
OVERVIEW ARTICLE

ABSTRACT
This paper summarizes the cinematic demixing (CDX) track of the Sound Demixing 
Challenge 2023 (SDX’23). We provide a comprehensive summary of the challenge 
setup, detailing the structure of the competition and the datasets used. Especially, 
we detail CDXDB23, a new hidden dataset constructed from real movies that was 
used to rank the submissions. The paper also offers insights into the most successful 
approaches employed by participants. Compared to the cocktail-fork baseline, the 
best-performing system trained exclusively on the simulated Divide and Remaster 
(DnR) dataset achieved an improvement of 1.8 dB in SDR, whereas the top-performing 
system on the open leaderboard, where any data could be used for training, saw a 
significant improvement of 5.7 dB. A major source of this improvement was making 
the simulated data better match real cinematic audio, which we further investigate 
in detail.
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1. INTRODUCTION

Cinematic source separation refers to the task of 
separating movie audio into dialogue (DX), music (MX), 
and sound effects (FX). While speech separation (Hershey 
et al., 2016; Chen et al., 2017; Yu et al., 2017) and music 
separation (Huang et al., 2012; Grais et al., 2014; Uhlich 
et al., 2015) have been studied extensively, cinematic 
source separation is a relatively recent field (Petermann 
et al., 2022) despite its numerous practical applications. 
These include enhancing old movies by converting them 
to formats like MPEG-H or Dolby Atmos, dubbing them 
into different languages, or generating subtitles including 
non-speech sounds present in an auditory scene.

The first work in the area of cinematic separation 
was dialogue enhancement (Uhle et al., 2008; Geiger 
et al., 2015; Paulus et al., 2019; Torcoli et al., 2021), 
which employs source separation to extract and remix 
the dialogue signal at a desired level. The problem was 
further formalized by Petermann et al. (2022), who 
introduced cinematic separation as a three-way problem 
of splitting the audio into dialogue, sound effects, and 
music, which they referred to as the cocktail fork problem. 
They created a new dataset, Divide and Remaster (DnR), 
which was built upon LibriSpeech (Panayotov et al., 2015) 
for dialogue, Free Music Archive (Defferrard et al., 2016) 
for music, and the Freesound Dataset 50k (Fonseca et 
al., 2021) for sound effects. Their exploration of various 
separation models revealed that their proposed multi-
resolution extension of X-UMX (Sawata et al., 2021, 
2023), termed MRX, provided the best performance. 
Subsequently, Petermann et al. (2023) extended this 
work to also consider the impact of source separation on 
downstream tasks. They proposed a two-stage approach 
where an MRX separator is used to obtain preliminary 
separation, which is followed by an activity detector 
to estimate the activity profile for every source. This 
activity information is then utilized in a second stage 
by a conditioned MRX, called MRX-C, to improve the 
separation performance. Recently, DnR was also used by 
Watcharasupat et al. (2023), who extended the band-
split RNN (Luo and Yu, 2023) to cinematic separation by 
introducing the BandIt architecture.

Cinematic separation has several unique challenges 
compared to speech or music separation. Firstly, the 
multi-channel format of most cinematic audio (stereo 
or 5.1 surround) necessitates a suitable augmentation 
during training, as many datasets are only monaural, 
such as the DnR dataset. Secondly, the scarcity of full-
bandwidth material with sampling rate of 48 kHz for 
training poses a significant hurdle, as high-quality audio 
data is essential for effective model training. Thirdly, 
the lack of emotional speech within the used speech 
datasets presents a challenge. Separation models 
trained on these datasets often struggle with emotional 

speech in real cinematic dialogues, because it is typically 
absent from the training data as was already noted in 
earlier work (Uhle et al., 2008). Fourthly, the sound effect 
class, which encompasses a wide variety of sounds, 
is particularly challenging to extract due to its broad 
and diverse nature.1 Finally, the three classes exhibit 
some overlap, such as the presence of vocals in music, 
background chatter (chatter noise), which is a sound 
effect but shares similarities with dialogue, or the use 
of musical instruments for sound design as seen in the 
alien communication signal in Close Encounters of the 
Third Kind, which is a sound effect made of musical 
notes. These challenges highlight the complexity of 
cinematic separation and the need for further research 
and development in this field.

Hence, in addition to the music demixing (MDX) track 
(Fabbro et al., 2024), which was already present in the 
Music Demixing Challenge 2021 (MDX’21) Mitsufuji et al., 
2022), we have added a new cinematic demixing (CDX) 
track to the Sound Demixing Challenge 2023 (SDX’23) in 
order to foster research in this direction. The challenge 
was facilitated through AIcrowd,2 and participants were 
invited to submit their systems to one of two leaderboards, 
depending on whether they used only DnR or additional 
training data. To rank the submissions, we developed a new 
hidden test set, called CDXDB23, derived from real movies. 
Through the establishment of this challenge framework, 
we observed substantial performance enhancements. 
Specifically, the top-performing system, trained solely on 
DnR, demonstrated an improvement of 1.8 dB compared 
to the cocktail-fork baseline based on MRX (Petermann et 
al., 2022). Remarkably, the highest-performing system on 
the open leaderboard, which allowed the use of any data 
for training, exhibited a significant improvement of 5.7 
dB. These results underscore the efficacy of our challenge 
in driving advancements in the field of cinematic audio 
separation.

This paper is organized as follows: Section 2 outlines 
the competition’s design, Section 3 discusses the training 
datasets and establishes the performance baseline, 
Section 4 presents the results and summarizes the 
most successful strategies, and Section 5 analyzes the 
differences between the provided training dataset, DnR, 
and hidden test set, CDXDB23. Finally Section 6 concludes 
the paper with key findings and future research directions.

2. CDX CHALLENGE SETUP

In the following, we will summarize the structure of the 
competition.

2.1 TASK DEFINITION
Participants in the CDX track of SDX’23 were asked to submit 
systems that can extract the dialogue 2

DX( )n Îs  , sound 
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effects 2
FX( )n Îs  , and music 2

MX( )n Îs   from the stereo 
cinematic audio

	 DX FX MX( ) ( ) ( ) ( ),n n n n= + +x s s s � (1)

where n denotes the time index and all stereo signals are 
sampled at 44.1 kHz. We used the following definition for 
each class:3

•	 Dialogue refers to all spoken content in a movie 
including conversations between characters, 
monologues, and any other spoken elements.

•	 Sound effects are sounds that are used to support 
or complement the action on screen. They can be 
split into object sounds (e.g., footsteps) and ambient 
sounds (e.g., wind or rain).

•	 Music refers to the soundtrack that accompanies 
the visuals and which is often used to provide an 
emotional context. It might be a single instrument 
(e.g., a violin in a dramatic moment) or a full 
orchestra or band.

We verified these definitions with mixing engineers from 
Sony Pictures.

A unique aspect of this challenge was the requirement 
for participants to submit their pre-trained models along 
with the corresponding inference code, as the test 
dataset was kept hidden. This stands in contrast to many 
other challenges where participants have access to 
unlabeled test data and are required to submit processed 
files or labels.

