ArticlePDF Available

Abstract and Figures

The recent surge in the discovery of hidden diversity within rheophilic taxa, particularly in West and East Africa, prompted a closer examination of the extent to which the current taxonomy may obscure the diversity of riffle-dwelling suckermouth catfishes in the genus Chiloglanis in southern Africa. Currently, the region comprises eight valid species within this genus. Seven of them have relatively narrow geographic distribution ranges except for C. neumanni, which is considered to be widely distributed, occurring from the Buzi River system in the south, and its northern limit being the eastward draining river systems in Tanzania. Recent surveys of the middle Zambezi River system revealed Chiloglanis specimens that were distinguishable from the known species of the genus from southern Africa. Integration of molecular and morphological data indicated that these specimens from the Mukwadzi River represent a new species to science, herein described as Chiloglanis carnatus Mutizwa, Bragança & Chakona, sp. nov. This species is readily distinguished from its southern African congeners by the possession of a distinctive extended dermal tissue covering the base of the dorsal fin and the possession of ten mandibular teeth (vs 8, 12, or 14 in the other taxa). Results from this study add to the growing evidence of a high level of undocumented diversity within riffle-dwelling taxa in southern Africa.
Illustrations depicting linear measurements recorded from Chiloglanis specimens A lateral view B ventral view of the Oral disc C ventral view D dorsal view of the head. Abbreviations: AD-CPL-adipose fin to caudal peduncle length, ADFBL-adipose-fin base length, ADFH-adipose-fin height, ANFBL-anal-fin base length, ANFL-anal-fin length along longest ray, ANI-anterior nares interspace, BDA-body depth at anus, BDDF-body depth at dorsal-fin insertion, CFKL-caudal fork length, CPD-caudal peduncle depth, CPL-caudal peduncle length, CP-OSL- post-cleithral process to occipital shield length, DF-ADFL-dorsal fin to adipose fin length, DFBL-dorsal-fin base length, DFL-dorsal-fin length along longest ray, DSL-dorsal-spine length, EDH-eye diameter (horizontal axis), EDV-eye diameter (vertical axis), HD-head depth, HL-head length to opercular membrane margin, LCFL-Lower caudal-fin lobe length, LCP-length of post-cleithral process, LLL-lower lip length, LMBL-Lateral mandibular barbel length, MMBL-Medial mandibular barbel length, MTRW-mandibular tooth row width, MXBL-maxillary barbel length, MW-mouth width, OBI-orbital interspace, ODL-oral disc length, ODW-oral disc width, OSW-occipital shield width, PANL-pre-anal length, PDL-pre-dorsal length, PMXL-pre-maxillary tooth-patch length, PMXW- pre-maxillary tooth patch width, PNI-posterior nares interspace, PPTL-pre-pectoral length, PPVL-pre-pelvic length, PSL-pectoral-spine length, PFL-pectoral-fin length, PVFL-pelvic-fin length, PVI-pelvic-fin interspace, SL-standard length, SNL-snout length, TL-total length, UCFL–Upper caudal-fin lobe length, ULL-upper lip length, WPTFI-width at pectoral-fin insertion.
… 
This content is subject to copyright. Terms and conditions apply.
57
Hidden in the ries: A new suckermouth catsh (Mochokidae,
Chiloglanis) from the middle Zambezi River system, Zimbabwe
Tadiwa I. Mutizwa1,2 , Wilbert T. Kadye1,2 , Pedro H. N. Bragança2,3 , Taurai Bere4, Albert Chakona1,2
1 Department of Ichthyology and Fisheries Science, Faculty of Science, Rhodes University, Prince Alfred Street, PO Box 94, Makhanda, 6140, South Africa
2 NRF-South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6140, South Africa
3 Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
4 School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
Corresponding author: Tadiwa I. Mutizwa (timutizwa@gmail.com)
Copyright: © Tadiwa I. Mutizwa et al.
This is an open access article distributed under
terms of the Creative Commons Attribution
License (Attribution 4.0 International –
CC BY 4.0).
Research Article
Abstract
The recent surge in the discovery of hidden diversity within rheophilic taxa, particularly
in West and East Africa, prompted a closer examination of the extent to which the cur-

genus Chiloglanis in southern Africa. Currently, the region comprises eight valid species
within this genus. Seven of them have relatively narrow geographic distribution ranges
except for C. neumanni, which is considered to be widely distributed, occurring from
the Buzi River system in the south, and its northern limit being the eastward draining
river systems in Tanzania. Recent surveys of the middle Zambezi River system revealed
Chiloglanis specimens that were distinguishable from the known species of the genus
from southern Africa. Integration of molecular and morphological data indicated that
these specimens from the Mukwadzi River represent a new species to science, herein
described as Chiloglanis carnatus Mutizwa, Bragança & Chakona, sp. nov. This species
is readily distinguished from its southern African congeners by the possession of a dis-

of ten mandibular teeth (vs 8, 12, or 14 in the other taxa). Results from this study add

taxa in southern Africa.
Key words: Diversity, freshwater, integrative taxonomy, rheophilic taxa, southern Africa
Introduction
  -
tum, which provide a wide range of specialised niches for distinct aquatic taxa
adapted to these environments (Thompson 2013; Hrbek et al. 2018). Delimitation
of species boundaries in rheophilic taxa using only morphological traits has pre-

is shaped by exposure to similar environmental drivers (Seegers 2008). However,
integrative taxonomy as well as recent collections in under-sampled areas within
the African continent have changed the previous perception that rheophilic hab-
itats were depauperate (Schmidt et al. 2015, 2016, 2017, 2023; Thomson et al.
Academic editor: Maria E. Bichuette
Received:
24 October 2023
Accepted:
22 January 2024
Published:
4 April 2024
ZooBank: https://zoobank.
org/9146C6EC-E8DA-46E9-8595-
70067C65ABF9
Citation: Mutizwa TI, Kadye WT,
Bragança PHN, Bere T, Chakona A
(2024) Hidden in the riffles: A new
suckermouth catsh (Mochokidae,
Chiloglanis) from the middle Zambezi
River system, Zimbabwe. ZooKeys
1197: 57–91. https://doi.org/10.3897/
zookeys.1197.114679
ZooKeys 1197: 57–91 (2024)
DOI: 10.3897/zookeys.1197.114679
58
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
2015; Schmidt and Barrientos 2019; Kashindye et al. 2021; Mazungula and Cha-
kona 2021; Day et al. 2023). These studies, which implemented integrative tax-
onomic approaches, have allowed the discovery of hidden diversity, particularly
Chiloglanis Peters, 1868 and Amphilius Günther, 1864,
from different regions of the continent. An emerging pattern shows that spe-
cies that were previously perceived to have broad geographic ranges represent

(Chakona et al. 2018; Mutizwa et al. 2021). Recently, a careful examination of
C.occidentalis Pellegrin, 1933 and
C. micropogon Poll, 1952 from West Africa and A. natalensis Boulenger, 1917
from southern Africa, resulted in the description of 15 new species (Schmidt et
-
-

on the continent (Morris et al. 2016; Schmidt et al. 2016; Chakona et al. 2018).
-
demic to Africa (Vigliotta 2008). Currently, this family has 228 valid species that
are distributed across several river systems in sub-Saharan Africa, with the high-
est diversity occurring in the Congo River (Seegers 2008; Vigliotta 2008; Fricke et
al. 2024). The Mochokidae is sister to a clade containing families Auchenoglani-
didae, Claroteidae, Malapteruridae, and Schilbeidae (Sullivan et al. 2006; Schedel
et al. 2022). The genera within Mochokidae have been split into two subfamilies:
       
into an oral disc (suckermouth), a structure that is absent in the second subfam-
ily Mochokinae. Chiloglanidinae contains the genera Chiloglanis Peters, 1868,
Atopodontus Friel & Vigliotta, 2008, Atopochilus Sauvage, 1879, and Euchilichthys
Boulenger, 1900, whereas Mochokinae includes the genera Mochokus Joannis,
1835, Mochokiella Howes, 1980, Acanthocleithron Nichols & Griscom, 1917, Mi-
crosynodontis Boulenger, 1903, and Synodontis Cuvier, 1816. Some of the inter-
generic (e.g., the monophyly of Mochokinae) and the intrageneric (e.g., the mono-
phyly of Synodontis) relationships within Mochokidae are not well supported and
require broader species sampling to resolve (Sullivan et al. 2006; Vigliotta 2008;
Day et al. 2013; Pinton et al. 2013; Schedel et al. 2022). Currently, in southern Af-
rica Chiloglanis has eight recognised species: C. bifurcus Jubb & Le Roux, 1969,
C. emarginatus Jubb & Le Roux, 1969, C. anoterus Crass, 1960, C. paratus Crass,
1960, C. fasciatus Pellegrin, 1936, C.pretoriae Van der Horst, 1931, C. swierstrai
Van der Horst, 1931, and C.neumanni Boulenger, 1911. Except for C. neumanni, all
these species are narrow range endemics (Fig. 1). For example, C. bifurcus is con-

metres above sea level in the Inkomati River system (Roux and Hoffman 2017a).
Uncertainties about the identity of the broadly distributed C. neumanni in
southern Africa have persisted for decades. This species was described from
the Bubu River, a tributary of the Great Ruaha River basin in Tanzania, and was
considered to be distributed across several eastern, central, and southern Afri-
can river systems (Daget et al. 1986; Bell-Cross and Minshull 1988). However,
following extensive surveys of river systems in east Africa and comprehensive
examination of specimens from this region, Seegers (1996) did not record
C.neumanni from localities outside the Great Ruaha River system, indicating
that this species was not as widely distributed as previously thought. Although
59
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Figure 1. Distribution of Chiloglanis species in southern Africa based on data from the National Research Founda-
tion-South African Institute for Aquatic Biodiversity extracted from the GIBF database (https://www.gbif.org).
the name C. neumanni has persisted in subsequent literature from southern
Africa, ichthyologists have consistently made remarks that the suckermouth

their identity (Marshall 2011). In recent years, there has been general consen-
sus among southern African ichthyologists that the species currently referred
to as C. neumanni in this region actually represents an undescribed species
or even a species complex, including several undescribed species. This asser-
tion is based on the extensive geographic distance between southern Africa
and the Bubu River, as well as the emerging patterns of undescribed diversity
within other species with similar distribution ranges as C. neumanni. For ex-
ample, studies of A. uranoscopus (Pfeffer, 1889) and Zaireichthys rotundiceps
(Hilgendorf, 1905) led to the resurrection of two synonyms and the description
of nine new species (Thomson and Page 2010; Eccles et al. 2011). Indeed, a

genus Chiloglanis from the Eastern Zimbabwe Highlands ecoregion, a result
that is consistent with Marshall’s (2011) postulation that the continued use of
the name C. neumanni in southern Africa potentially obscures the actual diver-

are currently being described from the Eastern Zimbabwe Highlands ecoregion,
with two of them being endemic to this region (Chakona et al., pers. obs.).
During surveys of the southern tributaries of the middle Zambezi River system
-
ed from the Mukwadzi River that drains the western margin of the Great Dyke
in Zimbabwe. These specimens could not be attributed to any of the currently
Chiloglanis from this region.

60
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
-
grative taxonomic approaches combining genetic and morphological data to de-
termine the taxonomic distinctiveness of the recently collected specimens from
-
umentation of the diversity of rheophilic species in a region where their unique
habitats are under threat from multiple environmental impacts are discussed.
Materials and methods
Collections
Specimens were collected from two sites in the Mukwadzi River, a tributary of

surveys in 2016 and 2019. Samples were collected using a battery-powered
     

photographed to document the live colour pattern then euthanized with clove
oil. Muscle tissue from the right side of the specimens was cut out and pre-
served in 99% ethanol for molecular analysis. Voucher specimens for morpho-
-
ferred to 70% ethanol for long term preservation. Additional tissue samples and
voucher specimens used in the present study were obtained from the National
Fish Collection at the National Research Foundation-South African Institute for
Aquatic Biodiversity (NRF-SAIAB) in Makhanda (Tables 1, 2).
Table 1. List of 80 COI sequences used in the present study including six new sequences of the specimens from the


