation of the host bacterium, and is able to maintain itself in continuous host culture during several weeks.
Article
Full-text available
Infants acquire many of their microbes from their mothers during the birth process. The acquisition of these microbes is believed to be critical in the development of the infant immune system. Bacteria also are transmitted to the infant through breastfeeding, and help to form the microbiome of the infant gastrointestinal (GI) tract; it is unknown whether viruses in human milk serve to establish an infant GI virome. We examined the virome contents of milk and infant stool in a cohort of mother-infant pairs to discern whether milk viruses colonize the infant GI tract. We observed greater viral alpha diversity in milk than in infant stool, similar to the trend we found for bacterial communities from both sites. When comparing beta diversity, viral communities were mostly distinguishable between milk and infant stool, but each was quite distinct from adult stool, urine, and salivary viromes. There were significant differences in viral families in the infant stool (abundant bacteriophages from the family Siphoviridae) compared to milk (abundant bacteriophages from the family Myoviridae), which may reflect significant differences in the bacterial families identified from both sites. Despite the differences in viral taxonomy, we identified a significant number of shared viruses in the milk and stool from all mother-infant pairs. Because of the significant proportion of bacteriophages transmitted in these mother-infant pairs, we believe the transmission of milk phages to the infant GI tract may help to shape the infant GI microbiome.
Article
Full-text available
Metagenomic sequence analysis is rapidly becoming the primary source of virus discovery (1-3) . A substantial majority of the currently available virus genomes come from metagenomics, and some of these represent extremely abundant viruses, even if never grown in the laboratory. A particularly striking case of a virus discovered via metagenomics is crAssphage, which is by far the most abundant human-associated virus known, comprising up to 90% of sequences in the gut virome (4) . Over 80% of the predicted proteins encoded in the approximately 100 kilobase crAssphage genome showed no significant similarity to available protein sequences, precluding classification of this virus and hampering further study. Here we combine a comprehensive search of genomic and metagenomic databases with sensitive methods for protein sequence analysis to identify an expansive, diverse group of bacteriophages related to crAssphage and predict the functions of the majority of phage proteins, in particular those that comprise the structural, replication and expression modules. Most, if not all, of the crAss-like phages appear to be associated with diverse bacteria from the phylum Bacteroidetes, which includes some of the most abundant bacteria in the human gut microbiome and that are also common in various other habitats. These findings provide for experimental characterization of the most abundant but poorly understood members of the human-associated virome.
Article
Full-text available
Background VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing and preparing metagenomics, genomics and population genomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar, 2010) for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-bit version is freely available for academic use. Methods When searching nucleotide sequences, VSEARCH uses a fast heuristic based on words shared by the query and target sequences in order to quickly identify similar sequences, a similar strategy is probably used in USEARCH. VSEARCH then performs optimal global sequence alignment of the query against potential target sequences, using full dynamic programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments are computed in parallel using vectorisation and multiple threads. Results VSEARCH includes most commands for analysing nucleotide sequences available in USEARCH version 7 and several of those available in USEARCH version 8, including searching (exact or based on global alignment), clustering by similarity (using length pre-sorting, abundance pre-sorting or a user-defined order), chimera detection (reference-based or de novo), dereplication (full length or prefix), pairwise alignment, reverse complementation, sorting, and subsampling. VSEARCH also includes commands for FASTQ file processing, i.e., format detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH extends functionality with several new commands and improvements, including shuffling, rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is here shown to be more accurate than USEARCH when performing searching, clustering, chimera detection and subsampling, while on a par with USEARCH for paired-ends read merging. VSEARCH is slower than USEARCH when performing clustering and chimera detection, but significantly faster when performing paired-end reads merging and dereplication. VSEARCH is available at https://github.com/torognes/vsearch under either the BSD 2-clause license or the GNU General Public License version 3.0. Discussion VSEARCH has been shown to be a fast, accurate and full-fledged alternative to USEARCH. A free and open-source versatile tool for sequence analysis is now available to the metagenomics community.