2.2 LEADERBOARDS
Submissions were categorized under two leaderboards:

•	 Leaderboard A was designated for models exclusively 
trained on the train and validation splits ‘tr’ and ‘cv’ 
of the Divide and Remaster (DnR) dataset (Petermann 
et al., 2022), while

•	 Leaderboard B was for models trained on any data.

The rationale behind this dual-leaderboard approach 
is threefold. Firstly, it allows individuals who may not 
have access to extensive datasets to participate in 
the competition. Secondly, it provides a platform to 
explore data augmentation strategies, such as mono-
to-stereo conversion, which is particularly relevant 
as the DnR dataset is monaural, while the hidden test 
set used for evaluation is in stereo format. Thus, the 
two leaderboards not only foster inclusivity but also 
encourage innovative approaches to data augmentation. 
Thirdly, the two leaderboards allow disentangling 
data improvements from algorithm improvements, as 
Leaderboard B performance could come from extra data 
or better augmentation strategies relying on additional 
data (e.g., room impulse responses), while Leaderboard A 
improvements must come from augmentations without 

additional data and from algorithms only. However, 
Leaderboard B is required to determine the true state of 
the art.

2.3 RANKING METRIC
For the evaluation of the systems, we used the global 
signal-to-distortion ratio (SDR) which is defined for one 
movie clip as

	
( )DX FX MX

1
SDR SDR SDR SDR ,

3
= + + � (2)

with 
2

2

)
10 ˆ( )

(

( )
SDR 10log n j

n j j

n
j n n

S

S -
=

s

s s

‖ ‖

‖ ‖
 where 2( )j n Îs   and 

2ˆ ( )j n Îs 
 denote the stereo target and estimate for 

source j ∈ {DX,FX,MX}. The definition in Equation (2) is 
also called utterance-level SDR (cf., for example, Luo and 
Yu, 2023) and equivalent to the SDR of multi-channel BSS 
Eval v3 (Vincent et al., 2007). Finally, the global SDR of 
(2) is averaged over all clips in the hidden test dataset 
and the three sources DX, FX, and MX to obtain the final 
score. We chose this metric to rank submissions over 
scale-invariant metrics like SI-SDR (Le Roux et al., 2019), 
because systems with good SDR performance have 
the advantage that they can easily be blended with 
other models (Uhlich et al., 2017) and also allow one to 
compute the residual ˆ ˆ( ) ( ) ( )j jn n nØ = -s x s  without having 
to recover the correct scale.

Besides the chosen global SDR (2), there are also 
other metrics that were proposed in the literature for 
the comparison of source separation models. As part 
of MDX’21, a thorough comparison of different metrics 
was performed by Mitsufuji et al. (2022) to show that 
Equation (2) highly correlates with many other metrics, 
in particular those that were used in previous iterations 
of the SiSEC competition in 2015, 2016, and 2018. We 
refer the interested reader to Mitsufuji et al. (2022) for 
more details.

2.4 TIMELINE, CHALLENGE PHASES AND 
PRIZES
The challenge took place in two phases. Phase I started 
on January 23rd, 2023. Phase II commenced on March 
6th, 2023, as planned. However, due to the submission 
system experiencing difficulties in handling the surge 
in the number of submissions towards the end of the 
challenge, the end date of Phase II was extended by one 
week, to May 8, 2023, to ensure a fair competition for all 
teams.

CDXDB23 was partitioned into three sets of 
approximately equal size, containing three, three, and four 
movies respectively. During Phase 1 of the competition, 
participants were able to assess the performance of 
their submissions using one-third of the movies from the 
hidden test set. In Phase 2, this was expanded to include 
two-thirds of the movies from the hidden test set. Upon 
the conclusion of Phase 2, participants were required 
to select three submissions for evaluation on the full 
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hidden test set, the results of which were then displayed 
on the final leaderboards. This selection process was 
implemented to mitigate the potential impact of 
overfitting. In cases where participants did not explicitly 
select three submissions, the top three submissions from 
the Phase 2 leaderboard were automatically chosen for 
final evaluation.

For Leaderboard A, which was for models trained 
exclusively on the Divide and Remaster (DnR) dataset, 
a total of 5,000 USD was distributed among the top 
three submissions. The first-place winner received 2,500 
USD, the second-place winner was awarded 1,500 USD, 
and the third-place winner received 1,000 USD. To be 
eligible for these prizes, participants were required to 
open-source both their training and inference code as 
well as the pretrained model. Similarly, for Leaderboard 
B, which was for models trained on any data, the same 
prize distribution was applied. For this leaderboard, 
participants were required to open-source their inference 
code as well as the pretrained model. Compliance with 
these open-source requirements was ensured by the 
organizers through a due diligence check. In the course 
of this evaluation, a thorough review of the source code 
was conducted to verify that participants in Leaderboard 
A exclusively trained their models using only DnR.

3. DATASETS AND BASELINE

The following subsections offer detailed descriptions of 
the datasets employed throughout the challenge, as well 
as an overview of the baseline included in the starter kit.

3.1 DIVIDE AND REMASTER (DNR) – TRAINING 
DATASET
Introduced by Petermann et al. (2022), the Divide and 
Remaster (DnR) dataset serves as a tool for developing 
and evaluating mono audio signal separation algorithms 
applied to podcasts, television, and movies. It includes 
artificial mixtures sourced from LibriSpeech (Panayotov 
et al., 2015), Free Music Archive (FMA) (Defferrard et al., 
2016), and Freesound Dataset 50k (FSD50k) (Fonseca 
et al., 2021). This dataset, available in both 16 kHz and 
44.1 kHz sampling rates, comes with time-stamped 
annotations for each class: genre for music, audio-tags 
for sound effects, and transcription for speech.

The creation process of DnR was centered on 
addressing class overlap and relative source levels in 
the mix within a single-channel4 context. It includes 
four categories: speech, music, foreground effects, 
and background effects – the latter two being merged 
into a single submix. All mixtures have a duration of 60 
seconds, encompassing multiple full speech utterances 
and sufficient onsets and offsets between classes. File 
count for each class was set via a zero-truncated Poisson 
distribution, and relative amplitude levels across the 

classes were determined per industry standards and 
prior studies as discussed by Petermann et al. (2022). 
Each sound file’s gain was individually adjusted to 
add variability while preserving realistic consistency 
across the mix. The final dataset, divided into training, 
validation, and testing subsets in line with base dataset 
proportions, comprises 3,406 training mixtures, 487 
validation mixtures, and 973 test mixtures.

While the DnR dataset took care to simulate realistic 
cinematic mixtures, there are some notable differences 
between the source material used to create DnR and 
actual cinematic audio:

•	 Read speech vs. emotional speech – First, 
LibriSpeech contains read speech from audio books, 
which may have significant timbral differences 
compared to the emotional speech typically used by 
film actors.

•	 Vocals in music stems – Second, many of the 
musical genres from the FMA dataset contain vocals. 
While music with vocals is used in cinema, the 
majority of cinematic music does not contain singing. 
Thus, the prevalence of music with vocals may be 
overrepresented in FMA compared to the hidden test 
data.