Species name River system GPS coordinates (Latitude, Longitude) COI sequence ID
Atopochilus savorgnani Congo MK073983
Congo MK073984
Chiloglanis anoterus Mlumati -25.7567, 31.4386 LN610269
Mlumati -25.7692, 31.3367 LN610270
Mlumati -25.7692, 31.3367 LN610271
Mlumati -25.8672, 31.3347 LN610272
Chiloglanis bifurcus Mlumati MH432062
Mlumati SB8458
Mlumati SB8462
Chiloglanis fasciatus Okavango -13.5943, 16.8805 ANGFW077-12
Okavango -12.6713, 16.1114 ANGFW131-12
Okavango -12.6713, 16.1114 ANGFW132-12
Okavango -12.6713, 16.1114 ANGFW133-12
Okavango -12.6713, 16.1114 ANGFW134-12
Chiloglanis paratus Phongolo MPUMA025
Phongolo SB8459
Chiloglanis pretoriae Limpopo -23.9904, 31.8258 LN610341
Chiloglanis sp. ‘dwarf’ Honde -18.4337, 32.8969 MH432047
Honde -18.5992, 32.729 MH432054
Makanga -18.5438, 32.8013 MH432044
Mupenga -18.5725, 32.8038 MH432042
Mupenga -18.5725, 32.8038 MH432048
Mutarazi -18.5324, 32.8075 MH432018
61
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Species name River system GPS coordinates (Latitude, Longitude) COI sequence ID
Chiloglanis sp. ‘dwarf’ Mutarazi -18.5324, 32.8075 MH432019
Mutarazi -18.5324, 32.8075 MH432032
Nyamhingura -18.3696, 32.9354 MH432025
Nyamhingura -18.3696, 32.9354 MH432026
Nyamhingura -18.3696, 32.9354 MH432027
Phalombe -15.81, 35.646 MAFW097
Pungwe -18.3955, 32.9707 MH432030
Pungwe -18.3955, 32.9707 MH432031
Pungwe -18.45, 32.8968 MH432046
Pungwe -18.45, 32.8968 MH432057
Pungwe -18.3955, 32.9707 MH432061
Ruo -16.0403, 35.6633 MAFW029
Chiloglanis sp. ‘Shire’ Shire -15.061, 35.219 MAFW119
Chiloglanis carnatus sp. nov. Manyame -17.4249, 30.5854 PP156890*
Manyame -17.4249, 30.5854 PP156891+
Manyame -17.4249, 30.5854 PP156892+
Manyame -17.4249, 30.5854 PP156893+
Manyame -17.4249, 30.5854 PP156894+
Manyame -17.4249, 30.5854 PP156895+
Chiloglanis sp. ‘Nyangombe’ Chidya -18.2653, 32.5903 MH432020
Chidya -18.2653, 32.5903 MH432021
Chidya -18.2653, 32.5903 MH432022
Chidya -18.2653, 32.5903 MH432033
Chiloglanis sp. ‘Pungwe’ Chiyengwa -18.6878, 32.922 MH432040
Honde -18.5992, 32.729 MH432049
Pungwe -18.3955, 32.9707 MH432028
Pungwe -18.3955, 32.9707 MH432029
Chiloglanis sp. ‘roughskin’ Buzi -19.932, 33.826 SAFW910
Chiyengwa -18.6878, 32.922 MH432045
Chiyengwa -18.6878, 32.922 MH432051
Honde -18.5438, 32.8044 MH432036
Makanga -18.5438, 32.8013 MH432043
Mupenga -18.5725, 32.8038 MH432038
Mupenga -18.5725, 32.8038 MH432039
Mupenga -18.5725, 32.8038 MH432041
Mupenga -18.5725, 32.8038 MH432060
Ngarura -18.5474, 32.8718 MH432052
Ngarura -18.5474, 32.8718 MH432053
Ngarura -18.5474, 32.8718 MH432059
Nyamukombe -18.3821, 33.0327 MH432034
Nyamukombe -18.3821, 33.0327 MH432035
Nyamukombe -18.3821, 33.0327 MH432058
Nyamukwara -18.6918, 32.9236 MH432055
Nyamukwara -18.6918, 32.9236 MH432056
Pungwe -18.4414, 32.8875 MH432050
Rwera -18.5434, 32.8044 MH432037
Chiloglanis sp. ‘Zambezi’ Zambezi -15.656, 30.953 SAFW893
Nyangombe -18.0829, 32.5819 MH432023
Nyangombe -18.0829, 32.5819 MH432024
Okavango -14.9397, 17.7188 ANGFW015-12
Okavango -13.5943, 16.8805 ANGFW078-12
Okavango -14.6497, 16.9066 ANGFW211-12
Chiloglanis swierstrai Phongolo SB8457
Phongolo SB8460
Phongolo SB8461
Euchilichthys boulengeri Dipumu -6.0045, 22.3905 HM418085
Euchilichthys royauxi Epulu KT192823
62
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Table 2. List of 184 specimens examined in this study including 19 specimens collected from the Mukwadzi River.
Species Type status Catalogue No. No. specimens River system Latitude, Longitude
Chiloglanis anoterus Holotype SAIAB 186246 1 Phongola -27.5, 30.4667
Chiloglanis bifurcus Holotype SAIAB 120160 1 Incomati -25.4333, 30.7167
Paratype SAIAB 120161 6 Incomati -25.4333, 30.7167
Paratype SAIAB 120529 3 Incomati -25.3833, 30.35
Chiloglanis emarginatus Holotype SAIAB 120117 1 Incomati -25.9833, 30.6833
Paratype SAIAB 120118 9 Incomati -25.85, 30.2
Chiloglanis fasciatus _ SAIAB 204928 6 Okavango -14.3872, 16.2876
_ SAIAB 204916 4 Okavango -14.387, 16.2873
Chiloglanis carnatus sp. nov. Holotype SAIAB 236631 1 Manyame -17.4249, 30.5854
Paratype SAIAB 211349 13 Manyame -17.4244, 30.5845
Paratype SAIAB 211346 5 Manyame -17.4249, 30.5854
Chiloglanis paratus Holotype SAIAB 186248 1 Phongola -27.3833, 31.5
Paratype SAIAB 120050 1 Incomati _
Chiloglanis swierstrai Paratype SAIAB 30013 1 Phongola -25.6667, 27.8333
Paratype SAIAB 21805 5 Phongola -27.4333, 31.5167
Holotype SAIAB 186247 1 Phongola -27.4167, 31.1833
Chiloglanis pretoriae _ SAIAB 82972 10 Limpopo -23.0105, 30.4785
_ SAIAB 70603 3 Incomati -25.8478, 27.7836
_ SAIAB 70822 3 Limpopo -25.3883, 28.3117
Chiloglanis neumanni Lectotype BMNH190575249 1 Bubu _
Paralectotype BMNH190575250 1 Bubu _
Paralectotype BMNH190575250 1 Bubu _
Chiloglanis sp. ‘rough skin’ _ SAIAB 201075 4 Pungwe -18.4414, 32.8875
_ SAIAB 201095 2 Chiyengwa -18.6878, 32.922
_ AC14CL10 11 Mupenga -18.5725, 32.8038
_ SAIAB 200955 5 Ngarura -18.5474, 32.8718
_ SAIAB 200933 9 Nyamukombe -18.3821, 33.0327
_ SAIAB 201035 15 Rwera -18.5434, 32.8044
_ SAIAB 201047 3 Nyamukombe -18.3821, 33.0327
_ SAIAB 201088 8 Nyamukwara -18.6918, 32.9236
_ SAIAB 201026 8 Honde -18.5438, 32.8044
Chiloglanis sp. ‘dwarf’ _ AC14CL10 10 Mupenga -18.5725, 32.8038
_ SAIAB 200940 3 Pungwe -18.45, 32.8968
_ SAIAB 200923 1 Pungwe -18.3955, 32.9707
_ SAIAB 205087 5 Mutarazi -18.5324, 32.8075
_ SAIAB 205074 3 Nyamhingura -18.3696, 32.9354
_ AC13BL04 3 Pungwe -18.3955, 32.9707
Chiloglanis sp. ‘Pungwe’ _ AC13BL04 2 Pungwe -18.3955, 32.9707
_ SAIAB 201095 1 Chiyengwa -18.6878, 32.922
_ SAIAB 201067 1 Honde -18.5992, 32.729
Chiloglanis sp. ‘Nyangombe’ _ SAIAB 210408 6 Chidya -18.2653, 32.5903
Chiloglanis sp. ‘Zambezi’ _ SAIAB 200517 2 Nyangombe -18.0829, 32.5819
_ SAIAB 81243 2 Lower Zambezi -15.656, 30.953
_ SAIAB 186643 1 Okavango -14.9397, 17.7188
_ SAIAB 186709 1 Okavango -13.5943, 16.8805
63
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
DNA extraction, amplication, and sequencing
A total of six new COI sequences of Chiloglanis carnatus sp. nov. were gener-
ated for this study. Preparation and sequencing of genetic material was done
in the Aquatic Genomics Research Platform at the NRF-SAIAB. Genomic DNA
was extracted from preserved tissues using the salting-out method (Sunnucks
and Hales 1996). The mitochondrial DNA cytochrome c oxidase subunit I (COI)

DNA barcoding primer set FishF1 and FishR1 (Ward et al. 2005). PCRs were
performed with a Veriti 96 well thermal cycler (Applied Biosystems, USA) and
each reaction mixture (25 µL) contained 50–100 ng) of template DNA, 6.5 µL
of water, 0.5 µL of each primer (10 µM), and 12.5 µL Taq DNA polymerase 2×
master mix red (Amplicon PCR enzymes and reagents, Denmark). The PCR am-

               



    
the forward direction, and analysed on a 3500 Genetic Analyser (Applied Bio-
systems, USA) at the NRF-SAIAB. Additional sequences were obtained from
the public databases GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and
Barcode of Life Data Systems (BOLD) (http://www.boldsystems.org/) (Table 1).
Phylogenetic analyses
Phylogenetic analyses included genetic sequences generated from Chiloglanis
carnatus sp. nov., six of the seven nominal species from southern Africa, six
candidate species of ChiloglanisChilogla-
nis sp. ‘roughskin’, Chiloglanis sp. ‘Zambezi’, Chiloglanis sp. ‘Nyangombe’,
Chiloglanis sp. ‘Pungwe’, Chiloglanis sp. ‘Shire’, Chiloglanis sp. ‘dwarf’), and
three outgroup species (Euchilichthys boulengeri Nichols & LaMonte, 1934;
Euchilichthys royauxi Boulenger, 1902; Atopochilus savorgnani Sauvage, 1879)
(Table 1). Genetic material for C. neumanni from its type locality and C. emar-
ginatus
sequences were edited, aligned, and trimmed in MEGA-X (Kumar et al. 2016).
The sequences were translated into amino acid sequences in MEGA-X to check
for stop codons and gaps to ensure that they were copies of functional mito-
     
DNASP 6 (Rozas et al. 2017). The most suitable model for nucleotide substi-
tution was selected using the Akaike Information Criterion (AIC) (Akaike 1974)
as implemented in the program jModelTest 0.1.1 (Darriba et al. 2012). Bayes-
ian phylogenetic inference was performed in MrBayes 3.2.6 (Ronquist et al.

phylogenetic tree and posterior probabilities were inferred using four Markov
chain Monte Carlo (MCMC) chains which were run for 2 × 106 generations with
tree sampling every 1000 generations. The program Tracer 1.7 (Rambaut et al.


64
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
of the sampled trees for each analysis was discarded as burn-in, and the re-
maining trees were used to calculate a majority rule consensus tree. Maximum
likelihood (ML) analysis of the same dataset was performed in RAxML v. 8 (Sta-
matakis 2014) through the graphical user interface raxmlGUI v. 2 (Silvestro and
Michalak 2012). A total of 10 ML searches were performed in raxmlGUI and
support values for the ML tree nodes were estimated by 1000 non-parametric
bootstrap inferences (Felsenstein 1985). Bootstrap values equal to or higher
that 70% (Hillis and Bull 1993), and posterior probability values at 0.95 or higher
(Alfaro and Holder 2006), were considered strong support.
Molecular species delimitation
Four molecular species delimitation methods were used to delineate candidate
          
       
Barcode Gap Discovery (ABGD; Puillandre et al. 2012) and Assemble Species by
Automatic Partitioning (ASAP; Puillandre et al. 2021) infer the barcode gap from
the data to partition sequences into proposed candidate species. These methods
were performed on their respective webservers (https://bioinfo.mnhn.fr/abi/pub-
lic/abgd/ and https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html). The intra-
min = 0.001 and Pmax = 0.1) for both methods.
The Kimura (K80) TS/TV distance model was used and the remaining settings
were left at their default parameters. The second pair of species delimitation
methods included the Bayesian implementation of the Poisson Tree Processes
(bPTP) (Zhang et al. 2013) and the General Mixed Yule Coalescent (GMYC) (Pons
et al. 2006; Fujisawa and Barraclough 2013). Both GMYC and bPTP require a
phylogenetic tree as input and from this tree they estimate rates of branching
events to infer which parts of the tree are likely to follow a speciation model
-
ic variation). The bPTP was performed on the web server (http://species.h-its.
org/ptp/) using the same tree generated for phylogenetic reconstruction and a
MCMC run for 1 × 106 generations with 10% burn-in. For the GMYC analysis a fully
resolved ultrametric tree was inferred in Bayesian evolutionary analysis by sam-
pling trees (BEAST) 2.4.6 (Bouckaert et al. 2014) using a strict clock and Yule
model and the MCMC was ran for 1 × 107 generations with tree sampling every
1000 generations. The program Tracer 1.7.2 was used to analyse the quality of

to summarise the trees sampled by BEAST into a single maximum credibility tree
with a burn-in of 25%. The species’ limits by threshold Statistics (splits) package
(http://r-forge.r-project.org/projects/splits) in R 3.5.0 (R Core Team 2018) was
used to identify the candidate species from the maximum credibility tree pro-



Morphological analyses
A total of 19 specimens of Chiloglanis carnatus sp. nov. collected from the Muk-
wadzi River were examined in the present study. Comparative material included
65
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
the lectotype of C. neumanni, holotypes of six valid species from southern Africa

type material for C. fasciatus

    
Skelton (2001) were used as topotypes. The syntypes of C. pretoriae were severe-
ly deformed, thus only their meristic counts were included for comparison in this
study, but 16 specimens collected from near the type locality of C. pretoriae and

Formulae and terminology of morphometric and meristic characters followed
Schmidt et al. (2015), Friel and Vigliotta (2008), and Skelton and White (1990). A
total of 49 morphometric characters were measured to the nearest 0.1 mm using
digital Vernier callipers following Friel and Vigliotta (2008) (Table 3, Fig. 2A–D).
External meristic counts were performed under a stereo microscope. Vertebrae
counts were made from radiographs taken at the NRF-SAIAB using an Inspex
20i Digital X-ray Imaging System (Kodex Inc., New Jersey, USA). Radiographs for
the lectotype and paralectotypes of C. neumanni were taken at the Royal Muse-
um for Central Africa in Tervuren, Belgium (MRAC) using a VisiX-MedexLoncin
(www.medex.be). A total of nine meristic characters were examined: number of
   

