ArticleLiterature Review

Geraniol and citral: recent developments in their anticancer credentials opening new vistas in complementary cancer therapy

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

About 10 million people are diagnosed with cancer each year. Globally, it is the second leading cause of death after heart disease, and by 2035, the death toll could reach 14.6 million. Several drugs and treatments are available to treat cancer, but survival rates remain low. Many studies in recent years have shown that plant-derived monoterpenes, particularly geraniol and citral, are effective against various cancers, including breast, liver, melanoma, endometrial, colon, prostate, and skin cancers. This trend has opened new possibilities for the development of new therapeutics or adjuvants in the field of cancer therapy. These monoterpenes can improve the efficacy of chemotherapy by modulating many signaling molecules and pathways within tumors. Analysis of reports on the anticancer effects published in the past 5 years provided an overview of the most important results of these and related properties. Also, the molecular mechanisms by which they exert their anticancer effects in cell and animal studies have been explained. Therefore, this review aims to highlight the scope of geraniol and citral as complementary or alternative treatment options in cancer therapy.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Geraniol, a natural monoterpene alcohol commonly found in essential oils of plants, has garnered significant interest in scientific research due to its diverse pharmacological properties (14). One area of interest is its interaction with various target receptors or pathways, elucidating its potential therapeutic applications (15). Here's a brief scientific overview:  TRPV3 Activation: ...
... Research suggests that geraniol exhibits anticancer properties by inducing apoptosis (programmed cell death) and inhibiting proliferation in various cancer cell lines (69). It may also modulate signaling pathways involved in tumor growth and metastasis, potentially complementing conventional cancer therapies (15). ...
... The primary mechanism involves the modulation of key apoptotic regulators such as Bcl-2 and Bax proteins. By down regulating Bcl-2 (an anti-apoptotic protein) and upregulating Bax (a pro-apoptotic protein), geraniol facilitates the release of cytochrome c from mitochondria, triggering the caspase cascade and leading to programmed cell death (15,93). ...
Article
Full-text available
Geraniol, a naturally occurring monoterpenoid found in essential oils of several aromatic plants, exhibits numerous therapeutic properties, including anti-inflammatory, antimicrobial, and anticancer activities. However, its therapeutic potential is hindered by poor water solubility, limited bioavailability, and rapid metabolism. Nanotechnology-based delivery systems offer a promising solution to these challenges, by enhancing the solubility, stability, and bioavailability of geraniol through advanced delivery systems in cancer treatment. This review critically examines recent advances in nanotechnology-based delivery systems for geraniol, exploring various nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles. The review also highlights the mechanisms by which these nanocarriers improve geraniol's pharmacokinetic profile, its targeted delivery to cancer cells, and its impact on overcoming multidrug resistance. Future perspectives and potential clinical applications are discussed, emphasizing the need for further research to fully harness the potential of geraniol in cancer therapy.
... Geraniol, a natural monoterpene alcohol commonly found in essential oils of plants, has garnered significant interest in scientific research due to its diverse pharmacological properties (14). One area of interest is its interaction with various target receptors or pathways, elucidating its potential therapeutic applications (15). Here's a brief scientific overview:  TRPV3 Activation: ...
... Research suggests that geraniol exhibits anticancer properties by inducing apoptosis (programmed cell death) and inhibiting proliferation in various cancer cell lines (69). It may also modulate signaling pathways involved in tumor growth and metastasis, potentially complementing conventional cancer therapies (15). ...
... The primary mechanism involves the modulation of key apoptotic regulators such as Bcl-2 and Bax proteins. By down regulating Bcl-2 (an anti-apoptotic protein) and upregulating Bax (a pro-apoptotic protein), geraniol facilitates the release of cytochrome c from mitochondria, triggering the caspase cascade and leading to programmed cell death (15,93). ...
Article
Geraniol, a naturally occurring monoterpenoid found in essential oils of several aromatic plants, exhibits numerous therapeutic properties, including anti-inflammatory, antimicrobial, and anticancer activities. However, its therapeutic potential is hindered by poor water solubility, limited bioavailability, and rapid metabolism. Nanotechnology- based delivery systems offer a promising solution to these challenges, by enhancing the solubility, stability, and bioavailability of geraniol through advanced delivery systems in cancer treatment. This review critically examines recent advances in nanotechnology- based delivery systems for geraniol, exploring various nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles. The review also highlights the mechanisms by which these nanocarriers improve geraniol's pharmacokinetic profile, its targeted delivery to cancer cells, and its impact on overcoming multidrug resistance. Future perspectives and potential clinical applications are discussed, emphasizing the need for further research to fully harness the potential of geraniol in cancer therapy.
... Cymbopogon citratus, from the Poaceae family, has demonstrated notable antitumor properties and is recognized as a promising herbal therapy for reducing resistance to prostate cancer treatments [21,22]. Citral, a monoterpene aldehyde and major compound in C. citratus EO, possesses various biological effects, including anticancer, antioxidant, and antibacterial activities [23,24]. Citral has also shown antitumor effects in mouse models of breast cancer [25]. ...
Article
Full-text available
Background Solid tumors often develop hypoxic regions, leading to aggressive behavior and increased drug resistance. Methods The chemical composition of Cymbopogon citratus essential oil (EO) was analyzed using GC-MS. Alginate nanoparticles containing the EO and its primary component, citral, were synthesized via the ionic gelation method. Encapsulation was confirmed using ATR-FTIR analysis. The anticancer efficacy of C. citratus EO, citral, and their respective alginate nanoparticles was evaluated under normoxic (21% oxygen) and hypoxic (1% oxygen) conditions on breast cancer (MDA-MB-231) and melanoma (A-375) cell lines. Additionally, qPCR and flow cytometry were used to assess apoptosis gene expression ratios (Bax/Bcl-2) and levels of apoptosis. Results Citral (80.98%) was identified as the major component of the EO. Alginate nanoparticles containing C. citratus EO and citral (C. citratus-AlgNPs and citral-AlgNPs) were synthesized with particle sizes of 195 ± 4 nm and 222 ± 9 nm, and zeta potentials of -22 ± 3 mV and − 17 ± 1 mV, respectively. Both samples demonstrated significantly greater efficacy under hypoxic conditions. Citral and C. citratus-AlgNPs had IC50 values of 27 (19–39) µg/mL and 25 (4-147) µg/mL, respectively, against MDA-MB-231 and A-375 cells. Flow cytometry showed increased apoptosis under hypoxic conditions, with the highest rates observed for citral-AlgNPs and C. citratus-AlgNPs (84 ± 5 and 92 ± 5% in MDA-MB-231 and A-375 cells, respectively). Conclusion This study demonstrates that alginate nanoparticles enhance the anticancer activity of C. citratus-AlgNPs and citral, particularly under hypoxic conditions, highlighting their potential for hypoxia-targeted cancer therapies.
Article
Full-text available
Background: Geraniol has been shown to possess therapeutic or preventive effects against various types of human cancers but not affect normal physiology through regulating cell cycle and apoptosis. However, the biological effects of geraniol on oral squamous cell carcinoma (OSCC) cells are unknown. Methods: OSCC cell proliferation was measured by cell-counting kit-8 and colony formation assays. Cell migration was assessed by wound-healing assay. Apoptosis of OSCC cells was detected by TUNEL staining analysis. UM1 xenograft mouse model was used for determining the antitumor effects of geraniol in vivo. Results: Geraniol treatment significantly suppressed OSCC cell proliferation and migration in vitro, and tumor growth in vivo in a time- and dose-dependent manner. Further investigation showed that geraniol treatment effectively induced OSCC apoptosis and blocked Phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling activation concurrently. We also found that geraniol administration at the dose of 100 and 250 mg/kg did not affect the body weight on tumor-bearing mice, demonstrating the safety of geraniol. Conclusion: Geraniol may serve as a promising anticancer drug for the treatment of oral cancer.