•	 Production quality – Finally, Librispeech, FMA, and 
FSD50K are all crowd-sourced datasets, and there 
may be significant differences in terms of recording 
hardware and post-production effects compared to 
actual movies. We will investigate this in more detail 
in Section 5.

In summary, it is expected that mismatches such as this 
may limit performance of separation models trained only 
on DnR.

For Leaderboard A, participants were required to only 
utilize the training and validation split of the DnR dataset 
in training their systems.

3.2 CDXDB23 – HIDDEN TEST DATASET
To rank the submissions, we generated a novel dataset 
derived from authentic Sony Pictures movies and we will 
refer in the following to this dataset as cinematic demixing 
database (CDXDB23). It comprises 11 movies with a total 
of 156 clips each with an average length of 11 seconds, 
amounting overall to approximately 28.7 minutes of 
content. The audio was originally at a higher sample rate, 
but we downsampled it to 44.1 kHz stereo to match the 
sample rate of the DnR dataset. This was done to avoid 
requiring participants in Leaderboard A to design systems 
that can upscale to a higher sampling rate. Figure 1 shows 
the distribution of genres and release years of the eleven 
movies in CDXDB23. Please note that a single movie can 
fall under multiple genres, such as Animation and Family. 
This characteristic is reflected in the bar plot, where the 
representation of movies in various genres contributes to 
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the observed distribution. From Figure 1 we can observe that 
they are recent movies covering a wide variety of genres.

The original data supplied by Sony Pictures was 
formatted as 5.1-channel, 48 kHz, and 24-bit with 
several stem tracks for each movie, encompassing 
either dialogue, effects, music, or their combination. We 
manually annotated the sound events with one class 
label (dialogue, sound effects, or music) within each stem 
and carefully selected segments to ensure a balanced 
representation of each class in the resulting mixture. 
Specifically, to exclude extremely low-amplitude sound 
sources, we computed for each class the root mean 
square amplitude 

1
221

1RMS ( ) )(N
nj jN n== S s‖ ‖  and excluded 

segments where this value was below a threshold τj for 
any j ∈ {DX,FX,MX}. Empirically, we found the thresholds

DX FX MX0.022, 0.005, 0.003,t t t= = =

to give good test samples. On occasion, environmental 
noise was unintentionally recorded, or dialogue/vocal 
components appeared in the effects or music stems. We 
made diligent efforts to minimize the inclusion of such 
samples by manually inspecting all data.

Please note that we are unable to provide further 
details about the movies (e.g., title or actors) to prevent 
participants in a future challenge from fine-tuning their 
models based on this specific information. However, we 
made available demo samples from “Kilian’s Game”, a 
short film produced by Sony Pictures to demonstrate the 
latest filmmaking technologies. These samples could be 
used by participants to test their submissions and to see 
the performance on real movie audio.5 The samples from 
“Kilian’s Game” were not used to rank the submissions.

Ideally, we should also use authentic movie data for 
training models. During the preparation of CDXDB23, 
we noticed that this is actually not straightforward. 
One problem is the preparation of the three-way stems 
from movie audio, which is a time-intensive process. The 
material is not readily accessible, requiring reloading 
all raw tracks into the Digital Audio Workstation (DAW), 
deciding for each of them the class it belongs to, and 
finally bouncing the stems for each class. Additionally, we 
noticed the challenge of other sound classes infiltrating 
a single stem. For example, dialogue stems can contain 

sound effects recorded on-stage. Consequently, after 
bouncing the stems, one has to manually annotate all 
audio material to find suitable time regions for the three-
way separation, leading to a smaller dataset suitable 
only for testing, as exemplified by CDXDB23.

3.3 COCKTAIL-FORK BASELINE
As part of the challenge, MERL open-sourced their multi-
resolution CrossNet (MRX) (Petermann et al., 2022), an 
improved version of CrossNet-UMX (X-UMX) (Sawata et al., 
2021, 2023), which itself is an improved version of Open-
Unmix (UMX) (Stöter et al., 2019). MRX leverages multiple 
short-time Fourier transform (STFT) resolutions of the 
mixture, enhancing the estimation process as it allows 
to better address the variety of acoustic characteristics 
of the three source types. The entire system is available 
on GitHub.6

Using the available pre-trained model on DnR, a 
baseline submission was created and made available 
for all participants as part of the starter-kit.7 We noticed 
already during the preparation of the baseline that scaling 
the input mixture is beneficial and, hence, apply the scaling

	

( )
( ) ,

ma |x ( )|
n

n
n

n
¬

x
x

x � (3)

i.e., the cocktail-fork model is run on the peak normalized 
mixture. Training of MRX utilized scale-invariant signal-to-
distortion ratio (SI-SDR) loss, necessitating subsequent 
scale estimation using least-squares according to the 
formula

	
7 2

ˆ( ) ( )
ˆ ˆ( ) ( )

ˆ10 ( )

T
n j

j j
n j

n n
n n

n-

S
¬

+S

x s
s s

s‖ ‖
� (4)

for any j ∈ {DX,FX,MX}. Furthermore, a post-processing 
step was implemented to ensure mixture consistency 
(Wisdom et al., 2019), where we first compute the 
residual DX FX MXˆ ˆ ˆ( ) ( ) ( ) ( ) ( )n n n n n= - - -r x s s s  which is then 
distributed to the estimates

DX DX

FX FX

MX MX

ˆ ˆ( ) ( ),

1ˆ ˆ( ) ( ) ( ),
2
1ˆ ˆ( ) ( ) ( ).
2

n n

n n n

n n n

¬

¬ +

¬ +

s s

s s r

s s r

Figure 1: Statistics of movies in CDXDB23.
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This post-processing was beneficial as the residual 
contains mostly sound effects and background music. 
SDRFX improved by +1.1 dB and SDRMX by +0.7 dB, resulting 
in an overall improvement of +0.6 dB. The performance 
of the cocktail-fork baseline on CDXDB23 can be found 
in Table 1.

After the challenge, we revisited this baseline as 
many participants recognized a distribution mismatch 
between DnR and CDXDB23, which can also be seen in 
Table 1 in the lower scores of this model. In Section 5.2, 
we will present two new versions of the cocktail-fork 
baseline with improved performance due to adjusting 
the loudness or equalization of DnR during training.

4. CHALLENGE OUTCOME

The CDX track saw a dynamic evolution in terms of both 
the number of submissions and the SDR performance. 
The competition attracted a total of 19 teams for 
Leaderboard A and 10 teams for Leaderboard B, with 369 
and 179 submissions respectively. Tables 1 and 2 present 
the final rankings for both leaderboards. The team aim-
less emerged as the winner of Leaderboard A, achieving an 
average SDR of 4.345 dB. On the other hand, Leaderboard 
B was topped by JusperLee, with an impressive SDR of 
8.181 dB. It is noteworthy that while all top five teams 

in Leaderboard A were from academic institutions, 
the highest scores in Leaderboard B were obtained by 
two commercial entities. This diversity of participants 
underscores the broad interest and applicability of the 
challenge across both academic and industry sectors. 
Figure 2 shows the progress that the teams could 
achieve during the course of the competition. We can 
observe that there was a continuous improvement of 
the SDR for each source and, especially at the end of the 
competition, there is a steady improvement visible as 
participants tuned their submissions.