3). Following Roberts (1989), vertebrae counts excluded the Weberian structures
-
der ribs, and included the hypural complex which was counted as one vertebra.



complex which was counted as one vertebra (Roberts 1989) (Fig. 3). The genital
papillae were examined to determine the sex of the specimens following Friel
and Vigliotta (2008). Morphological measurements were standardised by trans-
forming body measurements into percentages of the standard length (SL) and
head measurements into percentages of the head length (HL). Principal compo-
nent analyses (PCA) were performed in PAST v. 3.12 (Hammer et al. 2001) using
the covariance matrix for the morphometric data in order to identify morpholog-
ical characters that contributed the most to distinguishing Chiloglanis carnatus
sp. nov. from the other Chiloglanis species from southern Africa.
Results
Phylogenetic analyses
The COI alignment of 80 sequences had 534 base pairs and 176 variable sites.
         -
logenetic tree was not fully resolved, it showed genetic structuring that sup-

Chiloglanis carnatus sp. nov. was recovered as an exclusive group that is genet-
ically divergent (2.8–15.0% genetic distances) from other Chiloglanis species
and lineages from southern Africa (Figs 4, 5; Table 4). With the exception of
C. pretoriae and Chiloglanis sp. ‘Shire’, all recovered clades were well-support-
66
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Table 3. Morphological characters examined in the present study.
Morphological characters Abbreviation
 AD-CPL
 ADFBL
 ADFH
 ANFBL
 ANFL
Anterior nare interspace ANI
Body depth at anus BDA
 BDDF
Caudal fork length CFKL
Caudal peduncle depth CPD
Caudal peduncle length CPL
 DF-ADFL
 DFBL
 DFL
Dorsal-spine length DSL
Eye diameter (horizontal axis) EDH
Eye diameter (vertical axis) EDV
Head depth HD
Head length to opercular membrane margin HL
Lateral mandibular barbel length LMBL
Length of post-cleithral process LCP
 LCFL
Lower lip length LLL
Mandibular tooth row width MTRW
Maxillary barbel length MXBL
Medial mandibular barbel length MMBL
Mouth width MW
Occipital shield width OSW
Oral disc length ODL
Oral disc width ODW
Orbital interspace OBI
 PFL
Pectoral-spine length PSL
 PVI
 PVFL
Post-cleithral process to occipital shield length CP-OSL
Posterior nares interspace PNI
Pre-anal length PANL
Pre-dorsal length PDL
Pre-maxillary tooth-patch length PMXL
Pre-maxillary tooth-patch width PMXW
Pre-pectoral length PPTL
Pre-pelvic length PPVL
Snout length SNL
Standard length SL
Total length TL
 UCFL
Upper lip length ULL
 WPTFI
Abdominal vertebrae

67
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Morphological characters Abbreviation
Caudal vertebrae

Mandibular tooth count


Pre-maxillary tooth count
Total vertebrae
Figure 2. Illustrations depicting linear measurements recorded from Chiloglanis specimens A lateral view B ventral view of
the Oral disc C ventral view D-


CPD-caudal peduncle depth, CPL-caudal peduncle length, CP-OSL- post-cleithral process to occipital shield length, DF-AD-

length, EDH-eye diameter (horizontal axis), EDV-eye diameter (vertical axis), HD-head depth, HL-head length to opercular
-
eral mandibular barbel length, MMBL-Medial mandibular barbel length, MTRW-mandibular tooth row width, MXBL-max-
illary barbel length, MW-mouth width, OBI-orbital interspace, ODL-oral disc length, ODW-oral disc width, OSW-occipital
shield width, PANL-pre-anal length, PDL-pre-dorsal length, PMXL-pre-maxillary tooth-patch length, PMXW- pre-maxillary
tooth patch width, PNI-posterior nares interspace, PPTL-pre-pectoral length, PPVL-pre-pelvic length, PSL-pectoral-spine
          

68
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
ed (posterior probability > 0.95). Genetic divergences within valid and candi-

1.3–15.7% (Table 4). Chiloglanis paratus from the Phongolo River was recov-
ered as the most basal clade that is sister species to all the southern African

   
   
contained Chiloglanis carnatus sp. nov. from the Manyame River and C. fas-
ciatus from the Okavango River. The second clade contained C. anoterus and
C. bifurcus from the Incomati River system as well as C. pretoriae from the
Limpopo River system. The third clade contained Chiloglanis sp. ‘Nyangombe
from the Nyangombe River and Chiloglanis sp. ‘dwarf’ from the Pungwe and
Ruo rivers. The fourth clade contained Chiloglanis swierstrai from the Limpopo
Chiloglanis sp. ‘Zambezi’, Chilogla-
nis sp. ‘Pungwe’, Chiloglanis sp. ‘roughskin’, and Chiloglanis sp. ‘Shire’ lineages.
The Chiloglanis sp. ‘roughskin’ lineage occurs in the Buzi and Pungwe rivers,
whereas Chiloglanis sp. ‘Pungwe’ is endemic to the Pungwe River. Chiloglanis
sp. ‘Shire’ and Chiloglanis sp. ‘Zambezi’ lineages were found in the lower Zam-
bezi River system with the latter lineage also occurring in the Okavango River.
The phylogenetic tree inferred using the ML approach had similar topology to
the Bayesian inference tree (Fig. 5).
Molecular species delimitation
Chiloglanis carnatus
sp. nov., Chiloglanis sp. ‘Shire’, Chiloglanis sp. ‘Nyangombe’, C. swierstrai, C.an-
oterus, C. pretoriae, C. bifurcus, C. fasciatus, and C. paratus as unique molecu-
lar taxonomic units (Fig. 4). The Assemble Species by Automatic Partitioning
method recovered the least number of candidate species, this method grouped
Chiloglanis sp. ‘roughskin’, Chiloglanis sp. ‘Pungwe’, and Chiloglanis sp. ‘Zam-
bezi’ into a single molecular taxonomic unit. The General Mixed Yule Coalescent
method recovered the highest number of molecular taxonomic units. This meth-
Chiloglanis sp. ‘roughs-
kin’ and Chiloglanis sp. ‘dwarf’. The Automatic Barcode Gap Discovery and bPTP
Figure 3.
vertebra represent the abdominal vertebrae and the blue dots represent the caudal vertebrae.
69
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
inferred similar molecular taxonomic units with the exception of Chiloglanis sp.
‘dwarf’ which was split into two molecular taxonomic units by the latter method.
Morphological analyses
Principal component analysis (PCA) of the morphometric characters showed
that Chiloglanis carnatus sp. nov. is separated from C. swierstrai and C. anoter-
us along principal component 1 (PCI) (Fig. 6). This separation was associat-
ed with maxillary barbel length (Table 6). Chiloglanis carnatus sp. nov. (20.3–
28.8%HL) has relatively shorter maxillary barbels compared to C. swierstrai
(44.2–66.8%HL) and Chiloglanis sp. ‘Zambezi’ (31.3–37.0%HL, Table 5, Fig. 7A,
B). Chiloglanis carnatus sp. nov. is separated from C. swierstrai, C. anoterus,
and C. neumanni along principal component 2 (PCII) (Fig. 6). Separation along
PCII is associated with the oral disc width (Table 6). Chiloglanis carnatus sp.
nov. has a relatively smaller oral disc width (51.1–64.6%HL) compared to C.an-
oterus (69.1%HL, Table 5, Fig. 7C).
Figure 4. Bayesian inference tree of the species and lineages of the genus Chiloglanis found in southern African. The num-
bers at the nodes represent the Bayesian posterior probabilities. The black bars represent candidate species proposed by
four molecular species delimitation methods: Automatic Barcode Gap Discovery (ABGD), Automatic Partitioning (ASAP),
Bayesian implementation of the Poisson Tree Processes (bPTP), and General Mixed Yule Coalescent (GMYC).
70
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Additional scatterplots were generated to explore the characters that fur-
ther distinguish the Chiloglanis carnatus sp. nov. specimens. The Chilogla-
nis carnatus sp. nov. specimens have a narrower mandibular tooth row
width (4.6–8.1%HL) compared to C. pretoriae (16.0–25.6%HL), C. swierstrai
(10.0–16.6%HL), C. neumanni (9.9–13.5%HL), C. emarginatus (9.6–13.5%HL),
C. bifurcus (10.4–17.3%HL), C. anoterus (10.5%HL), Chiloglanis sp. ‘dwarf’
Figure 5. Maximum likelihood tree of the species and lineages of the genus Chiloglanis found in southern African. The
numbers at the nodes represent the bootstrap values.
71
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
(13.6–25.0%HL), Chiloglanis sp. ‘Nyangombe’ (19.0–25.5%HL), Chiloglanis
sp. ‘Pungwe’ (17.6–27.8%HL), Chiloglanis sp. ‘roughskin’ (11.9–22.2%HL), and
Chiloglanis sp. ‘Zambezi’ (20.5–25.4%HL; Fig. 7D, E). Chiloglanis carnatus sp.
nov. has an oral disc with relatively longer lower lips (18.3–26.6%HL) compared
to Chiloglanis sp. ‘roughskin’ (9.6–16.8%HL, Fig. 7F). Chiloglanis carnatus sp.
nov. has a relatively deeper caudal peduncle (11.3–13.2%SL) compared to
C.neumanni (9.5–9.9%SL), C. paratus (9.6–9.9%SL), C. fasciatus (7.5–8.8%SL),
C. swierstrai (7.2–8.7%SL), and Chiloglanis sp. ‘Zambezi’ (10.0–11.1%SL,
Chiloglanis carnatus
sp. nov. (17.0–23.3%SL) from C. bifurcus 9.2–13.6%SL) (Fig. 7I). Larger adi-

distinguish Chiloglanis carnatus sp. nov. from C. neumanni

between the anterior nares of Chiloglanis carnatus sp. nov. (9.5–15.5%HL) sep-
arates it from C. bifurcus (19.5–21.2%HL), C. emarginatus (16.5–22.4%HL), and
C. swierstrai (15.7–22.4%HL, Fig. 7L). Chiloglanis carnatus sp. nov. has a rela-
tively longer head (30.5–34.9%SL vs 24.8–28.0%SL), relatively wider body at
   
Table 4. Ranges of cytochrome oxidase I (COI) genetic distances (%) between the Chiloglanis species included in the
present study.
12345678910 11 12 13 14 15 16
1Chiloglanis sp.
‘dwarf’
0–1.5
2Chiloglanis sp.
‘Nyangombe’
3.6–
4.5
0–0.2
3Chiloglanis sp.
‘Zambezi’
10.7–
11.4
9.0–
9.7
0–0.9
4Chiloglanis sp.
‘Pungwe’
11.0–
11.8
9.9–
10.3
2.1–
3.0
0–0.2
5Chiloglanis sp.
‘roughskin’
10.5–
11.6
9.4–
10.3
2.2–
3.9
1.3–
2.6
0–1.3
6Chiloglanis sp.
‘Shire’
11.4–
11.9
10.1–
10.3
5.1–
5.6
5.0–
5.2
4.1–
5.2
_
7Chiloglanis
carnatus sp. nov.
12.0–
13.7
12.9–
13.9
10.7–
12.0
11.0–
12.0
10.1–
11.2
10.3–
11.0
0–1.1
8Chiloglanis
anoterus
11.0–
11.4
11.0–
11.2
9.5–
10.1
9.7–
10.7
9.6–
9.9
9.7 9.7–
11.4
0–0.2
9Chiloglanis
pretoriae
9.9–
10.3
10.1–
10.3
10.7–
11.0
10.7–
10.8
11.0–
11.4
10.1 10.7–
11.4
3.4–
3.6
_
10 Chiloglanis
fasciatus
10.9–
12.0
12.0–
12.4
10.9–
11.4
11.2–
11.6
10.3–
10.9
10.3 2.8–
3.9
9.0–
9.2
9.6–
9.7
0–0.6
11 Chiloglanis
swierstrai
12.4–
13.9
13.7–
14.2
11.4–
11.8
11.4–
11.8
11.2–
11.8
10.1–
11.0
12.4–
13.3
11.4–
11.8
12.4–
12.7
9.0–
12.5
0.2–
0.4
12 Chiloglanis bifurcus 9.9–
10.3
10.5–
10.7
9.9–
10.3
10.5–
10.7
10.3–
10.7
9.4 9.8–
10.5
2.4–
2.6
4.1 9.0–
9.2
11.8–
12.2
0
13 Chiloglanis paratus 15.0–
15.5
14.4–
14.8
14.2–
14.8
14.8–
15.2
15.0–
15.7
13.9–
14.0
14.0–
15.0
13.3–
13.7
13.7–
13.9
13.7–
14.4
15.4–
15.7
13.1–
13.5
0.6
14 Atopochilus
savorgnani
15.7–
16.1
15.5–
16.3
15.0–
15.9
15.5–
16.1
15.0–
15.5
14.2–
14.4
15.5–
16.9
15.0–
15.7
14.8–
15.0
15.0–
15.5
16.5–
16.9
15.2–
15.7
15.0–
15.5
1.1
15 Euchilichthys
boulengeri
15.2–
15.4
15.0–
15.2
15.2–
15.4
14.4 14.0–
14.2
14.2 15.4–
16.1
14.6–
15.4
14.8 15.0–
15.4
13.7–
13.9
14.6–
15.4
13.3–
13.5
11.2–
11.4
_
16 Euchilichthys
royauxi
16.5–
17.0
16.3–
16.5
16.3–
16.9
15.7 15.4–
16.1
14.8 15.7–
16.5
16.3–
16.5
16.5 15.2–
15.5
15.4–
15.5
16.3 13.5–
3.9
10.7 6.6 _
72
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Table 5. Summary of morphological characters examined in the present study. All values except standard length (SL) and Head length (HL) are given as percentages of the HL
or SL. For the meristics the mode is given alongside the range of the counts in parentheses where the counts varied.
Species Chiloglanis
carnatus sp. nov.
Chiloglanis
pretoriae
Chiloglanis
anoterus
Chiloglanis
bifurcus
Chiloglanis
emarginatus
Chiloglanis
fasciatus
Chiloglanis
neumanni
Chiloglanis
paratus
Chiloglanis
swierstrai
Chiloglanis
sp. ‘dwarf’
Chiloglanis sp.
‘Nyangombe’
Chiloglanis
sp. ‘Pungwe’
Chiloglanis
sp. ‘roughskin’
Chiloglanis
sp. ‘Zambezi’
Number of specimens 19 16 1 10 10 10 3 2 7 25 6 4 65 6
Total length 45.3–62.2 31.7–67.1 80.1 68.7–84.9 50.2–66.6 37.7–53.3 0–42.7 44–51.9 45.2–65.7 31.4–51.1 33.1–48.2 34.4–62.9 39.8–87.6 55.2–62.6
Standard length 35.5–48.9 26.5–54.6 61.7 51.4–63.9 40.3–55.6 30.3–41.7 33.4–39.8 35.8–42.4 34.9–51.9 26.0–41.6 26.0–38.5 24.6–48.6 31.6–66.6 43.7–50.6
Head length 12.1–15.6 8.8–19.4 20.3 15.7–19.5 12.3–15.7 10.0–13.7 10.1–12.6 11.1–13.8 9.2–13.6 8.0–12.8 8.9–13.1 6.6–15.6 10.3–22.8 13.9–16.8
% Standard length
Pre-pectoral length 26.9–30.0 26.3–32.7 30.9 27.4–31.1 24.5–27.3 29.5–32.4 26.1–27.8 28.4–30.0 25.0–27.0 24.3–33.1 29.6–32.3 30.2–35.9 25.7–32.4 25.8–31.4
Pre-dorsal length 39.9–43.7 40.7–48.7 38.6 38.9–42.9 37.7–42.7 40.4–44.9 38.6–41.5 39.2–42.3 34.5–36.7 36.6–50.5 39.0–46.8 35.4–44.7 36.0–44.1 36.2–46.3
Pre-pelvic length 56.0–59.3 53.6–58.4 59.7 52.5–58.1 51.3–56.8 56.1–59.7 55.6–57.5 55.2–58.6 49.1–54.8 50.7–58.6 51.7–64.2 57.2–65.1 53.6–61.6 55.3–60.7
Pre-anal length 67.6–73.3 66.4–72.8 73.3 63.4–69.3 63.0–68.2 67.7–73.3 70.7–72.4 67.6–71.3 64.1–69.5 64.1–75.3 65.2–80.1 56.7–80.2 64.3–77.6 58.7–76.5