Article
Full-text available
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that cause millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Article
Full-text available
Essential oils of Cymbopogon species have wide commercial applications in fragrance, perfumery, and pharmaceuticals as they exhibit a horizon of bioactivities. Here, essential oils of C. flexuosus and C. martinii were analysed to identify bioactive constituents and bioactivities using a network pharmacology approach. Essential oils were isolated using hydro-distillation in a mini Clevenger apparatus. Analysis of essential oils by GC–MS revealed 20 and 15 chemical constituents in C. flexuosus and C. martinii, respectively. An ingredient-target protein-pathway network was constructed comprising 10 oil constituents (citral, geraniol, geranyl acetate, limonene, linalool, α-terpineol, borneol, α-pinene, myrcene, and n-decanol), 14 target proteins, 51 related pathways, and 108 connections. Analyses of the network showed geraniol, geranyl acetate, limonene, linalool, and citral as major active constituents. A core sub-network constructed from the ingredient-target protein-pathway network revealed bioactivities including anti-cancer, anti-inflammatory and neuroprotective. The protein association network pointed out the major target proteins viz., THRB, FXR, ALOX15, and TSHR and pathways like metabolic, and neuroactive ligand-receptor interaction pathways of essential oil constituents. The target proteins and pathways provided insights into the mechanism of action of bioactive constituents. Based on the results of the study, geraniol was correlated with neuroprotective, citral to chemo-preventive, and limonene to anti-inflammatory activities. Thus, the study offers a new way for the assessment of the bioactivities of Cymbopogon species essential oils leading to the development of new biomedicines.
Article
Full-text available
Colorectal carcinoma (CRC) is one of the most frequently diagnosed cancer types with current deficient and aggressive treatment options, but various studied alternative therapies are able to efficiently contribute to its management. Essential oils (EOs) contain valuable compounds, with antibacterial, anti-inflammatory, and anticancer properties, which might serve as effective solutions in CRC prophylaxis or treatment. The aim of the present work was to evaluate the phytochemical composition and in vitro biological activity of essential oils derived from Hippophae rhamnoides (Hr_EO), Cymbopogon citratus (Cc_EO), and Ocimum basilicum (Ob_EO) species on HT-29 and Caco-2 human colorectal adenocarcinoma cell lines. The main compounds identified by GC-MS analysis were estragole (Hr_EO, Ob_EO), alpha- and beta-citral (Cc_EO). All tested EOs exerted a dose-dependent cytotoxicity on both cell lines by reducing the cell viability, especially in the case of Cc_EO, where at 75 µg/mL the viability percentages reached the values of 62.69% (Caco-2) and 64.09% (HT-29), respectively. The nuclear morphology evaluation highlighted significant dysmorphologies on both lines after their treatment with EOs at 75 µg/mL.
Article
Full-text available
Objectives: Geraniol, a natural monoterpene, is an essential oil component of many plants. Methotrexate is an anti-metabolite drug, used for cancer and autoimmune conditions; however, clinical uses of methotrexate are limited by its concomitant renal injury. This study investigated the efficacy of geraniol to prevent methotrexate-induced acute kidney injury and via scrutinizing the Keap1/Nrf2/HO-1, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 and -9 pathways. Methods: Male Wister rats were allocated into five groups: control, geraniol (orally), methotrexate (IP), methotrexate and geraniol (100 and 200 mg/kg). Results: Geraniol effectively reduced the serum levels of creatinine, urea and Kim-1 with an increase in the serum level of albumin when compared to the methotrexate-treated group. Geraniol reduced Keap1, escalated Nrf2 and HO-1, enhanced the antioxidant parameters GSH, SOD, CAT and GSHPx and reduced MDA and NO. Geraniol decreased renal P38 MAPK and NF-κB and ameliorated the inflammatory mediators TNF-α, IL-1β, IL-6 and IL-10. Geraniol negatively regulated the apoptotic mediators Bax and caspase-3 and -9 and increased Bcl2. All the biochemical findings were supported by the alleviation of histopathological changes in kidney tissues. Conclusion: The current findings support that co-administration of geraniol with methotrexate may attenuate methotrexate-induced acute kidney injury.
Article
Full-text available
Chemotherapy is a general treatment procedure for cancer. The diversity in cancer incidence and the failure of therapy due to chemoresistance lead to increased cancer-related deaths. Therefore, new drugs with fewer secondary complications targeting diverse pathways are the need of the hour. Geranyl isovalerate (GIV), one of the active ingredients of ethyl acetate fraction of Argyreia nervosa is routinely used as a food flavoring agent. In this study, we found that GIV also exhibits anticancer activity when tested against the HCT116 cell line. It influenced the viability of the cells in a dose- and time-dependent manner. We examined whether GIV could induce oxidative stress and affect the mitochondrial membrane potential, thereby leading to apoptosis induction. Moreover, GIV could suppress the expression of antiapoptotic genes, such as BCl2 and PARP, and induce the expression of proapoptotic genes, such as Caspase 3 and 9. This is the first study demonstrating the anticancer activity of GIV and providing evidence for its mechanism of action. In conclusion, this study proposes GIV as a potential lead or supplementary molecule in treating and preventing colorectal cancer (CRC). Based on our findings, we conclude that GIV may be a viable lead or supplementary molecule for treating and preventing CRC.
Article
Full-text available
Introduction Antibiotics wee widely used as feed additives in animal husbandry. With the increase of drug resistance of bacteria, there is an urgent need to find alternatives to antibiotics. Clinically, methicillin-resistant Staphylococcus aureus (MRSA) infections account for about 25% to 50% of Staphylococcus aureus infections worldwide. Similarly, it is also one of the pathogens that cause serious animal infections. Methods We established a mouse model of systemic infection of MRSA to study the preventive effect of geraniol on MRSA and the immunomodulatory effect of geraniol. The mice in the experiment were injected with geraniol by intramuscular injection and were fed intraperitoneally with minimum lethal dose of MRSA. Then, the survival rate, inflammatory cytokines, oxidative stress factors in serum were measured. These values were used to estimate the bacterial load in different organs and to assess histopathological changes in the lungs, liver and kidneys. Results The above-mentioned two ways of using geraniol could prevent MRSA infection in vivo in mice and showed a significant dose–response relationship. In other words, geraniol significantly decreased the concentrations of inflammatory cytokines and oxidative stress factors in MRSA-infected mice. At the same time, the level of glutathione peroxidase also increased in a dose–proportional relationship. In the group of mice treated with geraniol, their superoxide dismutase levels were significantly higher than those in the vancomycin. After treatment with geraniol, the burden of MRSA decreased. No obvious histopathological abnormalities were found in the liver and kidney of MRSA-infected mice. In addition, geraniol improved the inflammatory changes in the lungs. Conclusion The results indicated that geraniol was a natural substance that could be used as an anti-inflammatory, antioxidant and antibacterial substance to protect mice from MRSA systemic infection. Generally, the research shows that as a natural medicine, geraniol has broad potential in the development and application of antibiotic substitutes.