To investigate whether this improvement resulted 
from participants overfitting to the visible portion of 
the test set, Figure 3 presents the difference between 
the hidden SDR (the SDR for all clips of CDXDB23 hidden 
from the participants) and the visible SDR (the SDR for all 
clips of CDXDB23 shown to the participants). Comparing 
two subsequent submissions where the newer one is 
worse in this difference than the previous one indicates 
that a participant is obtaining less improvement/more 
degradation on the hidden SDR than for the visible SDR 
hinting at a possible overfitting to the displayed global SDR. 
Hence, seeing “trajectories” of consecutive submissions 
in Figure 3 with negative slopes can be used to detect 
overfitting. Intriguingly, some degree of overfitting is 
apparent for the submissions to Leaderboard B towards 
the end of the challenge but less overfitting is observed 

Rank Participant Global SDR (dB) Submissions to Ldb A + B

Mean Dialogue Effects Music 1st phase 2nd phase

Submissions

1. JusperLee 8.181 14.619 3.958 5.966 42 102

2. Audioshake 8.077 14.963 4.034 5.234 – 197

3. ZFTurbo 7.630 14.734 3.323 4.834 25 131 Code11

4. aim-less 4.345 17.981 1.217 3.837 36 153 Code8

5. mp3d 4.237 18.484 1.622 2.607  – 148 Code9

Table 2: Final Leaderboard B (models trained on any data; top 5).

Rank Participant Global SDR (dB) Submissions to Ldb A

Mean Dialogue Effects Music 1st phase 2nd phase

Submissions

1. aim-less –4.345 7.981 1.217 3.837 36 32 Code8

2. mp3d –4.237 8.484 1.622 2.607  – 42 Code9

3. subatomicseer –4.144 7.178 2.820 2.433 65 22 Code10

4. thanatoz –3.871 8.948 1.224 1.442 21 22

5. kuielab –3.537 7.687 0.449 2.474 36 15

Baseline

Scaled Identity 1
3

ˆ ( ) ( )j n n=s x –0.019 1.562 –1.236 –0.383

Cocktail-Fork (Petermann et al., 2022) –2.491 7.321 –1.049 1.200

Table 1: Final Leaderboard A (models trained only on DnR; top 5).
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for submissions to Leaderboard A. For example, looking at 
the results for the teams JusperLee and Audioshake, we 
can see that there is a negative trend in their submissions 
towards the end of the challenge. Especially for team 
Audioshake, this is visible as the models extracting sound 
effects and music seem to be tuned in the last week of the 
challenge period. Consequently, to reduce the potential 
effect of overfitting, participants needed to select three 
submissions at the end of the challenge which were then 
evaluated on the full CDXDB23 as discussed in Section 
2.4.

The substantial improvement upon the provided 
cocktail-fork baseline by the participants is 
noteworthy. This was achieved not only through the 
implementation of enhanced architectures, such as 
MRX-C (Petermann et al., 2023) used by team mp3d, 
but also through the identification and rectification 
of two issues inherent in the DnR dataset. Firstly, the 
presence of vocals in the music category necessitated 
dataset cleaning. Secondly, the difference in loudness 
exhibited by DnR resulted in suboptimal performance 
of systems trained on this dataset, necessitating 
the consideration of this factor as discussed in 
Section 4.6.2 by using a suitable input normalization. 

Interestingly, none of the top teams explored mono-
to-stereo augmentations, which presents an intriguing 
avenue for future research.

Comparing the results for Leaderboards A and B, 
we can observe that especially dialogue gains from 
having access to additional training data. This is in our 
opinion due to the access to much more speech and 
vocal material, which can be used as training material 
for dialogue. Particularly, the inclusion of vocal material 
proves advantageous due to its similarity to emotional 
speech. Additionally, the processing pipelines employed 
in cinematic production may align closely with those 
utilized in music production, further enhancing the 
benefit of vocal material.

In order to gain more insight into the benefit of 
additional data, we show in Figure 4 the performance 
of the winning submissions on both leaderboards in 
comparison to the cocktail-fork baseline. Please note 
that there is only a single clip for movie “000” and, hence, 
the box plot collapses to a horizontal line. Notably, the 
most significant disparities between the models trained 
on DnR and the winning entry in Leaderboard B are 
observed in animation movies (“002”, “006”) and action 
movies (“003”, “008”).

Figure 2: Performance of submissions on full CDXDB23 over time.
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After the conclusion of the challenge, we contacted the 
top three teams in each leaderboard and invited them to 
contribute to this manuscript with a description of their 
approaches. In the following, the teams accepting our 

invitation present their submissions and discuss them. For 
the team subatomicseer, which ranked 3rd in Leaderboard 
A, we refer the interested reader to Fabbro et al. (2024) 
where the team explains their approach in detail.

Figure 3: Analysis of overfitting of global SDR. The y-axis shows the difference between global SDR on the hidden test set and global 
SDR displayed to the participants (trajectories with negative slope indicate overfitting).
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4.1 TEAM JUSPERLEE (KAI LI, YI LUO, JIANWEI 
YU, RONGZHI GU)
Final ranking: Leaderboard A: —, Leaderboard B: 1st

4.1.1 Dataset
We used the public Divide and Remaster (DnR) (Petermann 
et al., 2022) dataset, the public deep noise suppression 
(DNS) dataset (Dubey et al., 2022), the public MUSDB18-HQ 
dataset (Rafii et al., 2019), and some extra internal data 
for system training. The extra internal speech data include 
150 hours of data used for a text-to-speech task, the extra 
internal sound effect data include 10 hours of cinematic 
sound effect data, and the extra internal music data 
include 100 hours of cinematic background music data.

One important step in our data preprocessing pipeline 
was that we found that the effect and music signals 
in both the DnR dataset and our internal dataset may 
contain human voice. We thus used a music source 
separation (MSS) model to preprocess all the effect 
and music signals to remove the “speech” or “vocal” 
signals from them. We found that doing this significantly 
improved the systems’ performance compared to directly 
using the original signals for training.

