PreprintPDF Available

Plant Transcriptomic Responses in a Diverse Organ and Stress Conditions

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract

Plant transcriptomes are an extremely dynamic entities shaped spatially and temporally by many intracellular and environmental cues. In this review, we first summarize the complexity and diversity of plant genomes and transcriptomes as a start point for the multitude of transcriptomic responses. Numerous alterations within various tissue and organ‐specific transcriptomes as well as the most relevant transcriptomic responses associated with plant acclimation to selected abiotic and biotic stress conditions, from the current studies employing highthroughput transcriptomic analysis are widely discussed. Understanding changes within plant transcriptomes, revealed by in silico functional analysis, allows for the characterization of stress affected genes and stress acclimatory mechanisms, as well as allows to perform plant metabolic engineering. The latter allow cultivars to produce more secondary metabolites in the future, which are often desirable substances in the biomedical industry. Accordingly, in this review special attention was also paid to characterize the potential of transcriptomic analyses of medicinal species, particularly to search for new cultivars. Extensive characterization of transcriptomic responses in stress would also result in the development of new cultivars that display physiological and molecular mechanisms that allow them to cope with adverse environmental conditions more adequately.
Review Not peer-reviewed version
Plant Transcriptomic Responses in a
Diverse Organ and Stress Conditions
Micha
ł
Rurek * and Miko
ł
aj Smolibowski
Posted Date: 27 March 2024
doi: 10.20944/preprints202403.1654.v1
Keywords: differentially expressed genes; medicinal species; plant organs; secondary metabolites; plant
transcriptome; stress
Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.
Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Review
PlantTranscriptomicResponsesinaDiverseOrgan
andStressConditions
MichałRurek*andMikołajSmolibowski
DepartmentofMolecular&CellularBiology,InstituteofMolecularBiology&Biotechnology,Facultyof
Biology,AdamMickiewiczUniversity,Poznań,UniwersytetuPoznańskiego6,61614Poznań,Poland;
rurek@amu.edu.pl
*Correspondence:rurek@amu.edu.pl;Tel.:++48618295973
Abstract:Planttranscriptomesareanextremelydynamicentitiesshapedspatiallyandtemporally
bymanyintracellularandenvironmentalcues.Inthisreview,wefirstsummarizethecomplexity
anddiversityofplantgenomesandtranscriptomesasastartpointforthemultitudeof
transcriptomicresponses.Numerousalterationswithinvarioustissueandorganspecific
transcriptomesaswellasthemostrelevanttranscriptomicresponsesassociatedwithplant
acclimationtoselectedabioticandbioticstressconditions,fromthecurrentstudiesemployinghigh
throughputtranscriptomicanalysisarewidelydiscussed.Understandingchangeswithinplant
transcriptomes,revealedbyinsilicofunctionalanalysis,allowsforthecharacterizationofstress
affectedgenesandstressacclimatorymechanisms,aswellasallowstoperformplantmetabolic
engineering.Thelatterallowcultivarstoproducemoresecondarymetabolitesinthefuture,which
areoftendesirablesubstancesinthebiomedicalindustry.Accordingly,inthisreviewspecial
attentionwasalsopaidtocharacterizethepotentialoftranscriptomicanalysesofmedicinalspecies,
particularlytosearchfornewcultivars.Extensivecharacterizationoftranscriptomicresponsesin
stresswouldalsoresultinthedevelopmentofnewcultivarsthatdisplayphysiologicaland
molecularmechanismsthatallowthemtocopewithadverseenvironmentalconditionsmore
adequately.
Keywords:differentiallyexpressedgenes;medicinalspecies;plantorgans;secondarymetabolites;
planttranscriptome;stress
1.Introduction
Higherplants,knownasvascularortelomeplants(Thelomophyta),appearedduringplant
evolutionbackinthePalaeophyticera.Theyarecharacterizedbythepresenceoforgans,the
developmentoftissuesdistributingwater,mineralcompounds,andphotosynthesisproductsandthe
dominanceofthesporophyteoverthegametophyte[1,2].Duetothesessilelifecycle,higherplants
wereevolutionarilyforcedtodevelopmultipleadaptationsthatallowedthemtorespondtostress
[3],includingtranscriptomicalterations.Tobetterunderstandhowplantsrespondtoenvironment,
detailedtranscriptomicanalysesarestillnecessary.ThedevelopmentofhighthroughputRNAseq
platformswithasubsequentdecreaseinsequencingcosts,aswellasdatametaanalyses,simplified
thetranscriptomicstudies.Theyallowfortheanalysisofthegeneexpressionprofilemanifestedbya
givenplantcell,tissue,ororgan.Seasonal,environmental,ordevelopmentaltranscriptomic
variationscanbealsoobserved[4].
Inrecentyears,planttranscriptomicreviewsfocusedmostlyonmethodologyissues[5–7].
Excellentstudieswithspeciesspecificomicsanalyses,includingthoseonstressresponseandfocused
ontherelevanceoftranscriptionfactors(TFs),hormones,translationalreprogramming,andthe
epigeneticlevel,aswellasphenotypicandphysiologicalanalyseswerealsopublished[8–13].
However,theydidnotalwaysreferexhaustivelytothetranscriptomicdata,andtheyweresometimes
limitedtothestudyofnoncodingRNAinacquiringstresstolerance[14].Owingtothosefactors,in
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
2
thisreviewthediversityoftranscriptomicresponsesamongdiverseorgansinthedevelopmental
context,andresponsestovariousstressors,bothabiotic(includingUVradiation,chemical
treatments,drought,coldandheatstress)aswellasbiotic(fungalandbacterialinfections)stressors,
willbepresented.Thecitedstudiescomingfromrecenthighthroughputanalyses,willbediscussed
inthecontextofthecomplexityofplantgenomeandtranscriptomestructureasabasisforavariety
oftranscriptomicalterations.Wewillalsorevealtheapplicativeaspectsoftherecentsearchesfor
usefulnewmedicinalplantcultivarsresistanttostress.
2.TheDiversityofHigherPlantGenomesandTranscriptomesasaBasisfortheComplexityof
TranscriptomicResponsiveness
GenomeiscomposedofacompletesetofallDNAmoleculesinthecellcontainingthe
informationnecessaryforanindividualtofunctionanddevelop.Inplants,threegenomesare
recognized:nuclear,chloroplast(theplastome)aswellasmitochondrialgenome(themitogenome)
[15].
Plantnucleargenomesizeisnotcorrelatedwiththesizeoforganellargenomes.Ofallthemajor
taxonomicgroups,landplantscontainthemostconservedsizeofthenucleargenome.Forexample,
Genliseaaureaisacarnivorousplantspecieswithoneofthesmallestnucleargenomes,whichspans
43.3Mbps,whileoneofthelargestknownnucleargenomes(upto150Gbps)isknowninParis
japonica(TableS1).Currently,twomainfactorsarethoughttoberesponsibleforthelargescale
variationofgenomesizeamonglandplants:therecurrentcasesofwholegenomeduplication(WGD),
i.e.,polyploidy,andthedynamicsofthelossandgainoftransposableelements.Eventhough
duplicationofchromosomenumberisanobviousreasonfortheincreasinggenomesize,transposon
gainandlossresultsinthegreatestvariationinthegenomesize.Insomenucleargenomes,
transposonscompriseabout3%oftheirsize;inotherones,theycanoccupyeven85%ofthegenome.
Interestingly,therelationshipbetweenplantnucleargenomesizeandtransposoncontentisgenerally
linear[16].Numerousevidencesuggeststhatplantspecieswithsmallnucleargenomesare
characterizedbybroaderphenotypicandecologicalfeatures,whilespecieswithlargergenomeslive
onlyunderconditionswithmorerelaxedpressureofnaturalselection.Interestingly,plantnuclear
genomecorrelateswiththenutrientavailability.Undernitrogenorphosphorusdeficiency,species
withlargergenomeswereunabletocompeteanddominateinecosystems[17].
AccordingtoMargulis[18]concept,plastidsandmitochondriaoriginatedfromtheengulfing
andmaintenanceofsinglecelledorganismsintheearlyeukaryoticcellunderendosymbiosis.The
proofofsuchaneventwouldbethepresenceoftheirowngeneticmaterial,prokaryoticribosomes,
doublemembranedenvelopeaswellassize[19].Themitochondrialancestorswereprobably
proteobacteria,whiletheplastidancestorswereorganismssimilartocyanobacteria.Mostorganellar
genesunderwentanevolutionarytransfertothenucleus,andstillorganellarDNAinsertionscanbe
foundinnucleargenomes[20].Genomecontainingorganellesthusexhibitaparticularlycomplex
patternoftheirbiogenesis,dependingontheconcertedregulatedexpressionofnuclearand
organellargenesbyanterogradeandretrogradesignaling[21,22].
Althoughnucleargenomescanreach119.1MbpsinArabidopsisto150GbpsinsizeinParis
japonica,theplastomeisrelativelyconservedinlength,genecompositionandorganization,andin
angiospermstypicallyrangesinsizefrom120to180kbps[23,24].ThelengthoftheArabidopsis
plastome(withnucleargenomeof119.1Mbps)is154,478bps,whenP.japonica,theownerofthe
largestlandplantnucleargenome(150Gbps)hasaplastomeof155,957bp.Thedifferenceinsizes
betweenArabidopsisandP.japonicaplastomesisthereforeaboutonly~1,500bps(TableS1).Most
plastomesoflandplantencodealimitednumberofproteinsinvolvedprimarilyinphotosynthesis,
transcription,translation,andplastidsignaling.Similarlytomitogenomes,plastomesalsoencode
rRNAs,tRNAs,andvariousncRNAs[25,26].Multiplefactorsofnuclearoriginregulateandcontrol
theexpressionofplastidproteinsatdifferentstages,includingtranscription,RNAediting,post
transcriptionalmodification,splicing,andtranslation[27].Metabolitessynthesizedinplastidsare
oftensignalingmoleculesfordistantcommunicationpathwaysandplayanimportantroleinthe
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
3
responseofplantstostress[25,28].Therefore,knowledgeoninteractionsbetweenthenucleusand
theplastidsmightcontributetounderstandingtheplantfunctioningunderstress.
Thesizeofcopiesofthegivenorganellargenomescanvaryinthesamespecies,e.g.,the
mitogenomeofpotato(Solanumtuberosum)iscomposedoffewmoleculesfrom49,171bps,49,230bps,
and112,800bpsto247,843bpsand297,014bps(TableS1)[29].Ingeneral,thesizeofplant
mitogenomesrangesfrom208kbpsforwhitemustard(Brassicahirta),366kbpsforArabidopsis,up
to2,500kbpsformuskmelon(Cucumismelo);evenlarger,fastevolvingmitogenomes(ca.11.3Mbps)
occursinsomeSilenespecies(TableS1),whilethegenenumber(ca.60genes)remainrelativelystable
[30–32].Mitogenomesofhigherplantsarethusparticularlylargeandpossessacomplexstructure,
whichcouldariseduringplantterrestrializationandoptimizeseedgerminationinnovelland
ecosystems.Boththestructureandtheexpressionpatternoftheplantmitogenomesimprovedthe
regulationoforganellarfunctionsandmitochondrialbiogenesisinseeddevelopment[21].
WhilethegenomeissetofallDNAmoleculesincells,thetranscriptomeissetofvariousRNA
molecules(mRNA,rRNA,tRNA,aswellasnumerusncRNAs,e.g.,miRNAs,siRNAs,etc.)atagiven
spatialandtemporalstep.AccordingtoImadietal.[33],thetranscriptomecanbeseenasatranslated
fractionofgenomeinformationrequiredbytheorganismtofunctionandrespondtoitssurrounding
environment.Forinstance,withthecomparisontomaize(Zeamays)nucleargenomesizingof
approximately2,2Gbps,theestimatedtranscriptomecapacityspansonly97Mbps,whichconsistsof
ca.4%ofthenucleargenomesize[34].
Todate,Bestetal.[35]havepublishedpreliminarymapsofArabidopsisandcauliflower
(Brassicaoleraceavar.botrytis)mitochondrialtranscriptomes.Arabidopsisandcauliflower
mitogenomesencode28and33proteincodinggenes,3and3rRNAs,22and18tRNAs,andcover
approximately.85and35ORFsof>100aminoacidresidues,respectively.InadditiontorRNAs,
numeroustRNAs,andncRNAmolecules[26],plantmitogenomesencodeOXPHOSapparatus
(respiratorychaincomplexes),ATPsynthasesubunits,mitoribosomalproteins,fewproteins
indispensableforcyt.cbiogenesis,andthetranslocaseofthetwinarginineprotein.Uptoday,atleast
42and33transcriptionunitswerefoundbyRNAseqofArabidopsisandcauliflowermitogenomes,
respectively.TheexpressionofseveralArabidopsismitogenesleadstotheformationofmono‐or
bicistronictranscripts;forexample,OXPHOSandribosomalproteingenesareoftenexpressedat
variouslevels.Variousopenreadingframeswithinthesamepolycistronictranscriptcouldbe
diverselyexpressedwithintheposttranscriptionalRNAprocessing,whichinvolvesfewkeysteps,
includingcis‐andtranssplicingandRNAediting;thelatteronearosefromembryophytesseparated
fromancestralalgallineagesandisthereforebelievedtobeabsentingreenalgae[35,36].
Itisworthnotingthatthetranscriptomecompositionwithinthesameorganismdependsnot
onlyonthetissue,butalsoonthesamplingprocedure[6].Transcriptomicstudiesallowusnotonly
toknowwhatproteinsaresynthesizedinthecell;factorsthatregulatethetranscriptionalactivityof
agivenbiologicalsystemmaybealsocharacterized[37].Tissuespecifictranscriptomesillustratethe
distinctnesswithingeneexpressionpatternsacrossvariousplanttissues.Thesetranscriptomesoffer
valuableinformationontheunderlyingmolecularprocessesthataffecttissuespecificfunctions,such
asphotosynthesisinleaves,nutrientuptakeinroots,orreproductiveprocessesinflowers.
Furthermore,bydecipheringtissuespecifictranscriptomes,specificgenesandregulatory
mechanismsthatdisplayuniqueattributesandrolesindiverseplanttissuescanbedescribed,thus
propellingadvancementsinplantbiologyandagriculture[38].Thetranscriptomecompositionalso
changesdynamicallyundervariousenvironmentalcues.Tissuespecifictranscriptomesplayacrucial
roleinunderstandinghowplantsrespondtotheseconditions.Thisknowledgeisinstrumentalinthe
developmentofstrategiestoimproveplantacclimationunderchallengingenvironmentalconditions
[39].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
4
3.TissueSpecificandOrganoSpecificAlterationsinPlantTranscriptomes
3.1.XylemandPhloemTranscriptomesasExamplesofTissueSpecificTranscriptomes
Wellinvestigatedexamplesoftissuespecifictranscriptomesaretranscriptomesofvascular
elements.Duringtheprimarygrowthofthestemsandroots,procambiumderivedfromtheapical
meristemsdividesanddifferentiatesintoxylemandphloem.Precursorxylemcellsformxylem
crumbcellsorfibers.Duringunaffectedangiospermdevelopment,inthevascularbundle,xylem,
procambiumandphloemcellsshowdorsoventralpolarization:xylemislocatedonthedorsal
(adaxial)side,phloemoccursontheventral(axial)side,whereasprocambiumislocatedbetweenthe
phloemandxylem(Figure1a)[40,41].Currenttranscriptomicstudiesindicateanantagonistic
influenceofTFsfromHDZIPIII(e.g.,ATHB8,ATHB15/CNA,PHV,PHB,REV/IFL1TFs)andthe
KANADIfamilies(e.g.,KAN1,KAN2,andKAN3)inthedifferentiationofprocambiumcellstoxylem
andphloem,respectively.MutationsinREV,PHB,andPHVgenesforspecificTFshavebeenshown
toaffecttheorganizationofvasculartissuethatcontainsthephloem,whichsurroundsthexylem
(Figure1b)[42].However,inthecaseofmutationswithinKANADIgenes,xylemstartstosurround
phloemelements(Figure1c)[43,44].Roszaketal.[45]employedsinglecellRNAseqapproachto
studythedevelopmentofprotophloemfromtheprogenitorcell.Thisstudyunderlinedtherelevance
ofotherTFs,namelyPEARproteinsthatinitiatedifferentiation(lineagebifurcation)program,
controlledbyPLETHORATFs.PEARTFsmediateearlyasymmetricdivisionsduringphloemcell
biogenesisandinlaterallyadjacentcellsofprocambium.
Figure1.Modelsofthevascularelementdevelopmentinhigherplants.(a)Organizationofvascular
elementsinwildtypeplants(withoutmutationsingenesfortranscriptionfactorsgoverningvascular
biogenesis);(b)Organizationofvascularelementsinplantspecieswithmutationsingenescodingfor
REV,PHB,andPHVtranscriptionfactors;(c)Organizationofvascularelementsinplantspecieswith
mutationingenescodingforproteinsoftheKANADIfamily.Moredetailsinthetext.
Transcriptomicanalysesofthebiogenesisofplantvascularelementsshowedthatmore
differentiallyexpressedgenes(DEGs)appearedtobeupregulatedinphloemthaninxylem([46];
TableS2).AmongDEGsupregulatedinphloem,genesforRNApolymeraseIIsubunitsB2,B7,B9,
ABC3andABC5,andRNApolymeraseIIIsubunitsC1andC2aswellasgenesinvolvedingalactose
metabolismandpolysaccharidesynthesiswereenriched.Onthecontrary,genesinvolvedinfatty
acidbiogenesis(ACOX1,ACOX3,ACADM,PAAF,andECHS1)wereupregulatedinxylem,
indicatingthedemandforhighenergycompounds.Furthermore,theelevatedexpressionofthe
mentionedabovegenesaccompaniedtheactivityofgenesforthesynthesisoffibrouselementsfrom
thephloem[46–48].
Nearly26,898DEGsinpotato(Solanumtuberosum)leafpetiolesofthe39,000genesidentifiedin
thepotatogenomewereidentified.However,onlyalimitednumberofgenes(mostly
downregulated)differentiatedallstudiedtissues(TableS2).Theexpressionpatternsbetweenthe
tissuesstudiedwereenrichedwithDEGsinvolvedinsignalingpathways,plantresponsetolight,
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
5
hormonalresponse,flowering,orRNAbinding.Despitetissuesampling,geneexpressionvaried
dependingonwheretheplantmaterialwastaken[49].
Aninterestingstudyshowingtheseasonalvariationofchangesinthetranscriptomeduring
plantdevelopmentovermonthswascarriedoutbyMishimaetal.[50],whosequenced
transcriptomesoftissuesofthemeristemcambiumandderivativecellsofJapanesecedar
(Cryptomeriajaponica)fromafewdevelopmentalstages.Almost55,051DEGswerefound,with10,380
DEGsinvolvedinxylemformation.Moregeneswereexpressedduringinhibitionofcelldivisions
thanduringpeakxylembiogenesis(xylogenesis)atspringreactivation(TableS2).During
xylogenesis,genesassociatedwithprimarycellwallbiosynthesis,secondarycellwalldeposition,and
lignificationweremarkedlyupregulated.Theexpressionofgenes,codingforenzymesinvolvedin
thelignificationprocess,e.g.,PAL,4CL,C4H,HCT,CCOAOMT,andCCRintheperiodfromMarch
toAugustalsoincreasedbutdecreasedsinceSeptember.Therefore,thisstudyconfirms
environmentalanalyses,indicatingthatseveralcambiumcellsincreaserapidlybetweenMarchand
June.Suchresultssuggestthatthegenesinvolvedinlignificationbelongtothemaingenesinvolved
inthebiogenesisofJapanesecedarxylem[50].
3.2.SelectedOrganoSpecificTranscriptomes
Thespecializationofindividualplantorganstoperformspecificfunctionsisaconsequenceof
differencesintheexpressionlevelsofnumerousgenefamilies.Forexample,distinctgeneexpression
patternsarepresentedinroottissuesandleavesoringenerativeorgans[51].Detailsonaffectedgenes
fromdevelopmentalandorganospecificstudiesweresummarizedinTableS2.
3.2.1.RootandLeafTranscriptomes
Themainfunctionofrootsistostoreenergyintheformofhighenergycompounds,i.e.,complex
carbohydrates,whileleavesconvertsolarenergyintochemicalenergyduringphotosynthesis[52,53].