Article
Full-text available
Circulating tumor cell (CTC) clusters mediate metastasis at a higher efficiency and are associated with lower overall survival in breast cancer compared to single cells. Combining single-cell RNA sequencing and protein analyses, here we report the profiles of primary tumor cells and lung metastases of triple-negative breast cancer (TNBC). ICAM1 expression increases by 200-fold in the lung metastases of three TNBC patient-derived xenografts (PDXs). Depletion of ICAM1 abrogates lung colonization of TNBC cells by inhibiting homotypic tumor cell-tumor cell cluster formation. Machine learning-based algorithms and mutagenesis analyses identify ICAM1 regions responsible for homophilic ICAM1-ICAM1 interactions, thereby directing homotypic tumor cell clustering, as well as heterotypic tumor-endothelial adhesion for trans-endothelial migration. Moreover, ICAM1 promotes metastasis by activating cellular pathways related to cell cycle and stemness. Finally, blocking ICAM1 interactions significantly inhibits CTC cluster formation, tumor cell transendothelial migration, and lung metastasis. Therefore, ICAM1 can serve as a novel therapeutic target for metastasis initiation of TNBC. Circulating tumor cell (CTC) clusters are more efficient at mediating metastasis as compared to single cells and are associated with poor prognosis in breast cancer. Here, the authors show that ICAM1 is enriched in CTC clusters and its loss suppresses cell-cell interaction and CTC cluster formation, and propose ICAM1 as a therapeutic target for treating breast cancer metastasis.
Article
Full-text available
The nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also called Nfe2l2) and its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (KEAP1), are major regulators of redox homeostasis controlling a multiple of genes for detoxification and cytoprotective enzymes. The NRF2/KEAP1 pathway is a fundamental signaling cascade responsible for the resistance of metabolic, oxidative stress, inflammation, and anticancer effects. Interestingly, a recent accumulation of evidence has indicated that NRF2 exhibits an aberrant activation in cancer. Evidence has shown that the NRF2/KEAP1 signaling pathway is associated with the proliferation of cancer cells and tumerigenesis through metabolic reprogramming. In this review, we provide an overview of the regulatory molecular mechanism of the NRF2/KEAP1 pathway against metabolic reprogramming in cancer, suggesting that the regulation of NRF2/KEAP1 axis might approach as a novel therapeutic strategy for cancers.
Article
Full-text available
Our study briefly reviews the data sources and methods used in compiling the International Agency for Research on Cancer (IARC) GLOBOCAN cancer statistics for the year 2020 and summarises the main results. National estimates were calculated based on the best available data on cancer incidence from population‐based cancer registries (PBCR) and mortality from the World Health Organization mortality database. Cancer incidence and mortality rates for 2020 by sex and age groups were estimated for 38 cancer sites and 185 countries or territories worldwide. There were an estimated 19.3 million (95% uncertainty interval [UI]: 19.0‐19.6 million) new cases of cancer (18.1 million excluding non‐melanoma skin cancer) and almost 10.0 million (95% UI: 9.7‐10.2 million) deaths from cancer (9.9 million excluding non‐melanoma skin cancer) worldwide in 2020. The most commonly diagnosed cancers worldwide were female breast cancer (2.26 million cases), lung (2.21) and prostate cancers (1.41); the most common causes of cancer death were lung (1.79 million deaths), liver (830000) and stomach cancers (769000).
Article
Full-text available
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. Sorafenib is an oral kinase inhibitor that inhibits tumor cell proliferation and angiogenesis and induces cancer cell apoptosis. It also improves the survival rates of patients with advanced liver cancer. However, due to its poor solubility, fast metabolism, and low bioavailability, clinical applications of sorafenib have been substantially restricted. In recent years, various studies have been conducted on the use of nanoparticles to improve drug targeting and therapeutic efficacy in HCC. Moreover, nanoparticles have been extensively explored to improve the therapeutic efficacy of sorafenib, and a variety of nanoparticles, such as polymer, lipid, silica, and metal nanoparticles, have been developed for treating liver cancer. All these new technologies have improved the targeted treatment of HCC by sorafenib and promoted nanomedicines as treatments for HCC. This review provides an overview of hot topics in tumor nanoscience and the latest status of treatments for HCC. It further introduces the current research status of nanoparticle drug delivery systems for treatment of HCC with sorafenib.
Article
Full-text available
This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2‐fold to 3‐fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2‐fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
Article
Full-text available
Background Prostate cancer is the most common visceral neoplasia in men and frequently present chemotherapy resistance. In this context, lemongrass (Cymbopogon citratus (D.C.) Stapf) has been studied, since it presents many important biological activities, such as anticancer. Objective: We investigated the antitumor effect of lemongrass and in chemotherapy activity using prostate cancer cells line (DU-145). Methods DU-145 cells were exposed to different concentrations of aqueous extract of lemongrass (30; 100; 300; 500 and 1000 μg/mL), isolated and in combination with docetaxel, during 24 and 72 hours. After, cell viability and proliferation, oxidative metabolism, colony formation and cell cycle analyses were performed. Also, we exposed African green monkey kidney cell line (VERO) to the same lemongrass concentrations to investigate a possible toxicity of this extract. Results Our findings suggested that lemongrass presented an antitumor effect and improved docetaxel chemotherapy activity by decreasing cell viability and proliferation as well as colony formation. Moreover, we found an oxidative stress increased and cell cycle arresting in G0/G1 phase. In addition, this extract presented selectivity action for cancer cells, since it did not cause cytotoxicity in normal cells, ensuring non-toxic therapeutic concentrations. Conclusion Lemongrass is a promising medicinal plant that could be used during chemotherapeutic treatment, in order to potentiate the antitumor response and decrease the resistance of prostate cancer.
Article
Full-text available
Objectives: Oxidative stress plays a major role in endothelial dysfunction. Citral is a monoterpene aldehyde with antioxidant properties. This study aimed to investigate the effect of citral on human umbilical vein endothelial cells (HUVECs) under hydrogen peroxide (H2O2)-induced oxidative stress. Materials and methods: The cells were treated with citral (0.625-10 μg/mL) for 24 h before exposure to H2O2 (0.5 mM, 2 h). Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The hydroperoxide concentrations and ferric reducing ability of plasma (FRAP) were measured in intra- and extracellular fluids. Results: Pretreatment of HUVECs with citral at concentrations of 5 and 10 μg/mL significantly enhanced the cell viability in H2O2-induced cytotoxicity. It reduced intracellular hydroperoxide levels at the concentrations of 5 and 10 μg/mL and extracellular hydroperoxide levels at the concentrations of 2.5-10 μg/mL. Pretreatment with citral significantly increased the FRAP value in intra- and extracellular fluids at the concentration range of 1.25-10 μg/mL. Conclusion: Antioxidant and cytoprotective effects were found for citral against oxidative damage induced by H2O2 in human endothelial cells. However, more studies in this area are needed to assess its clinical value for prevention and treatment of cardiovascular diseases.