4.1.2 Methods
a) On-the-fly Data Mixing – We performed on-the-fly 
data mixing during training to increase the variety of the 
training data mixtures. For each mixture utterance, we 
randomly sampled 0–1 speech or vocal signals (we also 
treated a vocal signal as a form of dialogue signal in our 
setting), 0–2 music signals, and 0–3 effect signals, and 
rescaled each of them by a random energy gain of [–10, 
10] dB. We truncated the signals to be 3 seconds long 
and then added them up to form the mixture. The sum 
of individual music and effect signals were set as the 
training targets for the two tracks, respectively.

b) Model Design – Our system consists of three 
independent models, one for each of the dialogue, 
effect, and music sources. All models share the same 
architecture, which is the band-split RNN (BSRNN) 
architecture we proposed for the MSS task (Luo and Yu, 
2023). For the dialogue track, we directly use a BSRNN 
model trained for the music source separation task 
instead of the CDX task, as we eventually found that 
using an MSS model trained on music-only data that 
extracts the vocal track from the accompaniment can 
lead to better SDR score on the hidden test set than a 

Figure 4: Comparison of the cocktail-fork baseline with winning submissions on both leaderboards for individual movies. For movie 
“000”, we only have one clip and, hence, the box plot collapses to a horizontal line. Circles represent outliers that are outside the 
whiskers of the boxplot.
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speech extraction model trained on speech data (please 
see the discussion section for more on this observation). 
For the effect source and the music source, we used two 
separate BSRNN models trained on the aforementioned 
dataset, while we used the MSS model to first subtract 
the separated dialogue signal from the mixture to create 
a pseudo music-effects-only mixture, and then trained 
the two models on this mixture to perform a slightly 
simpler separation task. We found that this could lead 
to better performance than training the two models on 
mixtures containing dialogue data, and also better than 
training on mixtures without speech or vocal signals.

We used the standard BSRNN architecture, for which 
we do not include a detailed description here for the sake 
of brevity. The band-split scheme we used for all models 
was identical to the one we proposed in the original 
paper (Luo and Yu, 2023). The number of sequence and 
band modeling modules in the effect and music models 
were 8 and 12, respectively, and the feature dimension N 
was set to 64 and 128, respectively.

c) Training Configurations – All models were trained 
with the Adam optimizer (Kingma and Ba, 2014) with an 
initial learning rate of 0.001. We used 8 GPUs for each 
model with a per-GPU batch size of 2. Each training 
epoch contained 10k iterations, and the learning rate 
was decayed by 0.98 every two epochs. We did not 
apply early stopping as the evaluation was done on the 
hidden test set, and we submitted the latest model to 
the grading system every day to find the best model.

4.1.3 Results and Discussions
Our system achieved #1 on the Final Leaderboard B in 
the CDX challenge. Comparing with other top-ranking 
systems, our system performed significantly better on 
the music source and on par or slightly worse on the two 
other sources, and the overall improvement mainly came 
from the gain from the music source.

To better understand the effect of our vocal-removal 
preprocessing on DnR, we did an ablation study where 
we trained two BSRNN models: one using the original 
DnR dataset, and the other using DnR after applying 
vocal-removal preprocessing to the music and sound 
effect sources. Both models were configured identically 
and their performance was evaluated on CDXDB23 
using the AIcrowd evaluation system. Compared to 
the model trained on the original DnR dataset, the one 
trained on the vocal-removed DnR dataset achieved 
1.32 dB overall SDR improvement on the challenge’s 
test set. This confirmed our hypothesis and proved that 
vocal-removal for the music and sound effect class 
during training with DnR is an important step in our 
pipeline.

Another interesting observation we had was about the 
dialogue source – we initially tried to treat the “dialogue 
separation” task as a “speech enhancement” task which 
aims at removing any non-speech components out of 

the mixture, and we trained systems based on both our 
speech enhancement system which ranked 3rd in the 
5th DNS challenge (Yu et al., 2022, 2023) and our MSS 
system (Luo and Yu, 2023) with the extra cinematic data. 
We perceptually evaluated the systems’ performance 
on internal movie data and found the quality of their 
outputs satisfying. However, all model weights trained in 
this fashion could not achieve 13 dB SDR on the hidden 
test set, no matter how we adjusted the training pipeline 
or the model design. Later we tried to directly submit 
the original MSS system trained on music-only data 
(MUSDB18-HQ and another internal music dataset), and 
the performance of the dialogue source on Leaderboard 
B suddenly reached 15 dB SDR. One possible explanation 
is that there might still exist non-speech human sounds 
that are categorized as noise by the speech enhancement 
system but identified as vocals by the music separation 
system, possibly due to the differences in the training 
data as well as the data mixing strategies used during 
training.

4.2 TEAM ZFTURBO (ROMAN SOLOVYEV, 
ALEXANDER STEMPKOVSKIY, TATIANA 
HABRUSEVA)
Final ranking: Leaderboard A: —, Leaderboard B: 2nd

4.2.1 Approach
Our approach is based on an ensemble of models suited 
best for a particular stem. As we noticed that dialogue 
can be extracted with high quality by a vocal model that 
was trained originally for music separation, we separate 
dialogue by this model first, and then apply a model 
trained on the DnR dataset to the remaining part (music 
and sound effects). The source code is publicly available 
on GitHub.12

To compare different models, we developed new 
benchmarks and leaderboards for sound demixing 
(Solovyev et al., 2023).13 It can be seen from this 
leaderboard that various hybrid transformer demucs 
(HT demucs) (Rouard et al., 2023) models dominate 
all stems except for vocal separation. Models based on 
the MDX algorithm (Kim et al., 2021) are the best for 
separating the vocals. Therefore, ensembles of different 
models used for vocal and non-vocal stems are expected 
to provide the top overall performance.

To separate the dialogue, we used a combination of 
three pre-trained vocal models: UVR-MDX114 and UVR-
MDX215 from the Ultimate Vocal Remover project,16 and 
HT demucs (finetuned).17 The vocals were separated 
independently by all of these models and the results 
were combined with weights:

( )
( )
( )

DX,1

DX,2

DX,3

ˆ UVR-MDX1 ,overlap=0.6 ,

ˆ UVR-MDX2 ,overlap=0.6 ,
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We tried different weights for the DX ensemble and 
optimized them by considering two datasets that we 
created: “Multisong MVSep” and “Synth MVSep” as 
detailed by Solovyev et al. (2023). The weights 10, 
4, and 2 for UVR-MDX1, UVR-MDX2, and HT demucs, 
respectively, produced the best results on these two 
datasets. Interestingly, we observed that the models 
with the best SDR for vocal extraction were also the best 
for dialogue and, hence, we can rely on the results of 
Solovyev et al. (2023).

After obtaining the high-quality dialogue part, we 
can subtract it from the original track to obtain the non-
dialogue part. To separate it into two remaining stems, we 
trained two versions of the HT demucs model (Rouard et 
al., 2023) on the DnR dataset. The first HT demucs model 
was trained using the standard protocol for all three 
stems, while the second HT demucs model was trained 
only on two stems: sound effects and music, excluding 
dialogue. Table 3 shows the global SDR on CDXDB23 and 
we can observe that the 2-stem model yields better 
scores. Especially music benefits from the simplified 
training mixtures as it improves by 2.5 dB. Interestingly, 
blending both models is still beneficial as can also be seen 
from Table 3, where we blended four checkpoints from the 
2-stem HT demucs training with seven checkpoints of the 
3-stem HT demucs training, giving each the same weight. 
Please note that we also updated the vocal model in this 
submission and, hence, there is also a slight improvement 
for vocals if compared to the individual models. 
Consequently, for the final submission, we used several 
checkpoints of each of the 2-stem and 3-stem models to 
average predictions and obtain better generalization.