AhighresolutionsinglecellRNAseqexpressionatlasofArabidopsisrootwasconstructedby
Denyeretal.[54].Itallowsinunprecedentedmannertoretrieveexpressionfeaturesofallmajorcell
typeswithinroots(withfinelyresolvedmarkergenesdefininguniqueclusteridentitiesandgene
expressionwaves)andtocharacterizekeydevelopmentalregulatorsandgenesgoverningroot
morphogenesis.Amongthem,expressionprofilesofatleast239TFsweredistinctive,includingthe
onesforroothairbiogenesis.Inaddition,Shulseetal.[55]profiledArabidopsisroottranscriptome
bysinglecellRNAseqacrossmajortissuesanddevelopmentalstages(inparticular,during
endodermishistogenesis,whichresultedintheidentificationofatleast800dynamicallyresponding
genes).Thoseauthorsalsoinvestigatedtheimpactofsucrosesupplementationontheroot
transcriptomeunderitsdevelopment.Intheearlierstudy,Efronietal.[56]employedsinglecell
RNAseqtostudyrootcellsregenerationafterexcisionofroottip.Authorsconcludedthatthe
transcriptomeofregeneratingcellspriortostemcellactivationresemblesthatofanembryonicroot
progenitorcell.Plantrootregenerationfollowsthedevelopmentalstagesofembryonicpatterning
andisgovernedbyspatialinformationprovidedbycomplementaryhormonedomains.
Thepatternofthelateralrootsandcellspecifictranscriptomicalterationsweresummarizedin
Kortzetal.[57]review.IntissuespecifictranscriptomesinArabidopsisleaves,thenumberofDEGs
decreasedfromtheleafvasculature(thehighestone)totheepidermisandmesophyll,indicatingthe
variablecomplexityofthesetissuesandtheirdecreasedsensitivitytotranscriptionalresponsiveness.
Interestingly,boththeepidermisandmesophyllexpressionprofilesweremainlyenrichedwith
downregulatedDEGs.Genesspecificforepidermalbiogenesiscodedproteinsforlipidmetabolism,
stomataldevelopment,auxinsignaling,andcuticlewaxsynthesis.Genesactivespecificallyin
mesophyllcodedproteinsthatparticipateinhormonesignaling,oxidativestressresponse,defense,
andphotosynthesis(afewgenesonlyforthelatterGO:term)aswellasvariousDNAbinding
proteins(notably,ERFandWRKYTFs).Incontrast,vasculaturespecificgeneswereindispensable
forthebiogenesisofvascularelements,thecellwall,genesresponsiblefortheproteinfate,plant
development,andmorphogenesisaswellasfortheaccumulationofTFscontainingMYBandNAC
domains[39].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
6
Recently,TenorioBerríoetal.[58]investigatedtranscriptomesofover1,800Arabidopsisleaf
cellsbysinglecellRNAseq.Thisstudycharacterizedatleast14diversecellpopulations(notonly
fromthecoretissues)inyoungleavesanddetectedatleast19,000variousmessengersfocusingon
thecellulardiversityofdevelopingleavesintertwinedbydevelopmental,metabolic,orstress
responseroutes.Mainleaftissueswerewellidentifiedbytranscriptomicanalysis(whichindicated
forthewhighsensitivityofmesophylltranscriptometolowwaterpotential)anddevelopmental
gradientsinleafepidermiswereanalyzed.Resultsindicatedalsoforthediversityofcellsbuilding
thevasculararchitecture.Thisstudyprovidedalsovaluablesetofgeneticmarkersfordistinctcell
populations.Incontrast,during3weeklongsenescence,thetranscriptomeofArabidopsisleaves
becamenotablydifferentfromtheoneofmatureleaves[59].SeveraldifferentTFsactiveindifferent
stagesofdevelopmentwereidentified.DEGsactivebetween29and33daysaftersowingwere
groupedintotwoclusters.Ingeneral,duringArabidopsisleafsenescenceDEGsrelatedwith
photosynthesis,chlorophyllbiogenesis,cytokininsignaling,ribosomebiogenesis,aminoacid
metabolism,theutilizationofcarbonskeletonsandcellcycleappeareddeclinedinexpressionlevel,
whilegenesforjasmonicacid(JA)andethylenesignaling,responsetostimulus,caspaseand
pectinoesteraseactivity,lipiddegradation,catalyticactivity,cytoskeleton,metalbindingand
transportwereupregulated.Thoseregulatedgenesperformprotectivefunctionsthattheplanttakes
instressacclimation.Novelgroupsofcoregulatedgeneswerealsodiscoveredamongupregulated
DEGs.Moreover,Chroboketal.[60]performedthemetaanalysisofBreezeetal.[59]data,that
allowedfortheidentificationofmorethan1,000genesformitochondrialproteinsactiveatleastata
singletimepoint;thosealterationswereespeciallyvisibleattheinitialstagesofsenescence.Few
clusterswereproposedbasedonexpressionvaluesofthemitochondrialcluster,particularlyenriched
ingenesforOXPHOSfunctions,auxinsignaling,reactiontonutrientandlightdepletion,plastid
functions,stressresponse,proteinfate,transport,andassembly.Thoseresultsindicateforthe
relevanceofmitochondrialbiogenesisduringplantsenescence.
Inthesugarcane(Saccharumspp.hybrids)transcriptome,moreorganspecificDEGswere
expressedinleaves,contrarytoroots;duringanalyses77,359geneswereidentified[61].Intheleaf
transcriptome,messengersforphotosyntheticproteinswereupregulated.Onthecontrary,theroot
transcriptomewasenrichedwithtranscriptsencodingproteinsforpolysaccharidebiogenesis,
aminoacidmetabolism,orinvolvedinhighenergycompoundcatabolism.Althoughorganospecific
differencesresultedfromvariousfunctionsofbothorgans,somegeneralcharacteristicsofexpression
profilesremainedunchanged[51,61].
Themaize(Zeamays)leaftranscriptomeshowedwellnoteddifferencesingeneexpression
consistentwithleafaxialsymmetry[62].Inbasaltissues,genesforcellwallbiosynthesis,DNA
synthesis,cellcycleregulation,auxinbiosynthesis,andcellulartransportwereupregulated.In
contrast,intheapicalpartoftheleaves,photosyntheticgenesappearedvisiblyupregulated,
especiallygenesencodingenzymesforthebiosynthesisofisoprenoids(e.g.,carotenoids),Calvin
cycle,redoxhomeostasis,starch,andsucrosemetabolism.Thesedatashowthatglobalchangesinthe
levelofgeneexpressionalsooccurinsuchaseemingly‘uniform’organastheplantleaf.During
analysis,Lietal.[62]identifiedalmost25,800maizeunigenes.
3.2.2.TranscriptomesofGenerativeOrgans
Sexualreproductionofhigherplantsisperformedbygenerativeorgans‐ flowers.Their
morphologyisspeciesspecificanddependsmostlyonthepollinationstrategy.Despitethe
differencesbetweentheformationofgenerativeorgans,thetransitionfromthevegetativetothe
generativephaseisundoubtedlythemostimportantstepinplantdevelopmentandthusgenetically
controlled[63].Multiplestudieshaveshownthatfloweringdependsonthephotoperiod,
vernalization,activityofplanthormones(includingGA),thermosensing,andavarietyofageing
associatedprocesses[64–66].Boththephotoperiodandthevernalizationcontroltheinitiationof
flowering,whichprotecttheplantfromtheenergyconsumingflowerdevelopmentinunfavorable
conditions[67,68].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
7
AnanalysisoftheAnnonasquamosatranscriptomeshowedelevatedexpressionlevelsofgenes
involvedinvernalizationandphotoperiodinduction[68].Morethan71,948A.squamosageneswere
identified,ofwhichaboutathirdweredifferentiallyexpressed.Genesinvolvedinthephotoperiod
pathwayembracedsomephytochrome(PHY)andcryptochrome(CRY)genesaswellasearly
floweringgenes(EF1,EF3).DistinctDEGsappearedtobehomologoustogenesinvolvedin
vernalization,includingFIEandVIN3genes.AnotherstudyshowedthatMADSproteingeneshave
alargemorphogeneticeffectonflowerformation.MADSbelongtotranscriptionallyimportant
regulators[69],forexample,SOC1andFULfactors.Disturbancesintheexpressionpatternofthese
genescontributedtodelayedflowerformation,despitetheunaffectedphotoperiod[64].
Atthestageofcolorfulpetalformation,genesresponsibleforencodingenzymesforpigment
synthesis,genesinvolvedinthesynthesisofsecondarymetabolitesintissue,suchascarotenoidsor
anthocyanins,weresignificantlyupregulatedinAchimenes[70].Othergenefamilieswereinvolved
duringthedevelopmentofbroccoli(Brassicaoleraceavar.italica)floralbuds[71].DEGsinvolvedin
broccolicurdheterosisactiveinlightandH2O2mediatedsignalingappearedamongnewly
discoveredfunctionalclassesthatcontrolcropyield,hormonesignalingstressresponse,and
flowering.Overall,expressedgenes(especiallytheupregulatedones)seemedtoprevailinhybrid
linesratherthaninparentallines.NumerousDEGsfromthisgroupencodedproteinsimportantfor
growthanddevelopment,fattyacidandcarbohydratemetabolism,proteinsynthesisand
modifications.
3.2.3.SeedTranscriptomes
Seedsperformareproductivefunctionamongangiospermsandallowthedevelopmentofanew
plantgeneration,resultingfromsexualreproduction,aswellasprotecttheembryofromadverse
conditions.Theseedendospermandembryoaredevelopingafteradoublefertilization.Incontrast,
theseedcoverisformedfromembryostemcells.Seedsoftencontainhighenergycompounds,
allowingforthegermination.Analysisoftheseedtranscriptomeappearsthusextremelyimportant
forthecharacterizationofgenesactiveinseedbiogenesisandgermination[72,73].
Recently,aspatialtranscriptomicprofilingofgerminatingbarley(Hordeumvulgare)seedswas
exhaustivelystudiedbyPeiratsLlobetetal.[74].Suchmethodology(VisiumGeneExpressionslides,
10xGenomics)allowedforacompletestudyofgeneexpressionprofilesacrossindividualcelltypes
withintheplantseeds.Forsequencing,8m‐thicklongitudinalsectionsofthebarleygrainswere
prepared.Thestudyallowedtoobtainspatiallyresolvedcellularmapforbarleygerminationand
identifiesspecificfunctionalgenomicstargetstocharacterizebettercellularprocessesduring
germination.ResultsofPeiratsLlobetetal.[74]studyextendspreviousattemptsofusingsinglecell
RNAseqfordecipheringofrootandotherorgantranscriptomes[55,75],astimeseriesspatial
transcriptomicanalysisoftranscriptomeallowsfarmorecomplexoutputfromallcelltypesinthe
investigatedtissue/organwithpreservedinformationontheirspatiallocation.Visiummethodology
allowedalsofordetectionof8390%transcriptsreportedfromtheprevious,tissuespecificstudies
[76],howeveronlyaportionofseedtissuewassubjectedtoRNAseq.Thisapproachallowedclear
distinguishingoftissuesandtissueregionsbothbytheirphysicallocationandgenecoexpression
patterns.Variousfunctionalgenecategorieswererevealedamongover14,000DEGsattheinitial24
hafterseedimbibition(at0[dry],1,3,6and24hourtimepoints).Selectedgenefamilies,including
aquaporins(highlyexpressedinmesocotyl,scutellumandcoleorhiza),thionins(inendospermand
aleurone),starchcatabolismenzymes(invariousseedtissues,includingaleuroneandendosperm),
cellwallmodificationproteins(inradicleandscutellum),transporters(includingmitochondrialones
incoleorhiza,embryo,andscutellumduringearlyimbibition),ribosomalproteins,RNAbinding
proteinsandelongationfactors(thelastthreecategoriesinembryotissues)andTFs(includingbZIP,
bHLH,andDREBproteins)displayedaspatiallytemporalexpressionpattern.Distinctgeneclusters
wereobservedincoleorhiza,radicleandscutellum,andembryowasdividedinto3expression
clusters.Mostgenesencodingtranscriptionandtranslationfunctionswereexpressedintheembryo.
Thespatialgeneexpressionpatternssuggestedthattheabilityofgerminationtoproceedwithout
transcriptionisaspecificembryofunction.Genesformitochondrialbiogenesiswerenotexpressed
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
8
ataveryhighlevelsuntil24hafterimbibition,however,genesformitochondrialexpression
machinerywereinitiallyexpressedandgenesforglycolyticenzymesappearedevenmoreactive.
LEAgenesweremostlyexpressedatearlyimbibitionstages.Endospermandaleuronetranscriptomes
weredistinct.
AvaluableanalysisoftheArabidopsisseedtranscriptomeatmultipledevelopmentalstages
allowedtheidentificationofactivegenesbefore,duringandafterseedripening.Thehighly
expressedgenesforseeddevelopmentweredetectedintheglobularembryoandthedeveloped
cotyledon.Alower,butnoticeable,expressionlevelofgenesspecificforseeddevelopmentwas
observedinthematureandpostmaturestagesofthegreenembryo,associatedwiththetransitionof
theseedintodormancy.Ofthegenesfor48diverseTFs,LEC1,LEC1LIKE,LEC2,FUS3,MEDEAand
PEI1wereactive.Mutationsthatoccurredinthesegenesresultedinembryodefects,whichconfirmed
theirkeyroleinseeddevelopment[77].Furtherstudiesofthettranscriptionalreprogrammingin
ArabidopsisgerminatingseedsresultedinthefirstdynamicTFnetworkmodelofseedgermination.
NumerousalreadyknownaswellasnovelTFswerefound.AfterseedstratificationgenesforbZIP
andAP2/EREBPTFsappeareddownregulated.TheDEGsaffectedbyseedgerminationcountfor
significantlynoveldatainthefield.AmongthefunctionaltermsrelatedwithDEGsinseeds,the
functionsofRNAsplicing,andhistoneprevailed,unlikethefunctionsrelatedtolightandroots.
Genesencodingproteinsthatinteractwithnucleicacidsandmetabolicenzymeswerealsoenriched.
Moreover,geneticisoformsvariedbetweendryandpostimbibedseeds[78].
AnanalysisofthePolygonatumcyrtonemaseedtranscriptomerevealedupregulatedgenesforthe
synthesisofsecondarymetabolites;theothergenesforproteinsactiveinthesynthesisoflignininthe
germinatedseedstageweredownregulated.Inaccordancewithpreviousanalyses,upregulationof
genesinvolvedinstarchcatabolism,whichcanprovidetheenergyforPolygonatumseedlings,were
evident[79].
3.3.TranscriptomicAnalysesofPlantSpecieswithMedicinalApplications
Transcriptomicstudieshavefoundapplicationsinmedicinalplantresearch,e.g.,forthe
functionalgenecharacterizationandtheidentificationofkeymetabolicpathwaysofpharmaceutical
importance.Althoughmostmedicinalspeciesdonotbelongtothemodelones,transcriptomicdata
fromvariousplantstudiesallowacomparisonofnewlydiscoveredgeneswithexistingdata,helping
todeterminethepotentialfunctionofgeneexpressionproductandtofindgenesresponsibleforthe
synthesisofbioactivecomponents[80,81].Forinstance,understandingtissuesresponsibleforthe
increasedsynthesisofgivencompoundsmayallowoptimizationoftheproductionofmedicinal
substancesproducedbyaloe(Aloevera),whichcanbeused,forexample,inthepharmaceuticalor
cosmeticindustries.Analysisofaloerootandleaftranscriptomesidentifiedintotal113,063and
141,310unigenes,respectively.DEGsinleaves(butnotinroots)weremainlydownregulated.Some
DEGswereinvolvedinlignin,saponin,andalloinbiosynthesis[82].Incontrast,analysisofTrillium
govanianumroot,leaf,fruit,andstemtranscriptomesrevealedthehighestnumberofDEGsbetween
leavesandroots[83].Amongthem,severalgenesinvolvedinthebiosynthesisofsteroidsaponins
andothersecondarymetabolites,includingbrassinosteroids,carotenoids,terpenoids,flavonoids,
phenylpropanoids,andsteroids,wereenriched.Almost141DEGswereinvolvedinthemetabolic
pathwaysofthesemetabolitesand78genesappearedtissuespecific.Genesfortheflavonoid
synthesiswereupregulatedprimarilyinfruitsandstems.Contrarytothat,genesinvolvedinthe
synthesisofterpenoidhadincreasedexpressioninleaves,whilegenesresponsibleforthesynthesis
ofsteroidsappearedtobeupregulatedinroots.Thoseresultsillustratethefact,howdiverse
compoundswiththepharmaceuticalpotentialmaybesynthesizedintissue‐ ororganspecific
manner.Ingeneral,thestudybySinghetal.[83]mayallowtheproductionandextractionof
medicinalsubstancesfromT.govanianum.
Transcriptomicanalysesoftheroots,stems,andleavesofEntadaphaseolidesallowedthe
identificationof61,046DEGsintotalinthesethreeorgans.Atleast26genesforcytochromeP450
biogenesisand17genesforuridinediphosphateglycosyltransferaseisoformsinvolvedinthe
biosynthesisoftriterpenoidsaponinswereupregulatedinstemscomparedtorootsandleaves.The
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
9
elevatedexpressionlevelofthesegenesinstemscorrespondstothefactthatthecontentof
triterpenoidsaponinsinthisplantorganishigherthaninrootsandleaves[84].
TranscriptomicstudiesofmedicinalspeciesalsocoverDEGsforanthocyaninbiogenesis.
AnalysisoftheleaftranscriptomeofTetrastigmahemsleyanum,aspeciesfromwhichanimportant
extractwithantibioticpropertiesisobtained,allowedforidentificationofalmost100,540unigenes
andDEGsinvolvedmainlyinanthocyaninbiogenesis(e.g.,CHS,CHI,F3H,DFR,AS,UF3GT).The
resultsofthisstudyalsosuggestedthedifferentialparticipationofsecondarymetabolitebiogenesis
pathwaysinleafmetabolismdependedonthedevelopmentalstage[85].
Duetoitsbroadpharmacologicalactivities,Dendrobiumhuoshanensestemsbelongtothewidely
usedmedicalherbamonghealthcareproducts.However,thebiosyntheticpathwaysofbioactive
substancesandthemolecularregulationofstemdevelopmentareoftenunclearinfewpoints.The
studyontranscriptomesofleaves,stems,androotsofD.huoshanenserevealedcandidategenes
involvedinstemdevelopmentandpolysaccharidebiosynthesis(atleast103genes).Thecollected
datawasenrichedin27genesrelatedtofructoseandmannosemetabolismaswellas74genesfor
glycosyltransferasesand15genesinvolvedinthebiosynthesisofflavonoids.Forphotoperiodcontrol
andmaintenance,genescodingforspecificTFs,includingCO,MADSbox,andAP2likeones,were
notable.Othergenescodedproductsrelatedtohormonebiogenesis[86].Ingeneral,thosedatamay
provideanimportantresourceforfuturestudies,inparticularfortheinvestigationofmolecular
processesengagedintheactivecompoundbiogenesisandtheorganogenesis.Foradditionalanalysis
ofgenesnecessaryforpolysaccharidebiosynthesisamongmedicinalplants,transcriptomesofleaf,
root,andrhizomeofPolygonatumcyrtonema,anedibleplantusedintraditionalChinesemedicine,
wereinvestigated.Inthisstudy,164,573genesintotalwereidentified,while59,271,52,184and45,893
geneswereexpressedinleaves,roots,andrhizomes,respectively.Upregulatedgenesinvolvedin
polysaccharidemetabolismwerenotablyenrichedinrhizomes.Furthermore,1,131genesfor
candidateTFsgoverningexpressionofgenesforpolysaccharidebiosynthesiswerefound,e.g.,for
MYB,AP2EREBP,WRKY,bHLH,zincfingerC3HandC2H2,andNACTFs[87].
AnotherspeciescontainingsecondarymetabolitesusedinmedicineisPolygonumcuspidatum.It
containsresveratrolandbioactiveanthraquinones,emodinandphysicon,displayingantimicrobe
andanticanceractivities[88].DuetothelackofavailabilityofP.cuspidatumwholegenomicdata,
functionalstudiesarehampered.Toaddressgeneticinsightsintothemetabolicpathwaysofnatural
products,acomprehensiveanalysisofP.cuspidatumroot,stem,leaf,flower,andfruittranscriptomes
revealed27,18and20genesthatencodeenzymesforthemevalonate,methylerythritolphosphate,
andshikimatebiosynthesispathways,respectively.Fewgenescodingimportantenzymesinvolved
inresveratrolsynthesis(PAL,C4H,4CL,aswellasSTS/CHSsynthasesforthelaststepofresveratrol
condensation)wereidentified.SomeSTS/CHSgeneswereupregulatedinroottissuesofP.
cuspidatum,suggestingthattheycouldbespecificallyinvolvedintheresveratrolandflavonoid
metabolism[89].
Basedonthegeneinventoryinvolvedintheprocessesoccurringinvariousplantorgans,itwas
possibletoselectgenescodingproteinsparticipatingingivenmetabolicpathways,andthusit
becamepossibletooptimizetheoccurrenceofachosenprocess,ortomanipulateagivenmechanism
ofspecificmetabolitebiogenesisbygeneticengineering.Furthermore,analysisofthetranscriptome
ofmedicinalspeciesallowedustounderstandthemetabolicpathwaysofsecondarymetabolites,
whichplayanimportantroleintheadaptationofplantstoenvironmentalconditionsandhave
therapeuticeffectsonvariousplantorgansatdifferentdevelopmentalstages.Dataobtainedfrom
thesestudiescanprovideinformationontheaccumulationofsecondarymetabolitesandtheefficient
productionofactiveingredientsindifferentpartsofmedicinalplants,aswellascanbeusedto
developnovelgenotypeswithenhancedstressresistance[81].Furtheranalysisofmetabolic
pathwayswillhelptounderstandhownaturalproductsaresynthesizedandprovideresourcesfor
engineeringlargescaleproductionofnaturalproductsandgeneratingnovelchemicalsinfuture
syntheticbiologyapplications.