length
18.2–22.6 18.1–25.8 25.5 21.4–29.1 20.2–24.4 21.4–24.1 21.6–26.9 23.9–28 18.7–26.8 21.5–28.6 20.2–28.4 21.9–29.1 19.2–30.2 20.5–21.6
Pectoral-spine length 15.0–19.8 13.5–19.8 11.5 17.8–22.4 17.2–22 17.5–21.5 16.8–22.4 19.7–22.7 19.0–23.1 13.7–20 13.7–20.2 18.2–19.9 13.8–26.6 14.7–22.0
 19.3–23.6 14.1–22.6 19 22.9–26.6 19.5–24.3 21.4–25.1 21.9–24.5 22.6–26.4 23.2–25.5 15.4–24.3 18.2–21.1 22.1–25.9 17.6–27.4 20.5–26.1

insertion
23.0–25.3 24.4–29.8 24.3 24.7–27.9 23.9–26.5 23.7–26.1 21.4–24.9 23.8–25.8 17.6–21.5 21.7–25.7 22.3–26.1 23.9–27.0 21.0–27.6 23.6–25.7
 10.8–14.2 12.2–15.9 12.9 14.6–17.2 10.8–14.6 11.6–14.6 13.6–14 13.0–13.1 12.3–15.4 11.7–15.3 11.7–13.3 13.8–16.0 10.2–17.5 13.4–15.7
 3.0–5.1 2.1–4.7 4.3 4.4–6.2 2.8–4.7 2.5–4.7 3.0–3.9 4.4–4.7 2.7–4.9 1.8–6.0 2.0–4.2 2.7–5.4 2.6–8.2 3.8–5.0

insertion
15.5–20.7 16.0–21.0 19.1 16.2–21.8 17.3–22.4 15.4–19.3 17.7–22.1 15.2–18.1 12.2–19.2 16.8–22.7 15.7–19.3 17.2–20.8 17.2–25.3 17.3–20.2
Body depth at anus 13.9–17.6 15.3–18.7 18 16.7–21.2 15.5–18.6 11.9–14.5 13.5–16.1 12.9–15.4 11.3–14.6 14.3–19.9 13.1–16.2 13.8–17.8 12.5–20.4 14.0–15.6
Dorsal-spine length 13.2–18.0 13.3–20.9 11.3 13–17.5 14.0–17.4 15.8–20.5 17.1–20.4 18.4–21.3 14.0–15.0 11.6–20.1 14.5–17.9 13.8–20.6 12.5–25.4 11.9–17.8
 10.7–14.1 12.8–18.0 8.6 9.5–13.2 8.8–12.9 10.4–13.7 8.5–10.2 12.8–14.6 7.5–9.6 11.5–23.7 12.8–16.6 20.6–28 11.8–30.6 15.4–24.7

peduncle length
12.9–17.0 13.3–17.7 15.2 14.9–18.5 13.1–17.0 13.1–16.8 11.9–14.1 13.6–15.6 14.0–15.9 14.4–19.8 15.1–20.9 11.3–16.1 13.3–21.6 15.7–17.2
 17.0–23.3 16.2–25.2 16.5 9.2–13.6 14.6–19.6 12.4–17.8 15.5–17.4 13.7–15.4 17.0–22.5 13.2–17 11.3–17.3 13.2–19.6 10.4–19.3 14.9–17.4
 4.1–6.8 4.2–5.8 3.5 2.9–4.6 2.3–5.0 3.3–5.2 2.7–3.1 3.0–3.9 3.5–5.2 2.8–5.4 3.2–5.3 3.3–5.6 3.3–8.7 5.0–6.2

longest ray
11.7–17.9 13.7–18.3 15.5 14.1–17.8 11.6–14.6 11.5–16.6 19.2–20.9 12.8–14.6 10.1–15.5 11.8–18.7 13.0–17.2 11.0–17.5 10.9–20.5 13.2–16.9
 10.5–13.5 11.7–15.4 12.9 11.5–15.3 10.9–14.9 8.9–11.4 11.1–12.1 10.6–11.0 11.7–15 10.6–16.4 11.9–15.5 11.3–19.4 8.2–15.6 11.8–14.2
Caudal peduncle depth 11.3–13.2 11–13.8 12.2 11.1–14.1 10.2–11.9 7.5–8.8 9.5–9.9 9.6–9.9 7.2–8.7 10.9–12.6 10.0–11.9 9.6–12.8 9.8–14.9 10.0–11.1
Caudal peduncle length 15.9–19.7 15.8–22.6 18.6 19.9–22.7 19.1–23.7 18.8–21.7 16.0–18.8 17.7–18.9 19.6–22.0 17.4–24.5 20.3–22.9 13.6–15.8 13.9–21.9 16.2–17.9
Head length 30.5–34.9 33.3–38.6 32.9 29.5–31.3 26.5–30.7 30.4–35.2 30.2–31.7 31.0–32.6 24.8–28.0 27.8–34.9 32.8–39.4 25.9–33.7 28.3–36.3 31.4–34.1
73
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Species Chiloglanis
carnatus sp. nov.
Chiloglanis
pretoriae
Chiloglanis
anoterus
Chiloglanis
bifurcus
Chiloglanis
emarginatus
Chiloglanis
fasciatus
Chiloglanis
neumanni
Chiloglanis
paratus
Chiloglanis
swierstrai
Chiloglanis
sp. ‘dwarf’
Chiloglanis sp.
‘Nyangombe’
Chiloglanis
sp. ‘Pungwe’
Chiloglanis
sp. ‘roughskin’
Chiloglanis
sp. ‘Zambezi’
% Head length
Eye diameter (vertical axis) 9.9–13.8 11.6–18.3 10.6 12.1–16.6 11.9–16.5 9.4–13.1 9.1–14.9 10.6–12.5 13.2–18.6 11.8–16.1 12.6–13.9 10.9–20.4 7.4–15.3 11.5–15.1
Orbital interspace 21.5–28.7 22.6–28.9 23.4 19.5–24.6 18.3–24.4 18.5–25.4 25.7–30.2 22.2–23.9 15.3–22.7 23.3–38.5 20.9–25.2 23.8–38.4 18.0–38.9 22.7–30.4
Anterior nares interspace 9.5–15.5 12.4–16.6 11.9 19.5–21.2 16.5–22.4 11.5–17.6 13.9–19.8 13.3–15.5 15.7–22.4 10.9–18.4 13.0–14.7 13.7–23.0 11.0–21.6 13.5–16.7
Posterior nares interspace 10.3–15.5 11–15.5 11.8 15.3–21.9 13.8–20.9 9.9–16.1 14.9–22.2 9.3–10.9 12.6–18.2 12.9–16.7 12.6–14.7 8.9–13.0 7.5–18.4 10.2–13.0
Snout length 54.0–66.2 55.7–65.7 65 58.2–64.8 49.5–59.9 58.9–69.3 51.5–56.2 56.9–59.0 51.5–57.5 52.3–66.1 51.4–67.3 54.7–84 51.1–68.0 53.4–66.2
Pre-maxillary tooth-patch
length
8.2–12.3 8.2–13.9 11.7 7.0–9.3 6.3–8.2 7.5–9.5 9.9–12.9 9.2–11.8 8.5–11.6 6.8–10.3 6.1–9.9 7.5–11.5 5.4–14.3 9.9–12.1
Pre-maxillary tooth-patch
width
36.8–47.9 30.7–46.8 51.5 44.1–50.2 39.9–46.2 40.3–46.7 36.4–38.9 41.3–44.2 39.5–47.1 35.9–45.3 39.6–47.8 31.7–44.5 29.7–50.1 37.2–45.1
Mandibular tooth row
width
4.6–8.1 16.0–25.6 10.5 10.4–17.3 9.6–13.5 4.8–6.6 9.9–13.5 7.2–7.7 10.0–16.6 13.6–25.0 19.0–25.5 17.6–27.8 11.9–22.2 20.5–25.4
Maxillary barbel length 20.3–28.8 21.3–36.8 22.7 23.8–41.8 29.1–41.8 26.4–31.2 21.8–30.2 24.3–27.5 44.2–66.8 17.4–34.3 20.1–28.1 19.7–32.1 20.2–45.7 31.3–37.0
Upper lip length 11.1–16.2 11.7–18.8 16.7 8.4–12.3 6.6–10.6 8.8–15.5 9.1–10.0 12.3–12.4 7.0–10.5 6.9–14.3 8.4–13.5 11.3–19.5 10.2–19.5 12.5–17.2
Lower lip length 18.3–26.6 22.4–27.7 25.1 17.7–25.6 23.5–28.8 18.8–24.9 19.8–27.0 22.8–27.6 19.2–26.0 12.6–22.9 20.7–29.3 19.7–27.8 9.6–16.8 20.7–24.7
Mouth width 23.9–33.8 24.8–32.6 39.6 30.9–39.1 25.7–36.2 25.6–32.1 20.6–22.8 28.0–35.9 27.9–34.0 20.4–33.4 27.1–33.8 25.2–37.8 17.5–32.8 24.7–31.1
Oral disc width 51.1–64.6 48.4–70.3 69.1 59.3–69.3 58.9–66.3 51.4–64.1 47.6–53.5 60.8–64.8 51.8–63.0 44.4–57.3 45.8–56.1 63.4–69.7 35.7–69.2 54.4–63.3
Oral disc length 48.6–57 46.0–61.1 63.8 53.7–61.3 43.3–54.7 48.4–59.7 41.6–53.2 55.7–57.8 48.6–62.4 40.7–53.9 41.9–58.2 46.5–57.4 38.6–57.1 47.9–57.3
Meristics
Mandibular tooth count 10 12 12 8 8 (6–8) 8 8 12 11 (11–
14)
_ _ _ _ _
Pre-maxillary tooth count 60 (43–69) 51–59 86 54 (50–
64)
36–54 64 (51–
65)
55–60 39–51 50 (34–
59)
_ _ _ _ _
 8 (6–8) 8 8 8 (7–8) 7 8 8 8 8 _ _ _ _ _
 7 (6–7) 7 7 7 7 (7–8) 7 7 7 7 _ _ _ _ _
 6 (5–7) 6 5 5 (5–6) 6 (5–6) 6 (5–6) 5 5 5 (5–6) _ _ _ _ _
 12 (12–13) 10 13 12 (9–13) 10 (10–12) 9 (8–12) 10 (10–
12)
9 12 (9–13) _ _ _ _ _
X-rays
Number of specimens 9 2 1 4 6 7 5 1 6 _ _ _ _ _
Abdominal vertebrae 13 (11–13) 12–13 13 11 (10–
11)
10 (10–12) 13 (12–
13)
13 (12–
13)
12 12 (11–
13)
_ _ _ _ _
Caudal vertebrae 17 (16–18) 18–19 17 20 (18–
20)
19 (17–19) 16 (16–
17)
16 (16–
18)
16 20 (16–
20)
_ _ _ _ _
Total vertebrae 29 (29–30) 28 30 30 (29–
30)
29 (28–30) 29 (28–
29)
28 27 32 (31–
32)
_ _ _ _ _
74
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Table 6.-
acters of Chiloglanis species and lineages from southern Africa.
Principal component 1 2
Eigenvalue 90.91 70.84
% variance 22.46 17.50
 -0.02 -0.02
 0.05 -0.01
 -0.04 0.00
 0.03 -0.05
 -0.03 -0.06
Body depth at anus -0.02 -0.04
 -0.09 -0.06
Caudal peduncle depth -0.05 -0.02
Caudal peduncle length 0.08 -0.10
 -0.02 -0.02
 -0.17 0.08
Dorsal-spine length -0.06 0.04
Pre-anal length -0.16 0.17
Pre-dorsal length -0.10 0.11
Pre-pectoral length -0.08 0.10
Pre-pelvic length -0.12 0.15
Pectoral-spine length 0.04 0.01
 0.04 0.03
 0.00 0.02
 -0.04 0.06
 0.00 0.02
Head length -0.18 0.07
Anterior nares interspace 0.14 -0.08
Eye diameter (vertical axis) 0.11 -0.03
Lower lip length 0.02 0.37
Mandibular tooth row width -0.16 -0.05
Maxillary barbel length 0.60 -0.41
Mouth width 0.35 0.21
Orbital interspace -0.18 -0.14
Oral disc length 0.22 0.34
Oral disc width 0.39 0.41
Pre-maxillary tooth-patch length 0.00 0.09
Pre-maxillary tooth-patch width 0.23 0.24
Posterior nares interspace 0.13 -0.13
Snout length -0.05 0.35
Upper lip length -0.09 0.15
pre-pelvic (56.0–59.3%SL vs 49.1–54.8%SL) and pre-dorsal distances (39.9–
43.7%SL vs 34.5–36.7%SL) that readily separated them from C. swierstrai
(Fig. 7M–P).
Comparison of meristic characters revealed consistent differences between
Chiloglanis carnatus sp. nov. specimens and the other species from southern
Africa. Chiloglanis carnatus sp. nov. specimens have ten closely packed man-
dibular teeth that separate them from C. bifurcus, C. emarginatus, C. fasciatus,
and C.neumanni that have eight mandibular teeth as well as from C. anoter-
us, C.pretoriae, C. paratus, and C. swierstrai that have > 10 mandibular teeth
Chiloglanis carnatus sp.
nov. specimens (12–13) from C. paratus (9) and C. pretoriae (10) (Fig. 8B).
75
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Chiloglanis carnatus sp. nov. specimens have a higher number of total verte-
brae (29–30) compared to C. neumanni (28), C. pretoriae (28), and C. paratus
(27) (Fig. 8C).
The integrated approach used in this study provided genetic and morpholog-
ical characters that clearly and consistently distinguish Chiloglanis carnatus sp.
nov. from the known species and lineages from this region. This study has thus
provided evidence that supports the description of the Chiloglanis carnatus sp.
nov. as a new species.
Taxonomic account
Chiloglanis carnatus Mutizwa, Bragança & Chakona, sp. nov.
https://zoobank.org/E1F0912C-986F-450F-9B90-400D86F5F3BC
Material examined. Holotype. , stored in 70% ethanol, 46.8 mm
SL, Fig. 9A–E; Mukwadzi River near bridge on the road to Mutorashanga,
Manyame River sub-catchment, middle Zambezi River system, Mashonaland