4.2.2 Results
Table 4 shows the results of the ablation study with 
and without a separate dialogue removal. We used two 

validation sets: val1 – validation on two tracks provided 
by the organizers, and val2 – a subset of 20 random 
tracks from the DnR test set. The single HT demucs model 
showed promising results on both validation sets (see 
Table 4). However, the model performance was poor on 
CDXDB23 and the best results can only be obtained with 
our ensemble model which first extracts dialogue with a 
vocal model from music separation and then employs an 
HT demucs for sound effect and music separation. val1 
results correlated better with the CDXDB23 dataset than 
val2, which is based on the DnR dataset. Still, metrics 
on val1 did not strongly correlate with the final results, 
presumably due to the tiny size of the demo set.

4.2.3 Discussion
During the competition, we noticed that the DnR dataset 
contains vocals in the music part sometimes. Our SDR 
for vocals on the leaderboard is very high, but our vocal 
model extracts all vocals from audio. Based on this, we 
made a conclusion that music in the competition dataset 
most likely never contains vocals.

4.3 TEAM MP3D (MIKHAIL SUKHOVEI)
Final ranking: Leaderboard A: 2nd, Leaderboard B: 5th

4.3.1 Approach
Since the training data for Leaderboard A was restricted 
to only the DnR dataset, we focused on identifying the 
shortcomings of the baseline multi-resolution crossnet 
(MRX) (Petermann et al. 2022) model and improving it. 
We implemented a modification of this model called 
conditional multi-resolution crossnet (MRX-C) (Petermann 
et al., 2023). The essence of this modification is to train 
an additional CRNN model that predicts source activity 
labels. The output of the MRX model (which estimates 
music, dialogue, and sound effects) is converted into 
a mel-spectrogram and concatenated with the mel-
spectrogram of the original audio to form a (4, nmels, nfreq) 
tensor, which is then fed into the CRNN.

To further improve our solution, we analyzed the 
effect of the Wiener filter on the final score as well as the 
influence of post-processing source scaling on the final 
SDR score.

4.3.2 Results
During the competition, we observed that validation on 
DnR is significantly different from metrics obtained on 
CDXDB23. This difference arises due to the dependence 

Model Global SDR (dB)

Mean Dialogue Effects Music

HT demucs trained 
on 2-stem mix 

7.560 14.532 3.355 4.794

HT demucs trained 
on 3-stem mix 

6.692 14.530 3.277 2.269

Ensemble of 2- and 
3-stem HT demucs 

7.630 14.734 3.323 4.834

Table 3: Comparison of 2-stem and 3-stem HT demucs models 
trained on DnR and evaluated on CDXDB23 (Team ZFTurbo).

Model Global SDR on val1 (dB) Global SDR on val2 (dB) Global SDR on CDXDB23 (dB)

Mean Dialogue Effects Music Mean Dialogue Effects Music Mean Dialogue Effects Music

HT demucs (single) 6.387 13.887 2.781 2.494 9.634 14.151 7.740 7.012 2.602 16.650 0.648 0.507

CDX23 best ensemble model 8.922 14.927 3.780 8.060 7.585 19.949 6.377 6.429 7.630 14.734 3.323 4.834

Table 4: Comparison of single model HT demucs with final ensemble model (Team ZFTurbo).
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of the MRX and MRX-C model performance on the volume 
of the input signal. For testing on DnR, the optimal value 
was found to be –27 LUFS, which yielded the maximum 
SDR value. To obtain the optimal input volume for real 
world data, we propose a Realistic Evaluation Dataset 
(RED) consisting of 26 stereo audio tracks of 20 seconds 
each. These audio samples were manually compiled, 
with an average sample volume of approximately –15 
LUFS and a sampling rate of 44.1 kHz. Additionally, each 
audio file includes separate tracks for dialogue, music, 
and effects, all with the same duration and with average 
sample volumes of –24.4 ± 4.5 LUFS for dialogues, –18.8 
± 0.5 LUFS for effects and –18.4 ± 5.0 LUFS for music. All 
the original audio files are sourced from the open archive.
org platform. The RED dataset was used only to select the 
optimal value of the input signal volume of the model.

As shown in Figure 5, the optimal volume value 
differed significantly from that of DnR, both in the case 
of RED and CDXDB23. Furthermore, the SDR metric 
on RED was more consistent with CDXDB23. After 
separating the sources, they were brought back to the 
original volume and a Wiener filter and post-processing 
scaling were applied. Post-processing scaling involved 
multiplying the estimated sources by a factor of 1
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Table 5 summarizes the SDR metrics on RED for the 

baseline MRX solution, MRX-C, MRX-C with Wiener filter, 
and MRX-C with source scaling. As shown in the table, the 

MRX-C model yields a 0.1 dB improvement in dialogue 
and a 0.1 dB decrease in effects. The Wiener filter yields 
a 0.1 dB improvement in music, a 0.3 dB improvement 
in dialogue, and a 0.3 dB improvement in effects. Post-
processing scaling results in a 0.2 dB decrease in music, 
a 0.6 dB decrease in dialogue, and a 0.3 dB increase in 
effects. Our final solution involved applying the Wiener 
filter only to the dialogue and post-processing scaling 
only to the effects.

4.3.3 Discussion
In the future, we plan to study the effect of adding 
additional activity labels contained in the DnR data 
on the MRX-C model accuracy. Additionally, to use the 
model on real data, we need to make the result of source 
separation independent of the input volume. Unlike 

Figure 5: SDR dependencies on the input volume in LUFS for music, dialogue, and effects. A solid line shows SDR values on RED; 
crosses mark SDR on CDXDB23. Horizontal dashed and dotted lines show SDR for models without converting the volume of the input 
signal. The MRX model is blue, MRX-C is orange, MRX-C with a Wiener filter is green, and MRX-C with post-processing scaling is red. In 
the case of testing MRX-C scaling on the CDXDB23, the SDR values are only available for effects (Team mp3d).

Model Global SDR (dB)

Mean Dialogue Effects Music

MRX 4.38 8.38 1.72 3.02

MRX-C 4.36 8.48 1.62 2.99

MRX-C Wiener 4.57 8.75 1.90 3.07

MRX-C scaling 4.24 7.92 1.95 2.85

Table 5: SDR values obtained during testing on RED for MRX, 
MRX-C, MRX-C with Wiener filter, and MRX-C with scaling. SDR 
values from the table are maximum possible values from all 
input volumes (Team mp3d).

https://archive.org
https://archive.org
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the approaches of other teams in this competition, 
we focused on training a single model rather than an 
ensemble of models. A key aspect of our solution is to 
apply the normalization of the mixture at the input of the 
model.

5. DISTRIBUTION MISMATCH BETWEEN 
DNR AND CDXDB23

In the following, we will analyze the distribution 
mismatch between DnR and CDXDB23 that was noticed 
by the participants in Section 4. This will give us insight 
into the recording and production differences as well as 
allow us to train two improved cocktail-fork models with 
an adjusted version of DnR.