Article
Full-text available
Significance Humans need a stable, balanced gut microbiome (GM) to be healthy. The GM is influenced by bacteriophages that infect bacterial hosts. In this work, bacteriophages associated with the GM of healthy individuals were analyzed, and a healthy gut phageome (HGP) was discovered. The HGP is composed of core and common bacteriophages common to healthy adult individuals and is likely globally distributed. We posit that the HGP plays a critical role in maintaining the proper function of a healthy GM. As expected, we found that the HGP is significantly decreased in individuals with gastrointestinal disease (ulcerative colitis and Crohn’s disease). Together, these results reveal a large community of human gut bacteriophages that likely contribute to maintaining human health.
Article
Full-text available
A major limitation with traditional phage preparations is the variability in titer, salts, and bacterial contaminants between successive propagations. Here we introduce the Phage On Tap (PoT) protocol for the quick and efficient preparation of homogenous bacteriophage (phage) stocks. This method produces homogenous, laboratory-scale, high titer (up to 10 10–11 PFU·ml −1 ), endotoxin reduced phage banks that can be used to eliminate the variability between phage propagations and improve the molecular characterizations of phage. The method consists of five major parts, including phage propagation, phage clean up by 0.22 μm filtering and chloroform treatment, phage concentration by ultrafiltration, endotoxin removal, and the preparation and storage of phage banks for continuous laboratory use. From a starting liquid lysate of > 100 mL, the PoT protocol generated a clean, homogenous, laboratory phage bank with a phage recovery efficiency of 85% within just two days. In contrast, the traditional method took upwards of five days to produce a high titer, but lower volume phage stock with a recovery efficiency of only 4%. Phage banks can be further purified for the removal of bacterial endotoxins, reducing endotoxin concentrations by over 3,000-fold while maintaining phage titer. The PoT protocol focused on T-like phages, but is broadly applicable to a variety of phages that can be propagated to sufficient titer, producing homogenous, high titer phage banks that are applicable for molecular and cellular assays.
Article
Full-text available
The gut microbiota is a complex consortium of microorganisms with the ability to influence important aspects of host health and development. Harnessing this “microbial organ” for biomedical applications requires clarifying the degree to which host and bacterial factors act alone or in combination to govern the stability of specific lineages. To address this issue, we combined bacteriological manipulation and light sheet fluorescence microscopy to monitor the dynamics of a defined two-species microbiota within a vertebrate gut. We observed that the interplay between each population and the gut environment produces distinct spatiotemporal patterns. As a consequence, one species dominates while the other experiences sudden drops in abundance that are well fit by a stochastic mathematical model. Modeling revealed that direct bacterial competition could only partially explain the observed phenomena, suggesting that a host factor is also important in shaping the community. We hypothesized the host determinant to be gut motility, and tested this mechanism by measuring colonization in hosts with enteric nervous system dysfunction due to a mutation in the ret locus, which in humans is associated with the intestinal motility disorder known as Hirschsprung disease. In mutant hosts we found reduced gut motility and, confirming our hypothesis, robust coexistence of both bacterial species. This study provides evidence that host-mediated spatial structuring and stochastic perturbation of communities can drive bacterial population dynamics within the gut, and it reveals a new facet of the intestinal host–microbe interface by demonstrating the capacity of the enteric nervous system to influence the microbiota. Ultimately, these findings suggest that therapeutic strategies targeting the intestinal ecosystem should consider the dynamic physical nature of the gut environment.
Article
Full-text available
Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus 'more microbes, fewer viruses'.