and T. Bere; SAIAB 236631; genseq-1 COI PP156890. Paratypes. 
• 5 , stored in 70% ethanol, 36.5–45.5 mm SL; near bridge on the road to
Mutorashanga, Mukwadzi River, Manyame River sub-catchment, middle Zam-
       
30 Jun. 2016; A. Chakona, W. Kadye and T. Bere; SAIAB 211346; genseq-2
COI PP156891 to PP156895.  • 6 , 35.5–45.1 mm SL, 7 , 36.5–
48.9 mm SL, stored in 70% ethanol; near bridge on the road to Mutorashanga,
Mukwadzi River, Manyame River system, middle Zambezi Basin, Mashonaland

and T. Bere; SAIAB 211349.
Figure 6.Chiloglanis species and
lineages from southern African.
76
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Figure 7. Scatterplots of the morphometric characters of the Chiloglanis species and lineages from southern African.
Key: Chiloglanis carnatus sp. nov. (red circle), C. pretoriae (brown triangle), C. swierstrai (dark green square), C. bifur-
cus (purple right-pointing triangle), C. anoterus (green heavy asterisk), C. paratus (pink diamond), C. emarginatus (Blue
pentagon), C. fasciatus (grey star), C. neumanni (light blue circle), Chiloglanis sp. ‘dwarf’ (orange eight spoked asterisk),
Chiloglanis sp. ‘roughskin’ (yellow multiplication sign), Chiloglanis sp. ‘Pungwe’ (black plus sign), Chiloglanis sp. ‘Zam-
bezi’ (blue down-pointing hollow triangle), Chiloglanis sp. ‘Nyangombe’ (light blue hollow circle).
77
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Diagnosis. Chiloglanis carnatus sp. nov. is readily distinguished from its conge-
ners in southern Africa (i.e. C. anoterus, C. bifurcus, C. emarginatus, C. fasciatus,
C. paratus, C. pretoriae and C. swierstrai

species. Chiloglanis carnatus possesses ten closely packed mandibular teeth,
that further distinguishes it from C. fasciatus that has eight closely packed man-
dibular teeth; C. bifurcus and C. emarginatus that have eight widely spaced man-
dibular teeth; C. anoterus, C. paratus, and C. pretoriae that have 12 closely packed
mandibular teeth; and C. swierstrai that has 14 closely packed mandibular teeth.
Chiloglanis carnatus
it from C. pretoriae and C. emarginatus
C. anoterus-
ginate in females. Chiloglanis carnatus
that is shorter than the lower lobe. This distinguishes it from C. bifurcus that has
Chiloglanis car-
natus has an oral disc with a well-developed mid-ventral cleft that distinguishes
it from C. swierstrai that possesses an oral disc without a mid-ventral cleft.
Chiloglanis carnatus possesses a smooth skin with a few tubercles occasionally
found on the head that separates it from C.fasciatus that has its entire dorsal and
lateral body surfaces mostly covered by small tubercles. Chiloglanis carnatus has
a dorsal spine with crenate anterior and posterior margins that distinguish it from
C. paratus that has a dorsal spine with a serrated posterior margin.
Description. Morphometric proportions and meristics are summarised in
Table 7. Holotype meristic counts are given in parentheses.
Body shape. Anterior portion of body slightly compressed dorsally, becoming
-
         
-

Figure 8. Scatterplots of the meristic characters of the Chiloglanis species from southern African.
78
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
-
    

Head. slightly depressed dorsally. Oval eye dorsally positioned, ~ 1/2 dis-
tance between snout and gill opening. Interorbital distance greater than dis-
tance between nostrils. Anterior and posterior nostrils closer to the eye than
snout. Distance between anterior nostrils slightly greater than distance between
posterior nostrils. Posterior nostril medially positioned relative to orbit. Anterior
  

Oral disc. Mouth inferior; large upper and lower lips combined to form oral disc
(see Fig. 9E, K). Oral disc width greater than length. Upper and lower lips with
Figure 9. Holotype of Chiloglanis carnatus sp. nov., SAIAB 236631 male (A–E) and female paratype specimen SAIAB
211346 (F–K). Scale bars: 1 cm.
79
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Table 7. Summary of morphological characters for Chiloglanis carnatus sp. nov. All values
except standard length (SL) and Head length (HL) are given as percentages of the HL or SL.
Holotype Paratypes
Male Males Females
Number of specimens 7 11
Range Mean Range Mean
Total length 58.2 45.3–62.2 49.8 45.3–56.1 52.2
Standard length 46.8 36.5–48.9 39.6 35.5–45.5 41.8
Head length 14.3 12.1–15.1 13.0 12.3–15.6 13.5
% Standard length
Pre-pectoral length 28.1 26.9–30.0 28.9 27.1–29.1 28.3
Pre-dorsal length 40.2 40.0–42.6 41.6 39.9–43.7 41.3
Pre-pelvic length 58.4 56.0–58.8 57.8 56.9–59.3 57.9
Pre-anal length 71.1 67.6–70.8 69.1 67.9–73.3 70.6
 20.9 18.4–22.2 20.6 18.2–22.6 20.6
Pectoral-spine length 18.6 15.6–19.8 17.7 15.0–18.6 16.5
 20.9 20.9–23.6 22.4 19.3–22.2 20.9
 23.8 23.3–25.2 24.3 23.0–25.3 24.3
 12.2 13.3–14.2 13.7 10.8–14.1 12.3
 4.6 3.3–4.6 4.0 3.0–5.1 3.9
 18.9 15.5–20.7 18.0 16.2–20.1 17.8
Body depth at anus 17.6 15.3–16.9 15.8 13.9–17.0 15.9
Dorsal-spine length 15.7 13.6–18.0 16.1 13.2–17.7 15.9
 17.9 15.2–20.7 18.5 16.2–20.0 17.4
 11.0 12.1–14.1 13.1 10.7–13.8 12.3
 13.5 12.9–17.0 15.0 10.3–16.4 13.8
 22.3 17.0–22.0 19.6 17.2–23.3 19.8
 5.1 4.1–6.1 5.2 4.2–6.8 5.3
 14.2 13.1–17.2 15.7 11.7–17.9 13.4
 12.1 11.8–15.3 13.2 11.1–13.4 12.5
Caudal peduncle depth 12.2 11.3–13.2 12.1 11.4–13.1 12.1
Caudal peduncle length 16.8 16.0–19.2 18.3 15.9–19.7 17.5
Caudal fork length 12.3 9.8–14.5 11.4 9.2–14.4 11.7
Head length 30.6 30.9–34.8 32.9 30.5–34.9 32.2
% Head length
Head depth 57.4 43.9–57.6 51.2 48.2–57.3 51.2
Eye diameter (vertical axis) 11.9 10.6–13.2 11.7 9.9–13.8 11.9
Eye diameter (horizontal axis) 15.7 13.0–16.4 14.1 12.9–16.8 15.0
Orbital interspace 25.1 22.3–28.7 24.1 21.5–26.8 24.5
Anterior nares interspace 12.1 9.5–15.5 12.1 10.4–14.6 12.2
Posterior nares interspace 12.6 11.0–15.5 13.5 10.3–15.4 12.7
Snout length 61.1 54.3–63.8 58.7 54.0–66.2 60.7
Pre-maxillary tooth-patch length 9.9 8.2–11.0 9.9 8.8–12.3 10.4
Pre-maxillary tooth-patch width 44.3 36.8–44.7 41.1 38.4–47.9 42.1
Mandibular tooth row width 6.7 4.6–8.1 6.4 5.4–7.1 6.4
Maxillary barbel length 27.6 20.3–27.2 25 22.3–28.8 25.3
Upper lip length 15.1 11.1–14.5 13.1 11.3–16.2 13.9
Lower lip length 23.4 18.3–25.2 22.7 20.7–26.6 23.8
Mouth width 29.2 25.3–30.8 27.3 23.9–33.8 28.1
80
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
pronounced roundish papillae, largest papillae concentrated around mid-ven-
tral cleft of lower lip. Three pairs of barbels. Maxillary barbel unbranched, origi-
nating from lateral region of oral disc, extending to posterior region of oral disc.
Lateral mandibular barbel longer than medial mandibular barbel, both incorpo-
rated into lower lip. Shallow cavity above lower lip.
Dentation. Pre-maxillary teeth arranged in three or four rows; variable num-

projecting higher than outer teeth forming a gentle arc; replacement tooth row
emerges anteriorly to the functional row.
Fins.      -
     
prominent in large adult males and females with ~ ¾ of the dorsal spine and
  
            
        -
ing; pectoral spine anterior margin smooth; dentate posterior margin; pectoral
-




origin; rounded.
Skin. Skin smooth with occasional tubercles present, concentrated on dorsal
and lateral surface of head. Lateral line complete; originating anterior to dorsal

along body.
Holotype Paratypes
Male Males Females
Number of specimens 7 11
Range Mean Range Mean
Oral disc width 62.8 51.1–62.9 57.2 52.9–64.6 58.2
Oral disc length 54.3 48.6–57.0 53.1 50.2–56.4 53.3
Postcleithral process to occipital shield 37.8 29.5–36.3 33.1 32.2–38.3 35.5
Length of postcleithral process 29.6 23.4–28.9 25.5 22.9–27.8 25.9
Occipital shield width 23.6 14.6–19.5 16.9 14.9–24.2 18.8
 13.4 9.3–13.0 10.6 10.0–12.7 11.2
 10.8 8.7–12.1 9.8 9.1–11.7 10.4
Medial mandibular barbel length 0.6 0.2–0.6 0.4 0.4–0.9 0.6
Lateral mandibular barbel length 1.3 1.0–1.8 1.4 1.1–1.8 1.4
Meristics Range Mode Range Mode
Mandibular tooth count 10 8–10 10 8–10 10
Pre-maxillary tooth count 59 43–69 _ 49–68 60
 8 7–8 8 6–8 8
 7 7 7 6–7 7
 6 6 6 5–7 6
 13 12–13 12 12–13 12
Abdominal vertebrae 12 12 _ 11–13 13
Caudal vertebrae 17 17 _ 16–18 16
Total vertebrae 29 29 _ 29–30 29
81
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Figure 10.Chiloglanis carnatus sp. nov. and the type specimens of the valid
southern African species A Chiloglanis carnatus sp. nov. (SAIAB 236631) specimens have an extended dermal tissue
  B C. swierstrai (SAIAB 186247) C C. bifurcus (SAIAB
120160) D C. emarginatus (SAIAB 120117) E C. fasciatus (SAIAB 204928) F C. paratus (SAIAB 186248) G C. pretoriae
(SAIAB 30011) H C. anoterus (SAIAB 186246). Scale bars: 1 cm.
Sexual dimorphism. Urogenital opening situated adjacent to origin of anal
         
separated from anus by shallow invagination in females.
Colouration. Overall body background colouration brown with yellowish
ventral surface. Anterior portion of body dark brown becoming paler towards
posterior. Small dark melanophores scattered across entire dorsal and lateral
sides. Six yellowish brown blotches on lateral surface of body; two vertically