5.1 DIFFERENCE IN SIGNAL STATISTICS
First, we will compare the signal characteristics between 
DnR and CDXDB23. Our focus will be on loudness, 
equalization, stereo panning, and dynamic range 
compression as they are key elements in audio mixing 
(Martínez-Ramírez et al., 2022).18

Loudness—We measured the loudness for each 
audio clip in both datasets using ITU-R BS.1770-4 
(International Telecommunications Union, 2015) with 
the help of pyloudnorm (Steinmetz and Reiss, 2021). 
The average loudness values are shown in Table 6 and 
the histograms can be found in Figure 6. We can observe 
that CDXDB23 utilizes the full range of loudness for all 
three classes whereas DnR has a more limited range. On 
average, DnR is 4 LUFS louder than CDXDB23. Notably, 
CDXDB23 uses the same loudness level for effects and 
music which is 5 LUFS lower than dialogue. This balance 

is likely due to a post-production step which was not 
considered in DnR.

Equalization—To assess equalization differences, we 
normalized each waveform to –24 LUFS and calculated 
the magnitude STFT spectrogram using a Hann window 
of 4096 samples with 75% overlap. The average 
equalization curves are displayed in Figure 7. It shows 
that CDXDB23 generally has a faster decay at low and 
high frequencies but more energy in the mid-frequency 
range compared to DnR. We attribute this to the use 
of parametric EQs containing low and high shelf filters 
in the post production process for CDXDB23, while DnR 
consisted mostly of web content, which likely lacked 
professional post production.

Amplitude panning—We calculated the Stereo 
Panning Spectrum as outlined by Tzanetakis et al. (2007); 
Avendano (2003) and as used by Martínez-Ramírez et 
al. (2022). Using the magnitude spectrogram from the 
earlier equalization analysis, we computed
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where XL/R(f) denotes the left/right channel magnitude 
spectrogram. ( )fY  measures whether frequencies are 
panned, regardless of direction, while Δ(f) measures 
which direction frequencies are panned to. Figures 8 
and 9 show the average values for both datasets. It is 
important to note that DnR is monaural, which results in 
a horizontal line for ( )fY  and Δ(f). From these figures, we 
see that in the audio mixing process, dialogue is typically 

Divide and Remaster (DnR) CDXDB23

Dialogue Effects Music Dialogue Effects Music

Loudness (LUFS) –24.4 ± 1.3 –29.7 ± 1.9 –31.4 ± 1.8 –28.4 ± 3.1 –33.9 ± 8.0 –33.6 ± 7.1

DRC (dB) –10.7 ± 0.9 –5.1 ± 2.4 –12.6 ± 1.4 –11.4 ± 1.3 –10.6 ± 3.7 –11.2 ± 2.3

Table 6: Loudness and Dynamic Range Compression (DRC) statistics for DnR and CDXDB23.

Figure 6: Comparison of loudness between DnR and CDXDB23.
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centered, while effects are more often panned to one 
side. Music shows the most varied panning. Figure 9 
indicates that there is no specific preferred direction for 
panning in the datasets.

Dynamic range compression (DRC)—Lastly, we 
analyzed the DRC by calculating the average peak 
value as DRC usually alters the transients. We started 
by normalizing the loudness of the audio waveform to 
–24 LUFS. Then, we used the high frequency content 
(HFC) method for onset detection, as described by Masri 
(1996); Brossier et al. (2019) and as implemented by 

Martínez-Ramírez et al. (2022). For each audio clip, we 
calculated the average peak level m . This measure helps 
us understand the extent of DRC applied; larger m  values 
indicate less compression since the peaks are more 
pronounced at the same loudness level. From the data 
in Table 6, we see that CDXDB23 exhibits more uniform 
compression compared to DnR. Notably, in DnR, effects 
are less compressed compared to dialogue and music. 
This contrast in compression is not observed in CDXDB23, 
where compression is more consistently applied across 
all three classes due to being professionally produced.

Figure 7: Comparison of average equalization between DnR and CDXDB23. Dashed curves give one standard deviation above/below 
average.

Figure 8: Comparison of average amplitude panning between DnR and CDXDB23. Channel amplitude similarity ( )fY  can take 
values 0 ( ) 1f£Y £  where ( ) 1fY =  refers to panning frequency f to the center whereas ( ) 1fY <  denotes a panning to either side. 
Dashed curves give one standard deviation above/below average. Please note that DnR is monaural and, hence, ( )fY  collapses to a 
horizontal line at ( ) 1fY = .

Figure 9: Comparison of average amplitude panning between DnR and CDXDB23. ( ) sign( ( ) ( ))L Rf f fD = Y -Y  denotes the panning 
direction where ( ) 0fD <  refers to panning to the left and ( ) 0fD >  to a panning to the right. Dashed curves give one standard 
deviation above/below average. Please note that DnR is monaural and, hence, Δ(f) collapses to a horizontal line at ( ) 0fD = .
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5.2 IMPROVING THE COCKTAIL-FORK 
BASELINE
Using our understanding of the distribution differences 
from the previous section, we aim to enhance the 
cocktail-fork model from Section 3.3. We created two 
updated versions of DnR, modifying either the average 
loudness or the average equalization for each audio 
source. For the loudness adjustment, we changed the 
loudness of each source stem by a specific amount. For 
example, we altered the loudness of each dialogue stem 
by 4 LUFS (from –28.4 to –24.4 LUFS). This adjustment 
was made so that the average loudness of the modified 
DnR matches that of CDXDB23. Regarding equalization, 
we designed a 101-tap FIR filter for each audio source. 
The magnitude response of this filter is the square root 
of the difference between the average equalization 
of CDXDB23 and DnR. We then applied this filter to 
each stem using forward-backward filtering (filtfilt), 
as mentioned by Martínez-Ramírez et al. (2022). This 
process modifies the amplitude without altering the 
phase of the audio.

Table 7 shows the improvements to the cocktail-fork 
model. Please note that an additional feature for mixture 
loudness normalization was introduced with version 
1.1, setting the mixture to –27 LUFS. We will discuss the 
results without considering this normalization, although 
similar trends are observed with it. The results in Table 
7 indicate that adjusting the loudness is particularly 
effective. The mean SDR improved from –0.1 dB to 1.3 
dB, primarily due to enhanced performance in dialogue. 
Adjusting the equalization also showed benefits, with 
an overall improvement of 0.3 dB. Here, both dialogue 
and effects showed improvement, but there was a slight 
decrease of 0.2 dB in music. We believe this decrease in 
music is linked to the fluctuation in the equalization curve 
shown in Figure 7, which correlates with the frequencies 
of musical notes. This fluctuation could inadvertently act 
as a marker on the music stems, making them easier 
for the model to separate, leading to a slight decline in 
music performance. Both trained models are available on 
the cocktail-fork GitHub6.

In summary, by aligning the DnR dataset more 
closely with a more realistic dataset like CDXDB23, we 
significantly enhanced the performance of the model. 
This approach presents a promising avenue for future 

research in this field. Besides using mono-to-stereo 
augmentation for stereo panning and compressors to 
adjust the DRC, also combining all of them should be 
considered to close the distribution mismatch as much 
as possible. Using the reported statistics in Section 5.1 
will help to choose realistic parameters for the data 
augmentation.