Article
Full-text available
Background: The human gut is densely populated with archaea, eukaryotes, bacteria, and their viruses, such as bacteriophages. Advances in high-throughput sequencing (HTS) as well as bioinformatics have opened new opportunities for characterizing the viral communities harbored in our gut. However, limited attention has been given to the efficiency of protocols dealing with extraction of phages from fecal communities prior to HTS and their impact on the metagenomic dataset. Results: We describe two optimized methods for extraction of phages from fecal samples based on tangential-flow filtration (TFF) and polyethylene glycol precipitation (PEG) approaches using an adapted method from a published protocol as control (literature-adapted protocol (LIT)). To quantify phage recovery, samples were spiked with low numbers of c2, ϕ29, and T4 phages (representatives of the Siphoviridae, Podoviridae, and Myoviridae families, respectively) and their concentration (plaque-forming units) followed at every step during the extraction procedure. Compared with LIT, TFF and PEG had higher recovery of all spiked phages, yielding up to 16 times more phage particles (PPs) and up to 68 times more phage DNA per volume, increasing thus the chances of extracting low abundant phages. TFF- and PEG-derived metaviromes showed 10 % increase in relative abundance of Caudovirales and unclassified phages infecting gut-associated bacteria (>92 % for TFF and PEG, 82.4 % for LIT). Our methods obtained lower relative abundance of the Myoviridae family (<16 %) as compared to the reference protocol (22 %). This decline, however, was not considered a true loss of Myoviridae phages but rather a greater level of extraction of Siphoviridae phages (TFF and PEG >32.5 %, LIT 22.6 %), which was achieved with the enhanced conditions of our procedures (e.g., reduced filter clogging). A high degree of phage diversity in samples extracted using TFF and PEG was documented by transmission electron microscopy. Conclusions: Two procedures (TFF and PEG) for extraction of bacteriophages from fecal samples were optimized using a set of spiked bacteriophages as process control. These protocols are highly efficient tools for extraction and purification of PPs prior to HTS in phage-metavirome studies. Our methods can be easily modified, being thus applicable and adjustable for in principle any solid environmental material in dissolution.
Article
Full-text available
Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the majority of published human faecal metagenomes, which we refer to as crAssphage. Its ~97 kbp genome is six times more abundant in publicly available metagenomes than all other known phages together; it comprises up to 90% and 22% of all reads in virus-like particle (VLP)-derived metagenomes and total community metagenomes, respectively; and it totals 1.68% of all human faecal metagenomic sequencing reads in the public databases. The majority of crAssphage-encoded proteins match no known sequences in the database, which is why it was not detected before. Using a new co-occurrence profiling approach, we predict a Bacteroides host for this phage, consistent with Bacteroides-related protein homologues and a unique carbohydrate-binding domain encoded in the phage genome.
Article
Full-text available
Although many NGS read pre-processing tools already existed, we could not find any tool or combination of tools which met our requirements in terms of flexibility, correct handling of paired-end data, and high performance. We have developed Trimmomatic as a more flexible and efficient pre-processing tool, which could correctly handle paired-end data. The value of NGS read pre-processing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output which is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available from http://www.usadellab.org/cms/index.php?page=trimmomatic CONTACT: usadel@bio1.rwth-aachen.de SUPPLEMENTARY INFORMATION: Manual and source code are available from http://www.usadellab.org/cms/index.php?page=trimmomatic.
Article
Full-text available
While natural microbial communities are composed of a mix of microbes with often unknown functions, the construction of synthetic microbial communities allows for the generation of defined systems with reduced complexity. Used in a top-down approach, synthetic communities serve as model systems to ask questions about the performance and stability of microbial communities. In a second, bottom-up approach, synthetic microbial communities are used to study which conditions are necessary to generate interaction patterns like symbiosis or competition, and how higher order community structure can emerge from these. Besides their obvious value as model systems to understand the structure, function and evolution of microbial communities as complex dynamical systems, synthetic communities can also open up new avenues for biotechnological applications.
Article
Full-text available
Significance A consortium of sequenced human gut bacteria was introduced into germ-free mice followed by a “staged” phage attack with virus-like particles purified from the fecal microbiota of five healthy adult humans. Unique phages were identified attacking microbiota members in nonsimultaneous fashion. Some host bacterial species acquired resistance to phage attack through ecological or epigenetic mechanisms. Changes in community structure observed after attack were transient. Spontaneous induction of prophages present in seven bacterial taxa was modest, occurring independently of the phage attack. Together, these results reveal a largely temperate phage–bacterial host dynamic and illustrate how gnotobiotic mouse models can help characterize ecological relationships in the gut by taking into account its most abundant but least understood component, viruses.