ResultsoftranscriptomicanalysesofmedicinalspeciesweresummarizedinTableS2.
4.PlantTranscriptomicResponseunderStressAcclimation
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
10
Stresscanbedefinedasinternalandexternalfactorsthataffecttheefficiencyofphysiological,
metabolic,andmolecularplantprocessesthatleadtoareductionintheefficiencyofenergyto
biomassconversion.Thesestressorscanbedividedintoabiotic(Section4.1)andbiotic(Section4.2)
ones[90].Duetothesedentarylifestyle,plantshavedevelopedadaptiveabilitiesatmultiplelevels
tocopewithadverseconditions.Plants‘sense’externalcues,whichinturngenerateacellular
responsetransmittingstimulifromthecellsurfaceorcytoplasmicreceptorstothetranscription
machinery.Thislinksspecific‘cellularsensitivity’toenvironmentalfactors.Studiesonplant
transcriptomes,whichparticipateinsuchresponsemaythusallowforbetterunderstandinghow
plantsadapttochangingenvironmentalconditions[91].Figure2showsthewidelyused
methodologicalpipelineforstudyingthetranscriptomicresponseunderstressinplantspecies.It
combinesbothexperimentalandinsilicoanalysestoidentifysystematicallystressresponsivegenes
incultivarsvaryingwiththestressresistance.Belowdiscussedarethemostinterestingalterations
thatoccuringeneexpressionprofilesunderdiversestressconditionsfromselectedbasicandapplied
studies.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
11
Figure2.Thegeneralpipelineforthehighthroughputanalysisoftheplanttranscriptomeunder
stressacclimationbetweengenotypesvaryingwithstressresistance(stresssusceptibleandresistant
lines).Keysteps,fromstressdosage(top)totheidentificationofdifferentiallyexpressedgenesets
(bottom)wereshown.Inthistypeofanalysis,expressionpatternsareoftencomparedpairwise
betweenthestresstreatedandcontrolgrownplantsforeachgenotypetestedandthelistofaffected
geneswithfoldchange(FC)valuesisgenerated.Moredetailsinthetext.
4.1.AlterationsinPlantTranscriptomesduringAbioticStresstheSelectedExamples
Abioticstress(e.g.,drought,suboptimaltemperatureincludingcoldandheat,salinity,heavy
metals,radiation,nutrientdeficiency,andmechanicaldamage)resultsfromtheactionofmultiple
physicalorchemicalstimuli[80,92].Duringacclimationtoabioticstress,planttranscriptomes
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
12
respondparticularlydynamically.Detailsongenesaffectedunderabioticstressfromhigh
throughputtranscriptomicstudiesaregiveninTablesS2andS3andthesummaryofthecellular
functionsgovernedbydiversestressorsaffectinggeneexpressionprofilesinvariousplantspecies
wasdepictedinFigure3.Inpublictranscriptomicrepositories,e.g.,ExpressionAtlas[93],relatively
completeArabidopsistranscriptomicdataisavailable.Theg:Profileranalysis[94]offunctionalGO:
termsrelatedtoArabidopsisstressresponsivegenescollectedfromExpressionAtlasshowedthehuge
variabilityofgeneresponseunderthoseconditions,evenbetweensimilartreatments.However,
stressresponseinvolvesnotonlydistinct,butalsosimilargenefamilies,especiallyacrossdiverse
durationofthegiventreatment,althoughdependingonstressorqualityanddosage(Figure4,Table
S3).Regardingorganspecificresponse,leavesareparticularlyaffectedbyvariousstressconditions.
Theybelongtoplantorgansinvolvedincarbonskeletonmetabolismandphotosyntheticenergy
capture;however,studiesregardingtheimpactofstressonleaftissues,contrarytoroots,maybestill
underrepresentedincertainaspects[39].
4.1.1.ChemicalTreatmentandUVRadiation
Dataontheinfluenceofchemicalstimulionplanttranscriptomescomefrequentlyfromleaf
studies.AvariabilityofArabidopsisleaftissuetranscriptomicresponsesunderUVradiation,aswell
asunderchemicaltreatments(antimycinA,3amino1,2,4triazole,methylviologenandsalicylicacid
[SA])wascharacterizedbyBerkowitzetal.[39].Theepidermisandmesophyllcellshadahigher
numberofpoorlyexpressedgenesthanthevasculatureafteralltreatments(comparewithSection
3.2.1data).Inthoseconditions,thetissuespecificgenesrangedbetween20and80%innumber.The
responsepatternsofthosetissuestostresswerecomplexandhighlyspecificforeachtreatment.For
example,antimycinAresultedinsimilarresponsesinalltissuesstudied;however,UVaffectedgenes
wereexpressedmainlyinthevasculatureandepidermis.Genesforphotosyntheticproteinswere
downregulatedinallArabidopsistissuesafter3amino1,2,4triazoleandSAtreatments,whileonly
thegenesthatencodethecomponentsofPSIandPSIIwereupregulatedbymethylviologen,andUV
radiationdownregulatedphotosyntheticgenesintheepidermisandupregulatedtheminthe
mesophyll.InArabidopsis,UVcanalsoaffecttheexpressionlevelofgenesforproteinsnecessaryfor
chlorophyllbiogenesis,proteinfolding,oxidoreductaseandligasegenes,andgenesfor
glyceraldehyde3phosphatedehydrogenaseindiverseextentbetweenUVAandUVBtreatments;
however,participationofTFsinbothradiationresponsesisnotable.Tissuesstudiedalsohave
distinctmitochondrialresponsestoantimycinA[39],whichaffecttheexpressionpatternof
respiratorygenes(includingalternativeoxidase),generaloxidoreductaseactivitygenes,glutathione
transferase,aswellasgenesrelatedtoSer/Thrkinaseactivityandexportacrosstheplasma
membrane.Onthecontrary,SAtreatmentresultedingenesaffectedforpolysaccharideandheme
binding,lactoperoxidaseactivity,H2O2scattering,Ca2+bindingandgenesforERresponseproteins
(Figure4,TableS3).
ToprotectthemselvesagainsttheharmfulactionofUVBonDNA,plantsaccumulatevarious
compounds,includingflavonol,anthocyanin,andproanthocyanidin.Flavonoidsareeconomically
importantsubstancesinfruitsthatarealsobeneficialforhumanhealth.Accordingly,Songetal.[95]
observedthatamongtheupregulatedDEGsinV.corymbosum,genesforthephenylpropanoidand
flavonoidbiosyntheticpathwaysprevailed.Genesinvolvedinplanthormonesignaltransduction
weresignificantlyenrichedafter1h,followedbygenesinvolvedinphenylpropanoidbiosynthesis
after3h,andbygenesinvolvedintheflavonoidanthocyaninpathwayafter6hofUVBexposure.
TheseresultssuggestthatphytohormonerelatedgenesmayconstitutetheprimaryresponsetoUV
Bradiation.Thealteredexpressionofseveralgenesinvolvedinflavonoidbiosynthesiswas
characterized.Genesinvolvedinproanthocyanidinandflavanolbiosynthesis,includingthePal1,
4CL2,CHS,CHI3,VcFSLandVcUFGTgenes(forphenylalanineammonialyase,4coumarateCoA
ligase,chalconesynthase,chalconeisomerase,flavanolsynthase,andanthocyanidin3O
glucosyltransferase,respectively)wereallupregulatedunderradiation,andtheirexpressionlevel
lastedhighafterthe24htreatment.Arabidopsisgenesessentialforoxidoreductaseactivity,
porphyrinmetabolism,plastidorganization,andcarbohydratemetabolismregulationalso
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
13
respondedtoUVB(Figure4,TableS3),however,accordingtoDongetal.[96]transcriptional
analysis,inUVBresponseofPachycladoncheesemanii,anativeNewZealandspeciescloseto
Arabidopsis,multiplegenesactiveinthewoundhealing,regeneration,flavonoidbiosynthesisare
specificallyenrichedandtheproductionofanthocyaninsbelongtothemostimportantstrategyof
acquiringoftolerancetoradiation.Nevertheless,commongenesforUVBresponseinArabidopsis
andP.cheesemaniiincludedtheonesfortheaminoacid,vitamin,pigment,andsecondarycompound
metabolism[96].Toexplorethemolecularmechanismunderlyingtheincreaseinflavonoid
biosynthesisunderUVBradiation,Songetal.[95]investigatedthetranscriptomesofVaccinium
corymbosumexposedtovariousdosages(1‐24h)ofUVBradiation.Comparativeanalysisofthedata
obtaineddetected16,899DEGsbetweendifferenttreatments,while806commongeneswere
differentiallyexpressedinallsamplestested.ThehighestnumberofDEGsappearedamongplants
exposedtoUVBtreatmentfor24h.
Lettuce(Lactucasativa)growningreenhouseconditionsusuallycontainsaloverlevelofascorbic
acid(ASC)comparedtoplantsgrowninfieldconditions.ASCisanantioxidativenutrientfor
humangrowth,reproduction,andhealth.AstheaccumulationlevelofASCiscorrelatedwithlight
intensity,lettuceplantsweretreatedwithlow,intermediate,andhighdoseofUVBtoinvestigate
itseffectontheASClevelinplants.Thesubsequenttranscriptomicanalysisresultedinthe
identificationofnumerousDEGswithinthelowdoseandthehighdoseradiationtreatedgroups.
Furthermore,thecomparisonofthesetwogroupsrevealed809DEGsthatoverlappedbetween
them,ofwhich351geneswereupregulatedand458genesappeareddownregulated;twoMIOX
genes(formyoinositoloxygenase,importantenzymeinmyoinositolpathway)geneswere
significantlyupregulatedwithinthehighdoseUVBtreatedvariant.TheexpressionoftheMIOX
genewaselevated23timesbyASCinArabidopsis.GenessuchasAPXandMDHARthatare
relatedtotherecyclingofASC,werealsosignificantlyupregulatedinthisvariant[97,98].In
general,resultsofthosestudiessuggestthatexpressionoftheMIOX,APXandMDHARgenesmay
contributetotheregulationoftheASClevelinducedbyUVBradiation.Inthismodel,UVBmight
notdirectlyincreaseASCsynthesis,butratherindirectly‐byaffectingotherbiologicalpathways
thatleadtoanincreaseintheASClevelinplanttissues.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
14
Figure3.Summaryofthecellularfunctionsgovernedbystressaffectedgenesinvariousplantspecies.
Inaddition,abbreviationsforthekeygeneaswellasgenefamilies(particularlyformostrelevant
transcriptionfactors)wereindicatednexttoeachstressoridentifier.Onlymostrelevant,joindatafor
bothupregulatedanddownregulatedgeneswereindicated(peripherally).Literaturereferences,cited
inthetext,wereshown(nexttoeachstressoricons).Signalingroutesbetweenactivelytranscribed
nuclear,plastidandmitochondrialgenomes(smallarrowswithinmarkedorganelles)thatare
indispensable,forinstance,fortheproperorganellarbiogenesisunderstressacclimationwerealso
depicted(center).Moredetailsinthetext.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
15
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
16
Figure4.InsilicofunctionalprofilingofdifferentiallyexpressedArabidopsisgenesundervarious
stresstreatments.Countsofaffectedgenes,experimentaccessionnumbers,linkstotheExpression
Atlasdataandexperimentdescriptors(italicized,inquotes)wereallshown(aboveeachtable).The
experimentdescriptorscarrytheinformationonthecomparedvariants(treatmentvscontrol
conditions).Forinsilicoanalysis,treatmentidentifiers(‘UVAradiation’,‘UVBradiation’,
‘antimycineAʹ,‘salicylicacid,‘drought’,‘cold,‘heat)wereusedforbrowsingoftheExpressionAtlas
dataunderʹBiologicalconditionsʹ option.ThecompleteArabidopsisdataweretakenfromthe
ExpressionAtlas(https://www.ebi.ac.uk/gxa/home;[93])andplacedinTableS1.Next,theretrieved
ArabidopsisGenomeInitiative(AGI)locuscodes,representingaffectedgenesetsfromthegiven
experimentwithwildtypeArabidopsis,wereusedasqueries(organism:Arabidopsisthaliana)for
thesearchofthemostrelevantdriverfunctionalterms(thefunctionalprofiling)ing:Profiler
(https://biit.cs.ut.ee/gprofiler/gost;[94]).DuringGO:termenrichmentanalysis,termswereextracted
anddepictedintables,togetherwiththeirIDsandthesource(BP‐biologicalprocess;MF‐molecular
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
17
function;CC‐ cellularcomponent).Thecountsfortheuniqueandthecommondifferentially
expressedgenesfromvariousexperiments(indicatedbydiversecolors)withplantstreatedwithdiverse
UVA,UVB,antimycinA,salicylicacidandcolddosageswerecomparedonDeepVenndiagrams(at
thebottomornexttotheg:Profilertables).DeepVenndiagrams(circleareaproportionaltogenequantity)
weregeneratedusinganonlinetoolfromthehttp://www.deepvenn.com/Webpage[99].Colorson
diagramsarethesameaswithincompareddatasets.AlllinkswereaccessedJanuary9,2024.(a)The
dataforUVandchemical/hormoneresponse;(b)Thedatafordrought,heat,andcoldstressresponse.
4.1.2.WaterDeficiency(drought)
Toacclimatetowaterdeficiencies,plantsundergoseveralbiochemical,physiological,and
molecular(ABAdependentorindependent)responses,including,forexample,stomatallimitation
ofgasexchangeduetostomatalclosure,whichisaconsequenceofreducedosmoticpressureand
decreasedcellturgor[100]aswellasmultiplealterationsingeneexpressionprofiles.Asdrought
belongstoenvironmentalfactorsthataffectmostcropproductivity,thecharacterizationofthose
adjustmentsbyomicsstudieswouldrevealdroughtmechanismsincropsthatresultinrational
developmentofstressresistantcultivars[101].Characterizationofsweetpotato(Ipomoeabatatas)
transcriptomeindroughtallowedforthedetectionofalmost73,636unigenesandvariousgenesfor
ABA(IbZEP,IbNCED,IbABA2andIbAAO2),ethylene(IbACS,IbACO)andJA(IbLOX,IbAOS,IbOPR,
IbACOX1I,IbACOX3,IbMFP2)biosynthesis,whichappearedallupregulated.Thoseresultsindicate
fortheinvolvementofhormonalsignalingunderwaterdeficit.Interestingly,thoseanalysesalso
showedthatgenesassociatedwithSAsynthesiswerenotaffectedwhileamongthemaingenes
affectedindrought,genesforsomeenzymessuchasABIphosphataseorCa2+ATPasewereidentified
[102].
Analysisofthetranscriptomeoftwodroughtresistantchickpea(Cicerarietinum)cultivarsunder
droughtrevealedaveryfewDEGswhichwerecommonforthoselines.Interestingly,
downregulationsinthetranscriptomesofbothgenotypesprevailed,showingdetrimentaldrought
impactonthetranscriptomiclevel.MultiplegenesforAP2EREBP,bHLH,bZIP,C3H,MYB,WRKY
orMADSTFswereinvolvedindroughtacclimation.ThoseTFsgovernedsignalingregulation,
secondarymetabolism,ortransitiontothegenerativephase[103].Thetranscriptomicresponseof
Phoebebournei,aChinesewoodspecies,todroughtemployedalsonumerousgenesforTFsfrom25
families,includingWRKY,AP2,HLH,bZIP,CCAATbinding,GATAzincfinger,SBPdomain,TCP,
Dof,GRFzincfinger,HD,andNAMTFs.Interestingly,AP2domaincontainingTFsaswellassome
NAMTFswerepreferentiallyexpressedat30hand45hlongstress.Moreover,POD,SOD,andCAT
geneswereupregulatedandgenesnecessaryforplanthormonesignaltransduction,MAPK
signaling,phenylpropanoidbiosynthesis,flavonoidbiosynthesis,andstarchandsucrosemetabolism
weresignificantlyaffected,especiallyafter15dlongdrought.Inaddition,genesfortwolight
harvestingcomplexIchlorophylla/bbindingproteins(LHCA1andLHCA2),lightharvesting
complexIIchlorophylla/bbindingproteins(LHCB1,LHCB2,LHCB4)andporphyrinbiosynthesis
proteinsweredifferentiallyexpressedacrosstreatments[104].
Anotherstudy[105]includedadifferentialanalysisoftranscriptomesfromtwowheat(Triticum
aestivum)varietieswithcontrastingdroughtsensitivities.Duringthecomparativeanalysisofboth
transcriptomes,asignificantdifferencewasshowningeneexpressioninthedroughtresistant
cultivar,whichinvolvedgenesforthesynthesisofsecondarymetabolites.Genesnecessaryforthe
droughtacclimationincluded,amongothers,thosecodingimportantTFs(e.g.,asMT,FT,AP2,ABA2,
ARF6,WRKY6,AOS,LOX2).Furthermore,therecentinvestigationofgenesandpathwaysinvolved
intranscriptomicresponseoftworice(Oryzasativa)cultivars(stresssusceptibleandresistant)in
terminaldroughtrevealedthegeneralprevalenceofdownregulatedgenesacrosstestedlinesand
organs[106].Notably,thenumberofaffectedDEGsdecreasedinstressresistantline.Thedifferential
expressionofgenesforNACandZIPTFs,ABAsignaling,LEAproteinsandproteinsrelatedwith
redoxhomeostasisplayedcrucialrolesinachievingofstresstolerance.Tyagietal.[106]concluded
thatthosegenesaregoodcandidatesforthegeneticimprovementofdroughttoleranceinrice.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
18
DenovosequencingofthetranscriptomeofMedicagofalcataseedlingssubjectedtodrought
revealedalmost4,460DEGsinresponseto2hlongwaterdeficiency;theupregulatedDEGs
prevailed.M.falcatahousekeepinggeneswereexpressedatarelativelyhighlevel,althoughwithlittle
variation.ThesignalingpathwaysofthehormoneandNodfactors(interplaywithlegumesymbiosis)
wereprimarilyenrichedamongDEGs.GenesfornumerousTFs(e.g.,NACfamily)werealso
enrichedandgenesforABAbiosynthesiswereupregulated,incontrasttogenesforABAcatabolism.
Also,genesforABFTFs(e.g.,ABF1),JAbiosynthesis,ERFs,nucleicacidhelicasesanddiversegenes
forRNApolymerasesandDNArepairproteinsappearedupregulated.Incontrast,gibberellin
biogenesisgeneswereantagonisticallyexpressedcomparingtoABArelatedgenes,exceptforGID1
gene[107].FortheglobalanalysisoftranscriptomeofanotherFabaceaemember,Glycinemax,inthe
progressingdrought,Transcriptogramertoolwasemployed[108].Sixtosixteendiversefunctional
categorieswereenrichedamongDEGsat1,6‐and12hlongdrought,includingcelldivision,cell
cycle,cellwallorganization,stressresponses,hormonesignaling,signaltransduction,andregulation
ofgeneexpression.TheparticipationofgenesforCabindingproteinsinthestressresponsewas
notable.AnalysesofDeOliveiraBusattoetal.[108]indicatedalsoforthepresenceofmostobservable
responsesinthefirsthourofdroughtaction,includingdownregulationsinDEGsforFemetabolism
andoxidativestressresponseandupregulatedgenesforchaperonebinding/proteinfolding,helicase
activity,nucleotidebindingsite,leucinerichrepeatproteins,programmedcelldeath(PCD),
proteasome,cellcycle,DNAmetabolism,proteinbiosynthesisandRNAregulatorymechanisms.
However,mostfunctionalcategorieswererepressedafter6hlongdrought.
Atranscriptomicreprogrammingunderrecurrentdehydrationandrehydrationcyclesin
Ceratostigmaplantagineum,aresurrectionspecies,wasstudied[109].DEGsweregroupedintoseven
functionalgroups.Themostabundantinfunctionaltermswasclusterwithgenesactiveduringstress
response,hormonesignaling,aminoacidcatabolism,sucroseandfattyacidbiogenesis,energyand
respiratorymetabolism,proteinmodificationandtransport,andmembraneorganization.Insilico
analysesindicateddownregulationofphotosyntheticgenesforlightreactionsandCalvincycle
proteinstodecreasephotooxidativedamageduringdehydration.Notably,amongthemultitudeof
genesinducedintheinitialstagesofdehydration,theOXPHOSgenesweredistinctive,allowingthe
recoveryofrespiratorymetabolismrecovery.Understress,numerousgenesforRNAprocessingand
regulationwereenrichedandgenesfortheubiquitinproteasomesystemweresignificantly
upregulated.Overall,datafromXuetal.[109]indicatetheflexibilityofprimaryandsecondary
metabolisminwatershortageandrewatering,using,amongothers,analternativerespiratory
pathway,theC3CAMswitch,andtheGABAshunt.