Article
Full-text available
Rhabdomyosarcoma (RMS) is a rare type of soft tissue sarcoma most commonly found in pediatric patients. Despite progress, new and improved drug regimens are needed to increase survival rates. Citral, a natural product plant oil can induce cell death in cancer cells. Another compound, metformin, isolated originally from French lilac and used by diabetics, has been shown to reduce the incidence of cancer in these patients. Application of citral to RMS cells showed increase in cell death, and RD and RH30 cells showed half maximal inhibitory concentration (IC 50) values as low as 36.28 μM and 62.37 μM, respectively. It was also shown that the citral initiated cell apoptosis through an increase in reactive oxygen species (ROS) and free calcium. In comparison, metformin only showed moderate cell death in RMS cell lines at a very high concentration (1,000 μM). Combinatorial experiments, however, indicated that citral and metformin worked antagonistically when used together. In particular, the ability of metformin to quench the ROS induced by citral could lead to the suppression of activity. These results clearly indicate that while clinical use of citral is a promising anti-tumor therapy, caution should be exercised in patients using metfor-min for diabetes.
Article
Full-text available
Lemon essential oil (LEO) is a well-known flavoring agent with versatile biological activities. In the present study, we have isolated and characterized four citral-enriched fractions of winter LEO. We reported that in murine and human macrophages the pre-treatment with a mix of these fractions (Cfr-LEO) reduces the expression of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 induced by LPS. In addition, Cfr-LEO counteracts LPS-induced oxidative stress, as shown by the increase in the GSH/GSSG ratio in comparison to cells treated with LPS alone. Overall, the results reported here encourage the application of EO fractions, enriched in citral, in the nutraceutical industry, not only for its organoleptic properties but also for its protective action against inflammation and oxidative stress.
Article
Full-text available
Geraniol is a monoterpenic alcohol with a pleasant rose-like aroma, known as an important ingredient in many essential oils, and is used commercially as a fragrance compound in cosmetic and household products. However, geraniol has a number of biological activities, such as antioxidant and anti-inflammatory properties. In addition, numerous in vitro and in vivo studies have shown the activity of geraniol against prostate, bowel, liver, kidney and skin cancer. It can induce apoptosis and increase the expression of proapoptotic proteins. The synergy of this with other drugs may further increase the range of chemotherapeutic agents. The antibacterial activity of this compound was also observed on respiratory pathogens, skin and food-derived strains. This review discusses some of the most important uses of geraniol.
Article
Full-text available
Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
Article
Full-text available
Hepatocellular carcinoma (HCC) ranks the sixth position among various cancers worldwide. Recent research shows that natural and dietary compounds possess many therapeutic effects. Citral is a monoterpene aldehyde that contains geranial and neral. The present study was considered to study the role of citral against N‐nitrosodiethylamine (NDEA)‐induced HCC via modulation of antioxidants and xenobiotic‐metabolizing enzymes in vivo. NDEA‐alone‐administered group II animals profoundly showed increased tumor incidence, reactive oxygen species, liver marker enzyme levels, serum bilirubin levels, tumor markers of carcinoembryonic antigen, α‐fetoprotein, proliferative markers of argyrophilic nucleolar organizing regions, proliferating cell nuclear antigen (PCNA) expressions, phase I xenobiotic‐metabolic enzymes and simultaneously decreased antioxidants, and phase II enzymes levels. Citral (100 mg/kg b.w.) treatment significantly reverted the levels in group III cancer‐bearing animals when compared to group II cancer‐bearing animals. In group IV animals, citral‐alone administration did not produce any adverse effect during the experimental condition. Based on the results, citral significantly inhibits the hepatocellular carcinogenesis through restoring the antioxidants and phase II xenobiotic‐enzyme levels; thereby, it strongly proves as an antiproliferative agent against rat HCC.
Article
Full-text available
Aluminum chloride (AlCl3) has different industrial applications including manufacturing paint and water treatment. The present study was designed to evaluate the alleviating effect of geraniol against AlCl3-induced hepatopancreatic toxicity. To this end, forty male Wistar rats were divided into control (0.9% NaCl, IP), geraniol (100 mg/kg orally), AlCl3 (70 mg/kg, IP), and AlCl3 (70 mg/kg, IP) plus geraniol (100 mg/kg orally) groups and then were treated daily for 28 days. Based on the results, serum cholesterol, triglyceride, as well as liver and pancreas enzymes increased significantly (P < 0.05) while the level of insulin significantly decreased in AlCl3-treated rats compared to the control group (P < 0.05). The presence of geraniol relieved the toxic effects of AlCl3 as well. On the other hand, the level of malondialdehyde (MDA) increased in the AlCl3-treated group while the activities of glutathione peroxidase and the total antioxidant activity demonstrated a reduction. However, the MDA level decreased while the antioxidant enzymes increased in co-treated with geraniol group. Histopathological examination revealed that simultaneous treatment with geraniol in AlCl3 intoxicated rats ameliorate the liver lesions such as necrosis, inflammatory cell infiltration, vacuolar degeneration, along with hyperemia and the cell density of the Langerhans islands. Finally, the results indicated that geraniol attenuated the side effect of AlCl3-induced hepatopancreatic toxicity.
Article
Full-text available
The isomers of citral (cis-citral and trans-citral) were isolated from the Cymbopogon citratus (DC.) Stapf oil demonstrates many therapeutic properties including anticancer properties. However, the effects of citral on suppressing human prostate cancer and its underlying molecular mechanism have yet to be elucidated. The citral was isolated from lemongrass oil using various spectroscopic analyses, such as electron ionized mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) spectroscopy respectively. We carried out 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cell viability of citral in prostate cancer cells (PC-3 and PC3M). Furthermore, to confirm that PC3 undergoes apoptosis by inhibiting lipogenesis, we used several detection methods including flow cytometry, DNA fragmentation, Hoechst staining, PI staining, oil staining, qPCR, and Western blotting. Citral impaired the clonogenic property of the cancer cells and altered the morphology of cancer cells. Molecular interaction studies and the PASS biological program predicted that citral isomers tend to interact with proteins involved in lipogenesis and the apoptosis pathway. Furthermore, citral suppressed lipogenesis of prostate cancer cells through the activation of AMPK phosphorylation and downregulation of fatty acid synthase (FASN), acetyl coA carboxylase (ACC), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), and sterol regulatory element-binding protein (SREBP1) and apoptosis of PC3 cells by upregulating BAX and downregulating Bcl-2 expression. In addition, in silico studies such as ADMET predicted that citral can be used as a safe potent drug for the treatment of prostate cancer. Our results indicate that citral may serve as a potential candidate against human prostate cancer and warrants in vivo studies.
Article
Full-text available
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among females globally. The tumorigenic activities of cancer cells such as aldehyde dehydrogenase (ALDH) activity and differentiation have contributed to relapse and eventual mortality in breast cancer. Thus, current drug discovery research is focused on targeting breast cancer cells with ALDH activity and their capacity to form secondary tumors. Citral (3,7-dimethyl-2,6-octadienal), from lemon grass (Cymbopogon citrates), has been previously reported to have a cytotoxic effect on breast cancer cells. Hence, this study was conducted to evaluate the in vivo effect of citral in targeting ALDH activity of breast cancer cells. BALB/c mice were challenged with 4T1 breast cancer cells followed by daily oral feeding of 50 mg/kg citral or distilled water for two weeks. The population of ALDH+ tumor cells and their capacity to form secondary tumors in both untreated and citral treated 4T1 challenged mice were assessed by Aldefluor assay and tumor growth upon cell reimplantation in normal mice, respectively. Citral treatment reduced the size and number of cells with ALDH+ activity of the tumors in 4T1-challenged BALB/c mice. Moreover, citral-treated mice were also observed with smaller tumor size and delayed tumorigenicity after reimplantation of the primary tumor cells into normal mice. These findings support the antitumor effect of citral in targeting ALDH+ cells and tumor recurrence in breast cancer cells.