Article
Full-text available
SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Article
Full-text available
The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
Article
The human gut microbiome plays an important role in resisting colonization of the host by pathogens, but we lack the ability to predict which communities will be protective. We studied how human gut bacteria influence colonization of two major bacterial pathogens, both in vitro and in gnotobiotic mice. Whereas single species alone had negligible effects, colonization resistance greatly increased with community diversity. Moreover, this community-level resistance rested critically upon certain species being present. We explained these ecological patterns through the collective ability of resistant communities to consume nutrients that overlap with those used by the pathogen. Furthermore, we applied our findings to successfully predict communities that resist a novel target strain. Our work provides a reason why microbiome diversity is beneficial and suggests a route for the rational design of pathogen-resistant communities.
Article
The human colon is inhabited by a complex community of microbes. These microbes are integral to host health and physiology. Understanding how and when the microbiome causally influences host health will require microbiome models that can be tightly controlled and manipulated. While in vivo models are unrivalled in their ability to study host‐microbial interplay, in vitro models are gaining in popularity as methods to study the ecology and function of the gut microbiota, and benefit from tight controllability and reproducibility, as well as reduced ethical constraints. In this set of protocols, we describe the Robogut, a single‐stage bioreactor system designed to replicate the conditions of the distal human colon, to culture whole microbial communities derived from stool and/or colonic biopsy samples, with consideration of methods to create culture medium formulations and to build, run, and sample the bioreactor apparatus. Cleaning and maintenance of the bioreactor system are also described. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1 : Growth medium preparation Support Protocol 1 : Preparing medium supplements Basic Protocol 2 : Preparing the bioreactor vessels Support Protocol 2 : Making acid and base bottles Support Protocol 3 : Preparing the effluent bottles Support Protocol 4 : Making acid solution Support Protocol 5 : Making base solution Basic Protocol 3 : Preparing inoculum and inoculating bioreactors Alternate Protocol 1 : Preparing inoculum less than 0.5% (w/v) of vessel volume Alternate Protocol 2 : Preparing synthetic community aliquots and inoculation via the septum Alternate Protocol 3 : Preparing inoculum from a tissue sample Basic Protocol 4 : Sampling the bioreactor vessel Basic Protocol 5 : Harvesting bioreactor vessel contents at end of experiment Support Protocol 6 : Cleaning and sterilizing sampling needles Basic Protocol 6 : Cleaning the bioreactor vessel Support Protocol 7 : Cleaning bioreactor support bottles
Article
Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.
Article
The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as important, but often missed because of reference database limitations. Here, we (1) built a human Gut Virome Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16 countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold, respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from technical artifacts is larger than any “disease” effect at the population level, and document how viral diversity changes from human infancy into senescence. Together, this compact foundational resource, these standardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our understanding of viral roles in health and disease.
Article
The application of bacteriophages (phages) is proposed as a highly specific therapy for intestinal pathobiont elimination. However, the infectious associations between phages and bacteria in the human intestine, which is essential information for the development of phage therapies, have yet to be fully elucidated. Here, we report the intestinal viral microbiomes (viromes), together with bacterial microbiomes (bacteriomes), in 101 healthy Japanese individuals. Based on the genomic sequences of bacteriomes and viromes from the same fecal samples, the host bacteria-phage associations are illustrated for both temperate and virulent phages. To verify the usefulness of the comprehensive host bacteria-phage information, we screened Clostridioides difficile-specific phages and identified antibacterial enzymes whose activity is confirmed both in vitro and in vivo. These comprehensive metagenome analyses reveal not only host bacteria-phage associations in the human intestine but also provide vital information for the development of phage therapies against intestinal pathobionts.