DroughtaffectedArabidopsisgenescodevariousproteinsforcellwallbiogenesis,carbohydrate
andhemebinding,transmembraneproteins,waterchannels,detoxificationprocesses,secondary
metabolism,extracellularregion,cellcelljunctions,andsecretoryactivities(Figure4,TableS3).
TranscriptomicanalysisofanotherrepresentativeofBrassicaceae‐rapeseed(Brassicanapus)revealed
thatmostsignificantlyenrichedGOtermsoftheupregulatedDEGswererelatedwiththeresponse
towaterdeprivation,ABAsignaling,osmoticstress,andotherabioticstimuliandlipidmetabolism
aswellascutin,suberin,andwaxbiogenesis,fattyaciddegradationandsecondarycompound
metabolism.Onthecontrary,downregulatedDEGswereconnectedmainlywithphotosynthetic
activities,porphyrinmetabolism,carbon,andnitrogenmetabolism[110].
Duetothegrowingtrendofglobalwarmingandthesimultaneousseverescarcityofwater
resources,discussedanalysescanhelpdevelopnewvarietiesofcropsthatareresistanttodrought
andwillbeabletogrowinareaswithlimitedwaterresourcesinthefuture[80].Inaddition,theusage
ofstressalleviatingcompoundsmaybealsobeneficial.Forinstance,thegrowthregulator5
aminolevulinicacid(ALA)hasbeenusedtoalleviateabioticstressconsequences,includingattempts
tomitigatedroughtingrapevine(Vitisvinifera),bytheincreaseofantioxidativeresponses[111].
Transcriptomicandphysiologicalanalysesallowedtoestablishthatchlorophyllmetabolismand
photosyntheticapparatusareprimarilyaffectedbyALA,whichusessynergisticmechanismsto
alleviatedrought.Underdrought,intheALApresence,alterationsintheexpressionpattenofDEGs
forchlorophyllsynthesis(upregulatedgenes)anddegradation(downregulatedgenes),Rubisco
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
19
relatedgenes(upregulated)andphotorespiratoryDEGs(attenuated)playedimportantrolesthat
enableALAtomaintaincellhomeostasisinthewaterscarcity.
4.1.3.ElevatedTemperature(HeatStress)
Elevatedtemperatureaffectscerealdevelopmentandproductivity,especiallythedevelopment
ofmalereproductiveorgansandtheviabilityandmaturationofpollengrains[112,113].Heatstress
leadstotheincreasedlipidperoxidationanddegradation,membranedamage,elevatedamountof
reactiveoxygenspecies(ROS),andsimultaneousdecreaseinROSscavengeractivity,leadingto
nucleicaciddamageandconsequentlytoapoptosis[114,115].Assengetal.[116]intheirmodeltested
theimpactofgrowingtemperatureonwheatyield;whentheaveragetemperatureincreasedby2°C
duringthegrowingseason,thepossibilityofadecreaseinyieldincreasedbyupto50%.Itispossible
toalleviatetheconsequencesofheattreatmentbychemicaltreatmentofplants,forexample,by
endogenousmelatonin.Chrysanthemumleaftranscriptomesinheatwithorwithoutadditional
supplementationwithmelatoninwerecomparedbyXingetal.[117].Ingeneral,heattreatmentalone
downregulatedmoregenesthanupregulatedothers.Doubletreatments(melatonin+heat)
significantlyincreasedtheexpressionlevelofseveralDEGs.Interestingly,melatonintreatment
regulatedtheexpressionpatternoftheHSFandHSPgenes,genesforstarchandsucrosemetabolism,
signaling,andchlorophyll,flavonoid,carotenoidbiosynthesis.,andthelevelofvariousTFs,
includingMADS,MYB,NAC,TCP,WRKY,andbHLH(Figure3).
Thecomparisonofmicrosporetranscriptomesinheatstressintwotomato(Solanum
lycopersicum)genotypeswithcontrastingheattolerancerevealedamongtheupregulatedDEGsat
least11HSPgenes,whichencodecytosolic,mitochondrial,plastid,andERHSPs.Theincreased
expressionofHSPgenessuggestsitskeyroleinresponsetoplantheat.FiveAPXgenes(which
expressionproductsallowustocombattheincreasedROSlevelmoreeffective)werenotably
upregulatedinmaturingmicrospores[118].
Sometranscriptomicreportsfocusedontheroottranscriptomeinheat.Thedynamicsofthe
transcriptomeinroothairswasstudiedbyValdéspezetal.[119]insoybean(Glycinemax)plants
subjectedtoelevatedtemperatureatdiversetimepoints.Theauthorsidentified46,366soybeangenes
expressedinallvariants,aswellasonaverage1,849and3,091DEGsinheatedroothairsandstripped
rootspergiventimepoint.Interestingly,alimitednumberofDEGswascommonforalltimepoints
(465genesonly)within10functionalmodulesregulatedbyafewTFs(HSF,AP2/EREBP,MADSbox
andWIRKY).Ingeneral,heataffectedtheexpressionpatternofgenesforsoybeanrootmetabolism,
proteinfoldinggenes,chromatinremodeling,andlipidandATPsynthesisveryefficiently.
Arabidopsisleaftranscriptomeundervariousstressconditions(salinity,osmoticstress,andheat
stress)wasrecentlyinvestigatedbySewelametal.[120].Ofallthesetreatments,theelevated
temperatureappearedtohavethemostnotableeffectontranscriptomicprofiles(withthedominant
upregulatedDEGs).Interestingly,onlytripletreatmentreachedthemaximumDEGnumber.
However,eightclusterscontainedresponsivegenesandselectedconditions(osmoticandheatstress)
actedantagonistically,whiletogethertheylargelyreprogrammedthegeneexpressionpattern.The
DEGsaffectedbyheatcoveredmultiplegenesthatencodedHSPs(11genesinduced,exceptHSFA1E,
HSF3andHSFA5),lateembryogenesisabundant(LEA)proteins,receptorlikekinases(RLKs),
glutathioneStransferasesandWRKYTFs.Furthermore,heatstressaffectedArabidopsisgenesfor
carbohydratebinding,UDPgalactosyltransferases,membranetransporters,andPCD(Figure4,
TableS3).Heatanditscombinationswithotherstressorsinducedvariousmitochondrialgenes,
presumablyasacompensativeresponsetoexcessiveproteindegradation,whichwaspreviously
suggested[121].However,heatalsorepressedseveralcellcyclegenes,ribosomalproteingenes(234
genesinthetripletreatment)aswellasgenesinvolvedinDNAsynthesisandrepair[120].
Thetranscriptomesinthepreexistedleavesofriceunderheatacclimation(afterashiftfrom
30/25oCto40/35oC[day/night])werealsostudied[122].Notably,afterthethermalshift,atransient
adjustmentinmetabolicgenetranscriptlevelinpreexistedleavesbeforehomoeostasiswasreached
within1day,whichaccompanieddeclineintheabundanceofsomeproteins.Atleast19,308rice
geneswereretainedforexpressionanalysisbyRNAseqinthreetimepointsaftertransferringof
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
20
plantstotheheattreatment.1,818and1,465genesinpreexistedleavesappeareddifferentially
expressedafter2and6hafterthethermaltransfer,respectively,andmultipleDEGsoverlapped
betweenthosetimepoints.Numerousgenesforprimarymetabolismandrespondingtoabiotic
stimuli,andformetabolitebiosynthesiswereaffected,includingonlyfewphotosynthetic/respiratory
geneswereaffected(genesforcomplexIIsubunits,externalNAD(P)Hdehydrogenase,uncoupling
proteins,alternativeoxidase,andsomeglycolyticenzymes).
Theelevatedtemperatureoftenactssimultaneouslywiththewaterdeficit.Afewrecentstudies
focusedoninvestigationoftheimpactofheatstress,drought,andthedoubletreatment(heatplus
drought)ontotalplanttranscriptomes.Thediscussedresponsesinbarley(Hordeumvulgare)flag
leaveswererecentlystudiedbyMikołajczaketal.[123].Heataloneresultedinanotablylower
numberofDEGsinthreetimepointsandacrossthreesizegroupsofflagleaves,thanthedrought;
however,thedoubletreatmentengagedalmostasmuchDEGsasdroughtstress.Inmediumsized
leaves,heatstress(similarlytodrought)affectedthehighergenenumber,irrespectivelyofstress
duration.However,duringlongerheatanddroughttreatments,moreDEGswerealsonotablefor
largesizedleaves.Genesetsassignedtovariousprocessesunderlyingthedroughtandheat
response,includingphotosynthesis,theabscisicacidpathway,andlipidtransportwereidentified.
InvestigatedstressorsaffectedespeciallyexpressionlevelofLEAandHSPgenes.Overall,
Mikołajczaketal.[123]studyprovidednovelinsightintothemolecularmechanismsofbarleyflag
leafthatdeterminedroughtandheatresponse,aswellastheircooccurrence.Furthermore,according
totheMahalingametal.[124]study,thenumberofDEGsincreasedinbarleyheads(butnotinflag
leaves)instresstolerantgenotypeasheatprogressed.Onthecontrary,instresssensitivegenotype,
DEGsdeclinedinnumberinthoseconditions.Heatresponseengagedtransporterproteingenes,
genesforABAresponseaswellasresultedindifferentialexpressionofLEAgenesinstresssensitive
genotype;incontrast,genesfornonspecificlipidtransferproteinsandcarbonatedehydratase
activitywereenrichedinstresstolerantgenotype.Onlyprolongeddroughtresultedintheincreased
numberof(mostlydownregulated)affectedgenesirrespectivelyfromthetissueorgenotype.The
combinedtreatment(heatwithdrought)resultedinthenotableincreaseofDEGnumberonlyin
stresssensitivebarleyline,howeveralterationsinDEGpatternwereverydistinctfromthesingle
treatments.Ingeneral,multiplegenesforRNAmetabolismandHsp70chaperonecomponents
(HsP70,ClpBandHsp70dependentnucleotideexchangefactor)appearedhubgenesforheat,
droughtandthedoubletreatmentincoexpressionnetworkanalysisthatcanbeusefulforfuture
attemptsinengineeringstresstolerance.Atleast900TFsaidedtranscriptionalreprogrammingintwo
linesofbarleyacrossalltreatments.Anotherstudy[125]pointedouttohighernumberofDEGs
affectedindouble(heatanddrought)treatmentofLoliumtemulentum,whichcodedforproteins
necessaryforthetranscriptionalregulation,proteinfolding,cellcycle,organellarbiogenesis,binding,
transport,oxidoreductase,andantioxidantactivity,andcellularsignaling.Affectedgenescodedalso
forTFsfromAPETALA2/EthyleneResponsiveFactor,NAC,WRKY,bHLH,MYB,andGATA
familiesaswellasmultiplezincfingertypeproteins.
WhenheatstresswascombinedwiththeelevatedCO2level,thedetrimentaleffectofheatwas
alleviatedonlybypartialderegulationofprimaryandsecondarymetabolismgenes.The
transcriptomeofflagleavesofdurumwheat(Triticumdurum)inheat,elevatedCO2,andthe
combinationofthosestimuliwasinvestigated.Theirdatacoveredalmost60,209transcripts,ofwhich
29%ofmessengersspecificallyrespondedinabundancetoheat.MostDEGscodedproteinsinvolved
instressresponse,nucleicacidmetabolism,miscellaneousenzymes,andcellularsignaling.Genes
upregulatedbyCO2wereoftendownregulatedbyheat(theycoded,interalia,photosynthetic,and
OXPHOSproteins,enzymesoflipidandaminoacidmetabolismandglutathioneascorbatecycle,
hormonesignaling,nucleicacidmetabolism,andtransportproteins).However,heatupregulated
surprisinglyRubiscosubunits[126].
ChenandLi[127]studyincludedBrachypodiumdistachyonleaftranscriptomeanalysis,showing
DEGsparticipatinginprocessessuchasthespliceosomeandPSI,andPSIIbiogenesis,orinprotein
folding.Notably,morethan43upregulatedgenescodedmachineryforalternativeRNAsplicing.
Accordingtothoseanalyses,theupregulationofgenesinvolvedinalternativesplicingindicatesan
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
21
increasedabilityofplantcellstoperformalternativesplicinginresponsetohightemperaturesto
createalternativeformsofproteinsthatcanalleviatephysiologicalconsequencesofheatexposure.
Todescribethermotoleranceandprotectivemechanismsagainstthermalstressindesertspecies,
Obaidetal.[128]studiedthetranscriptomeofRhizyastricta,theevergreenshrub,atelevated
temperature.DEGsweregroupedinto32and38groupsformatureandapicalleaves,respectively.
Massivedownregulationsincluded,amongothers,genesforcyclin,cytochromep450/secologanin
synthaseandUboxcontainingproteins.Onthecontrary,theupregulatedgenescoveredthosefor
HSPs,chaperones,UDPglycosyltransferase,aquaporinsandtransparentproteintesta12,indicating
thatthermotoleranceinR.strictaleavesiscontrolledmainlybyimprovingproteinfoldingand
preventingproteindegradation.TFsputativelyregulatingexpressionofHSPgenesunderheat
includedHSFA,AP2EREBP,andWRKYTFs(Figure3).Ingeneral,numerousmetabolites,including
polyols,sugars,methionine,andphenolicswereinvolvedinthedevelopmentofR.stricta
thermotolerance.
4.1.4.LowTemperature
Similarly,toelevatedtemperature,alsoreducedtemperature(e.g.,coldtreatmentandfreeze)
cancontributetoplantgrowthanddevelopmentaberrations.Thecoldresponsecovers,interalia,the
directinhibitionofmetabolicreactions,andbecauseofthelimitedosmosis,celldehydrationandthe
oxidativestressoccursimultaneouslywithotherloweredtemperatureeffects.Theformationofice
crystalsunderconditionsofreachingthefreezingpointisthegreatestthread,whichresultsinprotein
degradationandmechanicaldamage.Mostplants,however,canadapttothecoldandgaintolerance
toiceformationintheircellsbygraduallybeingexposedtoreduced(nonfreezing)temperatures
undercoldacclimationprocess[129].
AnalysisofAmurvine(Vitisamurensis)transcriptomeundercoldtreatmentallowedforthe
categorizationofDEGproductsindiversefamilies,includingsignaltransduction,transcription
regulation,andalternativesplicing.Atleast38majorfamiliesofTFsinvolvedintheregulationof
coldresponseinV.amurensisweredetected,includingnovelTFs(e.g.,PLATZ,LIM,EIL,NINlike,
TUB,WHIRLY,andPcG).Regardinggenesforthesignaltransduction,CIPK8,CXIP4,CDP,and
CRK2genes,whoseexpressionproductsareresponsibleforCa2+binding,appearedupregulated.
Notably,resultsofthoseanalysesmayfurtherallowustoelucidatethemechanismsofcoldtolerance
[130].
ManyearlycoldresponsegenesencodeTFsthatinducetheexpressionofgenesforthe
subsequentstressresponse[92].Chengetal.[131]studiedeffectsoftheoverexpressionofMeTCP4
(aspecificTFfromcassava[Manihotesculenta])inArabidopsisplantsduringcoldstress.Theaffected
geneswereclassifiedasstressresponsiveinallconditionstested,toTFactivityandDNAbindingin
control,andtooxidoreductase,peroxidase,andantioxidativeactivityundercoldstress.Duetal.[132]
analyzedthetranscriptomeofAgropyronmongolicumseedsatdifferentdevelopmentalstages.191,204
unigenesweredetected,whichwereclassifiedinto25functionalgroups.TheresponsetocoldofA.
mongolicumengagedABAreceptorsandincreasedthelevelofexpressionofgenesforbZIPandNAC
TFs.Thisresultsinthedownregulationoftargetgenesascoldtoleranceincreases.DEGswere
assignedto136metabolicpathways,ofwhichthemajoritywereenrichedincarbohydrate
metabolism,hormonalandphosphatidylinositolsignalingaswellastobiogenesisof
phenylpropanoids,flavonoids,stilbenoids,diaryloheptanoids,gingerolsandisoflavonoids.
ThecoldtreatmentappeareddetrimentalalsotoMedicago.falcataseedlingtranscriptome
(downregulatedtranscriptsprevailed).ThestudyofM.falcatastressresponsesfocusedon
phytohormoneandnodulationsignaling,revealingsomesimilaritieswithdroughtresponses
(Section4.1.2),however,ABF1andGID1transcriptsdecreasedinabundance.Interestingly,theGH3
auxinresponsivegenewasintenselyupregulatedincold(similarlytoDIMI1,butcontrarytoDIMI2
andDIMI3,allofwhichencodeimportantnodulationfactors).Onthecontrary,theAUXtranscripts
encodingtheauxinreceptordecreasedinabundance.Furthermore,atleast16genesforMYBand12
genesforNACTFswereinducedbycold,indicatingtheirparticipationintheacquisitionofcold
tolerance[107].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
22
Arabidopsisdataforchillingresponse(contrarytosubzerocoldresponse)coveredparticularly
ahighnumberofaffectedgenes;interestinglythosetworesponsesoverlappedsurprisinglylittle
(Figure4).Chillingengaged,interalia,secondarymetabolism(e.g.,flavonoidbiogenesis)genesand
genesfortransporterproteins.Instead,duringsubzeroArabidopsisacclimation,genesforproteins
participatinginhormonesignaling,especiallyJAsignalingandABAreceptors,wereaffected.In
general,Arabidopsisresponsetocoldstressinvolved,interalia,genesforPSIbiogenesis,
carbohydrate,andsecondarycompoundmetabolism,Oglycosylcompoundhydrolases,flavonoid
biosynthesis,nitratetransporteractivity,andpigmentmetabolism(Figure4,TableS3).Interestingly,
inP.cheesemanii,Arabidopsiscloserelative,thecoldresponseemploysmorefunctionalgenefamilies
thaninArabidopsisleaves,includingthespecificallyaffectedgenesfortheglycosinolatemetabolism
[96].However,inbothArabidopsisandP.cheesemanii,genesforwoundlike,circadianclockaswell
asforflavonoid,trehalose,phenylpropanoidandoxylipinmetabolismbecomeimportantunderthe
earlycoldresponse.
Animportantstageduringcoldacclimationisalsotheregulationofmetabolicprocesses
occurringinplantcellorganelles.Naydenovetal.[133]investigatedmitochondrialandnuclear
transcriptomesofgerminatedwheat(Triticumaestivum)germ.Somegenesencodingmitochondrial
proteins,includingMnsuperoxidedismutase(SOD)andalternativeoxidase(AOX),appeared
upregulated;however,thelevelofexpressionofnucleargenesessentialformitochondrialbiogenesis
visiblydecreased.Thisindicatesmutualcontrolofgeneexpressionbetweenmitochondrialand
nucleartranscriptomes,executedbyanterogradeandretrogradesignaling.
4.2.PlantTranscriptomicResponseunderBioticStress
Tocopewithbioticstress,plantshavedevelopedseveraldefensiveresponses,manyofwhich
arepreciselyinducedbythepathogenattack[100].Plantcellscontainplasmamembranereceptors,
thepurposeofwhichistorecognizethepathogenassociatedmolecularpatterns(PAMPs).Whena
pathogenisrecognizedbyareceptor,PAMPtriggeredimmunity(PTI)isinitiated,whichusually
stopstheinfectionbeforeitspreadsthroughouttheplant.However,duetotheconstantcombat
betweenpathogensandtheirvictims,pathogenscanneutralizePTIbysecretingspecialproteins
calledeffectorsintothecytosoloftheplantcell.Plants,inresponsetotheeffectorssecretedby
pathogens,developedtheabilitytodetectmicroorganismsbyrecognizingaspecificeffector,which
iseffectortriggeredimmunity(ETI).Thisresponseconsistsoftheproductionbytheplantof
intracellularreceptorsdesignedtorecognizeeffectormoleculesproducedbypathogens.The
interactionbetweenthereceptorandtheeffectortriggersacomplexnetworkofcellresponsesaimed
atdetermininginfectionresistance[134].
Higherplantsdonotpossessspecializeddefensecells,andtoprotectagainstpathogens,they
useʹoxidativeoutbreakʹ.Furthermore,ahighlevelofROSisrequiredtoinitiatethehypersensitive
response(HR).ThisreactionbelongstoPCDmanifestations,whichissupposedtolimittheaccessof
thepathogentowaterandnutrientsandisaimedatlimitingthespreadofthepathogen[135].Details
ongenesaffectedunderbioticstress(fundalandbacterialinfections)describedacrosshigh
throughputtranscriptomicstudiesweregiveninTableS2andthesummaryofthecellularfunctions
governedbybioticstressaffectedgenesinvariousplantspecieswaspresentedonFigure3.