Article
Full-text available
Citral is an active compound naturally found in lemongrass, lemon, and lime. Although this pale-yellow liquid confers low water solubility, the compound has been reported to possess good therapeutic features including antiproliferative and anticancer modalities. The self nano-emulsifying drug delivery system (SNEDDS) is a type of liquid-lipid nanocarrier that is suitable for the loading of insolubilized oil-based compound such as Citral. This study reports the design and optimization of a SNEDDS formulation, synthesis and characterization as well as loading with Citral (CIT-SNEDDS). Further assessment of theantiproliferative effects of CIT-SNEDDS towards colorectal cancer cells was also conducted. SNEDDS composed of coconut oil, dimethyl sulfoxide (DMSO) and Tween 80. CIT-SNEDDS was prepared via gentle agitation of SNEDDS with 0.5% Citral for 72 h at room temperature. Physicochemical characterization was performed using several physicochemical analyses. The average particle size of CIT-SNEDDS was16.86 ± 0.15 nm, zeta potential of 0.58 ± 0.19 mV, and polydispersity index (PDI) of 0.23 ± 0.01. In vitro drug release of Citral from CIT-SNEDDS was 79.25% of release, and for Citral the release percentage was 93.56% over 72 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done to determine the cytotoxicity effect of CIT-SNEDDS in human colorectal cancer cell lines HT29 and SW620. The half maximal inhibitory concentrations (IC50) for 72 hof CIT-SNEDDS and Citral on SW620 were 16.50 ± 0.87 µg/mL and 22.50 ± 2.50 µg/mL, respectively. The IC50 values of CIT-SNEDDS and Citral after 72 h of treatment on HT29 were 34.10 ± 0.30 µg/mL and 21.77 ± 0.23 µg/mL, respectively. This study strongly suggests that CIT-SNEDDS has permitted the sustained release of Citral and that CIT-SNEDDS constitutes a potential soluble drug nanocarrier that is effective against colorectal cancer cells.
Article
Full-text available
Many conventional chemotherapies have indicated side effects due to a lack of treatment specificity and are thus not suitable for long-term usage. Natural health products are well-tolerated and safe for consumption, and some have pharmaceutical uses particularly for their anticancer effects. We have previously reported the anticancer efficacy of dandelion ( Taraxacum officinale ) root and lemongrass ( Cymbopogon citratus ) extracts. However, their efficacy on prostate cancer and their interactions with standard chemotherapeutics have not been studied to determine if they will be suitable for adjuvant therapies. If successful, these extracts could potentially be used in conjunction with chemotherapeutics to minimize the risk of drug-related toxicity and enhance the efficacy of the treatment. We have demonstrated that both dandelion root extract (DRE) and lemongrass extract (LGE) exhibit selective anticancer activity. Importantly, DRE and LGE addition to the chemotherapeutics taxol and mitoxantrone was determined to enhance the induction of apoptosis when compared to individual chemotherapy treatment alone. Further, DRE and LGE were able to significantly reduce the tumour burden in prostate cancer xenograft models when administered orally, while also being well-tolerated. Thus, the implementation of these well-tolerated extracts in adjuvant therapies could be a selective and efficacious approach to prostate cancer treatment.
Article
Full-text available
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Article
Full-text available
Solid lipid nanoparticles (SLNs) are nanocarriers developed as substitute colloidal drug delivery systems parallel to liposomes, lipid emulsions, polymeric nanoparticles, and so forth. Owing to their unique size dependent properties and ability to incorporate drugs, SLNs present an opportunity to build up new therapeutic prototypes for drug delivery and targeting. SLNs hold great potential for attaining the goal of targeted and controlled drug delivery, which currently draws the interest of researchers worldwide. The present review sheds light on different aspects of SLNs including fabrication and characterization techniques, formulation variables, routes of administration, surface modifications, toxicity, and biomedical applications.
Article
Full-text available
As one of the most widely investigated matrix metalloproteinases (MMPs), MMP-9 is a significant protease which plays vital roles in many biological processes. MMP-9 can cleave many extracellular matrix (ECM) proteins to regulate ECM remodeling. It can also cleave many plasma surface proteins to release them from the cell surface. MMP-9 has been widely found to relate to the pathology of cancers, including but not limited to invasion, metastasis and angiogenesis. Some recent research evaluated the value of MMP-9 as biomarkers to various specific cancers. Besides, recent research of MMP-9 biosensors discovered various novel MMP-9 biosensors to detect this enzyme. In this review, some recent advances in exploring MMP-9 as a biomarker in different cancers are summarized, and recent discoveries of novel MMP-9 biosensors are also presented.
Article
Full-text available
Background: Breast cancer remains a leading cause of death in women worldwide. Although breast cancer therapies have greatly advanced in recent years, many patients still develop tumour recurrence and metastasis, and eventually succumb to the disease due to chemoresistance. Citral has been reported to show cytotoxic effect on various cancer cell lines. However, the potential of citral to specifically target the drug resistant breast cancer cells has not yet been tested, which was the focus of our current study. Methods: The cytotoxic activity of citral was first tested on MDA-MB-231 cells in vitro by MTT assay. Subsequently, spheroids of MDA-MB-231 breast cancer cells were developed and treated with citral at different concentrations. Doxorubicin, cisplatin and tamoxifen were used as positive controls to evaluate the drug resistance phenotype of MDA-MB-231 spheroids. In addition, apoptosis study was performed using AnnexinV/7AAD flowcytometry. Aldefluor assay was also carried out to examine whether citral could inhibit the ALDH-positive population, while the potential mechanism of the effect of citral was carried out by using quantitative real time- PCR followed by western blotting analysis. Results: Citral was able to inhibit the growth of the MDA-MB-231 spheroids when compared to a monolayer culture of MDA-MB-231 cells at a lower IC50 value. To confirm the inhibition of spheroid self-renewal capacity, the primary spheroids were then cultured to additional passages in the absence of citral. A significant reduction in the number of secondary spheroids were formed, suggesting the reduction of self-renewal capacity of these aldehyde dehydrogenase positive (ALDH+) drug resistant spheroids. Moreover, the AnnexinV/7AAD results demonstrated that citral induced both early and late apoptotic changes in a dose-dependent manner compared to the vehicle control. Furthermore, citral treated spheroids showed lower cell renewal capacity compared to the vehicle control spheroids in the mammosphere formation assay. Gene expression studies using quantitative real time PCR and Western blotting assays showed that citral was able to suppress the self-renewal capacity of spheroids and downregulate the Wnt/β-catenin pathway. Conclusion: The results suggest that citral could be a potential new agent which can eliminate drug-resistant breast cancer cells in a spheroid model via inducing apoptosis.
Article
Full-text available
The nanoparticle as a cancer drug delivery vehicle is rapidly under investigation due to its promising applicability as a novel drug delivery system for anticancer agents. This study describes the development, characterization and toxicity studies of a nanostructured lipid carrier (NLC) system for citral. Citral was loaded into the NLC using high pressure homogenization methods. The characterizations of NLC-citral were then determined through various methods. Based on Transmission Electron Microscope (TEM) analysis, NLC-Citral showed a spherical shape with an average diameter size of 54.12 ± 0.30 nm and a polydipersity index of 0.224 ± 0.005. The zeta potential of NLC-Citral was −12.73 ± 0.34 mV with an entrapment efficiency of 98.9 ± 0.124%, and drug loading of 9.84 ± 0.041%. Safety profile of the formulation was examined via in vitro and in vivo routes to study its effects toward normal cells. NLC-Citral exhibited no toxic effects towards the proliferation of mice splenocytes. Moreover, no mortality and toxic signs were observed in the treated groups after 28 days of treatment. There were also no significant alterations in serum biochemical analysis for all treatments. Increase in immunomodulatory effects of treated NLC-Citral and Citral groups was verified from the increase in CD4/CD3 and CD8/CD3 T cell population in both NLC-citral and citral treated splenocytes. This study suggests that NLC is a promising drug delivery system for citral as it has the potential in sustaining drug release without inducing any toxicity.