Article
Ggtree is an R/Bioconductor package for visualizing tree‐like structures and associated data. After 5 years of continual development, ggtree has been evolved as a package suite that contains treeio for tree data input and output, tidytree for tree data manipulation, and ggtree for tree data visualization. Ggtree was originally designed to work with phylogenetic trees, and has been expanded to support other tree‐like structures, which extends the application of ggtree to present tree data in other disciplines. This article contains five basic protocols describing how to visualize trees using the grammar of graphics syntax, how to visualize hierarchical clustering results with associated data, how to estimate bootstrap values and visualize the values on the tree, how to estimate continuous and discrete ancestral traits and visualize ancestral states on the tree, and how to visualize a multiple sequence alignment with a phylogenetic tree. The ggtree package is freely available at https://www.bioconductor.org/packages/ggtree . © 2020 by John Wiley & Sons, Inc. Basic Protocol 1 : Using grammar of graphics for visualizing trees Basic Protocol 2 : Visualizing hierarchical clustering using ggtree Basic Protocol 3 : Visualizing bootstrap values as symbolic points Basic Protocol 4 : Visualizing ancestral status Basic Protocol 5 : Visualizing a multiple sequence alignment with a phylogenetic tree
Article
Metagenomics is currently the primary means for identifying new viruses. One of the most impactful metagenomic discoveries is that of crAssphage, the most abundant human-associated virus that is found in about 50% of human gut viromes where it can comprise up to 90% of the virus sequences. Although initial genome analysis of crAssphage failed to detect related phages, or functionally annotate most of the genes, subsequent reanalysis with powerful computational methods and larger databases led to the identification of an expansive group of crAss-like phages. The functions of most crAssphage proteins were predicted, including unusual ones such as giant RNA polymerase polyproteins. The host range of the crAss-like phages consists of various members of the bacterial phylum Bacteroidetes as demonstrated by CRISPR spacer analysis and by analysis of genes acquired by phages from the hosts. New metagenomic studies vastly expanded the crAss-like phage group and demonstrated its global spread and ancient association with primates. The first members of the crAss-like group was recently isolated and shown to infect the bacterium Bacteroides intestinales. Characterization of this phage validated the predicted podovirus-like virion structure and the identity of the major capsid protein and other predicted virion proteins, including three RNA polymerase subunits.
Article
The human gut virome is thought to significantly impact the microbiome and human health. However, most virome analyses have been performed on a limited fraction of known viruses. Using whole-virome analysis on a published keystone inflammatory bowel disease (IBD) cohort and an in-house ulcerative colitis dataset, we shed light on the composition of the human gut virome in IBD beyond this identifiable minority. We observe IBD-specific changes to the virome and increased numbers of temperate phage sequences in individuals with Crohn's disease. Unlike prior database-dependent methods, no changes in viral richness were observed. Among IBD subjects, the changes in virome composition reflected alterations in bacterial composition. Furthermore, incorporating both bacteriome and virome composition offered greater classification power between health and disease. This approach to analyzing whole virome across cohorts highlights significant IBD signals, which may be crucial for developing future biomarkers and therapeutics.
Article
Phylogenetic trees and data are often stored in incompatible and inconsistent formats. The outputs of software tools that contain trees with analysis findings are often not compatible with each other, making it hard to integrate the results of different analyses in a comparative study. The treeio package is designed to connect phylogenetic tree input and output. It supports extracting phylogenetic trees as well as the outputs of commonly used analytical software. It can link external data to phylogenies and merge tree data obtained from different sources, enabling analyses of phylogeny-associated data from different disciplines in an evolutionary context. Treeio also supports export of a phylogenetic tree with heterogeneous associated data to a single tree file, including BEAST compatible NEXUS and jtree formats; these facilitate data sharing as well as file format conversion for downstream analysis. The treeio package is designed to work with the tidytree and ggtree packages. Tree data can be processed using the tidy interface with tidytree and visualized by ggtree. The treeio package is released within the Bioconductor and rOpenSci projects. It is available at https://www.bioconductor.org/packages/treeio/.
Article
The human gut contains a vast array of viruses, mostly bacteriophages. The majority remain uncharacterized, and their roles in shaping the gut microbiome and in impacting on human health remain poorly understood. We performed longitudinal metagenomic analysis of fecal viruses in healthy adults that reveal high temporal stability, individual specificity, and correlation with the bacterial microbiome. Using a database-independent approach that uses most of the sequencing data, we uncovered the existence of a stable, numerically predominant individual-specific persistent personal virome. Clustering of viral genomes and de novo taxonomic annotation identified several groups of crAss-like and Microviridae bacteriophages as the most stable colonizers of the human gut. CRISPR-based host prediction highlighted connections between these stable viral communities and highly predominant gut bacterial taxa such as Bacteroides, Prevotella, and Faecalibacterium. This study provides insights into the structure of the human gut virome and serves as an important baseline for hypothesis-driven research.
Article
Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.