4.2.1.FungalInfections
Pathogenicfungicanbedividedintobiotrophicandnecrotrophicfungi.Biotrophicfungifeed
onlivinghosttissue.Necrotrophicfungikillthehostandthen,secretingspecialenzymes,‘digest’
hosttissuesandfeedonthem.Numerousspeciesofpathogenicfungi,dependingonthe
developmentalstage,behaveasbiotrophicornecrotrophicones.Dependingonthestageoffungal
infection,differentresistancesignalingpathwayscanbeactivated.SAsignalingisbelievedtobe
involvedinresistancetobiotrophicandhemibiotrophicpathogens(pathogensthatareearly
biotrophsandnecrotrophslater).JAandethylenesignalingappearedtobeindispensablefor
necrotrophicresistance[136].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
23
Recently,transcriptomicanalysesbroadenedourknowledgeonplantaffectedgenesunder
attackoffungalpathogens.Analysisofthetranscriptomeofpumpkinleaves(Cucurbitamoschata)
infectedwithpowderymildew(Blumeriagraminis)24and48haftertheonsetofinfectionshoweda
downregulationofmultipleDEGsincludingbHLH87,WRKY21,ERF014(codingTFsforethylene
signaling)aswellastheHSFandMLO3genes(codingpowderymildewresistance).GenesforPSI
andPSIIsubunits,oxygenenhancingproteins,chlorophyllbindingproteins,andmagnesium
chelatasewereadditionallyregulated.Upregulationofgenesassociatedwithfoliarphotosynthesis
after48hofinfectionindicatesforuntouchedphotosyntheticactivityduringinfectionandassociates
withtheappearanceofinitialfungalhyphae.Theupregulationofgenesassociatedwiththe
photosynthesiswasalsoshowninthecaseoffungalinfectedwheat(Triticumaestivum)[137].
Thetranscriptomeofwheatleavesinfectedwithpowderymildew(Erysiphalesspecies)aswell
aswithstripedrust(Pucciniastriiformis)werecomparedwiththeonefromsamplenotinfectedwith
anypathogenandamongthemselves[138].Intotal,186,632unigenesweredetected.Comparative
analysisofpowderymildew‐ andwithstripedrustinfectedsamplesshowedaderegulationof
numerousgenesamongthreevariants.Theresponsetopowderymildewinfectioninducedstronger
changesinthegeneexpressionpattern.Genesforphenylalaninemetabolism,phenylpropanoid
biosynthesis,alphalinolenicacidmetabolism,flavonoidbiosynthesis,andphenylalanine,tyrosine
andtryptophanbiosynthesisweredifferentiallyregulatedunderpowderymildewinfection.
However,inthecaseoftheattackbystripedrust,genesinvolvedinmetabolicprocessessuchas
carbonbindinginthephotosynthesis,carotenoidsynthesis,PSantennaproteinsynthesis,and
ubiquinonebiosynthesiswereallupregulated.Thisindicatestheuseofdifferentialgeneexpression
patternsassociatedwithdefensemechanismsinresponsetovariousfungalinfections[138].
Twotranscriptomedatasetsoffungusinfectedsilkofmaize(Zeamays)obtainedfromNational
CentreforBiotechnologyInformationSequenceReadArchive(NCBISRA)databasewerecompared
byKumaretal.[139].EachdatasetconsistedofresultsofRNAseqanalysisforleavesofmaize
infectedbydifferentfungalspeciesbelongingtoHypocreaceae(e.g.,Trichodermaatroviride),Nectriaceae
(e.g.,Fusariumverticillioides,F.graminearum),andUstilaginaceae(e.g.,Ustilagomaydis).SetAcontained
dataforsilksamplesaffectedbyF.graminearumandU.maydis,whilesetBcontaineddatafrom
samplesinfectedbyF.verticillioidesandT.atroviride(everydatasetalsocontainedthecontrolresults).
Analysisofsuchdataresultedintherevealof14,694and14,808DEGsbetweencontroldatasetsofA
andB,respectively.Almost4,519upregulatedand5,125downregulatedgeneswereidentified,
however,only21genesweredifferentiallyexpressedinthefourdifferentvariantsoffungalinfection.
Amongthesegenes,thegenesencodingtheperoxidase(POD)enzymethatcontrolsthelengthening
ofgermtubetoprotectmaizekernelsfromfungaldiseasewereupregulated.Strongexpressionof
SKIP19genesthatinfluenceandrespondtobioticandabioticstressconditions.Differential
expressionpatternwasfoundfortheOSM34(osmotinlikeprotein)gene,whichimproveshost
defenseandimmunedefenseagainststress,andtheDUF26geneforthereceptorlikeproteinkinase
subfamily(itsdomainplayscrucialroleinstressresistanceandantifungaldefense);thosetwogenes
wereupregulatedinF.verticillioides,F.graminearum,andU.maydisinfectedsamples,however,they
appeareddownregulatedinsamplesaffectedbyT.atroviride.Genesaffectedbetweenthree,two,and
afterinfectionbyasinglefungalspecieswerealsorevealed.
Identifyinggenesexpressedduringinfectionbyvariousfungalspeciescanhelptofindgenes
essentialfordefenseagainstthosemicrobes.Astheglobalclimateisaltered,importantagriculturally,
plantspeciesbecomegraduallyexposedalsotoincreasingbioticstress.Thefindingsdiscussedabove
wouldhelpdevelopplantcultivarsthatarehighlyresistanttofungalinfections.
4.2.2.BacterialInfections
Analysisofthetranscriptomeofriceplants(Oryzaindica)infectedwithXanthomonasoryzae
revealedmultipleDEGs;theupregulatedoneswereclassifiedinto10functionalgroups,among
whichgenescodingproteinsinvolvedinprocessessuchassignaltransduction,carbohydrate
metabolism,andtranscriptionregulationwereenriched.Onthecontrary,downregulatedgeneswere
assignedto12functionalgroups,amongwhichthegroupsofgenescodingforTFsandproteins
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
24
involvedinlipidcatabolism,oxidativeburst,andassociatedwiththecellcycleormetabolicpathways
werethemostdistinctive[140].
Analysisofthetranscriptomeoftomatoplants(Solanumlycopersicon)infectedwithClavibacter
michiganensisallowedabetterunderstandingoftheresponseoftheplanthosttoinfection.
Upregulatedgenescodedproteinsthatparticipateinprocessessuchasproteinphosphorylation,
plantdefenseresponse,andhormonalsignaling.Theresistancegeneanalogues(RGAs)inresponse
toC.michiganensiswereupregulated,alsoincludinggenesRLKgenes.Theexpressionofgenes
encodingTFs,suchasWRKY,NAC,HSF,andCBP60,whichbelongtofactorsinvolvedinthe
antibacterialplantresponse,wasalsoelevated(Figure3).Inaddition,anincreaseintheSA
accumulationintomatotissuesduetobacterialinfectionwasshowed.Moreover,theuseof
exogenousSAresultedintheinductionofgenesforWRKYTFs.Thissuggeststheappearanceofgene
regulationbySAinresponsetoinfectionwithC.michiganensis,resultinginimprovedqualityofthe
plantimmuneresponse[141].
Inturn,Luetal.[142]investigatedtranscriptomesofrice(Oryzasativa)cultivarsresistantand
susceptibletoinfectionwithXanthomonasoryzaena.Thispathogencausesacerealdiseasecalled
bacterialleafstreak(BLS).Dataanalysisshowedthat,generally,moretranscriptsrespondedin
abundanceamongtheinfectionsusceptiblecultivar.Theseanalysesrevealedelevatedlevelsof
expressionofgenesencodingproteinsinvolvedinphenylpropanemetabolicpathways,
phenylalaninemetabolism,andflavonoidbiosynthesis,whichwerecloselyrelatedtoresistanceto
plantdiseases.Furthermore,theresultsofthestudybyLuetal.[142]alsosuggestedtheparticipation
ofselectedWRKY,NAC,MYB,andbHLHTFsinplantresponsetobacterialinfection(Figure3).
Recentresearchonresistant(IBL2353)andsusceptible(Ohio88119)tomato(S.lycopersicum)
cultivarsinfectedbyC.michiganensispresentednewgenefamiliesindefensemechanismsand
confirmedtheimportantroleoftheWRKYfamilyofTFsintheresponsetobioticstress.Comparison
oftranscriptomicdataderivedfromresistantandnonresistanttomatocultivarsaffectedbyC.
michiganensisrevealedthat215geneswereupregulatedandfurther362genesappeared
downregulatedamongallstressvariants(12h‐ and24hpostinfection)inbothgenotypes,
respectively.FromtheanalysesoftheGOandKEGGpathwayofgenesassociatedwithresistance,
almost25tomatogeneswereselectedforfurtheranalysis.Tocomparethedifferencesinthosegenes
betweensusceptibleandresistantgenotypes,aheatmapwascreated.Thankstothis,outof25genes
codingproteinsassociatedwiththeplantdefenseresponse,aWAKL20gene(forthewallassociated
receptorkinasesimilartowall20)wasparticularlycharacterized,duetoitsincreasedexpressionlevel
intheIBL2353cultivar.TheWAKL20proteinistheonlymemberoftheWAKSsubfamilythatplays
animportantroleininnateresistancetomultiplepathogens.Thevirusinducedsilencingofthe
WAKS20geneintheIBL2353tomatocultivarresultedintheappearanceofsusceptibilitytoC.
michiganensisinfection.TheseresultsseemtoconfirmanimportantrolefortheWAKS20geneinthe
defensemechanismofplantsandestablishthefoundationforfurtherresearchintothesearchfornew
moreresistantplantvarieties[143].
5.ConclusionsandFuturePerspectives
Planttranscriptomecanbedynamicallyshapedbymanyfactors,functioningondiverselevels
ofbiologicaldiversity[81,91,93].Understandingthecompositionofthetranscriptomeallowsto
recognizemechanismsandgenesinvolvedinacclimationtoadverseenvironmentalconditionsto
whichplantshavebeensubjected.Inplantcells,inadditiontothetranscriptomebeingaproductof
nucleargenomeexpression,plastidandmitochondrialtranscriptomesarealsopresent,contributing
totheoveralldynamicityandcomplexityofplanttranscriptomes[25–27,35,121].Diversenuclearand
organellargenesareinducedinvariousorgansandunderacclimationtonumerousabioticandbiotic
stressors[121,133].Inthecurrentreview,wefocusedmainlyonsuchdiversityofglobalplant
transcriptomicresponsestovariousabiotic(UV,chemicaltreatments,drought,heat,low
temperature)andbiotic(bacterialandfungalinfections)stressconditionsassayedbyhigh
throughputtranscriptomesequencingstudies.Inaddition,wecharacterizeddistincttissue/organ
specifictranscriptionpatternsalsoanalyzedbyRNAseq,includingsinglecellRNAseqapproach
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
25
andothercurrentmethodologies.Forthat,wefocusedmostlyonthetranscriptionalbiogenesisof
vascularelementsaswellasonseed,leaf,andgenerativeorgantranscriptomes.Wecommentedalso
onperspectivesofapplicationofbiomedicinallyimportantspeciesintranscriptomicanalyses.
Extensiveresearchontheplanttranscriptomeisbeingdevelopedatvariouslevels.
Transcriptomicdatacanbeacquiredbothfromdifferentialexpressionstudiesontissue/organsor
evenfromsinglecells,andmodernRNAseqapproachesconsiderablyextendedourknowledgeon
transcriptomecontentandsize.OwingBestetal.[35]study,moreorganellartranscriptomesfor
importantcropspeciesshouldbeanalyzedinthefuturethatwouldallowforthebetter
understandingofplastomeandmitogenomeresponsesinstressandtheirrelevanceinparticular
developmentalsteps.Also,moretranscriptomicstudiesemployingsinglecellRNAseqcoupledwith
microscopicanalyzesareexpected,inorder(1)tobroadenthespatiotemporaldataoftissue/organ
transcriptomes,(2)toexplorediversityoftranscriptomesindistinctcellscontributingtotheorgan
architecturalintegrity,and(3)tobuildcompleteexpressiondatasets/atlasesforagriculturally
importantspeciesinthefuture.Duetotheunderrepresentationofthetranscriptomicdatainstress
forsomeplantorgans,furtherstudiesarestillexpected[39].Inafuture,cleardistinguishingoftissues
andtissueregionsbothbytheirphysicallocationandinvestigatingofgenecoexpressionpatternsin
transcriptomicanalyseswouldbealsonecessary[76].
Higherplants,ascomplexorganismswithspecializedstructures,showdiverseandvery
dynamicallychanginggeneexpressionpatternsdependingontheorganorconditionstowhichthey
aresubjected,whichleadstothemetabolicflexibility[80,109].Inaddition,stressresponseatthe
transcriptomiclevelisactivelymodulateddependingonthestressorqualityanditsduration(for
somestressors,likedrought,affectingtranscriptomicpatternmostlyafteraprolongedexposure
[108]).Inthisreview,transcriptomicdatacomingnotonlyfromArabidopsis(TableS3),butalsofrom
diverseplantspecieswithvariouspotentialsofagriculturalapplicationswerediscussed.Notably,
DEGsconnectedwiththegivenstressresponsesincropspeciesvariedfromtheArabidopsisones,
employingdiversegenefamiliesorgenesfordiverseregulatoryproteins;nevertheless,commonly
regulatedgenesoftencoveredtheonesforthelowmolecularcompoundbiogenesisandfor
secondarymetabolismenzymes[96].
Evensimilarenvironmentalcuesresultedinthediversityofgeneresponses,leadingtothe
inductionorupregulationofdistinctgenes.Transcriptomicstressresponsesengagedinductionof
bothcommongenesfordiversestressorsaswellasspecificgenemodules,codingcertainprotein
familiesactiveinselectedtreatmentsonly.Thiswasalsoevidentinthediscussedmetaanalysisof
Arabidopsistranscriptomicdata(Figure4),whereonlylimitednumberofDEGsappearedcommon
fordiverseabioticstresstreatments;evenmultipledosageofthegivenstressorresultedinahigh
variabilityoftranscriptomicresponse.Somegenesforthegivenhormone(e.g.,SA)signalingwere
unaffectedbycertaintreatments,forinstance,bywaterdeficitwhichappearedparticularly
detrimentalalsoatthetranscriptomiclevel[102,103,106].Amongaffectedtranscripts,numerous
mRNAsencodedforaplethoraoftranscriptionfactorsfromdiversefamilies(Figure3).Itseemsthat
somemostdetrimentalstressors(forinstancehightemperaturetreatments)employedparticularly
highnumberoftranscriptionfactorsregulatinggeneexpression[124].
Doublestresstreatmentsresultedinhighlyspecificresponses,insomecasesincreasingthe
numberofaffectedDEGs[120,125]asmuchasthemostdetrimentalstressor[123],indicatingthatstill
thereisaneedformultiplestressoranalyses.Generally,stresssensitivecultivarsengagemoreDEGs
intheirstressresponses,however,thosepatternshighlydependonactualtissue/organstressed
(TableS3)[124].However,mostofthetranscriptomicdatadiscussedherecamefromplantmaterial
cultivatedunderhighlycontrolledlaboratoryconditions.Therefore,inouropinion,fieldexperiments
testingthevariationsofmultiplestressresponses(whichactsimultaneouslyonfieldcultivated
plants)inplantnuclearandorganellartranscriptomeswillbecontinuouslyawaited.Additionally,
plantresponsesonbioticstressindicatedfortheimportanceofplantmicroorganisminteractions
whichcanoverallinfluencestresstolerance[144],andthiswouldbechallengingpointalsoforfuture
transcriptionalstudies.Thus,impactoftheplantmicrobiomeonstressresponseonthe
transcriptionallevelshouldbeinvestigatedinmorebroadenedcontext.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
26
Withtheknowledgeofindividualgeneprofilesandmechanismsresponsible,forexample,for
thesynthesisofsecondarymetabolites,itwouldbepossibletousethempractically(1)duringgenetic
engineeringofmedicinalplantspecies,(2)toinvestigateofprocessesengagedintheactive
compoundbiogenesisandtheorganogenesis,and(3)tounderstandbetterhowmetabolicpathways
contributetovariousstressacclimationstrategies.Thiswouldalsoallowanexemplarymanipulation
ofplantmetabolicpathwaysinthefuturetoobtainmoresecondarymetabolites,whichoftendepends
onthedevelopmentalstage[83,85].Last,butnotleast,understandingmetabolicpathwaysandplant
responsestounfavorableconditions,suchasdrought,reducedorelevatedtemperature,orpathogen
infection,cancontributetothedevelopmentofnewmorestressresistantplantcultivars.Those
pendingactionswillincludemodernmethodologicaltools,includingadvancedgeneticengineering
andgeneeditingstrategiestoalleviatefuturecroplossesduetosuboptimalweatherandthe
increasedfooddemandsinthefuture[81,145].
SupplementaryMaterials:Thefollowingsupportinginformationcanbedownloadedatthewebsiteofthis
paperpostedonPreprints.org.thissubmissioncontainsthreeSupplementaryTables:TableS1:Comparisonof
theselected,differentlysizedplantnuclearandorganellar(plastid,mitochondrial)genomes,TableS2:
Differentiallyexpressedgenes(DEGs)instudiesonorgan/tissue‐specifictranscriptomes(lines326)aswellas
planttranscriptomesunderstressacclimation(lines2764),TableS3:Arabidopsisdifferentiallyexpressedgenes
(DEGs)forvarioustreatmentsandstressconditions.
AuthorContributions:M.R.andM.S.:carriedouttheliteraturereview;M.R.:conceptualization;M.R.andM.S.:
writingoriginaldraftpreparation;M.S.:preparationofFigures12andTableS1;M.R.:preparationofFigures
34,andTablesS2S3;M.R.:writingreviewandediting;M.R.:supervision;M.R.:fundingacquisition.All
authorshavereadandagreedthesubmittedversionofthemanuscript.Authorsagreetobepersonally
accountablefortheirowncontributionsandforensuringthatquestionsrelatedtotheaccuracyorintegrityof
anypartofthework.Allauthorscontributedtothearticleandapprovedthesubmittedversion.
Funding:ThisresearchwasfundedbytheExcellentInitiativeResearchUniversity(IDUB)programatthe
AdamMickiewiczUniversity,Poznań andKNOWRNAResearchCenteratAdamMickiewiczUniversity,
Poznań,grantno.01/KNOW2/2014.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Publiclyavailabledatasets(TablesS1andS3)wereanalyzedinthisstudy;those
datacanbefoundhere:https://www.ncbi.nlm.nih.gov/datasets/genome/,https://www.ebi.ac.uk/gxa/home,
https://biit.cs.ut.ee/gprofiler/gost,
Acknowledgments:WewouldliketothankcolleaguesfromourInstituteforthevaluableremarksduringthe
preparationofthemanuscript.
ConflictsofInterest:Theauthorsdeclarenoconflictsofinterest.
