Content uploaded by Michal Rurek
Author content
All content in this area was uploaded by Michal Rurek on Mar 27, 2024
Content may be subject to copyright.
Review Not peer-reviewed version
Plant Transcriptomic Responses in a
Diverse Organ and Stress Conditions
Micha
ł
Rurek * and Miko
ł
aj Smolibowski
Posted Date: 27 March 2024
doi: 10.20944/preprints202403.1654.v1
Keywords: differentially expressed genes; medicinal species; plant organs; secondary metabolites; plant
transcriptome; stress
Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.
Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Review
PlantTranscriptomicResponsesinaDiverseOrgan
andStressConditions
MichałRurek*andMikołajSmolibowski
DepartmentofMolecular&CellularBiology,InstituteofMolecularBiology&Biotechnology,Facultyof
Biology,AdamMickiewiczUniversity,Poznań,UniwersytetuPoznańskiego6,61‐614Poznań,Poland;
rurek@amu.edu.pl
*Correspondence:rurek@amu.edu.pl;Tel.:++48618295973
Abstract:Planttranscriptomesareanextremelydynamicentitiesshapedspatiallyandtemporally
bymanyintracellularandenvironmentalcues.Inthisreview,wefirstsummarizethecomplexity
anddiversityofplantgenomesandtranscriptomesasastartpointforthemultitudeof
transcriptomicresponses.Numerousalterationswithinvarioustissueandorgan‐specific
transcriptomesaswellasthemostrelevanttranscriptomicresponsesassociatedwithplant
acclimationtoselectedabioticandbioticstressconditions,fromthecurrentstudiesemployinghigh‐
throughputtranscriptomicanalysisarewidelydiscussed.Understandingchangeswithinplant
transcriptomes,revealedbyinsilicofunctionalanalysis,allowsforthecharacterizationofstress‐
affectedgenesandstressacclimatorymechanisms,aswellasallowstoperformplantmetabolic
engineering.Thelatterallowcultivarstoproducemoresecondarymetabolitesinthefuture,which
areoftendesirablesubstancesinthebiomedicalindustry.Accordingly,inthisreviewspecial
attentionwasalsopaidtocharacterizethepotentialoftranscriptomicanalysesofmedicinalspecies,
particularlytosearchfornewcultivars.Extensivecharacterizationoftranscriptomicresponsesin
stresswouldalsoresultinthedevelopmentofnewcultivarsthatdisplayphysiologicaland
molecularmechanismsthatallowthemtocopewithadverseenvironmentalconditionsmore
adequately.
Keywords:differentiallyexpressedgenes;medicinalspecies;plantorgans;secondarymetabolites;
planttranscriptome;stress
1.Introduction
Higherplants,knownasvascularortelomeplants(Thelomophyta),appearedduringplant
evolutionbackinthePalaeophyticera.Theyarecharacterizedbythepresenceoforgans,the
developmentoftissuesdistributingwater,mineralcompounds,andphotosynthesisproductsandthe
dominanceofthesporophyteoverthegametophyte[1,2].Duetothesessilelifecycle,higherplants
wereevolutionarilyforcedtodevelopmultipleadaptationsthatallowedthemtorespondtostress
[3],includingtranscriptomicalterations.Tobetterunderstandhowplantsrespondtoenvironment,
detailedtranscriptomicanalysesarestillnecessary.Thedevelopmentofhigh‐throughputRNA‐seq
platformswithasubsequentdecreaseinsequencingcosts,aswellasdatameta‐analyses,simplified
thetranscriptomicstudies.Theyallowfortheanalysisofthegeneexpressionprofilemanifestedbya
givenplantcell,tissue,ororgan.Seasonal,environmental,ordevelopmentaltranscriptomic
variationscanbealsoobserved[4].
Inrecentyears,planttranscriptomicreviewsfocusedmostlyonmethodologyissues[5–7].
Excellentstudieswithspecies‐specificomicsanalyses,includingthoseonstressresponseandfocused
ontherelevanceoftranscriptionfactors(TFs),hormones,translationalreprogramming,andthe
epigeneticlevel,aswellasphenotypicandphysiologicalanalyseswerealsopublished[8–13].