Article
Microbial community assembly is a complex process shaped by multiple factors, including habitat filtering, species assortment and stochasticity. Understanding the relative importance of these drivers would enable scientists to design strategies initiating a desired reassembly for e.g., remediating low diversity ecosystems. Here, we aimed to examine if a human fecal-derived defined microbial community cultured in bioreactors assembled deterministically or stochastically, by completing replicate experiments under two growth medium conditions characteristic of either high fiber or high protein diets. Then, we recreated this defined microbial community by matching different strains of the same species sourced from distinct human donors, in order to elucidate whether coadaptation of strains within a host influenced community dynamics. Each defined microbial ecosystem was evaluated for composition using marker gene sequencing, and for behavior using 1H-NMR-based metabonomics. We found that stochasticity had the largest influence on the species structure when substrate concentrations varied, whereas habitat filtering greatly impacted the metabonomic output. Evidence of coadaptation was elucidated from comparisons of the two communities; we found that the artificial community tended to exclude saccharolytic Firmicutes species and was enriched for metabolic intermediates, such as Stickland fermentation products, suggesting overall that polysaccharide utilization by Firmicutes is dependent on cooperation.
Article
CrAssphages represent the most abundant virus in the human gut microbiota, but the lack of available genome sequences for comparison has kept them enigmatic. Recently, sequence-based classification of distantly related crAss-like phages from multiple environments was reported, leading to a proposed familial-level taxonomic group. Here, we assembled the metagenomic sequencing reads from 702 human fecal virome/phageome samples and analyzed 99 complete circular crAss-like phage genomes and 150 contigs ≥70 kb. In silico comparative genomics and taxonomic analysis enabled a classification scheme of crAss-like phages from human fecal microbiomes into four candidate subfamilies composed of ten candidate genera. Laboratory analysis was performed on fecal samples from an individual harboring seven distinct crAss-like phages. We achieved crAss-like phage propagation in ex vivo human fecal fermentations and visualized short-tailed podoviruses by electron microscopy. Mass spectrometry of a crAss-like phage capsid protein could be linked to metagenomic sequencing data, confirming crAss-like phage structural annotations.
Article
We present the open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors (https://github.com/benjjneb/dada2). DADA2 infers sample sequences exactly and resolves differences of as little as 1 nucleotide. In several mock communities, DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
Article
The extensive impact of the human gut microbiota on its human host calls for a need to understand the types of communication that occur amongst the bacteria and its host. A metabolomics approach can provide a snapshot of the microbe-microbe interactions occurring, as well as variations in the microbes from different hosts. In this study, metabolite profiles from an anaerobic continuous stirred-tank reactors (CSTR) system supporting the growth of several consortia of bacteria representative of the human gut were established and compared. Cell-free supernatant samples were analyzed by 1D-1H Nuclear Magnetic Resonance (NMR) spectroscopy, producing spectra representative of the metabolic activity of a particular community at a given time. Using targeted profiling; specific metabolites were identified and quantified based on NMR analyses. Metabolite profiles discriminated each bacterial community examined, demonstrating that there are significant differences in the microbiota metabolome between each cultured community. We also found unique compounds that were identifying features of individual bacterial consortia. These findings are important because they demonstrate that metabolite profiles of gut microbial ecosystems can be constructed by targeted profiling of NMR spectra. Moreover, examination of these profiles sheds light on the type of microbes present in the gut and their metabolic interactions.
Article
Decreases in the diversity of enteric bacterial populations are observed in patients with Crohn's disease (CD) and ulcerative colitis (UC). Less is known about the virome in these diseases. We show that the enteric virome is abnormal in CD and UC patients. In-depth analysis of preparations enriched for free virions in the intestine revealed that CD and UC were associated with a significant expansion of Caudovirales bacteriophages. The viromes of CD and UC patients were disease and cohort specific. Importantly, it did not appear that expansion and diversification of the enteric virome was secondary to changes in bacterial populations. These data support a model in which changes in the virome may contribute to intestinal inflammation and bacterial dysbiosis. We conclude that the virome is a candidate for contributing to, or being a biomarker for, human inflammatory bowel disease and speculate that the enteric virome may play a role in other diseases.