Abbreviations
AAO aldehydeoxidase
ABAabscisicacid
ABFABSCISICACIDRESPONSIVEELEMENTBINDINGFACTOR
ACADMmediumchainacylCoAdehydrogenase
ACO 1aminocyclopropane1carboxylicoxidase
ACOXacylCoAoxidase
ACS1aminocyclopropane1carboxylicsynthase
ALA5aminolevulinicacid
AOSalleneoxidesynthase
AOX alternativeoxidase
APAPETALA
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
27
APXascorbateperoxidase
ARFauxinresponsefactor
ASanthocyanidinsynthase
asMTacetylserotoninOmethyltransferase
ASCLascorbicacid
ATHBsmallhomeodomainleucinezipperfamily
AUXauxinreceptor
bHLHbasichelixloop–helix
BLS bacterialleafstreak
bZIP basic(region)leucinezipper
CAM crassulaceanacidmetabolism
CATcatalase
CBP CALMODULINBINDINGPROTEIN
CCOAOMTcaffeoylCoAOmethyltransferase
CDP CAATdisplacementprotein(transcriptionalrepressor)
CCR cinnamoylCoA:NADPreductase
C3H zincfingertranscriptionfactor
CHI chalconeisomerase
CHS chalconesynthase
C4H 4cinnamatehydroxylase
CIPK CBLinteractingproteinkinase
4CL 4coumarate:CoAligase
Clpcaseinolyticprotease
CO CONSTANS
CRK cysteinerichreceptorlikekinase
CRY cryptochrome
CXIP CAXinteractingprotein
DEGs differentiallyexpressedgenes
DFR dihydroflavonol4reductase
DIMI DIMINUTO
DofDNAbindingwithonefinger
DREBdehydrationresponsiveelementbinding
ECHS shortchainenoylCoAhydratase
EF earlyflowering
EIL ethyleneinsensitivelike
ER endoplasmicreticulum
EREBP ethyleneresponsiveelementbindingprotein
ERF ethyleneresponsefactor
ESTs expressedsequencetags
ETI effectortriggeredimmunity
F3H flavanone3hydroxylase
FIE fertilizationindependentendospermia
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
28
FSL flavonolsynthase
FT FLOWERINGLOCUST
FUL FRUITFUL
FUS fusedinsarcoma
GABA g‐aminobutyricacid
GID GAINSENSITIVEDWARF
GRF GrowthRegulatingFactor
HCT hydroxycinnamoyltransferase
HDhomeodomain
HLHhelixloophelix
HR hypersensitiveresponse
HSF heatshockfactor
HSP heatshockprotein
IFL INTERFASCICULARFIBERLESS
JA jasmonicacid
KAN KANADI
LEA lateembryogenesisabundant
LHClightharvestingcomplex
LEC littleelongationcomplex
LIM homeoboxtranscriptionfactor
LOX lipoxygenase
MADS MINICHROMOSOMEMAINTENANCE1/AGAMOUS/DEFICIENS/SERUMRESPONSE
FACTOR
MAPKmitogenassiociatedproteinkinase
MDHAR monodehydroascorbatereductase
MEDEA motifenrichmentindifferentialelementsofaccessibility
MFP multifunctionalprotein
MIOX myoinositoloxygenase
MLO mildewlocuso
MYB myeloblastosis
NAC noapicalmeristem/ATAF1/cupshapedcotyledon
NAMnoapicalmeristem
NCED 9cisepoxycarotenoiddioxygenase
NIN noduleinception
OPR 12oxophytodienoicacidreductase
OSM osmotinlikeprotein
OXPHOS oxidativephosphorylation
PAAF 23dehydroadipylCoAhydratase
PAL phenylalanineammonialyase
PAMP pathogenassociatedmolecularpattern
PCD programmedcelldeath
PcG Polycombgroup
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
29
PEAR PHLOEMEARLYDNABINDINGWITHONEFINGER
PEI Cys3Hiszincfingerdomaincontainingprotein
PHB PHABULOSA
PHV PHAVOLUTA
PHY phytochrome
POD peroxidase
PS photosystem
PTI PAMPtriggeredimmunity
PLATZ plantATrichsequenceandzincbindingprotein
REV REVOLUTA
RGA resistancegeneanalogue
RLK receptorlikekinase
ROS reactiveoxidativespecies
SA salicylicacid
SBPSQUAMOSApROMOTERBINDINGPROTEIN
SOC suppressorofoverexpressionofconstans
SOD superoxidedismutase
STS stachyosesynthase
TCP bHLHDNAbindingdomain
TF transcriptionfactor
TUB transcriptionfactorfamily
UF3GT UDPglucose:flavonoid3Oglycosyltransferase
WAKL20 wallassociatedreceptorkinaselike2
WGD wholegenomeduplication
WRKYtranscriptionfactorfamily
VIN VERNALIZATIONINSENSITIVE
ZEP zeaxanthinepoxidase
ZIPleucinezipper
References
1. Kenrick,P.;Crane,P.R.TheOriginandEarlyDiversicationofLandPlants:ACladisticStudy;Smithsonianseries
incomparativeevolutionarybiology,1sted.;SmithsonianInstitutionPress:Washing ton,DC,U.S.A.,1997;
2. Forster,B.P.;HeberleBors,E.;Kasha,K.J.;Touraev,A.TheResurgenceofHaploidsinHigherPlants.Trend
PlantSci.2007,12,368–375,doi:10.1016/j.tplants.2007.06.007.
3. Morris,J.L.;Puick,M.N.;Clark,J.W.;Edwards,D.;Kenrick,P.;Pressel,S.;Wellman,C.H.;Ya n g , Z.;
Schneider,H.;Donoghue,P.C.J.TheTimescaleofEarlyLandPlantEvolution.Proc.Natl.Acad.Sci.U.S.A.
2018,115,E2274–E2283,doi:10.1073/pnas.1719588115.
4. Thompson,S.;Prahalad,S.;Colbert,R.IntegrativeGenomics.TextbookofPediatricRheumatology;7thed.;
Elsevier;Philadelphia,PA,U.S.A.,2016,pp.4353.e3
5. Schliesky,S.;Gowik,U.;Weber,A.P.M.;Bräutigam,A.RNASeqAssemblyAreWeThereYet?Front.Plant
Sci.2012,3,doi:10.3389/fpls.2012.00220.
6. Tyagi,P.;Singh,D.;Mathur,S.;Singh,A.;Ranjan,R.UpcomingProgressofTranscriptomicsStudieson
Plants:AnOverview.Front.PlantSci.2022,13,1030890,doi:10.3389/fpls.2022.1030890.
7. Chen,C.;Ge,Y.;Lu,L.OpportunitiesandChallengesintheApplicationofSingleCellandSpatial
TranscriptomicsinPlants.Front.PlantSci.2023,14,1185377,doi:10.3389/fpls.2023.1185377.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
30
8. Singh,S.;Parihar,P.;Singh,R.;Singh,V.P.;Prasad,S.M.HeavyMetalToleranceinPlants:Roleof
Transcriptomics,Proteomics,Metabolomics,andIonomics.Front.PlantSci.2016,6,1143,
doi:10.3389/fpls.2015.01143.
9. Ahmad,M.GenomicsandTranscriptomicstoProtectRice(Oryzasativa.L.)fromAbioticStressors:‐
PathwaystoAchievingZeroHunger.Front.PlantSci.2022,13,1002596,doi:10.3389/fpls.2022.1002596.
10. Bhat,K.A.;Mahajan,R.;Pakhtoon,M.M.;Urwat,U.;Bashir,Z.;Shah,A.A.;Agrawal,A.;Bhat,B.;So,P.A.;
Masi,A.;etal.LowTemperatureStressTolerance:AnInsightIntotheOmicsApproachesforLegume
Crops.Front.PlantSci.2022,13,888710,doi:10.3389/fpls.2022.888710.
11. Kourani,M.;Mohareb,F.;Rezwan,F.I.;Anastasiadi,M.;Hammond,J.P.GeneticandPhysiological
ResponsestoHeatStressinBrassicanapus.Front.PlantSci.2022,13,832147,doi:10.3389/fpls.2022.832147.
12. Son,S.;Park,S.R.PlantTranslationalReprogrammingforStressResilience.Front.PlantSci.2023,14,
1151587,doi:10.3389/fpls.2023.1151587.
13. Tu,M.;Du,C.;Yu,B.;Wang,G.;Deng,Y.;Wang,Y.;Chen,M.;Chang,J.;Yang,G.;He,G.;etal.Current
AdvancesintheMolecularRegulationofAbioticStressToleranceinSorghumviaTranscriptomic,
Proteomic,andMetabolomicApproaches.Front.PlantSci.2023,14,1147328,doi:10.3389/fpls.2023.1147328.
14. Jin,X.;Wang,Z.;Li,X.;Ai,Q.;Wong,D.C.J.;Zhang,F.;Yang,J.;Zhang,N.;Si,H.CurrentPerspectivesof
lncRNAsinAbioticandBioticStressToleranceinPlants.Front.PlantSci.2024,14,1334620,
doi:10.3389/fpls.2023.1334620.
15. Hirsch,C.N.;RobinBuell,C.TappingthePromiseofGenomicsinSpecieswithComplex,Nonmodel
Genomes.Annu.Rev.Pla ntBiol.2013,64,89–110,doi:10.1146/annurevarplant050312120237.
16. Kress,W.J.;Soltis,D.E.;Kersey,P.J.;Wegrzyn,J.L.;LeebensMack,J.H.;Gostel,M.R.;Liu,X.;Soltis,P.S.
GreenPlantGenomes:WhatWeKnowinanEraofRapidlyExpandingOpportunities.Proc.Natl.Acad.Sci.
U.S.A.2022,119,e2115640118,doi:10.1073/pnas.2115640118.
17. Pellicer,J.;Hidalgo,O.;Dodsworth,S.;Leitch,I.GenomeSizeDiversityandItsImpactontheEvolutionof
LandPlants.Genes2018,9,88,doi:10.3390/genes9020088.
18. Margulis,L.OriginofEukaryoticCells:EvidenceandResearchImplicationsforaTheoryoftheOriginand
EvolutionofMicrobial,Plant,andAnimalCellsonthePrecambrianEarth,1sted.;YaleUniv.Press:NewHaven,
U.S.A.,1970.
19. McFadden,G.I.PrimaryandSecondaryEndosymbiosisandtheOriginofPlastids.J.Phycol.2001,37,951–
959,doi:10.1046/j.15298817.2001.01126.x.
20. Rockwell,N.C.;Lagarias,J.C.;Bhaacharya,D.PrimaryEndosymbiosisandtheEvolutionofLightand
OxygenSensinginPhotosyntheticEukaryotes.Front.Ecol.Evol.2014,2,doi:10.3389/fevo.2014.00066.
21. Best,C.;Mizrahi,R.;OsterseerBiran,O.WhysoComplex?TheIntricacyofGenomeStructureandGene
Expression,AssociatedwithAngiospermMitochondria,MayRelatetotheRegulationofEmbryo
QuiescenceorDormancy—IntrinsicBlockstoEarlyPlantLife.Plants2020,9,598,
doi:10.3390/plants9050598.
22. Dobrogojski,J.;Adamiec,M.;Luciński,R.TheChloroplastGenome:AReview.ActaPhysiol.Plant.2020,42,
98,doi:10.1007/s1173802003089x.
23. Provan,J.;Powell,W.;Hollingsworth,P.M.ChloroplastMicrosatellites:NewToolsforStudiesinPlant
EcologyandEvolution.TrendsEcol.Evol.2001,16,142–147,doi:10.1016/S01695347(00)020978.
24. Asaf,S.;Khan,A.L.;AaqilKhan,M.;MuhammadImran,Q.;Kang,S.M.;AlHosni,K.;Jeong,E.J.;Lee,K.E.;
Lee,I.J.ComparativeAnalysisofCompletePlastidGenomesfromWildSoybean(GlycineSoja)andNine
OtherGlycineSpecies.PLoSONE2017,12,e0182281,doi:10.1371/journal.pone.0182281.
25. Daniell,H.;Lin,C.S.;Yu,M.;Chang,W.J.ChloroplastGenomes:Diversity,Evolution,andApplications
inGeneticEngineering.GenomeBiol2016,17,134,doi:10.1186/s1305901610042.
26. Rurek,M.ParticipationofNonCodingRNAsinPlantOrganelleBiogenesis.ActaBiochim.Pol.2016,63,
653–663,doi:10.18388/abp.2016_1346.
27. Barkan,A.;GoldschmidtClermont,M.ParticipationofNuclearGenesinChloroplastGeneExpression.
Biochimie2000,82,559–572,doi:10.1016/S03009084(00)006027.
28. Wats on,S.J.;Sowden,R.G.;Jarvis,P.AbioticStressInducedChloroplastProteomeRemodelling:A
MechanisticOverview.J.Exp.Bot.2018,69,2773–2781,doi:10.1093/jxb/ery053.
29. Cho,K.S.;Cho,J.H.;Im,J.S.;Choi,J.G.;Park,Y.E.;Hong,S.Y.;Kwon,M.;Kang,J.H.;Park,T.H.The
CompleteMitochondrialGenomeSequencesofPotato(SolanumtuberosumL.,Solanaceae).Mitochondrial
DNAPartB2017,2,781–782,doi:10.1080/23802359.2017.1398607.
30. Logan,D.C.PlantMitochondrialDynamics.Biochim.Biophys.Acta‐MolecularCellResearch2006,1763,430–
441,doi:10.1016/j.bbamcr.2006.01.003.
31. Sloan,D.B.;Alverson,A.J.;Chuckalovcak,J.P.;Wu,M.;McCauley,D.E.;Palmer,J.D.;Taylor,D.R.Rapid
EvolutionofEnormous,MultichromosomalGenomesinFloweringPlantMitochondriawithExceptionally
HighMutationRates.PLoSBiol2012,10,e1001241,doi:10.1371/journal.pbio.1001241.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
31
32. Sloan,D.B.;Keller,S.R.;Berardi,A.E.;Sanderson,B.J.;Karpovich,J.F.;Taylor, D.R.DenovoTranscriptome
AssemblyandPolymorphismDetectionintheFloweringPlantSilenevulgaris(Caryophyllaceae).Mol.Ecol.
Res.2012,12,333–343,doi:10.1111/j.17550998.2011.03079.x.
33. Imadi,S.R.;Kazi,A.G.;Ahanger,M.A.;Gucel,S.;Ahmad,P.PlantTranscriptomicsandResponsesto
EnvironmentalStress:AnOverview.J.Genet.2015,94,525–537,doi:10.1007/s1204101505456.
34. Schneider,G.F.;Dekker,C.DNASequencingwithNanopores.Nat.Biotechnol.2012,30,326–328,
doi:10.1038/nbt.2181.
35. Best,C.;Sultan,L.D.;Murik,O.;Osterseer,O.InsightsintotheMitochondrialTranscriptomeLandscapes
ofTwoBrassicalesPlantSpecies,Arabidopsisthaliana(var.Col0)andBrassicaoleracea(var.botrytis).Endocyt.
CellRes.2020,30,16–38,doi:10.1101/2020.10.22.346726.
36. Cahoon,A.;Nauss,J.;Stanley,C.;Qureshi,A.DeepTranscriptomeSequencingofTwoGreenAlgae,Chara
vulgarisandChlamydomonasreinhardtii,ProvidesNoEvidenceofOrganellarRNAEditing.Genes2017,8,
80,doi:10.3390/genes8020080.
37. Zhang,H.TheReviewofTranscriptomeSequencing:Principles,HistoryandAdvances.IOPConf.Ser.:
EarthEnviron.Sci.2019,332,042003,doi:10.1088/17551315/332/4/042003.
38. Booth,M.W.;Breed,M.F.;Kendrick,G.A.;Bayer,P.E.;SevernEllis,A.A.;Sinclair,E.A.TissueSpecic
TranscriptomeProlesIdentifyFunctionalDierencesKeytoUnderstandingWholePlantResponsetoLife
inVariableSalinity.BiologyOpen2022,11,bio059147,doi:10.1242/bio.059147.
39. Berkowi,O.;Xu,Y.;Liew,L.C.;Wang,Y.;Zhu,Y.;Hurgobin,B.;Lewsey,M.G.;Whelan,J.RNAseq
AnalysisofLaserMicrodissectedArabidopsisThalianaLeafEpidermis,MesophyllandVascula t ureDenes
TissuespecicTranscriptionalResponsestoMultipleStressTreatments.PlantJ.2021,107,938–955,
doi:10.1111/tpj.15314.
40. Wang,H.Z.;Dixon,R.A.On–OffSwitchesforSecondaryCellWa llBiosynthesis.Mol.Plant2012,5,297
303,doi:10.1093/mp/ssr098.
41. Růžička,K.;Ursache,R.;Hetko,J.;Helariua,Y.XylemDevelopmentfromtheCradletotheGrave.New
Phytol.2015,207,519–535,doi:10.1111/nph.13383.
42. Dinneny,J.R.;Yanofsky,M.F.Vascular Paerning:XylemorPhloem?Curr.Biol.2004,14,R112–R114,
doi:10.1016/j.cub.2004.01.017.
43. Eshed,Y.;Baum,S.F.;Perea,J.V.;Bowman,J.L.EstablishmentofPolarityinLateralOrgansofPlants.Curr.
Biol.2001,11,1251–1260,doi:10.1016/S09609822(01)00392X.
44. Eshed,Y.;Izhaki,A.;Baum,S.F.;Floyd,S.K.;Bowman,J.L.AsymmetricLeafDevelopmentandBlade
ExpansioninArabidopsisAreMediatedbyKANADIandYABBYActivities.Development2004,131,2997
3006,doi:10.1242/dev.01186.
45. Roszak,P.;Heo,J.;Blob,B.;Toyokura,K.;Sugiyama,Y.;DeLuisBalaguer,M.A.;Lau,W.W.Y.;Hamey,F.;
Cirrone,J.;Madej,E.;etal.CellbyCellDissectionofPhloemDevelopmentLinksaMaturationGradientto
CellSpecialization.Science2021,374,eaba5531,doi:10.1126/science.aba5531.
46. Chen,J.;Liu,F.;Tang,Y.;Yuan,Y.;Guo,Q.TranscriptomeSequencingandProlingofExpressedGenesin
PhloemandXylemofRamie(BoehmerianiveaL.Gaud).PLoSONE2014,9,e110623,
doi:10.1371/journal.pone.0110623.
47. Kalckar,H.M.GalactoseMetabolismandCell“Sociology:Galactose,OneoftheFreaksofEvolution,
FurnishesaSimpleIllustrationoftheExtravagancesofNature.Science1965,150,305–313,
doi:10.1126/science.150.3694.305.
48. Web er,H.FayAcidDerivedSignalsinPlants.TrendPlantSci.2002,7,217–224,doi:10.1016/S1360
1385(02)022501.
49. Lin,T.;Lashbrook,C.C.;Cho,S.K.;Butler,N.M.;Sharma,P.;Muppirala,U.;Severin,A.J.;Hannapel,D.J.
TranscriptionalAnalysisofPhloemAssociatedCellsofPotato.BMCGenomics2015,16,665,
doi:10.1186/s1286401518442.
50. Mishima,K.;Fujiwara,T.;Iki,T.;Kuroda,K.;Yam a s hi ta,K.;Tamur a,M.;Fujisawa,Y.;Wa tana be,A.
TranscriptomeSequencingandProlingofExpressedGenesinCambialZoneandDierentiatingXylem
ofJapaneseCedar(Cryptomeriajaponica).BMCGenomics2014,15,5920,doi:10.1186/1471216415219.
51. Huang,Q.;Huang,X.;Deng,J.;Liu,H.;Liu,Y.;Yu,K.;Huang,B.DierentialGeneExpressionbetween
LeafandRhizomeinAtract ylodesLancea:AComparativeTranscriptomeAnalysis.Front.PlantSci.2016,7,
348,doi:10.3389/fpls.2016.00348.
52. Mason,P.J.;Furtado,A.;Marquardt,A.;HodgsonKratky,K.;Hoang,N.V.;Botha,F.C.;Papa,G.;Mortimer,
J.C.;Simmons,B.;Henry,R.J.Variatio n inSugarcaneBiomassCompositionandEnzymaticSaccharication
ofLeaves,InternodesandRoots.Biotechnol.Biofuels2020,13,201,doi:10.1186/s13068020018372.
53. SchmidtRohr,K.O2andOtherHighEnergyMoleculesinPhotosynthesis:WhyPlantsNeedTwo
Photosystems.Life2021,11,1191,doi:10.3390/life11111191.
54. Denyer,T.;Ma,X.;Klesen,S.;Scacchi,E.;Nieselt,K.;Timmermans,M.C.P.SpatiotemporalDevelopmental
TrajectoriesintheArabidopsisRootRevealedUsingHighThroughputSingleCellRNASequencing.Dev.
Cell2019,48,840852.e5,doi:10.1016/j.devcel.2019.02.022.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
32
55. Shulse,C.N.;Cole,B.J.;Ciobanu,D.;Lin,J.;Yoshinaga,Y.;Gouran,M.;Turco,G.M.;Zhu,Y.;OMalley,R.C.;
Brady,S.M.;etal.HighThroughputSingleCellTranscriptomeProlingofPlantCellTypes.CellRep.2019,
27,22412247.e4,doi:10.1016/j.celrep.2019.04.054.
56. Efroni,I.;Mello,A.;Nawy,T.;Ip,P.L.;Rahni,R.;DelRose,N.;Powers,A.;Satija,R.;Birnbaum,K.D.Root
RegenerationTriggersanEmbryolikeSequenceGuidedbyHormonalInteractions.Cell2016,165,1721–
1733,doi:10.1016/j.cell.2016.04.046.
57. Kor,A.;Hochholdinger,F.;Yu,P.CellTypeSpecicTranscriptomicsofLateralRootFormationand
Plasticity.Front.PlantSci.2019,10,21,doi:10.3389/fpls.2019.00021.
58. Ten orioBerrío,R.;Versta en,K.;Vandamme,N.;Pevernagie,J.;Achon,I.;Van Duyse,J.;VanIsterdael,G.;
Saeys,Y.;DeVeylder,L.;Inzé,D.;etal.SingleCellTranscriptomicsShedsLightontheIdentityand
MetabolismofDevelopingLeafCells.PlantPhysiol.2022,188,898–918,doi:10.1093/plphys/kiab489.
59. Breeze,E.;Harrison,E.;McHaie,S.;Hughes,L.;Hickman,R.;Hill,C.;Kiddle,S.;Kim,Y.;Penfold,C.A.;
Jenkins,D.;etal.HighResolutionTemporalProlingofTranscriptsduringArabidopsisLeafSenescence
RevealsaDistinctChronologyofProcessesandRegulation.PlantCell2011,23,873–894,
doi:10.1105/tpc.111.083345.
60. Chrobok,D.;Law,S.R.;Brouwer,B.;Lindén,P.;Ziolkowska,A.;Liebsch,D.;Narsai,R.;Szal,B.;Mori,T.;
Rouhier,N.;etal.DissectingtheMetabolicRoleofMitochondriaduringDevelopmentalLeafSenescence.
PlantPhysiol.2016,172,2132–2153,doi:10.1104/pp.16.01463.
61. Mason,P.J.;Hoang,N.V.;Botha,F.C.;Furtado,A.;Marquardt,A.;Henry,R.J.ComparisonoftheRoot,Leaf
andInternodeTranscriptomesinSugarcane(SaccharumSpp.Hybrids).Curr.Res.Biotech.2022,4,167–178,
doi:10.1016/j.crbiot.2022.02.005.
