Article

Design of Rectangular Patch Array 2x4 Microstrip Antenna on C-Band for Weather Radar Applications

Authors:
  • National University
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Weather radars are essential for detecting rainfall, calculating movement, and estimating the object type (rain, snow, or hail). For such applications, the C-Band frequency range of 3.7 GHz to 4.2 GHz is typically utilized. A key challenge lies in improving antenna gain for better system performance. This research aims to design a C-Band downlink microstrip antenna at a working frequency of 3.9 GHz. We used a 4 x 2 array to increase the gain. Before designing, we did calculations using the CST Studio Suite 2019 software. The results of our design are a return loss of -29,171 dB, a VSWR of 1.061, a bandwidth of 713 MHz, and a gain of 8.23 dB. This research contributes an improved gain and bandwidth contribution of this study is the better gain and bandwidth compared to similar studies.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
This study shows an enhanced octagonal circularly polarized (CP) patch antenna, This one appropriate for mobile applications, such as wireless applications, especially for WIMAX, and 5G mid-band. A single-port excitation approach is utilized to obtain the intended outcome. The substrate used is Rogers RT/duroid 5880 with a relative permittivity of 2.2 and a low loss tangent (0.0009). The antenna’s dimensions are optimized with the final design measuring 32 × 35 × 1.67 mm³. To generate the circular polarization a square slot is cuted, and two stubs are inserted in the opposite corners of the ground plane. A good result is achieved, for the reflection coefficient, we have a bandwidth (< -10 dB) of 1.29 GHz (2.8 GHz-4.09 GHz) and the bandwidth of the Axial ratio (AR) below 3 dB is 500 MHz (3.33 GHz−3.83 GHz). (CST) and (HFSS) softwares were used to calculate all obtained results. This microstrip antenna has a tiny dimension, it is simple to fabricate and has a lightweight, it has high performance, such as a wide band of the reflection coefficient of 1.29 GHz, also, its circular polarization makes it ideal for mobile applications, particularly WIMAX and 5G mid-band.
Article
Full-text available
C-Band weather radar that operates at a frequency of 5 GHz is very vulnerable to radio frequency interference (RFI) because it is located on a free used frequency. RFI can cause image misinterpretation and precipitation echo distortion. The new allocation for free spectrum recommended by the World Radio Conference 2003 and weather radar frequency protection in Indonesia controlled by the Balai Monitoring Spektrum Frekuensi (BALMON) have not provided permanent protection against weather radar RFI. Several RFI filter methods have been developed for polarimetric radars, but there have been no studies related to RFI filters on non-polarimetric radars in Indonesia. This research aims to conduct an initial study of RFI filters on such radars. Four methods were applied in the initial study. The Himawari 8 cloud mask was used to eliminate interference echo based on VS, IR, and I2 channels, while the nature of false echo interference that does not have a radial velocity value was used as the basis for the application of the Doppler velocity filter. Another characteristic in the form of consistent echo interference up to the maximum range was used as the basis for applying a beam filling analysis filter with reflectivity thresholds of 5 dBZ and 10 dBZ, with beam filling of more than 75%. Finally, supervised learning Random Forest (RF) was also used to identify interference echo based on the characteristics of the sampling results on reflectivity, radial velocity, and spectral width data. The results show that the beam filling analysis method with a threshold of 5 dBZ provides the best RFI filter without eliminating echo precipitation.
Conference Paper
Full-text available
Quantitative Precipitation Forecast (QPF) merupakan salah satu produk nowcasting hasil pengolahan data pengindraan jauh yang berpotensi menjadi basis data dalam pertimbangan pembuatan impact-based warning (IBW). Hingga saat ini, data model dan indeks risiko bencana digunakan sebagai data utama dalam pembuatan impact-based forecast (IBF) dengan periode akumulasi 24 jam dengan batas ambang 100 mm. Basis data tersebut dapat dikembangkan dengan menggunakan produk QPF untuk mengetahui potensi cuaca signifikan berbasis dampak secara realtime. Penelitian ini bertujuan untuk melakukan kajian awal pemanfaaatan data pengindraan jauh untuk pembuatan prakiraan cuaca jangka pendek (nowcasting) berbasis dampak dengan periode prakiraan hingga 3 jam kedepan. Kajian awal dilakukan dengan menggunakan data radar dan satelit cuaca sekuen 60 menit sebagai data input produk QPF 3 jam dengan batas ambang 20 mm. Weighted overlay dilakukan dengan pembobotan 50% produk QPF dan 50% indeks resiko banjir untuk memperoleh kategori IBW. Algoritma nowcasting yang digunakan adalah Short Term Ensemble Prediction System (STEPS) dengan 20 anggota ensemble sebagai kajian awal. Algoritma STPS diterapkan pada data satelit cuaca dengan mengkonversi data temperatur puncak awan menjadi nilai reflektivitas radar. Level peringatan yang digunaan untuk mengukur tingkat kesesuaian adalah level peringatan waspada dengan rentang kategori 6 hingga kategori 8. Pada kasus banjir di Kabupaten Bogor tanggal 1 Januari 2020, hasil perhitungan IBW berdasarkan data radar cuaca menunjukkan 42,7% area pada kecamatan yang dilaporkan banjir memiliki status peringatan waspada, sedangkan berdasarkan data satelit cuaca sebesar 35,7%. Jika dikaitkan dengan kejadian di lapangan, hasil perhitungan indeks IBW menggunakan data radar dan satelit cuaca secara kualitatif mampu memberikan level peringatan yang tepat.