Article
Herein, a multi-bioresponsive self-assembled nano-drug delivery system (HSSG) was constructed by conjugating the anticancer drug Geraniol (GER) to hyaluronic acid (HA) via a disulfide bond. The HSSG NPs displayed a uniform spherical shape with an average diameter of ∼110 nm, maintained high stability, and realized controlled drug release in the tumor microenvironment (pH/glutathione/hyaluronidase). Results of fluorescence microscopy and flow cytometry verified that HSSG NPs were selectively uptaken by human hepatocellular carcinoma cell lines HepG2 and Huh7 via CD44 receptor-mediated internalization. Studies on H22 tumor-bearing mice demonstrate that HSSG NPs could effectively accumulate at the tumor site for a long period. In vitro and in vivo studies show that HSSG NPs significantly promoted the death of cancer cells while reducing the toxicity as compared to GER. Therefore, the HSSG NPs have great potential in the treatment of tumors.
Article
Natural products used to treat cancer, or as leads for the development of preventive and co-adjuvant treatment strategies, are still a current approach. We studied the effect of essential oils from the medicinal plant Lippia alba on tumor cell lines and observed that geraniol-rich citral chemotype was the most effective, especially for breast and gastric carcinoma. Two main components of these essential oils, geraniol and limonene, were tested on gastric cancer cells, evidencing that geraniol was significantly more effective inducing cytotoxicity. The activity of geraniol on AGS cells was partially due to growth inhibition and we observed that some metastatic gastric cancer cells were also sensitive to this compound. The effect of geraniol on growth inhibition was not recovered by the addition of mevalonolactone, suggesting independence of isoprenylation. A partial inhibitory effect of geraniol was also observed on AGS migration, making it potentially effective to control invasive tumor behavior.
Article
For combating life-threatening infections caused by Candida albicans there is an urgent requirement of new antifungal agents with a targeted activity and low host cytotoxicity. Manipulating the mechanistic basis of cell death decision in yeast may provide an alternative approach for future antifungal therapeutics. Herein, the effect of an active citral derivative (Cd1) over the physiology of cell death in C. albicans was assessed. The viability of C. albicans SC5314 cells was determined by broth microdilution assay. The crucial morphological changes and apoptotic markers in Cd1-exposed yeast cells were analyzed. Subsequently the results confirmed that Cd1 arrested growth and caused death in yeast cells. Furthermore, this molecule inhibited antioxidant enzymes that resulted in production of reactive oxygen species. DNA fragmentation and condensation, phosphatidylserine exposure at the outer leaflet of cell membrane, mitochondrial disintegration as well as accumulation of cells at G2/M phase of the cell cycle were recorded. Altogether, this derivative induced apoptotic-type cell death in C. albicans SC5314.
Article
Geraniol, a natural compound found in the essential oils of various aromatic plants, has attracted attention for its probable anticancer effects. The molecular mechanisms of the cell proliferation suppression and apoptosis induction via geraniol in gastric cancer cells (AGS), however, remain unclear. Gastric cancer cells were treated with geraniol, and it was found that the IC50 values were 25 μM/ml, as determined by the 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide assay. Results showed that 20 and 25 μM geraniol-induced reactive oxygen species (ROS) production (2ʹ-7ʹdichlorofluorescin diacetate staining) and decreased mitochondrial membrane potential (rhodamine 123 staining) in AGS cells. Then, it effectively inhibited cell growth and induced apoptosis, confirmed through acridine orange/ethidium bromide, 4′,6-diamidino-2-phenylindole, and propidium iodide staining and molecular marker analysis in AGS cells. Also, geraniol potently diminished caspase-9, Bax, Bcl-2, and caspase-3 expression in AGS cells. We also evaluated the essential mechanism of the cytotoxic effect of geraniol. Moreover, the present study depicted that geraniol-induced cell death through mitochondrial ROS production and inhibited the phosphorylation form of mitogen-activated protein kinase (p38, MAPK, JNK, and ERK1/2) signaling pathway. Taken together, these results concluded that geraniol has a novel therapeutic property against human stomach cancer.
Article
Geraniol, citronellol, and their esters are high‐value acyclic monoterpenes used in food technology, perfumery, and cosmetics. A major source is the essential oil of rose‐scented geraniums of the genus Pelargonium. We provide evidence that their biosynthesis mainly takes place in the cytosol of glandular trichomes via geranyl monophosphate (GP) through the action of a Nudix hydrolase. Protein preparations could convert geranyl diphosphate (GDP) to geraniol in in vitro assays, a process which could be blocked by inorganic phosphatase inhibitors, suggesting a two‐step conversion of GDP to geraniol. P. graveolens chemotypes enriched in either geraniol or (‐)‐citronellol accumulate GP or citronellyl monophosphate (CP), respectively, the presumed precursors to their monoterpenoid end products. GP was highly enriched in isolated glandular trichomes of high geraniol producing lines. In contrast, (‐)‐isomenthone rich lines are depleted in these prenyl monophosphates and monoterpene alcohols and instead feature high levels of GDP, the precursor to plastidic p‐menthane biosynthesis. A Nudix hydrolase cDNA from Pelargonium glandular trichomes dubbed PgNdx1 encoded a cytosolic protein capable of hydrolyzing GDP to GP with a KM of ~750 nM but is only weakly active towards farnesyl diphosphate. In citronellol rich lines, GDP, GP, and CP were detected in nearly equimolar amounts, while citronellyl diphosphate was absent, suggesting that citronellol biosynthesis may proceed by reduction of GP to CP in this species. These findings highlight the cytosol as a compartment that supports monoterpene biosynthesis and expands the roles of Nudix hydrolases in plant volatile biosynthesis.
Article
Geraniol, an acyclic monoterpene present in several plant species' essential oils, is utilized as a food additive. It possesses potent antiproliferative and antitumor effects ascribed to its antiinflammatory, and antioxidant properties. The study aimed to understand geraniol's mechanism in human lung and skin cancer cells by employing molecular and cell target-based assays. SRB, NRU, MTT assays, qRT-PCR, molecular docking, and EAC model were used. Geraniol inhibits the proliferation of PC-3, A431, and A549 cells (~50%) and suppresses the activity of ornithine decarboxylase (15.42 ± 0.61 μM) and hyaluronidase (57.61 ± 8.53 μM) in A549 cells; LOX-5 (25.44 ± 3.50 μM) and hyaluronidase (90.71 ± 2.38 μM) in A431 cells. The qRT-expression analysis of the targeted gene depicts non-significant change at the transcriptional level of LOX-5 in A431 cells. A robust binding interaction of geraniol with molecular targets was observed in the molecular docking studies. In Ehrlich Ascites Carcinoma model, geraniol inhibit tumor growth by 50.08% at 75 mg/kg bw and was found to be safe up to 1,000 mg/kg bw in a toxicity study. Geraniol has two prenyl units allied head-to-tail and functionalized with one hydroxyl group at its tail end could be responsible for the antiproliferative activity. These observations provide evidence for geraniol to be used as a new prototype to develop a novel anticancer agent.