6 SUMMARY AND OUTLOOK

The CDX track of SDX’23 has provided valuable insights 
into the current state-of-the-art in cinematic audio 
separation and has highlighted areas for future research 
and development.

Looking at the results for Leaderboard A, we can 
observe that models suffered from the constraint of only 
being allowed to utilize the DnR dataset. This caused a 
“simulation-to-reality” gap where models were trained 
on simulated data, but evaluated on real-world data 
(CDXDB23). In particular, the following challenges were 
identified by the participants:

•	 The DnR dataset contains sometimes vocals within 
the music, leading to confusion during model 
training. Preemptively removing these vocals prior to 
training was found to enhance model performance.

•	 The dialogue data in the DnR dataset, being read 
speech, lacks emotional speech elements such 
as shouting, as well as other human sounds like 
breathing or humming. This absence posed a 
challenge for the models.

•	 Lastly, a mismatch in loudness was observed 
between the training and evaluation data. If 
not accounted for, this mismatch could lead to 
suboptimal model performance as we also saw in 
Section 5.

Hosting a competition like SDX’23 allows to identify and 
address these issues, thereby contributing significantly 
to the field. Moreover, the allowance for participants to 
utilize additional data, as seen in Leaderboard B, proved 
beneficial. Particularly, an improvement of approximately 
6 dB was observed for dialogue when comparing the 
results of Leaderboard B to those of Leaderboard A.

Training Dataset Global SDR w/o input norm (dB) Global SDR w/ input norm (dB)

Mean Dialogue Effects Music Mean Dialogue Effects Music

DnR –0.104 4.108 –2.018 –2.401 0.325 4.662 –1.979 –1.707

DnR w/ adapted loudness 1.287 6.535 –1.506 –1.168 1.539 6.727 –1.278 –0.832

DnR w/ adapted equalization 0.176 4.621 –1.470 –2.623 0.544 4.922 –1.212 –2.078

Table 7: Results on CDXDB23 for training the cocktail-fork model with adjusted DnR versions where we matched either the average 
loudness or the average equalization from CDXDB23. “Input norm” refers to the loudness normalization to -27 LUFS introduced with 
version 1.1 of the cocktail-fork model.
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Another interesting observation was the successful 
application of cascaded approaches, which initially 
filtered out dialogue. The effectiveness of this strategy 
can likely be attributed to two factors. First, the substantial 
amount of available data for vocals and the existence of 
highly efficient models, honed through research in the 
field of music separation (Stöter et al., 2018; Mitsufuji et 
al., 2022; Fabbro et al., 2024), provide a strong foundation 
for dialogue extraction. Second, vocals, which include 
sounds like breathing, bear a close resemblance to 
dialogue, thereby facilitating the extraction of dialogue 
from movies. As cinematic separation is a relatively 
young field, further advances are required, particularly in 
the extraction of sound effects and music.

Looking forward to the next challenge, we anticipate 
further advances in the field. Exploring uncharted areas 
such as mono-to-stereo augmentations is interesting and 
will have a positive impact on performance. We also aim to 
encourage participants to develop models that are robust 
to variations in the input data, such as in loudness. The 
goal remains to push the boundaries of what is possible 
in cinematic audio separation and to continue fostering 
innovation in this exciting field. This first edition of the 
challenge has demonstrated the utilization of models, 
data, and concepts from music separation to enhance 
cinematic separation. We believe that this represents an 
initial stage, and look forward to future development of 
more specialized ideas and approaches exploiting also 
the signal statistics presented in Section 5.1.

NOTES
1	 Frequently, sound effects for a movie must be created when no 

suitable option is at hand as they need to provide “sound” for 
new objects. A notable illustration is the crafting of the Godzilla 
Roar (Sound Effects Wiki, 2024), where a contrabass string was 
rubbed with gloves soaked in pine tar to produce the distinctive 
sound used as Godzilla’s roar. Numerous instances exist where 
sound effects had to be invented for movies, contributing 
significantly to the overall diversity within the sound effect 
category.

2	 https://www.aicrowd.com/challenges/sound-demixing-
challenge-2023.

3	 There was a related discussion about “music” vs. “sound effects” 
and “dialogue” during the competition which can be found here: 
https://discourse.aicrowd.com/t/class-label-definition-of-sound-
effects-and-music/8490.

4	 Given the absence of universally accepted rules for multi-
channel spatialization, the DnR dataset does not incorporate 
it, leading to a disparity with the hidden test set (CDXDB23). As 
a result, participants are compelled either to develop suitable 
data augmentation during training or to employ channel-wise 
processing which can be combined with a multi-channel Wiener 
filter during inference as already proposed by Petermann et al. 
(2022).

5	 The short movie “Kilian’s Game” and related content can be 
accessed via the following links. The full movie is available at 
https://www.youtube.com/watch?v=PxKB8NKQj3U, and a behind-
the-scenes look can be found at https://www.youtube.com/
watch?v=NdUuiwmHsKU. Participants could also view the output 
of their system on demo clips, available at https://www.youtube.
com/embed/PxKB8NKQj3U?start=39&end=62 and https://www.
youtube.com/embed/PxKB8NKQj3U?start=32&end=39.

6	 https://github.com/merlresearch/cocktail-fork-separation.

7	 https://gitlab.aicrowd.com/aicrowd/challenges/sound-demixing-
challenge-2023/sdx-2023-cinematic-sound-demixing-starter-kit.

8	 https://gitlab.aicrowd.com/yoyololicon/cdx-submissions.

9	 https://gitlab.aicrowd.com/mikhail_sukhovey/
mrxc, https://gitlab.aicrowd.com/mikhail_sukhovey/
sdx-2023-cinematic-sound-demixing-starter-kit/
tree/3695fd3e2cf85cddad6446decf276fc8dc46d27d.

10	https://github.com/naba89/iSeparate-SDX.

11	https://github.com/ZFTurbo/MVSEP-CDX23-Cinematic-Sound-
Demixing, https://drive.google.com/file/d/1AQt2uNMdTI_
aGcyFEjKGe-GCetKK3xo0/view?usp=sharing.

12	https://github.com/ZFTurbo/MVSEP-CDX23-Cinematic-Sound-
Demixing.

13	https://mvsep.com/quality_checker/.

14	Checkpoint “Kim_Vocal_1.onnx” available at https://github.com/
TRvlvr/model_repo/releases/download/all_public_uvr_models/
Kim_Vocal_1.onnx.

15	Checkpoint “UVR–MDX–NET–Inst_HQ_2.onnx” available at 
https://github.com/TRvlvr/model_repo/releases/download/
all_public_uvr_models/UVR-MDX-NET-Inst_HQ_2.onnx.

16	https://github.com/Anjok07/ultimatevocalremovergui.

17	Checkpoint “htdemucs_ft” available at https://github.com/
facebookresearch/demucs.

18	Like Martínez-Ramírez et al. (2022), we do not consider the 
reverberation of the signals, as blind estimation of reverberation 
features such as reverberation time is an open research area 
which has mostly worked only on speech signals.
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