Article
Full-text available
4G network is a technology that is currently being developed, known as LTE or 4G. An antenna microstrip for 4G technology is used in this paper. The antenna is designed to resonate at a frequency of 1800 MHz-2300 MHz. The antenna design use FR-4 for its substrate which functions as a dielectric for the antenna. The design is done using the help of CST Studio Suite 2014 software and NI AWR Design Environment v. 12 to get the desired antenna characteristics through simulation. From our research, we obtained the antenna characteristics such as return loss, VSWR (Voltage Standing Wave Ratio), gain, and bandwidth. In this research, a 4× 1 patch rectangular microstrip array antenna has been designed and built that works at a frequency of 2.05 GHz for 4G technology. The antenna design uses the FR-4 for its substrate which functions as a dielectric for the antenna. The design is carried out with the help of CST Studio Suite software to obtain the desired antenna characteristics through simulation. From the research results obtained antenna characteristics such as return loss of-25.225 dB. VSWR (Voltage Standing Wave Ratio) of 1.15, the gain of 3.1 dBi, and bandwidth of 500 MHz with a 4× 1 rectangular array antenna design.
Article
Full-text available
This paper presents designing of a conformal antenna using a number of microstrip patches in C band frequency range 4 GHz to 8 GHz. The type of microstrip C-band antenna was chosen because it is suitable for use on portable surveillance radar systems. Single element patches antenna with a carved slit is used to obtain a horizontal polarization. In this paper, an microstrip patch antenna C-band frequency for 3-dimensional radar application was designed using CST Studio Suite 2018. The antenna operates at frequency 5.6 GHz, with 40.55 x 22.65 mm dimension using substrate Rogers RO-4350B (lossy) with thickness 1. 524 mm and relative permittivity 3.66. The bandwidth obtained from the simulation is 200 MHz, the return loss values below -20 dB, VSWR less than 2, 5.6 dB gain, and has directional radiation pattern.
Research
Full-text available
Badan Meteorologi, Klimatologi dan Geofisika (BMKG) adalah badan pemerintah yang dilindungi Undang-Undang yang bertanggung jawab menyediakan data dan informasi cuaca di wilayah kedaulatan Indonesia. Hingga tahun 2017 BMKG baru memiliki 41 radar cuaca yang tersebar di seluruh wilayah Indonesia. Tersebarnya lokasi radar cuaca ini membuat pengelolaan data dan informasi radar cuaca bersifat sektoral, parsial, dan terpecah-pecah serta kurang berdaya guna kemanfaatannya bagi masyarakat banyak. Untuk itu BMKG melakukan terobosan dengan membuat "dokumen cetak biru" yang memperlihatkan sistem integrasi radar cuaca di seluruh Indonesia pada masa mendatang termasuk penambahan radar cuaca baru di lokasi yang belum terliput. Perencanaan sistem integrasi ini mulai dilakukan pada 21 radar cuaca existing di berbagai lokasi di Indonesia dengan cara menghubungkan radar cuaca tersebut pada jaringan telekomunikasi. Dengan terhubungnya 21 radar cuaca tersebut pada jaringan telekomunikasi maka data radar cuaca bisa dikendalikan dan dimonitor dari jarak jauh selain kesehatan radar tersebut juga bisa dipantau. Lebih daripada itu, data dan informasi cuaca bisa didiseminasi dan diakses setiap saat. Selain itu, data & informasi cuaca tersebut dapat disimpan untuk keperluan peramalan dan analisis cuaca pada masa mendatang. Data dan Informasi radar cuaca tersebut antara lain: presipitasi, arah dan kecepatan angin, deteksi pergerakan hujan, intensitas hujan, informasi peringatan dini seperti alerting dan warning cuaca sekitar bandara / pelabuhan.