Article
Background Premature infants contribute to infant morbidity and mortality especially in low resource settings. Information on tocolytic and/or anti‐inflammatory effects of several plant extracts, such as citral, could help prevent preterm birth cases and reduce the number of preterm infants. The aim of this study was to evaluate the in vitro tocolytic and anti‐inflammatory effect of citral on myometrial tissues of the human uterus. Methods Myometrial samples from uteri obtained after hysterectomy were used in functional tests to evaluate the inhibitory effect of citral on PGF‐2α induced contractions. The intracellular cyclic adenosine monophosphate (cAMP) levels generated in response to citral in human myometrial homogenates were measured by ELISAs. Forskolin was used as a positive control. The anti‐inflammatory effect of citral was determined through the measurement of two pro‐inflammatory cytokines, tumor necrosis factor‐α (TNFα) and interleukin (IL)‐1β, and the anti‐inflammatory cytokine IL‐10, in human myometrial explants stimulated with lipopolysaccharide (LPS). Results Citral was able to induce a significant inhibition of PGF‐2α induced contractions at the highest concentration level (p < .05). Citral caused a concentration‐dependent increase in myometrial cAMP levels (p < .05) and a concentration‐dependent decrease in LPS‐induced TNFα and IL‐1β production, while IL‐10 production increased significantly (p < .05). The anti‐inflammatory and tocolytic effects induced by citral could be associated with an increase in cAMP levels in human myometrial samples. Conclusion These properties place citral as a potentially safe and effective adjuvant agent in preterm birth cases, an obstetric and gynecological problem that requires urgent attention.
Article
Breast cancer is the most common type of malignancy among ladies (around 30% of newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer, such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation, are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence chances remain the primary causes of mortality for breast cancer patients. To overcome all the potential drawbacks, we need to investigate novel techniques and strategies previously not considered and treat breast cancer effectively with safety and efficacy. For centuries, we utilise phytochemicals to treat various diseases because of their safety, low-cost & least or no side effects. Recently, naturally produced phytochemicals gain immense attention as potential breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating molecular pathways associated with cancer growth and progression. The primary mechanism involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein and epigallocatechin gallate. The authors wish to extend the field of phytochemical study for its scientific validity and its druggability.
Article
Endometrial cancer is the most common type of cancer in the female reproductive system. Geraniol is acyclic monoterpene alcohol derived from essential oils of aromatic plants. This study aimed to investigate the apoptosis pathway of geraniol on Ishikawa cells. The cytotoxic effects of Geraniol on Ishikawa cells were determined by an MTT test. Ishikawa cells were seeded on cover slips, the IC50 dose was applied, and the cells were incubated with antibodies against Bax, Bcl-2, and TUNEL Assay. mRNA expression analysis of apoptosis-related genes was determined by RT-qPCR with an IC50 dose of Geraniol. The IC50 dose of Geraniol decreased Bcl-2 staining significantly, but it significantly increased Bax staining and TUNEL positive cells. A significant increase in the Bax, caspase3, caspase-8, cytochrome C and Fas genes and a significant decrease in the Bcl-2 gene was observed when the IC50 dose group was compared to the cells in the control group based on their mRNA expression levels.Analysis of expression of genes whose products are involved in apoptosis suggests the involvement of the mitochondrial pathway.
Article
This review provides a comprehensive analysis of the anticancer potential of the natural product citral (CIT) found in many plants and essential oils, and extensively used in the food and cosmetic industry. CIT is composed of two stereoisomers, the trans-isomer geranial being a more potent anticancer compound than the cis-isomer neral. CIT inhibits cancer cell proliferation and induces cancer cell apoptosis. Its pluri-factorial mechanism of anticancer activity is essentially based on three pillars: (i) a drug-induced accumulation of reactive oxygen species in cancer cells leading to an oxidative burst and DNA damages, (ii) a colchicine-like inhibition of tubulin polymerization and promotion of microtubule depolymerization, associated with an inhibition of the microtubule affinity-regulating kinase MARK4, and (iii) a potent inhibition of the aldehyde dehydrogenase isoform ALDH1A3 which is associated with cancer stem cell proliferation and chemoresistance. This unique combination of targets and pathways confers a significant anticancer potential. However, the intrinsic potency of CIT is limited, mainly because the drug is not very stable and has a low bioavailability and it does not present a high selectivity for cancer cells versus non-tumor cells. Stable formulations of CIT, using cyclodextrins, biodegradable polymers, or various nano-structured particles have been designed to enhance the bioavailability, to increase the effective doses window and to promote the anticancer activity. The lack of tumor cell selectivity is more problematic and limits the use of the drug in cancer therapy. Nevertheless, CIT offers interesting perspectives to design more potent analogues and drug combinations with a reinforced antitumor potential.
Article
Ethnopharmacological relevance: Citral (3,7-dimethyl-2,6-octadienal) is the main component of Cymbopogon citratus (DC) Stapf, an herb with analgesic properties. Arthritic pain is the main unpleasant component of rheumatoid arthritis. The pharmacological approaches used to treat arthritic pain are often accompanied by adjuvant drugs or non-pharmacological treatments, showing a constant need in identifying new efficient analgesic drugs. Aim of the study: To test the hypothesis that citral, which is a monoterpenoid compound with therapeutic properties, reduces nociception, spinal pro-nociceptive and pro-inflammatory signaling, and systemic oxidative stress in arthritic rats. Materials and methods: Complete Freund's adjuvant (CFA) was administrated in the left knee joint of rats. Oral treatment with citral was performed during eight days and mechanical allodynia was monitored during the period of treatment to evaluate the analgesic effect of citral. We assessed the levels of serotonin (5-hydroxytryptamine, 5-HT) in the lumbar dorsal horn of the spinal cord (DHSC) and the profiles of expression of the glycogen synthase kinase-3β (GSK3β), which is a 5-HT-regulated intracellular protein, and of the stress-activated protein kinase (SAPK)/jun N-terminal kinase (JNK) in the DHSC. Plasma levels of superoxide dismutase (SOD) were assessed as an indicator of oxidative stress. Results: Administration of CFA induced mechanical allodynia associated with reduced spinal GSK3β phosphorylation, increased spinal SAPK/JNK phosphorylation, and increased plasma SOD levels. Oral administration of citral reversed mechanical allodynia, increased endogenous spinal 5-HT levels, reduced spinal SAPK/JNK phosphorylation, and reduced plasma SOD levels. Conclusion: Citral shows anti-nociceptive effects in an animal model of arthritic pain by modulating spinal nociceptive signaling.
Article
Several decades ago, colorectal cancer was infrequently diagnosed. Nowadays, it is the world's fourth most deadly cancer with almost 900 000 deaths annually. Besides an ageing population and dietary habits of high-income countries, unfavourable risk factors such as obesity, lack of physical exercise, and smoking increase the risk of colorectal cancer. Advancements in pathophysiological understanding have increased the array of treatment options for local and advanced disease leading to individual treatment plans. Treatments include endoscopic and surgical local excision, downstaging preoperative radiotherapy and systemic therapy, extensive surgery for locoregional and metastatic disease, local ablative therapies for metastases, and palliative chemotherapy, targeted therapy, and immunotherapy. Although these new treatment options have doubled overall survival for advanced disease to 3 years, survival is still best for those with non-metastasised disease. As the disease only becomes symptomatic at an advanced stage, worldwide organised screening programmes are being implemented, which aim to increase early detection and reduce morbidity and mortality from colorectal cancer.