-
cent. Dark blotch cuts vertically across caudal peduncle lobes.
Vertebral counts. Total vertebrae 29 or 30 (29), abdominal vertebrae 11–13
(12), caudal vertebrae 16–18 (17).
Etymology.carnatus-

of this species and the general robust body structure of this species compared
to its regional congeners.
82
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Distribution. Chiloglanis carnatus was collected from two sites in the Mukwadzi
River near the bridge on the Mutorashanga Road. The Mukwadzi River is a peren-
nial river that originates from wetlands (dambos) on the eastern side of the Great


  -
um, platinum, nickel, and asbestos. The rich mineral deposits have resulted in the
establishment of many mines along the Great Dyke. The sites where C. carnatus
was collected were in a communal area surrounded by rural communities on the
western slope of the Great Dyke. The substratum at the sites was composed of
bedrock, cobbles and gravel, and the riparian vegetation was dominated by Syz-
ygium Gaertner, 1788 and Phragmites Adanson, 1763. At these sites C. carnatus
Labeo cylindricus Peters, 1852,
Opsaridium zambezense (Peters, 1852), Enteromius trimaculatus (Peters, 1852),
Tilapia sparrmanii Smith, 1840, Clarias gariepinus (Burchell, 1822), and Labeobar-
bus marequensis (Smith, 1841) as well as the non-native species Serranochromis
jallae (Boulenger, 1896) and Micropterus salmoides (Lacepède, 1802).
Discussion
This study integrated molecular and morphological data to evaluate the taxo-
-
ed from the middle Zambezi River system in Zimbabwe. Based on substantial
genetic differentiation as well as consistent meristic, morphometric, and qualita-
tive differences from its southern African congers, a new species of Chiloglanis
         
comprehensive review of Chiloglanis species from southern Africa (see Jubb
and Le Roux 1969). This study adds to the growing body of literature that demon-
strates the value of integrative taxonomic approaches in the discovery and de-
scription of new species within this region (Maake et al. 2014; Morris et al. 2016;
Riddin et al. 2016; Kambikambi et al. 2021; Mazungula and Chakona 2021). As
evidenced from this study and work by Chakona et al. (2018), additional species


in the description of at least ten new species from this region. These species
were all previously included under a single species, C. neumanni, but this study
and ongoing work by researchers from the NRF-SAIAB indicates that this species
does not occur in southern Africa. Updated taxonomic information of Chiloglanis
species from this region will improve our understanding of biogeographic and
phylogeographic patterns as well as drainage evolution in the region.
The dentition of species in the genus Chiloglanis, like that of most members
of the family Mochokidae, is highly specialised (Roberts 1989). Chiloglanis carna-
tus possesses ten closely packed mandibular teeth, a number not found in any
other Chiloglanis species in southern Africa. Variation in the number of mandib-
ular teeth in individual specimens can be observed due to tooth loss from the
functional row, delayed exposure of some teeth in the replacement row, or early
advancement of some replacement row teeth (Roberts 1989). However, by exam-
ining both the functional and replacement rows, it was possible to determine the
diagnostic number of teeth for this species. Outside southern Africa, the presence
83
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
of ten mandibular teeth has been reported in west African species such as C. ko-
lente Schmidt et al., 2017, C. kabaensis Schmidt et al., 2017, C. nzerekore Schmidt
et al., 2017, C. occidentalis Pellegrin, 1933, and C. normani Pellegrin, 1933 (Paugy
et al. 2003; Schmidt et al. 2017). In addition to dentation, there were several mor-
phometric characters associated with the oral disc (e.g., maxillary barbel length,
oral disc width, lower lip length and mandibular tooth row width) that distinguish
C. carnatus from congenerics in southern Africa. Considering the importance of
the oral disc in the ecology of the species in this genus, these differences warrant
further study, particularly assessing potential differences in trophic ecology.
Rheophilic habitats form ‘islands’ with suitable environmental conditions for
specialised taxa such as those in the genus Chiloglanis. The disjunct distribu-
tion of these habitats within a river may play an important role in promoting
genetic and morphological diversity within rheophilic taxa. Some rheophilic


same river system (Hrbek et al. 2018). In southern Africa high genetic and mor-
phological diversity within C. anoterus has been reported from geographically
isolated populations in the upper sections of the Phongolo and Inkomati river
systems, highlighting the importance of the rheophilic habitats in headwater
streams (Morris et al. 2016). The close association of Chiloglanis species with

be explicitly tested within this region. The discovery of the C. carnatus from a
small section of the Mukwadzi River as well as other undescribed species with-
in southern Africa (Chakona et al. 2018) emphasises the need for accelerating
inventory of the diversity found in rheophilic habitats as these may harbour a
considerable number of species which are still unknown to science.
Entero-
mius Cope, 1867, Nothobranchius Peters, 1868, Pseudobarbus Smith, 1841,
Sandelia Castelnau, 1861, Galaxias Cuvier, 1816, and Oreochromis Günther,
1889 are threatened with extinction due to their narrow geographic ranges, the
introduction of invasive species, and habitat degradation (Marshall and Twed-
dle 2007; Jordaan and Chakona 2017; Roux and Hoffman 2017b; Nagy and
Watters 2019). Among the Chiloglanis species from southern Africa, C. bifurcus
and C.emarginatus-
dangered and the latter as Vulnerable in the IUCN Red List of threatened spe-
cies (Roux and Hoffman 2017a, 2018). Chiloglanis bifurcus is a narrow-range
 
system, whereas C. emarginatus’ range in the Phongolo River system has de-
clined substantially over the past decades (Roux and Hoffman 2017a, 2018).
-
tributed as the main driver of population decline in both these species (Roux
and Hoffman 2017a, 2018). Chiloglanis carnatus was collected from two sites
in the Mukwadzi River. The section downstream of these sites as well as oth-
er tributaries of the Mukwadzi River are heavily impacted by anthropogenic
activities. There are at least 13 small impoundments in the Mukwadzi River
Micropterus
salmoides) and the nembwe (Serranochromis jallae) were also introduced into

and non-native species is likely to negatively impact populations of native spe-
84
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
cies (Gratwicke and Marshall 2001; Gratwicke et al. 2003; Kadye et al. 2013;
         
non-native species, the rich mineral resources found within the Great Dyke at-
tract formal and informal mining operations which also threaten the species
living within these rivers through increased sedimentation/siltation which may
cause habitat loss. Although little is known about the distribution of C. carnatus
beyond the sites sampled in this study, multiple anthropogenic activities in the
Mukwadzi River catchment raise concerns about the conservation status of
this species.
The description of C. carnatus contributes towards clarifying the taxonom-
ic uncertainty surrounding species of the genus Chiloglanis found within the
geographic range formerly attributed to C. neumanni within southern Africa.
The discovery of C. carnatus follows the common pattern found among recent
taxonomic studies within the region whereby comprehensive sampling across
poorly explored regions and the use of integrated taxonomic approaches has
-
bution ranges (Bragança et al. 2020; Kambikambi et al. 2021; Mazungula and
Chakona 2021). This pattern is likely to be consistent across southern Africa
suggesting underestimation of the region’s biodiversity. In particular, species
such as those from the genus Chiloglanis are likely to be more diverse since
they occur in disjunct distributions in rheophilic habitats, which are likely to be
associated with allopatric speciation. This study also raises the awareness of

Dyke, an important geological feature where 20 endemic plant species that are
adapted to the unique serpentine soils have been recorded (Wild 1965). Further
exploration of the aquatic fauna of this poorly surveyed region is likely to uncov-
er additional new species for science.
Acknowledgements
We would like to thank the NRF-SAIAB personnel including Paul Skelton, Roger
Bills, Maditaba Meltaf, Nkosinathi Mazungula, Nonkoliso Mgibntaka, Amanda
Gura, Zinzi Somana, Siphamandla Mceleli, Gwynneth Matcher, and Taryn Bodil
for the support during this study.
Additional information
Conict of interest
The authors have declared that no competing interests exist.
Ethical statement
Ethical clearance for the approaches used for sample collection and processing was ap-
proved by the National Research Foundation-South African Institute for Aquatic Biodiversi-
ty (NRF-SAIAB) Animal Ethics Committee (Ref#: 2014/03 and REF#: 25/4/1/7/5_2022-02).
Funding
This research was supported by the Rhodes University Sandisa Imbewu Grant, the
NRF-Research Development Grant (CSRP190416431023), NRF-SAIAB Refresh project
(FBIP-211006643719) and NRF-SAIAB Topotypes project (IBIP-BS 13100251309).
85
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Author contributions
Conceptualization: WK, PB, TB, AC. Data curation: TIM. Formal analysis: TIM. Funding
acquisition: WK, AC. Investigation: TIM. Methodology: PB, AC, WK, TIM. Project admin-
istration: AC, WK. Resources: AC, TB. Supervision: AC, WK, PB. Visualization: PB, TIM.
Writing – original draft: TIM. Writing – review and editing: TIM, PB, AC, TB, WK.
Author ORCIDs
Tadiwa I. Mutizwa https://orcid.org/0000-0003-4017-1720
Wilbert T. Kadye https://orcid.org/0000-0002-5273-8360
Pedro H. N. Bragança https://orcid.org/0000-0002-8357-7010
Taurai Bere https://orcid.org/0000-0002-8603-5137
Albert Chakona https://orcid.org/0000-0001-6844-7501
Data availability

References
Adanson M (1763) Familles des Plantes. Vincent, Paris, 640 pp. https://doi.org/10.5962/
bhl.title.271
       
on Automatic Control 19(6): 716–723. https://doi.org/10.1109/TAC.1974.1100705
Alfaro ME, Holder MT (2006) The posterior and the prior in Bayesian phylogenetics.
Annual Review of Ecology, Evolution, and Systematics 37(1): 19–42. https://doi.
org/10.1146/annurev.ecolsys.37.091305.110021
Bell-Cross G, Minshull JL (1988) The Fishes of Zimbabwe. National Museums and Mon-
uments of Zimbabwe, Harare, 294 pp.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A,
Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary anal-
ysis. PLoS Computational Biology 10(4): e1003537. https://doi.org/10.1371/journal.
pcbi.1003537
Boulenger GA (1896) Liste des poisons recueillis par le R. P. Louis Jalla a Kazungula,
Haut Zambese. Bollettino dei Musei di Zoologia ed Anatomia 11(260): 1–2.
Boulenger GA (1900) Matériaux pour la Faune du Congo. Poissons Nouveaux du Congo.
Sixième Partie. Annales du musée du congo publiées par ordre du secrétaire d’état,
Bruxelles, 520–529.
Boulenger GA (1902) Additions à la faune ichthyologique de bassin du Congo. Matéri-
aux pour la faune du Congo. Annales du Musee du Congo (Ser. Zoology) 2: 19–57.
              -
oon. Proceedings of the Zoological Society of London 1(3): 21–29. https://doi.
org/10.1111/j.1469-7998.1903.tb08256.x
Boulenger GA (1911) Catalogue of the Fresh-Water Fishes of Africa in the British Muse-
um (Natural History), London, 481–482.
Bragança PHN, Smith TG, Vreven EJWMN, Chakona A (2020) Integrative taxonomy re-
veals hidden diversity in the southern African darters genus Nannocharax Günther
1867 (Characiformes: Distichodontidae). Journal of Fish Biology 97(6): 1713–1723.
https://doi.org/10.1111/jfb.14535
Burchell WJ (1822) Travels in the Interior of Southern Africa. Longman, London, 280 pp.
https://doi.org/10.5962/bhl.title.100911
86
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Castelnau FL (1861) Mémoire sur les poissons de l’Afrique australe. Paris 1–3: 1–78.
https://doi.org/10.5962/bhl.title.3819
Chakona A, Kadye WT, Bere T, Mazungula DN, Vreven EJWMN (2018) Evidence of hidden
   
Highlands freshwater ecoregion. ZooKeys 768: 69–95. https://doi.org/10.3897/zoo-
keys.768.21944
            
Transactions of the American Philosophical Society 13(3): 400–407.