Article
Full-text available
Identification of the rice plant growth phase is an important step in estimating the harvest season and predicting rice production. It is undertaken to support the provision of information on national food availability. Indonesia’s high cloud coverage throughout the year means it is not possible to make optimal use of optical remote sensing satellite systems. However, the Synthetic Aperture Radar (SAR) remote sensing satellite system is a promising alternative technology for identifying the rice plant growth phase since it is not influenced by cloud cover and the weather. This study uses multi-temporal C-Band SAR satellite data for the period May–September 2016. VH and VV polarisation were observed to identify the rice plant growth phase of the Ciherang variety, which is commonly planted by farmers in West Java. Development of the rice plant growth phase model was optimized by obtaining samples spatially from a rice paddy block in PT Sang Hyang Seri, Subang, in order to acquire representative radar backscatter values from the SAR data on the age of certain rice plants. The Normalised Difference Polarisation Index (NDPI) and texture features, namely entropy, homogeneity and the Grey-Level Co-occurrence Matrix (GLCM) mean, were included as the samples. The results show that the radar backscatter value (σ0) of VH polarisation without the texture feature, with the entropy texture feature and GLCM mean texture feature respectively exhibit similar trends and demonstrate potential for use in identifying and monitoring the rice plant growth phase. The rice plant growth phase model without texture feature on VH polarisation is revealed as the most suitable model since it has the smallest average error.
Article
Full-text available
LTE (long Term Evolution) merupakan teknologi komunikasi wireless generasi keempat yang saat ini sedang mengalami perkembangan. Salah satu perangkat yang sangat dibutuhkan pada teknologi tersebut adalah antenna. Teknik yang digunakan adalah teknik MIMO. Teknik MIMO menggunakan multiantena baik di sisi transmitter maupun di sisi receiver dengan koefisien korelasi di bawah 0.2. Untuk menghasilkan nilai koefisien korelasi di bawah 0.2, antena menggunakan ?/2 untuk jarak antar dua antena. Perancangan dan realisasi antena pada skripsi ini dipergunakan untuk aplikasi LTE yang bekerja pada frekuensi 2.3 GHz sampai 2.4 GHz. Simulasi antena menunjukkan frekuensi kerja yang direncanakan yaitu antara 2.3 GHz – 2.4 GHz, memiliki Return Loss -38.582 dB dan VSWR 1.0238 pada frekuensi tengah 2.350 MHz, gain sebesar 4.332 dBi. Hasil pengukuran antena satu terdapat pergeseran frekuensi dari 2.300 MHz - 2.400 MHz menjadi 2.310 - 2.384 MHz, antena ini memiliki Return Loss -35.476 dB dan VSWR 1.034. Bandwidth 74 Mhz. Untuk antena dua terdapat pergeseran frekuensi menjadi 2.310 - 2.382 MHz, dengan Return Loss -33.637 dB dan VSWR 1.042. Bandwidth 72 MHz. Pada frekuensi 2.35 GHz gain sebesar 8 dBi dengan pola radiasi unidirectional dan polarisasi elips. Dari perancangan dan analisis tersebut, maka antena ini dapat digunakan sebagai antena teknologi LTE
Article
Full-text available
This paper deals with the characterization of Rectangular Patch Antenna Arrays numerically and experimentally. This antenna is designed to work around frequency of 9.4GHz for radar applications. In the design process, the Computer Simulation Technology (CST®) simulator software is utilized to determine the value of the antenna parameters such as gain, radiation pattern, and voltage standing wave ratio (VSWR). The Rectangular Patch Antenna Arrays realized by using the 1×16 patch antenna array, while the patch antenna is implemented using microstrip lines. The Duroid/RT5880 substrate with a dielectric constant of 2.2 and a thickness of 1.57mm applied for implementation. The characterization results show that the VSWR of realized antenna is 1.052, and the gain is 15,26dB which is 1.4dB lower than the design result, while the radiation pattern is unidirectional and elliptical polarization.
Conference Paper
Full-text available
This paper described the design of microstrip patch array antenna with operating frequency at 5.8GHz for point to point communication. The array of four microstrip rectangular patch antennas with inset feed based on quarter-wave impedance matching technique were designed, simulated, fabricated and measured with the aid of microwave office software. The simulation and measurement result met the IEEE 802.11a standard and able to operate in upper UNII band for point to point communication. The 4times4 array has a return loss of -30.42 dB with 15% bandwidth. The gain obtained from simulation is 16 dB with 9deg half power beamwidth (HPBW)
Design analysis of microstrip rectangular patch array antenna 16x1 on x-band radar
  • S A Rahayu
  • J Suryana
  • L Tursilowati
  • G A Halimurrahman
  • Nugroho
S. A. Rahayu, J. Suryana, L. Tursilowati, Halimurrahman and G. A. Nugroho, "Design analysis of microstrip rectangular patch array antenna 16x1 on x-band radar," Jurnal Elektronika dan Telekomunikasi, vol. 19, no. 1, pp. 7-12, 2019, doi: 10.14203/jet.v19.7-12.
Perancangan antena mikrostrip array pada frekuensi x-band untuk aplikasi radar cuaca
  • R Rufaidah
  • R Anwar
R. Rufaidah, A. A. P, and R. Anwar, "Perancangan antena mikrostrip array pada frekuensi x-band untuk aplikasi radar cuaca," e-Proceeding of Engineering, vol. 7, no. 2, pp. 3830-3838, 2020.