Article
The incidence of skin cancers has increased worldwide, requiring more prevention of this type of cancer. The use of sunscreen and the control of the time of exposure to sunlight are the recognized forms of prevention. However, new substances have been researched in order to develop formulations with more efficient protective activity. Citral is a natural compound with lemon scent that is used in food and cosmetic industries. The present work evaluated the chemoprotective effect of citral during UVB-induced skin carcinogenesis. Male hairless mice HRS/J, 8-12 weeks old, were exposed to UVB irradiation for 24 weeks, with a cumulative radiation dose of 13.875 J/cm2. Citral (0.1, 0.5 and 1%) was applied to the skin at a dosage of 0.1 g/animal, 5 min after UVB exposure. At the end of the experiment, the number of lesion/animal, and size of lesions were measured. The histological sections of the skin were evaluated for the presence and intensity of actinic keratosis and squamous cell carcinoma. TUNEL assay was performed for apoptosis evaluation. Skin samples were used for the measurement of oxidative stress parameters (total radical-trapping antioxidant parameter of skin, glutathione, catalase activity and malondialdehyde), and cytokines levels (IL-1β, IL-4, IL-10, IL-23, TNF-α, and IFNγ). Citral 1% completely inhibited UVB-induced skin carcinogenesis by reducing levels of oxidative stress and pro-inflammatory cytokines, increasing apoptotic rate in the skin.
Article
Citral, 3,7-dimethyl-2,6-octadien-1-al, one of the main components of the essential oils obtained from several plants, is used as a food additive and as a fragrance for detergents, cosmetics and other toiletries. The literature shows disparity regarding citral genotoxicity. Thus, the main objective of our work was to evaluate the genotoxic effects of citral in human cell cultures, HepG2 and leukocytes. Cytotoxicity assays (trypan blue and MTT) showed citral toxic effects in HepG2 cells (with metabolizing liver enzymes), which contrasted with the absence of toxicity in leukocytes. After citral exposure, both cell types did not demonstrate clastogenic/aneugenic effects in the micronucleus test. However, for the comet assay, citral exposure lead to significant genotoxic effects in both HepG2 (even to citral low concentrations) and leukocytes. The use of citral must be viewed with caution due to its ability to induce DNA damages, especially after being metabolized by cells with active liver enzymes.
Article
Essential oils containing monoterpenes are widely used in pharmaceuticals and cosmetic products on account of their wide range of bioactive properties (including anti-cancer activity). Two monoterpenes (citral and geraniol) were firstly tested for their anti-inflammatory activity in a RAW 264.7 cell line, demonstrating citral to have enhanced capacity to inhibit NO production (ca. 84% for citral and 52% for geraniol at the lowest tested concentration of 5 µg/ml). As citral showed higher NO inhibitory activity than geraniol, to measure the level of cytotoxicity of citral, AlamarBlue reduction assay was run in two cell models (non-tumoral HaCaT and tumoral A431). Citral exhibited a strong cytotoxic effect in both cell lines, i.e. cell viability lower that 10% after 24 h exposure at 100 µg/ml of monoterpene. An optimized solid lipid nanoparticles (SLNs) formulation for citral was further developed by design of experiments (2² factorial design), followed by accelerated stability testing (LUMiSizer®). An optimal SLN composed of 1 wt% of citral, 4 wt% of lipid and 2.5 wt% surfactant were successfully produced by hot high pressure homogenization (hot HPH) showing a mean particle size (Z-Ave) of 97.7 nm and polydispersity index of 0.249. The produced formulations were analyzed in a high-end dispersion analyzer LUMiSizer® to characterize any demixing phenomena, demonstrating to be long-term stable at room temperature (25 °C), exhibiting very low instability indices (0.032 after production and 0.042 after one month of storage).
Article
Geraniol is an acyclic isoprenoid monoterpene isolated from the essential oils of aromatic plants including Cinnamomum tenuipilum, Valeriana officinalis, and several other plants. The limited source of geraniol from plant isolation cannot fulfill the great demand from the flavor and fragrance industries, which require maximizing geraniol production through biotechnology processes. The diverse activities of geraniol suggested that geraniol could treat various diseases as a promising drug candidate. In order to evaluate the potential of geraniol applied in a clinical trial, this review aims at providing a comprehensive summary of the pharmacological effects of geraniol. The publications retrieved from PubMed, ScienceDirect, Springer, and Wiley databases were collected and summarized for the last 6 years. Then, the potential application of geraniol as a drug is discussed based on its pharmacological properties, including antitumor, anti-inflammatory, antioxidative, and antimicrobial activities, and hepatoprotective, cardioprotective, and neuroprotective effects. Hence, this review aims at providing evidence of the pharmacological activities of geraniol in the context of further development as a drug candidate in clinical application.
Article
Purpose: Colon cancer ranks second in mortality among all human malignancies, creating thus a need for exploration of novel molecules that would prove effective, cost-effective and with lower toxicity. In the recent past monoterpenes have gained tremendous attention for their anticancer activity. In the present study we evaluated the anticancer effects of two important monoterpenes, geraniol and geranyl acetate against colo-205 cancer cells. Methods: The antiproliferative activity was determined by MTT assay. Apoptosis was assessed by DAPI staining and DNA damage was checked by comet assay. The cell cycle analysis was carried out by flow cytometry and protein expression was examined by western blotting. Results: The results showed that both geraniol and geranyl acetate exhibited significant anticancer activity against colo-205 cancer cell line with IC50 values of 20 and 30 μM respectively. To find out the underlying mechanism, DAPI staining was carried out and it was observed that both the monoterpenes, geraniol and geranyl acetate, induced apoptosis in colo-205 cells. The apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expressions, indicative of mitochondrial apoptosis. Moreover, these two monoterpenes could trigger DNA damage and G2/M cell cycle arrest in colo-205 cells. Conclusions: Taken together, we propose that geraniol and geranyl acetate may prove to be important lead molecular candidates for the treatment of colon cancer. Their anticancer activity can be attributed to the ability to trigger apoptosis, DNA damage and cell cycle arrest.
Article
The essential oil of Cymbopogon flexuosus or lemongrass oil (LO) is reported to have antibacterial, antifungal and anticancerous effects. HSP90 is one of the major chaperones responsible for the proper folding of cancer proteins. In this paper we show that the essential oil of C. flexuosus significantly suppresses the HSP90 gene expression. The cytotoxicity of the compounds was tested by MTT assay and the gene expression studies were carried out using HEK-293 and MCF-7 cells. Also we tested the efficacy of the major component of this essential oil viz. citral and geraniol in inhibiting the HSP90 expression. The oil was found to be more cytotoxic to MCF-7 cells with different IC50 values for the oil (69.33 μg/mL), citral (140.7 μg/mL) and geraniol (117 μg/mL). The fold change of expression was calculated by RT-qPCR using ΔΔCt (2^−ΔΔCt) method and it was 0.1 and 0.03 in MCF-7 cells at 80 μg/mL and 160 μg/mL of LO. Western blot results showed suppression of HSP90 protein expression and HSP90 – ATPase activity inhibition was also observed using LO. This study shows the anticancer mechanism exhibited by the essential oil of C. flexuosus is by the inhibition of the important chaperone protein HSP90.