species. Annals of the Natal Museum 14(3): 446–456.
Cuvier G (1816) Le Règne Animal distribué d’après son organisation pour servir de base à
l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Les reptiles,
les poissons, les mollusques et les annélides. A. Belin, Paris, Edition 1 v 2: 1–532.
Daget J, Gosse JP, Van den Audenaerde DT (1986) CLOFFA 2 Check-List of the Freshwa-
ter Fishes of Africa. ORSTOM, Paris, 111 pp.
Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: More models, new heu-
ristics and parallel computing. Nature Methods 9(8): e772. https://doi.org/10.1038/
nmeth.2109
Day JJ, Peart CR, Brown KJ, Friel JP, Bills
Synodontis). Systematic Biology 62(3):
351–365. https://doi.org/10.1093/sysbio/syt001
Day JJ, Steell EM, Vigliotta TR, Withey LA, Bills R, Friel JP, Genner MJ, Stiassny MLJ
(2023) Exceptional levels of species discovery ameliorate inferences of the biogeog-
  Molecular Phylogenetics
and Evolution 107754: e107754. https://doi.org/10.1016/j.ympev.2023.107754
Eccles DH, Tweddle D, Skelton PH
Zaireichthys (Siluriformes: Amphiliidae). Smithiana. Bulletin 13(4): 3–28.
Felsenstein J         -
strap. Evolution; International Journal of Organic Evolution 39(4): e783. https://doi.
org/10.2307/2408678
Fricke R, Eschmeyer    
genera, species, references. http://researcharchive.calacademy.org/research/ichthy-
 [Accessed 20 January 2024]
Friel JP, Vigliotta TR (2008) Atopodontus adriaensi, a new genus and species of African
           -
formes: Mochokidae). Proceedings of the Academy of Natural Sciences of Philadelphia
157(1): 13–23. https://doi.org/10.1635/0097-3157(2008)157[13:AAANGA]2.0.CO;2
Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the
Generalized Mixed Yule Coalescent approach: A revised method and evaluation on
simulated data sets. Systematic Biology 62(5): 707–724. https://doi.org/10.1093/
sysbio/syt033
Gaertner J (1788) Syzygium. De Fructibus et Seminibus Plantarum 1: e166. https://doi.
org/10.5962/bhl.title.102753
Gratwicke B, Marshall BE (2001) The relationship between the exotic predators Microp-
terus salmoides and Serranochromis robustus
Journal of Fish Biology 58(1): 68–75. https://doi.org/10.1111/j.1095-8649.2001.
tb00499.x
Gratwicke B, Marshall BE, Nhiwatiwa T (2003) The distribution and relative abundance
-
87
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
lution and exotic predators. African Journal of Aquatic Science 28(1): 25–34. https://
doi.org/10.2989/16085914.2003.9626596
Günther A (1864) Catalogue of the Physostomi, containing the families Siluridae, Charac-
inidae, Haplochitonidae, Sternoptychidae, Scopelidae, Stomiatidae in the collection

Günther DA (1889) On Some Fishes from the Kilimanjaro District. Proceedings of the
Zoological Society of London 57 No. 1. Blackwell Publishing Ltd., Oxford, 70–72.
https://doi.org/10.1111/j.1469-7998.1889.tb06752.x
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software pack-
age for education and data analysis. Palaeontologia Electronica 4(1): 1–9.
Helfrich P, Rieb E, Abrami G, Lücking A, Mehler A (2018) TreeAnnotator: versatile visual
annotation of hierarchical text relations. Proceedings of the eleventh international
conference on language resources and evaluation (LREC 2018).
Hilgendorf F (1905) Fische von Deutsch und Englisch Ost-Afrika. Gesammelt von Oscar
Neumann 1893–1895. Zoologische Jahrbucher. Systematik 22: 405–420.
Hillis DM, Bull JJ (1993) An empirical test of bootstraping as a method for assessing
192. https://doi.
org/10.1093/sysbio/42.2.182
-
ural History. Zoology 38: 165–170. https://doi.org/10.5962/p.12613
Hrbek T, Meliciano NV, Zuanon J, Farias IP (2018) Remarkable geographic structuring of
https://
doi.org/10.3389/fgene.2018.00295
Joannis L de (1835) Observations sur les poissons du Nil, et description de plusieurs
espèces 24 nouvelles. Magasin de zoologie, 53 pp.
Jordaan M, Chakona A (2017) Pseudobarbus burchelli. The IUCN Red List of Threat-
ened Species 2017: e.T107649398A100170338. https://dx.doi.org/10.2305/IUCN.
UK.2017-3.RLTS.T107649398A100170338.en [Accessed on 17 October 2023]
Jubb RA, Le Roux P (1969) Revision of the Chiloglanis (Pisces: Mochokidae) of Southern
Africa and descriptions of two new species. Annals of the Cape Provincial Museums
8(2): 13–23. [Natural History]
Kadye WT, Booth -
es within an invaded African river system. Journal of Fish Biology 96(5): 1269–1277.
https://doi.org/10.1111/jfb.13988
Kadye WT, Chakona A, Marufu LT, Samukange T (2013) The impact of non-native rain-
bow trout within Afro-montane streams in eastern Zimbabwe. Hydrobiologia 720(1):
75–88. https://doi.org/10.1007/s10750-013-1624-4
Kambikambi MJ, Kadye WT, Chakona A (2021) Allopatric differentiation in the Enteromius
anoplus complex in South Africa, with the revalidation of Enteromius cernuus and
Enteromius oraniensis, and description of a new species, Enteromiusmandelai (Teleostei:
Cyprinidae). Journal of Fish Biology 99(3): 931–954. https://doi.org/10.1111/jfb.14780
Kashindye BB, Manda BK, Friel JP, Chakona A, Vreven EJWMN (2021) A new species of

Ichthyological Exploration of Freshwaters 9902(11): 1–14.
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis
Version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874.
https://doi.org/10.1093/molbev/msw054
Lacepède BGE (1802) Histoire Naturelle des Poissons 4. Chez Plassan Imprimeur-Libraire,
Paris, 324–329.
88
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Maake PA, Gon O, Swartz ER (2014) Descriptions of three new species of Marcusenius
Gill, 1862 (Teleostei: Mormyridae) from South Africa and Mozambique. Zootaxa
3780(3): 455–480. https://doi.org/10.11646/zootaxa.3780.3.2
Marshall BE, Tweddle D (2007). Oreochromis mortimeri. The IUCN Red List of Threat-
ened Species 2007: e.T63337A12659594. https://doi.org/10.2305/IUCN.UK.2007.
RLTS.T63337A12659594.en [Accessed 17 October 2023]
Marshall BE (2011) The Fishes of Zimbabwe and Their Biology. Smithania Monograph 3.
South African Institute for Aquatic Biodiversity (private), Grahamstown, South Africa,
169–175.
Mazungula DN, Chakona A (2021) An integrative taxonomic review of the Natal moun-
  Amphilius natalensis Boulenger 1917 (Siluriformes, Amphiliidae), with
description of four new species. Journal of Fish Biology 99(1): 1–21. https://doi.
org/10.1111/jfb.14714
Morris J, Ford AGP, Ali JR, Peart CR, Bills R, Day JJ (2016) High levels of genetic struc-

from the African Highveld. Biological Journal of the Linnean Society. Linnean Society
of London 117(3): 528–546. https://doi.org/10.1111/bij.12650
Mutizwa TI, Kadye WT, Chakona A (2021) Deep genetic and morphological divergence
in the Hippopotamyrus ansorgii species complex (Teleostei: Mormyridae) in southern
Africa. Journal of Fish Biology 99(2): 1–14. https://doi.org/10.1111/jfb.14743
Nagy B, Watters B (2019) Nothobranchius mkuziensis. The IUCN Red List of Threat-
ened Species 2019: e.T131471491A131471537. https://dx.doi.org/10.2305/IUCN.
UK.2019-3.RLTS.T131471491A131471537.en [Accessed 17 October 2023]
Nichols JT, Griscom          
American Museum Congo Expedition, 1909–1915. Bulletin of the American Museum
of Natural History 37: 64–83.

the Belgian Congo. American Museum novitates 723: 1–6.
Paugy D, Lévêque C, Teugels GG (2003) Poissons d’eaux douces et saumâtres de l’Af-
rique de l’Ouest, édition complète. (IRD-MNHN-M, Vol. 815). Paris-Turvuren.
Pellegrin J (1933) Voyage de Ch. Alluaud et PA Chappuis en Afrique occidentale
Française (Dec. 1930-Mars 1931). Poissons. Archiv für Hydrobiologie 26: 101–120.
Pellegrin J (1936) Contribution à l’ichthyologie de l’Angola. Arquivos do Museu Bocage
7: 45–62.

Die Zur Bekanntmachung Geeigneten Verhandlungen Der Königlichen Preussischen
Akademie Der Wissenschaften Zu Berlin, 681–685.
Peters WCH (1868) Ueber eine von dem Baron Carl von der Decken entdeckte neue Gat-
tung von Welsen, Chiloglanis deckenii-
tafrika. Monatsberichte der Königlichen Preussischen Akademie der Wissenschaften
zu Berlin 1868: 598–602.
Pinton A, Agnèse JF, Paugy D, Otero O (2013) A large-scale phylogeny of Synodontis

diversity during the Cenozoic. Molecular Phylogenetics and Evolution 66(3): 1027–
1040. https://doi.org/10.1016/j.ympev.2012.12.009

und dem gegenüberliegenden Festlande gesammelten Reptilien, Amphibien, Fische,
Mollusken und Krebse. Jahrbuch Der Hamburgischen Wissenschaftlichen Anstalten
6(4): 1–36.
89
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Poll M (1952) Poissons de rivières de la région des lacs Tanganika et Kivu recuellis par
G. Marlier. Revue de Zoologie et de Botanique Africaines 46(3–4): 221–236.
Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Hazell S, Ka-
moun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the
DNA taxonomy of undescribed insects. Systematic Biology 55(4): 595–609. https://
doi.org/10.1080/10635150600852011
Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap
Discovery for primary species delimitation. Molecular Ecology 21(8): 1864–1877.
https://doi.org/10.1111/j.1365-294X.2011.05239.x
Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partition-
ing. Molecular Ecology Resources 21(2): 609–620. https://doi.org/10.1111/1755-
0998.13281
R Core Team (2018) R: A language and environment for statistical computing. R Founda-
tion for Statistical 308 Computing, Vienna. https://www.R-project.org/
Rambaut AR, Drummond AJ, Dong X, Baele G, Suchard MA (2018) Posterior Summariza-
tion in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67(5): 901–904.
https://doi.org/10.1093/sysbio/syy032
Riddin MA, Bills R, Villet MH (2016) Phylogeographic, morphometric and taxonom-
ic re-evaluation of the river sardine, Mesobola brevianalis (Boulenger, 1908) (Tele-
ostei, Cyprinidae, Chedrini). ZooKeys 641: 121–150. https://doi.org/10.3897/zook-
eys.641.10434
Roberts TR (1989) Systematic revision and description of new species of suckermouth
Chiloglanis, Mochokidae) from Cameroun. Proceedings of the California
Academy of Sciences 46(6): 151–178.
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
Suchard MA, Huelsenbeck    
inference and model choice across a large model space. Systematic Biology 61(3):
539–542. https://doi.org/10.1093/sysbio/sys029
Roux F, Hoffman A (2017a) Chiloglanis bifurcus. The IUCN Red List of Threatened Spe-
cies 2017: e.T4632A100193958. http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.
T4632A1001 93958.en
Roux F, Hoffman A (2017b) Enteromius treurensis. The IUCN Red List of Threatened
Species 2017: e.T2572A100159826. https://dx.doi.org/10.2305/IUCN.UK.2017-3.
RLTS.T2572A100159826.en [Accessed 17 October 2023]
Roux F, Hoffman A (2018) Chiloglanis emarginatus. The IUCN Red List of Threatened
Species 2018: e.T63366A100194297. https://doi.org/10.2305/IUCN.UK.2018-1.
RLTS.T63366A100194297.en
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins
SE, Sánchez-Gracia A (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of
Large Data Sets. Molecular Biology and Evolution 34(12): 3299–3302. https://doi.
org/10.1093/molbev/msx248
Sauvage HE (1879) Notice sur la faune ichthyologique de l’Ogôoué. Bulletin de la So-
ciété philomathique de Paris (7th Série) 3: 90–103.
Schedel FDB, Chakona A, Sidlauskas BL, Popoola MO, Wingi NU, Neumann D, Vreven
          
families Mochokidae and Austroglanididae. Journal of Fish Biology 100(5): 1171–
1186. https://doi.org/10.1111/jfb.15014
Schmidt RC, Bart HL, Nyingi WD (2015) Two new species of African suckermouth cat-
 Chiloglanis (Siluriformes: Mochokidae), from Kenya with remarks on
90
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
other taxa from the area. Zootaxa 4044(1): 45–64. https://doi.org/10.11646/zoot-
axa.4044.1.2
Schmidt RC, Bart Jr HL, Pezold F (2016) High levels of endemism in suckermouth cat-
  Chiloglanis) from the Upper Guinean forests of West Africa.
Molecular Phylogenetics and Evolution 100: 199–205. https://doi.org/10.1016/j.
ympev.2016.04.018
Schmidt RC, Bart Jr HL, Pezold F, Friel JP (2017) A Biodiversity hotspot heats up: nine
 Chiloglanis) from Upper Guin-
ean Forest streams in West Africa. Copeia 105(2): 301–338. https://doi.org/10.1643/
CI-16-474
 
Chiloglanis) from the Rio Mongo in Equatorial Guinea. Zootaxa 4652(3): 507–519.
https://doi.org/10.11646/zootaxa.4652.3.7
Schmidt RC, Bragança PH, Friel JP, Pezold F, Tweddle D, Bart HL (2023) Two New Spe-
    Chiloglanis) from Upper Guinean For-
est Streams in West Africa. Ichthyology & Herpetology 111(3): 376–389. https://doi.
org/10.1643/i2022067
            -
nance. Aqualog.
-
rique Centrale. Sciences Zoologiques (Belgium) ISSN 0770-4666, 213–236.
Silvestro D, Michalak I (2012) RaxmlGUI: A graphical front-end for RAxML. Organisms,
Diversity & Evolution 12(4): 335–337. https://doi.org/10.1007/s13127-011-0056-0
Skelton PH (2001) A Complete Guide To The Freshwater Fishes Of Southern Africa. Stru-
ik, Cape Town, South Africa, 241–242.
Skelton PH, White PN (1990) Two new species of Synodontis (Pisces: Siluroidei: Mochoki-
dae) from southern Africa. Ichthyological Exploration of Freshwaters 1(3): 277–287.