62. Li,P.;Ponnala,L.;Gandotra,N.;Wang,L.;Si,Y.;Taus ta,S.L.;Kebrom,T.H.;Provart,N.;Patel,R.;Myers,
C.R.;etal.TheDevelopmentalDynamicsoftheMaizeLeafTranscriptome.Nat.Genet.2010,42,1060–1067,
doi:10.1038/ng.703.
63. Huang,Y.J.;Liu,L.L.;Huang,J.Q.;Wang, Z.J.;Chen,F.F.;Zhang,Q.X.;Zheng,B.S.;Chen,M.Useof
TranscriptomeSequencingtoUnderstandthePistillateFloweringinHickory(CaryacathayensisSarg.).BMC
Genomics2013,14,691,doi:10.1186/1471216414691.
64. Melzer,S.;Lens,F.;Gennen,J.;Vanneste,S.;Rohde,A.;Beeckman,T.FloweringTimeGenesModulate
MeristemDeterminacyandGrowthForminArabidopsisthaliana.Nat.Genet.2008,40,1489–1492,
doi:10.1038/ng.253.
65. MutasaGogens,E.;Hedden,P.GibberellinasaFactorinFloralRegulatoryNetworks.J.Exp.Bot.2009,
60,1979–1989,doi:10.1093/jxb/erp040.
66. Srikanth,A.;Schmid,M.RegulationofFloweringTime:AllRoadsLeadtoRome.Cell.Mol.LifeSci.2011,
68,2013–2037,doi:10.1007/s000180110673y.
67. Kim,D.H.;Doyle,M.R.;Sung,S.;Amasino,R.M.Vernalization:WinterandtheTimingofFloweringin
Plants.Annu.Rev.CellDev.Biol.2009,25,277–299,doi:10.1146/annurev.cellbio.042308.113411.
68. Liu,K.;Feng,S.;Pan,Y.;Zhong,J.;Chen,Y.;Yuan,C.;Li,H.TranscriptomeAnalysisandIdenticationof
GenesAssociatedwithFloralTransitionandFlowerDevelopmentinSugarApple(AnnonasquamosaL.).
Front.PlantSci.2016,7,1695,doi:10.3389/fpls.2016.01695.
69. Jiao,Y.;Hu,Q.;Zhu,Y.;Zhu,L.;Ma,T.;Zeng,H.;Zang,Q.;Li,X.;Lin,X.ComparativeTranscriptomic
AnalysisoftheFlowerInductionandDevelopmentoftheLeiBamboo(Phyllostachysviolascens).BMC
Bioinformatics2019,20,687,doi:10.1186/s128590193261z.
70. Roberts,W.R.;Roalson,E.H.ComparativeTranscriptomeAnalysesofFlowerDevelopmentinFourSpecies
ofAchimenes(Gesneriaceae).BMCGenomics2017,18,240,doi:10.1186/s1286401736238.
71. Li,H.;Yuan,J.;Wu,M.;Han,Z.;Li,L.;Jiang,H.;Jia,Y.;Han,X.;Liu,M.;Sun,D.;etal.Transcriptomeand
DNAMethylomeRevealInsightsintoYieldHeterosisintheCurdsofBroccoli(BrassicaoleraceaLvar.
italica).BMCPlantBiol.2018,18,168,doi:10.1186/s1287001813844.
72. Boesewinkel,F.D.;Bouman,F.TheSeed:Structure.InEmbryologyofAngiosperms,1sted.;Johri,B.M.,Ed.;
SpringerBerlinHeidelberg:Berlin,Heidelberg,Germany,1984;pp.567–610.
73. MartínGómez,J.J.;GutiérrezdelPozo,D.;Ucchesu,M.;Bacchea,G.;CabelloSáenzdeSantamaría,F.;
Tocino,Á.;Cervantes,E.SeedMorphologyintheVitaceaeBasedonGeometricModels.Agronomy2020,10,
739,doi:10.3390/agronomy10050739.
74. PeiratsLlobet,M.;Yi,C.;Liew,L.C.;Berkowi,O.;Narsai,R.;Lewsey,M.G.;Whelan,J.SpatiallyResolved
TranscriptomicAnalysisoftheGerminatingBarleyGrain.Nucl.AcidsRes.2023,51,7798–7819,
doi:10.1093/nar/gkad521.
75. Zhu,M.;Taylor,I.W.;Benfey,P.N.SingleCellGenomicsRevolutionizesPlantDevelopmentStudiesacross
Scales.Development2022,149,dev200179,doi:10.1242/dev.200179.
76. Bes,N.S.;Berkowi,O.;Liu,R.;Collins,H.M.;Skadhauge,B.;Dockter,C.;Burton,R.A.;Whelan,J.;
Fincher,G.B.IsolationofTissuesandPreservationofRNAfromIntact,GerminatedBarleyGrain.PlantJ.
2017,91,754–765,doi:10.1111/tpj.13600.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
33
77. Le,B.H.;Cheng,C.;Bui,A.Q.;Wag mais ter, J.A.;Henry,K.F.;Pelletier,J.;Kwong,L.;Belmonte,M.;
Kirkbride,R.;Horvath,S.;etal.GlobalAnalysisofGeneActivityduringArabidopsisSeedDevelopmentand
IdenticationofSeedSpecicTranscriptionFactors.Proc.Natl.Acad.Sci.U.S.A.2010,107,8063–8070,
doi:10.1073/pnas.1003530107.
78. Narsai,R.;Gouil,Q.;Secco,D.;Srivastava,A.;Karpievitch,Y.V.;Liew,L.C.;Lister,R.;Lewsey,M.G.;
Whelan,J.ExtensiveTranscriptomicandEpigenomicRemodellingOccursduringArabidopsisthaliana
Germination.GenomeBiol.2017,18,172,doi:10.1186/s1305901713023.
79. Liu,R.;Lu,J.;Xing,J.;Du,M.;Wang,M.;Zhang,L.;Li,Y.;Zhang,C.;Wu,Y.Transcriptomeand
MetabolomeAnalysesRevealingthePotentialMechanismofSeedGerminationinPolygonatumcyrtonema.
Sci.Rep.2021,11,12161,doi:10.1038/s41598021915981.
80. Wang,X.;Li,N.;Li,W.;Gao,X.;Cha,M.;Qin,L.;Liu,L.AdvancesinTranscriptomicsintheResponseto
StressinPlants.GlobalMed.Genet.2020,07,030–034,doi:10.1055/s00401714414.
81. Guo,J.;Huang,Z.;Sun,J.;Cui,X.;Liu,Y.ResearchProgressandFutureDevelopmentTrendsinMedicinal
PlantTranscriptomics.Front.PlantSci.2021,12,691838,doi:10.3389/fpls.2021.691838.
82. Choudhri,P.;Rani,M.;Sangwan,R.S.;Kumar,R.;Kumar,A.;Chhokar,V.DeNovoSequencing,Assembly
andCharacterisationofAloeVeraTranscriptomeandAnalysisofExpressionProlesofGenesRelatedto
SaponinandAnthraquinoneMetabolism.BMCGenomics2018,19,427,doi:10.1186/s1286401848192.
83. Singh,P.;Singh,G.;Bhandawat,A.;Singh,G.;Parmar,R.;Seth,R.;Sharma,R.K.SpatialTranscriptome
AnalysisProvidesInsightsofKeyGene(s)InvolvedinSteroidalSaponinBiosynthesisinMedicinally
ImportantHerbTrilliumgovanianum.Sci.Rep.2017,7,45295,doi:10.1038/srep45295.
84. Liao,W.;Mei,Z.;Miao,L.;Liu,P.;Gao,R.ComparativeTranscriptomeAnalysisofRoot,Stem,andLeaf
TissuesofEntadaPhaseoloidesRevealsPotentialGenesInvolvedinTriterpenoidSaponinBiosynthesis.
BMCGenomics2020,21,639,doi:10.1186/s12864020070561.
85. Yan,J.;Qian,L.;Zhu,W.;Qiu,J.;Lu,Q.;Wang,X.;Wu,Q.;Ruan,S.;Huang,Y.IntegratedAnalysisofthe
TranscriptomeandMetabolomeofPurpleandGreenLeavesofTetrastigmahemsleyanumRevealsGene
ExpressionPaernsInvolvedinAnthocyaninBiosynthesis.PLoSONE2020,15,e0230154,
doi:10.1371/journal.pone.0230154.
86. Zhou,P.;Pu,T.;Gui,C.;Zhang,X.;Gong,L.TranscriptomeAnalysisRevealsBiosynthesisofImportant
BioactiveConstituentsandMechanismofStemFormationofDendrobiumhuoshanense.Sci.Rep.2020,10,
2857,doi:10.1038/s41598020597372.
87. Wang,C.;Peng,D.;Zhu,J.;Zhao,D.;Shi,Y.;Zhang,S.;Ma,K.;Wu,J.;Huang,L.TranscriptomeAnalysis
ofPolygonatumcyrtonemaHua:IdenticationofGenesInvolvedinPolysaccharideBiosynthesis.Plant
Methods2019,15,65,doi:10.1186/s1300701904419.
88. Hong,M.;Tan, H.;Li,S.;Cheung,F.;Wa ng,N.;Nagamatsu,T.;Feng,Y.CancerStemCells:ThePotential
Tar getsofChineseMedicinesandTheirActiveCompounds.Int.J.Mol.Sci.2016,17,893,
doi:10.3390/ijms17060893.
89. Zheng,L.;Zhou,C.;Li,T.;Yuan,Z.;Zhou,H.;Tamad a ,Y.;Zhao,Y.;Wang,J.;Zheng,Q.;Hao,X.;etal.
GlobalTranscriptomeAnalysisRevealsDynamicGeneExpressionProlingandProvidesInsightsinto
BiosynthesisofResveratrolandAnthraquinonesinaMedicinalPlantPolygonumcuspidatum.Ind.Cropsand
Prod.2021,171,113919,doi:10.1016/j.indcrop.2021.113919.
90. Umar,O.;Ranti,L.;Abdulbaki,A.;Bola,A.;Abdulhamid,A.;Biola,M.StressesinPlants:BioticandAbiotic.
InCurrentTrendsinWheatResearch;ed.MahmoodurRahmanAnsari,GovernmentCollegeUniversity,
Faisalabad:IntechOpen2021,doi:10.5772/intechopen.100501.
91. Zhu,J.K.SaltandDroughtStressSignalTransductioninPlants.Annu.Rev.PlantBiol.2002,53,247–273,
doi:10.1146/annurev.arplant.53.091401.143329.
92. Gull,A.;AhmadLone,A.;UlIslamWani, N.BioticandAbioticStressesinPlants.InAbioticandBioticStress
inPlants,1sted.;BoscodeOliveira,A.,Ed.;IntechOpen,2019.
93. EMBLEBI.ExpressionAtlas .Geneexpressionacrossspeciesandbiologicalconditions.Availableonline:
hps://www.ebi.ac.uk/gxa/home(accessedon9012024).
94. ELIXIRRecommendedInteroperabilityResource.g:Proler.Availableonline:
hps://biit.cs.ut.ee/gproler/gost(accessedon9012024).
95. Song,Y.;Ma,B.;Guo,Q.;Zhou,L.;Lv,C.;Liu,X.;Wang,J.;Zhou,X.;Zhang,C.UVBInducesthe
ExpressionofFlavonoidBiosyntheticPathwaysinBlueberry(Vacciniumcorymbosum)Calli.Front.PlantSci.
2022,13,1079087,doi:10.3389/fpls.2022.1079087.
96. Dong,Y.;Gupta,S.;Wargent,J.J.;Puerill,J.;Macknight,R.C.;Gechev,T.S.;MuellerRoeber,B.;Dijkwel,
P.P.ComparativeTranscriptomicsofMultiStressResponsesinPachycladoncheesemaniiandArabidopsis
thaliana.Int.J.Mol.Sci.2023,24,11323,doi:10.3390/ijms241411323.
97. Lorence,A.;Chevone,B.I.;Mendes,P.;Nessler,C.L.Myo‐InositolOxygenaseOersaPossibleEntryPoint
intoPlantAscorbateBiosynthesis.PlantPhysiol.2004,134,1200–1205,doi:10.1104/pp.103.033936.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
34
98. Zhou,H.;Yu,L.;Liu,S.;Zhu,A.;Yan g , Y.;Chen,C.;Yang,A.;Liu,L.;Yu,F.TranscriptomeComparison
AnalysesinUVBInducedAsAAccumulationofLactucasativaL.BMCGenomics2023,24,61,
doi:10.1186/s12864023091337.
99. DeepVenn‐CreateAreaProportionalVennDiagramsUsingtheDeepLearningFrameworkTensorow.
Availableonline:hp://www.deepvenn.com/(accessedon8012024).
100. Verma,S.;Nizam,S.;Ve rma, P.K.BioticandAbioticStressSignalinginPlants.InStressSignalinginPlants:
GenomicsandProteomicsPerspective,Volume1,1sted.;Sarwat,M.,Ahmad,A.,Abdin,M.,Eds.;SpringerNew
York : NewYork,NY,U.S.A.,2013;pp.25–49.
101. Shanker,A.K.;Maheswari,M.;Yadav,S.K.;Desai,S.;Bhanu,D.;Aal,N.B.;Venkateswarlu,B.Drought
StressResponsesinCrops.Funct.Integr.Genomics2014,14,11–22,doi:10.1007/s101420130356x.
102. Zhu,H.;Zhou,Y.;Zhai,H.;He,S.;Zhao,N.;Liu,Q.TranscriptomeProlingRevealsInsightsintothe
MolecularMechanismofDroughtToleranceinSweetpotato.J.Integr.Agri.2019,18,9–23,
doi:10.1016/S20953119(18)619343.
103. Kumar,M.;Chauhan,A.S.;Kumar,M.;Yusuf,M.A.;Sanyal,I.;Chauhan,P.S.TranscriptomeSequencing
ofChickpea(CicerarietinumL.)GenotypesforIdenticationofDroughtResponsiveGenesUnderDrought
StressCondition.PlantMol.Biol.Rep.2019,37,186–203,doi:10.1007/s11105019011474.
104. Li,X.;Liu,L.;Sun,S.;Li,Y.;Jia,L.;Ye,S.;Yu,Y.;Dossa,K.;Luan,Y.LeafTranscriptomeProlesofPhoebe
bourneiProvideInsightsintoTempo ralDroughtStressResponses.Front.PlantSci.2022,13,1010314,
doi:10.3389/fpls.2022.1010314.
105. Kumar,J.;Gunapati,S.;Kianian,S.F.;Singh,S.P.ComparativeAnalysisofTranscriptomeinTwoWheat
GenotypeswithContrastingLevelsofDroughtTolerance.Protoplasma2018,255,1487–1504,
doi:10.1007/s007090181237x.
106. Tyagi,A.;Kumar,S.;Mohapatra,T.Biochemical,PhysiologicalandMolecularResponsesofRiceto
Termina lDroughtStress:TranscriptomeProlingofLeafandRootRevealstheKeyStressResponsive
Genes.J.Pla ntBiochem.Biotechnol.2023,doi:10.1007/s1356202300865x.
107. Miao,Z.;Xu,W.;Li,D.;Hu,X.;Liu,J.;Zhang,R.;Tong,Z.;Dong,J.;Su,Z.;Zhang,L.;etal.DeNovo
TranscriptomeAnalysisofMedicagofalcataRevealsNovelInsightsabouttheMechanismsUnderlying
AbioticStressResponsivePathway.BMCGenomics2015,16,818,doi:10.1186/s128640152019x.
108. DeOliveiraBusao,L.A.;DeAlmeida,R.M.C.;Weber,R.L.M.;Favero,D.;Bredemeier,C.;DaSilva
Giordano,C.P.;BodaneseZaneini,M.H.TheSoybeanTranscriptogramAllowsaWideGenometoSingle
GeneAnalysisThatEvincesTimeDependentDroughtResponse.PlantMol.Biol.Rep.2022,40,1–27,
doi:10.1007/s11105021012974.
109. Xu,X.;Legay,S.;Sergeant,K.;Zorzan,S.;Leclercq,C.C.;Charton,S.;Giarola,V.;Liu,X.;Challabathula,D.;
Renaut,J.;etal.MolecularInsightsintoPlantDesiccationTolerance:Transcriptomics,Proteomicsand
TargetedMetaboliteProlinginCraterostigmaplantagineum.PlantJ.2021,107,377–398,
doi:10.1111/tpj.15294.
110. Fang,S.;Zhao,P.;Tan, Z.;Peng,Y.;Xu,L.;Jin,Y.;Wei,F.;Guo,L.;Yao,X.CombiningPhysioBiochemical
CharacterizationandTranscriptomeAnalysisRevealtheResponsestoVarying DegreesofDroughtStress
inBrassicanapusL.Int.J.Mol.Sci.2022,23,8555,doi:10.3390/ijms23158555.
111. Yang,Y.;Xia,J.;Fang,X.;Jia,H.;Wang, X.;Lin,Y.;Liu,S.;Ge,M.;Pu,Y.;Fang,J.;etal.DroughtStressin
‘ShineMuscatGrapevine:ConsequencesandaNovelMitigationStrategy–5AminolevulinicAcid.Front.
PlantSci.2023,14,1129114,doi:10.3389/fpls.2023.1129114.
112. Young , L.W.;Wilen,R.W.;BonhamSmith,P.C.HighTemperatu reStressofBrassicanapusduringFlowering
ReducesMicro‐andMegagametophyteFertility,InducesFruitAbortion,andDisruptsSeedProduction.J.
Exp.Bot.2004,55,485–495,doi:10.1093/jxb/erh038.
113. Wu,L.;Taohua,Z.;Gui,W.;Xu,L.;Li,J.;Ding,Y.FivePectinaseGeneExpressionsHighlyRespondingto
HeatStressinRiceFloralOrgansRevealedbyRNASeqAnalysis.Biochem.Biophys.Res.Commun.2015,463,
407–413,doi:10.1016/j.bbrc.2015.05.085.
114. Bita,C.E.;Gerats,T.PlantTolerancetoHighTemperatur einaChangingEnvironment:Scientic
FundamentalsandProductionofHeatStressTolerantCrops.Front.Pla ntSci.2013,4,273,
doi:10.3389/fpls.2013.00273.
115. Guan,Q.;Lu,X.;Zeng,H.;Zhang,Y.;Zhu,J.HeatStressInductionofmiR398TriggersaRegulatoryLoop
ThatIsCriticalforThermotoleranceinArabidopsis.PlantJ.2013,74,840–851,doi:10.1111/tpj.12169.
116. Asseng,S.;Foster,I.;Turner,N.C.TheImpactofTem peratureVariabilityonWheatYields.GlobalChange
Biology2011,17,997–1012,doi:10.1111/j.13652486.2010.02262.x.
117. Xing,X.;Ding,Y.;Jin,J.;Song,A.;Chen,S.;Chen,F.;Fang,W.;Jiang,J.PhysiologicalandTranscripts
AnalysesRevealtheMechanismbyWhichMelatoninAlleviatesHeatStressinChrysanthemumSeedlings.
Front.PlantSci.2021,12,673236,doi:10.3389/fpls.2021.673236.
118. Frank,G.;Pressman,E.;Ophir,R.;Althan,L.;Shaked,R.;Freedman,M.;Shen,S.;Firon,N.Transcriptional
ProlingofMaturingTomato(SolanumLycopersicumL.)MicrosporesRevealstheInvolvementofHeat
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
35
ShockProteins,ROSScavengers,Hormones,andSugarsintheHeatStressResponse.J.Exp.Bot.2009,60,
3891–3908,doi:10.1093/jxb/erp234.
119. Valdé s pez,O.;Batek,J.;GomezHernandez,N.;Nguyen,C.T.;IsidraArellano,M.C.;Zhang,N.;Joshi,
T.;Xu,D.;Hixson,K.K.;Wei,K.K.;etal.SoybeanRootsGrownunderHeatStressShowGlobalChanges
inTheirTranscriptionalandProteomicProles.Front.PlantSci.2016,7,517,doi:10.3389/fpls.2016.00517.
120. Sewelam,N.;Brilhaus,D.;Bräutigam,A.;Alseekh,S.;Fernie,A.R.;Maurino,V.G.MolecularPlant
ResponsestoCombinedAbioticStressesPutaSpotlightonUnknownandAbundantGenes.J.Exp.Bot.
2020,71,50985112,doi:10.1093/jxb/eraa250.
121. Rurek,M.;Czołpińska,M.;Pawłowski,T.;Krzesiński,W.;Spiżewski,T.ColdandHeatStressDiversely
AlterBothCauliowerRespirationandDistinctMitochondrialProteinsIncludingOXPHOSComponents
andMatrixEnzymes.Int.J.Mol.Sci.2018,19,877,doi:10.3390/ijms19030877.
122. Rashid,F.A.A.;Crisp,P.A.;Zhang,Y.;Berkowi,O.;Pogson,B.J.;Day,D.A.;Masle,J.;Dewar,R.C.;
Whelan,J.;Atkin,O.K.;etal.MolecularandPhysiologicalResponsesduringThermalAcclimationofLeaf
PhotosynthesisandRespirationinRice.PlantCellEnviron.2020,43,594–610,doi:10.1111/pce.13706.
123. Mikołajczak,K.;Kuczyńska,A.;Krajewski,P.;Kempa,M.;Nuc,M.TranscriptomeProlingDisclosedthe
EectofSingleandCombinedDroughtandHeatStressonReprogrammingofGenesExpressioninBarley
FlagLeaf.Front.PlantSci.2023,13,1096685,doi:10.3389/fpls.2022.1096685.
124. Mahalingam,R.;Duhan,N.;Kaundal,R.;Smertenko,A.;Nazarov,T.;Bregier,P.HeatandDrought
InducedTranscriptomicChangesinBarleyVar ieties withContrastingStressResponsePhenotypes.Front.
PlantSci.2022,13,1066421,doi:10.3389/fpls.2022.1066421.
125. Martin,R.C.;Kronmiller,B.A.;Dombrowski,J.E.TranscriptomeAnalysisofLoliumtemulentumExposedto
aCombinationofDroughtandHeatStress.Plants2021,10,2247,doi:10.3390/plants10112247.
126. Vicente,R.;Bolger,A.M.;MartínezCarrasco,R.;Pérez,P.;Gutiérrez,E.;Usadel,B.;Morcuende,R.DeNovo
TranscriptomeAnalysisofDurumWheatFlagLeavesProvidesNewInsightsIntotheRegulatoryResponse
toElevatedCO2andHighTemperature.Front.PlantSci.2019,10,1605,doi:10.3389/fpls.2019.01605.
127. Chen,S.;Li,H.HeatStressRegulatestheExpressionofGenesatTranscriptionalandPostTranscriptional
Levels,RevealedbyRNASeqinBrachypodiumdistachyon.Front.PlantSci.2017,7,2067,
doi:10.3389/fpls.2016.02067.
128. Obaid,A.Y.;Sabir,J.S.M.;Atef,A.;Liu,X.;Edris,S.;ElDomyati,F.M.;Mutwakil,M.Z.;Gadalla,N.O.;
Hajrah,N.H.;AlKordy,M.A.;etal.AnalysisofTranscriptionalResponsetoHeatStressinRhazyastricta.
BMCPlantBiol.2016,16,252,doi:10.1186/s1287001609386.
129. Chinnusamy,V.;Zhu,J.;Zhu,J.K.ColdStressRegulationofGeneExpressioninPlants.TrendPlantSci.
2007,12,444–451,doi:10.1016/j.tplants.2007.07.002.
130. Xu,W.;Li,R.;Zhang,N.;Ma,F.;Jiao,Y.;Wang, Z.TranscriptomeProlingofVitisamurensis,anExtremely
ColdTolerantChineseWildVitisSpecies,RevealsCandidateGenesandEventsThatPotentiallyConnected
toColdStress.PlantMol.Biol.2014,86,527–541,doi:10.1007/s1110301402452.
131. Cheng,Z.;Lei,N.;Li,S.;Liao,W.;Shen,J.;Peng,M.TheRegulatoryEectsofMeTCP4onColdStress
ToleranceinArabidopsisThaliana:ATranscriptomeAnalysis.PlantPhysiol.Biochem.2019,138,9–16,
doi:10.1016/j.plaphy.2019.02.015.
132. Du,J.;Li,X.;Li,T.;Yu,D.;Han,B.GenomeWideTranscriptomeProlingProvidesOverwintering
MechanismofAgropyronMongolicum.BMCPlantBiol.2017,17,138,doi:10.1186/s1287001710863.
133. Naydenov,N.G.;Khanam,S.;Siniauskaya,M.;Nakamura,C.ProlingofMitochondrialTranscriptomein
GerminatingWheatEmbryosandSeedlingsSubjectedtoCold,SalinityandOsmoticStresses.GenesGenet.
Syst.2010,85,31–42,doi:10.1266/ggs.85.31.
134. McDowell,J.M.;Dangl,J.L.SignalTransductioninthePlantImmuneResponse.TrendBiochem.Sci.2000,
25,79–82,doi:10.1016/S09680004(99)015327.
135. Sato,M.;Tsuda,K.;Wang,L.;Coller,J.;Watanab e,Y.;Glazebrook,J.;Katagiri,F.NetworkModelingReveals
PrevalentNegativeRegulatoryRelationshipsbetweenSignalingSectorsinArabidopsisImmuneSignaling.
PLoSPathog.2010,6,e1001011,doi:10.1371/journal.ppat.1001011.
136. Pieterse,C.M.J.;LeonReyes,A.;Van derEnt,S.;Van Wees,S.C.M.NetworkingbySmallMolecule
HormonesinPlantImmunity.Nat.Chem.Biol.2009,5,308–316,doi:10.1038/nchembio.164.
137. Guo,W.L.;Chen,B.H.;Chen,X.J.;Guo,Y.Y.;Ya n g,H.L.;Li,X.Z.;Wang,G.Y.TranscriptomeProling
ofPumpkin(CucurbitamoschataDuch.)LeavesInfectedwithPowderyMildew.PLoSONE2018,13,
e0190175,doi:10.1371/journal.pone.0190175.
138. Zhang,H.;Yang,Y.;Wang,C.;Liu,M.;Li,H.;Fu,Y.;Wang ,Y.;Nie,Y.;Liu,X.;Ji,W.LargeScale
TranscriptomeComparisonRevealsDistinctGeneActivationsinWheatRespondingtoStripeRustand
PowderyMildew.BMCGenomics2014,15,898,doi:10.1186/1471216415898.
139. Kumar,A.;Kanak,K.R.;Arunachalam,A.;Dass,R.S.;Lakshmi,P.T.V.ComparativeTranscriptome
ProlingandWeight edGeneCoExpressionNetworkAnalysistoIdentifyCoreGenesinMaize(Zeamays
L.)SilksInfectedbyMultipleFungi.Front.Pla ntSci.2022,13,985396,doi:10.3389/fpls.2022.985396.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
36
140. Koapalli,K.R.;Rakwal,R.;Satoh,K.;Shibato,J.;Koapalli,P.;Iwahashi,H.;Kikuchi,S.Transcriptional
ProlingofIndicaRiceCultivarIET8585(Ajaya)InfectedwithBacterialLeafBlightPathogenXanthomonas
oryzaepvoryzae.PlantPhysiol.Biochem.2007,45,834–850,doi:10.1016/j.plaphy.2007.07.013.
141. Yokot a ni,N.;Hasegawa,Y.;Sato,M.;Hirakawa,H.;Kouzai,Y.;Nishizawa,Y.;Yamamoto,E.;Naito,Y.;
Isobe,S.TranscriptomeAnalysisofClavibactermichiganensissubsp.michiganensisInfectedTomatoes:ARole
ofSalicylicAcidintheHostResponse.BMCPlantBiol.2021,21,476,doi:10.1186/s12870021032518.
142. Lu,L.;Yang,D.;Tang, D.;Li,S.;Chen,Z.TranscriptomeAnalysisofDierentRiceCultivarsProvidesNovel
InsightsintotheRiceResponsetoBacterialLeafStreakInfection.Funct.Integr.Genomics2020,20,681–693,
doi:10.1007/s1014202000744x.
143. Deng,S.;Li,Z.;Liu,X.;Yang,W.;Wang,Y.ComparativeTranscriptomeAnalysisRevealsPotentialGenes
ConferringResistanceorSusceptibilitytoBacterialCankerinTomato.Horticulturae2023,9,242,
doi:10.3390/horticulturae9020242.
144. Rivero,R.M.;Miler,R.;Blumwald,E.;Zandalinas,S.I.DevelopingClimateresilientCrops:Improving
PlantTolerancetoStressCombination.PlantJ.2022,109,373389,doi:10.1111/tpj.15483.
145. Kumar,M.;Prusty,M.R.;Pandey,M.K.;Singh,P.K.;Bohra,A.;Guo,B.;Varshney,R.K.Applicationof
CRISPR/Cas9MediatedGeneEditingforAbioticStressManagementinCropPlants.Front.PlantSci.2023,
14,1157678,doi:10.3389/fpls.2023.1157678.
Disclaimer/Publisher’sNote:Thestatementsopinionsanddatacontainedinallpublicationsaresolelythoseof
theindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)
disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideasmethodsinstructionsor
productsreferredtointhecontent.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Abiotic/biotic stresses pose a major threat to agriculture and food security by impacting plant growth, productivity and quality. The discovery of extensive transcription of large RNA transcripts that do not code for proteins, termed long non-coding RNAs (lncRNAs) with sizes larger than 200 nucleotides in length, provides an important new perspective on the centrality of RNA in gene regulation. In plants, lncRNAs are widespread and fulfill multiple biological functions in stress response. In this paper, the research advances on the biological function of lncRNA in plant stress response were summarized, like as Natural Antisense Transcripts (NATs), Competing Endogenous RNAs (ceRNAs) and Chromatin Modification etc. And in plants, lncRNAs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid (ABA), jasmonate (JA), salicylic acid (SA) and redox signaling in response to many abiotic/biotic stresses. Moreover, conserved sequence motifs and structural motifs enriched within stress-responsive lncRNAs may also be responsible for the stress-responsive functions of lncRNAs, it will provide a new focus and strategy for lncRNA research. Taken together, we highlight the unique role of lncRNAs in integrating plant response to adverse environmental conditions with different aspects of plant growth and development. We envisage that an improved understanding of the mechanisms by which lncRNAs regulate plant stress response may further promote the development of unconventional approaches for breeding stress-resistant crops.
Article
Full-text available
The environment is seldom optimal for plant growth and changes in abiotic and biotic signals, including temperature, water availability, radiation and pests, induce plant responses to optimise survival. The New Zealand native plant species and close relative to Arabidopsis thaliana, Pachycladon cheesemanii, grows under environmental conditions that are unsustainable for many plant species. Here, we compare the responses of both species to different stressors (low temperature, salt and UV-B radiation) to help understand how P. cheesemanii can grow in such harsh environments. The stress transcriptomes were determined and comparative transcriptome and network analyses discovered similar and unique responses within species, and between the two plant species. A number of widely studied plant stress processes were highly conserved in A. thaliana and P. cheesemanii. However, in response to cold stress, Gene Ontology terms related to glycosinolate metabolism were only enriched in P. cheesemanii. Salt stress was associated with alteration of the cuticle and proline biosynthesis in A. thaliana and P. cheesemanii, respectively. Anthocyanin production may be a more important strategy to contribute to the UV-B radiation tolerance in P. cheesemanii. These results allowed us to define broad stress response pathways in A. thaliana and P. cheesemanii and suggested that regulation of glycosinolate, proline and anthocyanin metabolism are strategies that help mitigate environmental stress.
Article
Full-text available
Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods. To overcome these limitations, a spatial transcriptomics workflow was developed for germinating barley grain. This approach enabled high-throughput analysis of spatial gene expression, revealing specific spatial expression patterns of various functional gene categories at a sub-tissue level. This study revealed over 14 000 genes differentially regulated during the first 24 h after imbibition. Individual genes, such as the aquaporin gene family, starch degradation, cell wall modification, transport processes, ribosomal proteins and transcription factors, were found to have specific spatial expression patterns over time. Using spatial autocorrelation algorithms, we identified auxin transport genes that had increasingly focused expression within subdomains of the embryo over time, suggesting their role in establishing the embryo axis. Overall, our study provides an unprecedented spatially resolved cellular map for barley germination and identifies specific functional genomics targets to better understand cellular restricted processes during germination. The data can be viewed at https://spatial.latrobe.edu.au/.
Article
Full-text available
Sorghum (Sorghum bicolor L. Moench), a monocot C4 crop, is an important staple crop for many countries in arid and semi-arid regions worldwide. Because sorghum has outstanding tolerance and adaptability to a variety of abiotic stresses, including drought, salt, and alkaline, and heavy metal stressors, it is valuable research material for better understanding the molecular mechanisms of stress tolerance in crops and for mining new genes for their genetic improvement of abiotic stress tolerance. Here, we compile recent progress achieved using physiological, transcriptome, proteome, and metabolome approaches; discuss the similarities and differences in how sorghum responds to differing stresses; and summarize the candidate genes involved in the process of responding to and regulating abiotic stresses. More importantly, we exemplify the differences between combined stresses and a single stress, emphasizing the necessity to strengthen future studies regarding the molecular responses and mechanisms of combined abiotic stresses, which has greater practical significance for food security. Our review lays a foundation for future functional studies of stress-tolerance-related genes and provides new insights into the molecular breeding of stress-tolerant sorghum genotypes, as well as listing a catalog of candidate genes for improving the stress tolerance for other key monocot crops, such as maize, rice, and sugarcane.
Article
Full-text available
Abiotic stresses, including drought, salinity, cold, heat, and heavy metals, extensively reducing global agricultural production. Traditional breeding approaches and transgenic technology have been widely used to mitigate the risks of these environmental stresses. The discovery of engineered nucleases as genetic scissors to carry out precise manipulation in crop stress-responsive genes and associated molecular network has paved the way for sustainable management of abiotic stress conditions. In this context, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas)-based gene-editing tool has revolutionized due to its simplicity, accessibility, adaptability, flexibility, and wide applicability. This system has great potential to build up crop varieties with enhanced tolerance against abiotic stresses. In this review, we summarize the latest findings on understanding the mechanism of abiotic stress response in plants and the application of CRISPR/Cas-mediated gene-editing system towards enhanced tolerance to a multitude of stresses including drought, salinity, cold, heat, and heavy metals. We provide mechanistic insights on the CRISPR/Cas9-based genome editing technology. We also discuss applications of evolving genome editing techniques such as prime editing and base editing, mutant library production, transgene free and multiplexing to rapidly deliver modern crop cultivars adapted to abiotic stress conditions.
Article
Full-text available
Drought is a common and serious abiotic stress in viticulture, and it is urgent to select effective measures to alleviate it. The new plant growth regulator 5-aminolevulinic acid (ALA) has been utilized to alleviate abiotic stresses in agriculture in recent years, which provided a novel idea to mitigate drought stress in viticulture. The leaves of ‘Shine Muscat’ grapevine (Vitis vinifera L.) seedlings were treated with drought (Dro), drought plus 5-aminolevulinic acid (ALA, 50 mg/L) (Dro_ALA) and normal watering (Control) to clarify the regulatory network used by ALA to alleviate drought stress in grapevine. Physiological indicators showed that ALA could effectively reduce the accumulation of malondialdehyde (MDA) and increase the activities of peroxidase (POD) and superoxide dismutase (SOD) in grapevine leaves under drought stress. At the end of treatment (day 16), the MDA content in Dro_ALA was reduced by 27.63% compared with that in Dro, while the activities of POD and SOD reached 2.97- and 5.09-fold of those in Dro, respectively. Furthermore, ALA reduces abscisic acid by upregulating CYP707A1, thus, relieving the closure of stomata under drought. The chlorophyll metabolic pathway and photosynthetic system are the major pathways affected by ALA to alleviate drought. Changes in the genes of chlorophyll synthesis, including CHLH, CHLD, POR, and DVR; genes related to degradation, such as CLH, SGR, PPH and PAO; the RCA gene that is related to Rubisco; and the genes AGT1 and GDCSP related to photorespiration form the basis of these pathways. In addition, the antioxidant system and osmotic regulation play important roles that enable ALA to maintain cell homeostasis under drought. The reduction of glutathione, ascorbic acid and betaine after the application of ALA confirmed the alleviation of drought. In summary, this study revealed the mechanism of effects of drought stress on grapevine, and the alleviating effect of ALA, which provides a new concept to alleviate drought stress in grapevine and other plants.
Article
Full-text available
Organisms regulate gene expression to produce essential proteins for numerous biological processes, from growth and development to stress responses. Transcription and translation are the major processes of gene expression. Plants evolved various transcription factors and transcriptome reprogramming mechanisms to dramatically modulate transcription in response to environmental cues. However, even the genome-wide modulation of a gene’s transcripts will not have a meaningful effect if the transcripts are not properly biosynthesized into proteins. Therefore, protein translation must also be carefully controlled. Biotic and abiotic stresses threaten global crop production, and these stresses are seriously deteriorating due to climate change. Several studies have demonstrated improved plant resistance to various stresses through modulation of protein translation regulation, which requires a deep understanding of translational control in response to environmental stresses. Here, we highlight the translation mechanisms modulated by biotic, hypoxia, heat, and drought stresses, which are becoming more serious due to climate change. This review provides a strategy to improve stress tolerance in crops by modulating translational regulation.
Article
Full-text available
Bacterial canker of tomato is a systemic disease caused by Clavibacter michiganensis (Cm), which poses a grave threat to tomato production worldwide. Towards the identification of genes underlying resistance to Cm infection, the transcriptome of the resistant inbred backcross line IBL2353 carrying the Rcm2.0 locus derived from Solanum habrochaites LA407 and the susceptible Solanum lycopersicum line Ohio88119 was comparatively analyzed after Cm inoculation, and the analysis focused on the genes with different expression patterns between resistant and susceptible lines. Gene ontology (GO) analysis revealed that top terms of differentially expressed genes comprised ubiquitin protein ligases, transcription factors, and receptor kinases. Then we screened out some genes which are potentially associated with the defense response against Cm infection in IBL2353 including the wall-associated receptor kinase-like 20 (WAKL20), and virus-induced gene silencing showed it contributes resistance to Cm infection. In addition to Cm-induced genes related to resistance, the expression of eight homologs from six susceptibility (S) gene families was analyzed. These putative resistance and susceptibility genes are valuable resources for molecular resistance breeding and contribute to the development of new control methods in tomato.
Article
Full-text available
Background Lettuce (Lactuca sativa L.) cultivated in facilities display low vitamin C (L-ascorbic acid (AsA)) contents which require augmentation. Although UV-B irradiation increases the accumulation of AsA in crops, processes underlying the biosynthesis as well as metabolism of AsA induced by UV-B in lettuce remain unclear. Results UV-B treatment increased the AsA content in lettuce, compared with that in the untreated control. UV-B treatment significantly increased AsA accumulation in a dose-dependent manner up until a certain dose.. Based on optimization experiments, three UV-B dose treatments, no UV-B (C), medium dose 7.2 KJ·m− 2·d− 1 (U1), and high dose 12.96 KJ·m− 2·d− 1 (U2), were selected for transcriptome sequencing (RNA-Seq) in this study. The results showed that C and U1 clustered in one category while U2 clustered in another, suggesting that the effect exerted on AsA by UV-B was dose dependent. MIOX gene in the myo-inositol pathway and APX gene in the recycling pathway in U2 were significantly different from the other two treatments, which was consistent with AsA changes seen in the three treatments, indicating that AsA accumulation caused by UV-B may be associated with these two genes in lettuce. UVR8 and HY5 were not significantly different expressed under UV-B irradiation, however, the genes involved in plant growth hormones and defence hormones significantly decreased and increased in U2, respectively, suggesting that high UV-B dose may regulate photomorphogenesis and response to stress via hormone regulatory pathways, although such regulation was independent of the UVR8 pathway. Conclusions Our results demonstrated that studying the application of UV-B irradiation may enhance our understanding of the response of plant growth and AsA metabolism-related genes to UV-B stress, with particular reference to lettuce.
Article
Drought stress has been known to adversely affect growth, development, and productivity of plants to varying extent. Being a multifaceted trait, drought tolerance involves interaction of an array of genes, pathways, and mechanisms. A unique regulatory scheme is adopted by different plants, which provides tolerance to drought stress in association with biochemical and physiological mechanisms. Transcriptome analysis of a drought tolerant [Nagina 22 (N-22)] and drought sensitive (IR-64) cultivars provides insights into the genes/pathways/mechanisms involved in terminal drought stress tolerance. In the present study, comparative physio-biochemical analyses of the rice cultivars under terminal drought stress substantiated their performance. Whole transcriptome analysis of leaf and root from the rice cultivars exposed to terminal drought stress revealed 6077 and 10050 differentially expressed genes (DEGs) in leaf of N-22 and IR-64, respectively, under drought stress. A maximum of 2682 genes were up-regulated exclusively in N-22 while 7198 genes were down-regulated exclusively in leaf of IR-64. Interestingly, the highest number (2594) of genes was down-regulated exclusively in roots of IR-64, while only 1497 gene were up-regulated exclusively in root of N-22. Differential expression of OsNAC10, OsbZIP23, OsABA8ox1, OsCPK4, OsLEA3, and OsNCED4 along with the GO terms enriched with up-regulated genes for transcription factors (TFs), redox homeostasis, and ABA signaling in N-22 under terminal drought stress play crucial roles in stress tolerance. The stress-responsive genes for transcription factors, redox homeostasis, and ABA signaling up-regulated in N-22 were mainly responsible for terminal drought tolerance. These stress-associated genes can be utilized for genetic improvement of rice for drought tolerance.