 -
pedition into the interior of South Africa in 1834–36. Journal of the Society for the
Bibliography of Natural History 2(6): 187–189.
Smith A (1841) Pisces. In Illustrations of the zoology of South Africa; consisting chief-
        
expedition into the interior of South Africa in 1834–36. Journal of the Society for the
Bibliography of Natural History 2(6): 187–189.
Stamatakis A (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analy-
sis of Large Phylogenies. https://doi.org/10.1093/bioinformatics/btu033
-
ods) Version 4. Sinauer Associates, Sunderland.
Sullivan JP, Lundberg JG, Hardman MA (2006) A phylogenetic analysis of the major
          
sequences. Molecular Phylogenetics and Evolution 41(3): 636–662. https://doi.
org/10.1016/j.ympev.2006.05.044
Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cyto-
chrome oxidase I-II in aphids of the genus Sitobio (Hemiptera: Aphidae). Molecular
Biology and Evolution 13(3): 510–524. https://doi.org/10.1093/oxfordjournals.mol-
bev.a025612
https://
doi.org/10.1016/B978-0-12-374739-6.00246-3
91
ZooKeys 1197: 57–91 (2024), DOI: 10.3897/zookeys.1197.114679
Tadiwa I. Mutizwa et al.: New suckermouth catsh (Chiloglanis) from the middle Zambezi River
Thomson AW, Page LM (2010) Taxonomic revision of the Amphilius uranoscopus group
(Teleostei: Siluriformes) in Kenya, with the description of a new species from the Athi
River. Bulletin of the Florida Museum of Natural History 49(2): 45–66.
Thomson AW, Page LM, Hilber SA (2015) Revision of the Amphilius jacksonii com-
   Zootaxa
3986(1): 61–87. https://doi.org/10.11646/zootaxa.3986.1.3
    Annals of the Transvaal
Museum XIV(3): 245–250.
           
(Osteichthyes, Ostariophysi, Siluriformes), with a key to genera. Proceedings of the
Academy of Natural Sciences of Philadelphia 157(1): 73–136. https://doi.org/10.163
5/0097-3157(2008)157[73:APSOTA]2.0.CO;2
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s
        
Biological Sciences 360(1462): 1847–1857. https://doi.org/10.1098/rstb.2005.1716
Werle E, Schneider C, Renner M, Volker M, Fiehn W (1994) Convenient single-step, one
          
22(20): 4354–4355. https://doi.org/10.1093/nar/22.20.4354

to the sepentine soils. Kirkia 5(1): 49–86.
Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method
with applications to phylogenetic placements. Bioinformatics 29(22): 2869–2876.
https://doi.org/10.1093/bioinformatics/btt499
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Endeavours in species discovery, particularly the characterisation of cryptic species, have been greatly aided by the application of DNA molecular sequence data to phylogenetic reconstruction and inference of evolutionary and biogeographic processes. However, the extent of cryptic and undescribed diversity remains unclear in tropical freshwaters, where biodiversity is declining at alarming rates. To investigate how data on previously undiscovered biodiversity impacts inferences of biogeography and diversification dynamics, we generated a densely sampled species-level family tree of Afrotropical Mochokidae catfishes (220 valid species) that was ca. 70% complete. This was achieved through extensive continental sampling specifically targeting the genus Chiloglanis a specialist of the relatively unexplored fast-flowing lotic habitat. Applying multiple species-delimitation methods, we report exceptional levels of species discovery for a vertebrate genus, conservatively delimiting a staggering ca. 50 putative new Chiloglanis species, resulting in a near 80% increase in species richness for the genus. Biogeographic reconstructions of the family identified the Congo Basin as a critical region in the generation of mochokid diversity, and further revealed complex scenarios for the build-up of continental assemblages of the two most species rich mochokid genera, Synodontis and Chiloglanis. While Syndontis showed most divergence events within freshwater ecoregions consistent with largely in situ diversification, Chiloglanis showed much less aggregation of freshwater ecoregions, suggesting dispersal as a key diversification process in this older group. Despite the significant increase in mochokid diversity identified here, diversification rates were best supported by a constant rate model consistent with patterns in many other tropical continental radiations. While our findings highlight fast-flowing lotic freshwaters as potential hotspots for undescribed and cryptic species diversity, a third of all freshwater fishes are currently threatened with extinction, signifying an urgent need to increase exploration of tropical freshwaters to better characterise and conserve its biodiversity.
Article
Full-text available
Several hundred catfish species (order: Siluriformes) belonging to 11 families inhabit Africa, of which at least six families are endemic to the continent. Although four of those families are well‐known to belong to the ‘Big‐Africa clade’, no previous study has addressed the phylogenetic placement of the endemic African catfish family Austroglanididae in a comprehensive framework with molecular data. Furthermore, interrelationships within the ‘Big‐Africa clade’, including the most diverse family Mochokidae, remain unclear. This study was therefore designed to help reconstruct inter‐ and intrarelationships of all currently valid mochokid genera, to infer their position within the ‘Big Africa clade’ and to establish a first molecular phylogenetic hypothesis of the relationships of the enigmatic Austroglanididae within the Siluriformes. We assembled a comprehensive mitogenomic dataset comprising all protein coding genes and representing almost all recognized catfish families (N = 33 of 39) with carefully selected species (N = 239). We recovered the monophyly of the previously identified multifamily clades ‘Big Asia’ and ‘Big Africa’ and determined Austroglanididae to be closely related to Pangasiidae, Ictaluroidea and Ariidae. Mochokidae was recovered as the sister group to a clade encompassing Auchenoglanididae, Claroteidae, Malapteruridae and the African Schilbeidae, albeit with low statistical support. The two mochokid subfamilies Mochokinae and Chiloglanidinae as well as the chiloglanid tribe Atopochilini were recovered as reciprocally monophyletic. The genus Acanthocleithron forms the sister group of all remaining Mochokinae, although with low support. The genus Atopodontus is the sister group of all remaining Atopochilini. In contrast to morphological reconstructions, the monophyly of the genus Chiloglanis was strongly supported in our analysis, with Chiloglanis macropterus nested within a Chiloglanis sublineage encompassing only other taxa from the Congo drainage. This is an important result because the phylogenetic relationships of C. macropterus have been controversial in the past, and because we and other researchers assumed that this species would be resolved as sister to most or all other members of Chiloglanis. The apparent paraphyly of Synodontis with respect to Microsynodontis provided an additional surprise, with Synodontis punu turning out to be the sister group of the latter genus.
Article
Full-text available
The chubbyhead barb, Enteromius anoplus, as currently described, is the most widely distributed freshwater fish in South Africa. The species occurs in almost all the major river systems across the country, with the exception of the small coastal drainages on the south coast. The use of a comprehensive data set of mitochondrial (mtDNA) cytochrome b (cyt b) sequences uncovered the presence of four distinct lineages or operational taxonomic units (OTUs) within E. anoplus: (a) the Gouritz lineage endemic to the Gouritz River system, (b) the Olifants lineage endemic to the Olifants‐Doring River system, (c) the Orange lineage endemic to the Orange River system and (d) the Eastern Cape lineage which is distributed across six river systems from the Great Fish to the Buffalo rivers in the Eastern Cape Province of South Africa. The present study provides a new diagnosis for E. anoplus s.s. (the Gouritz lineage), revalidates Enteromius cernuus (the Olifants lineage) and Enteromius oraniensis (the Orange lineage) as distinct species. The study also provides a description for a new species, Enteromius mandelai sp. nov (the Eastern Cape lineage). E. cernuus and E. mandelai differ from both E. anoplus and E. oraniensis by having a complete lateral line (vs. an incomplete lateral line in the latter species). E. cernuus further differs from the other three species by having long maxillary barbels which reach or exceed the vertical through the middle of the eye and the lowest number of circumpendicular scales (10–12 vs. 12–16 for the other three species). E. oraniensis is distinctive from the other three species by having inconspicuous barbels. These findings add to the growing body of literature that shows that the freshwater fishes of the Cape Fold and adjacent freshwater ecoregions have narrow geographic ranges. This has ramifications for conservation planning and management, as well as the understanding of the evolutionary history of the stream fishes in these global endemic hotspots.
Article
Full-text available
The present study used molecular and morphological approaches to investigate hidden diversity within the Hippopotamyrus ansorgii species complex in southern Africa. Phylogenetic reconstructions and three species delimitation methods based on two mitochondrial markers (cytochrome b and cytochrome oxidase I) and one nuclear marker (S7) revealed 12 Molecular Operational Taxonomic Units (MOTUs), with two of them representing two recently described species, Hippopotamyrus longilateralis and Hippopotamyrus szaboi. The highest diversity occurred in the Kwanza River system, which contained five MOTUs, and the Upper Zambezi River system that had two MOTUs. Five other river systems contained a single MOTU each. A major impediment to the review of this complex has been the uncertainty surrounding the type locality of the specimens that were used for the description of H. ansorgii. The present study has, through a careful examination of published literature and synthesis of information on the travel activities of Dr. William Ansorge who collected the specimens, identified the Kwanza River system as the most plausible source of the syntypes. The resolution of the type locality of H. ansorgii facilitates future work on the review of this complex which is critical for providing reliable biodiversity estimates, identifying effective conservation management strategies and understanding the evolutionary history and biogeographic patterns of the fishes of this region.
Article
Full-text available
An integrative taxonomic analysis combining mitochondrial cytochrome oxidase subunit I sequences, morphology, colour pattern and two species delimitation approaches revealed the existence of five lineages within the Natal mountain catfish, Amphilius natalensis, in southern Africa. These lineages are separated by substantial genetic divergences (1.6%–9.46%), and they can be consistently distinguished from one another based on a combination of morphology and colour pattern differences. Additionally, the lineages are allopatrically distributed and confined to isolated river systems draining discrete mountain ranges, which makes gene flow among them unlikely. One of these lineages is A. natalensis s.s., which is confined to the uMngeni and Tukela river systems in KwaZulu Natal (KZN) Province in South Africa. The other four lineages represent new species to science which are described as Amphilius zuluorum sp. nov., endemic to the uMkhomazi River system in KZN, Amphilius engelbrechti sp. nov., endemic to the Inkomati River system in Mpumalanga Province in South Africa, Amphilius marshalli sp. nov., endemic to the Pungwe and Lower Zambezi river systems in Zimbabwe and Mozambique, and Amphilius leopardus sp. nov., endemic to the Ruo River in Malawi. The results show that Amphilius laticaudatus which is endemic to the Buzi River system in Zimbabwe and Mozambique, belongs to the A. natalensis s.l. complex. A redescription of A. laticaudatus is presented and an updated identification key for the mountain catfishes of southern Africa is provided.
Article
Full-text available
Here, we describe Assemble Species by Automatic Partitioning (ASAP), a new method to build species partitions from single locus sequence alignments (i.e., barcode data sets). ASAP is efficient enough to split data sets as large 10⁴ sequences into putative species in several minutes. Although grounded in evolutionary theory, ASAP is the implementation of a hierarchical clustering algorithm that only uses pairwise genetic distances, avoiding the computational burden of phylogenetic reconstruction. Importantly, ASAP proposes species partitions ranked by a new scoring system that uses no biological prior insight of intraspecific diversity. ASAP is a stand‐alone program that can be used either through a graphical web‐interface or that can be downloaded and compiled for local usage. We have assessed its power along with three others programs (ABGD, PTP and GMYC) on 10 real COI barcode data sets representing various degrees of challenge (from small and easy cases to large and complicated data sets). We also used Monte‐Carlo simulations of a multispecies coalescent framework to assess the strengths and weaknesses of ASAP and the other programs. Through these analyses, we demonstrate that ASAP has the potential to become a major tool for taxonomists as it proposes rapidly in a full graphical exploratory interface relevant species hypothesis as a first step of the integrative taxonomy process.
Article
Full-text available
The present study explored the diversity of Nannocharax within southern Africa by implementing three species delimitation methods for a data set consisting of 37 mitochondrial cytochrome oxidase subunit I sequences. Two unilocus coalescent methods, the General Mixed Yule Coalescent (GMYC) and the Bayesian implementation of the Poisson Tree Processes (bPTP), and a genetic distance method, the Automatic Barcode Gap Discovery (ABGD), were applied. Both GMYC and bPTP delimited the same operational taxonomic units (OTUs), revealing a higher diversity for the genus in the region than previously recognised, whereas the ABGD failed to delimit the same candidate species. All methods delimited two species groups, and these are supported based on colouration patterning and morphology; the Nannocharax multifasciatus and the Nannocharax macropterus species groups and the delimited OTUs were assigned to each. Two putative new species were identified, Nannocharax cf. lineostriatus “Okavango” from the Okavango River in Angola and N. cf. lineostriatus “Kwanza” from the Kwanza River system in Angola. The distribution of Nannocharax dageti was confirmed for the Upper Zambezi and extended to the Okavango system, and an identification key for the southern Africa Nannocharax species is provided.
Article
Full-text available
We present the latest version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, MEGA has been optimized for use on 64-bit computing systems for analyzing bigger datasets. Researchers can now explore and analyze tens of thousands of sequences in MEGA. The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit MEGA is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OSX. The command line MEGA is available as native applications for Windows, Linux, and Mac OSX. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
Article
Full-text available
new record of Asian desert warbler from Mokarsagar wetland complex, Porbandar, Gujarat