However,theydidnotalwaysreferexhaustivelytothetranscriptomicdata,andtheyweresometimes
limitedtothestudyofnoncodingRNAinacquiringstresstolerance[14].Owingtothosefactors,in
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
2
thisreviewthediversityoftranscriptomicresponsesamongdiverseorgansinthedevelopmental
context,andresponsestovariousstressors,bothabiotic(includingUVradiation,chemical
treatments,drought,coldandheatstress)aswellasbiotic(fungalandbacterialinfections)stressors,
willbepresented.Thecitedstudiescomingfromrecenthigh‐throughputanalyses,willbediscussed
inthecontextofthecomplexityofplantgenomeandtranscriptomestructureasabasisforavariety
oftranscriptomicalterations.Wewillalsorevealtheapplicativeaspectsoftherecentsearchesfor
usefulnewmedicinalplantcultivarsresistanttostress.
2.TheDiversityofHigherPlantGenomesandTranscriptomesasaBasisfortheComplexityof
TranscriptomicResponsiveness
GenomeiscomposedofacompletesetofallDNAmoleculesinthecellcontainingthe
informationnecessaryforanindividualtofunctionanddevelop.Inplants,threegenomesare
recognized:nuclear,chloroplast(theplastome)aswellasmitochondrialgenome(themitogenome)
[15].
Plantnucleargenomesizeisnotcorrelatedwiththesizeoforganellargenomes.Ofallthemajor
taxonomicgroups,landplantscontainthemostconservedsizeofthenucleargenome.Forexample,
Genliseaaureaisacarnivorousplantspecieswithoneofthesmallestnucleargenomes,whichspans
43.3Mbps,whileoneofthelargestknownnucleargenomes(upto150Gbps)isknowninParis
japonica(TableS1).Currently,twomainfactorsarethoughttoberesponsibleforthelarge‐scale
variationofgenomesizeamonglandplants:therecurrentcasesofwholegenomeduplication(WGD),
i.e.,polyploidy,andthedynamicsofthelossandgainoftransposableelements.Eventhough
duplicationofchromosomenumberisanobviousreasonfortheincreasinggenomesize,transposon
gain‐and‐lossresultsinthegreatestvariationinthegenomesize.Insomenucleargenomes,
transposonscompriseabout3%oftheirsize;inotherones,theycanoccupyeven85%ofthegenome.
Interestingly,therelationshipbetweenplantnucleargenomesizeandtransposoncontentisgenerally
linear[16].Numerousevidencesuggeststhatplantspecieswithsmallnucleargenomesare
characterizedbybroaderphenotypicandecologicalfeatures,whilespecieswithlargergenomeslive
onlyunderconditionswithmorerelaxedpressureofnaturalselection.Interestingly,plantnuclear
genomecorrelateswiththenutrientavailability.Undernitrogenorphosphorusdeficiency,species
withlargergenomeswereunabletocompeteanddominateinecosystems[17].
AccordingtoMargulis[18]concept,plastidsandmitochondriaoriginatedfromtheengulfing
andmaintenanceofsingle‐celledorganismsintheearlyeukaryoticcellunderendosymbiosis.The
proofofsuchaneventwouldbethepresenceoftheirowngeneticmaterial,prokaryoticribosomes,
doublemembranedenvelopeaswellassize[19].Themitochondrialancestorswereprobably‐
proteobacteria,whiletheplastidancestorswereorganismssimilartocyanobacteria.Mostorganellar
genesunderwentanevolutionarytransfertothenucleus,andstillorganellarDNAinsertionscanbe
foundinnucleargenomes[20].Genome‐containingorganellesthusexhibitaparticularlycomplex
patternoftheirbiogenesis,dependingontheconcertedregulatedexpressionofnuclearand
organellargenesbyanterogradeandretrogradesignaling[21,22].
Althoughnucleargenomescanreach119.1MbpsinArabidopsisto150GbpsinsizeinParis
japonica,theplastomeisrelativelyconservedinlength,genecompositionandorganization,andin
angiospermstypicallyrangesinsizefrom120to180kbps[23,24].ThelengthoftheArabidopsis
plastome(withnucleargenomeof119.1Mbps)is154,478bps,whenP.japonica,theownerofthe
largestlandplantnucleargenome(150Gbps)hasaplastomeof155,957bp.Thedifferenceinsizes
betweenArabidopsisandP.japonicaplastomesisthereforeaboutonly~1,500bps(TableS1).Most
plastomesoflandplantencodealimitednumberofproteinsinvolvedprimarilyinphotosynthesis,
transcription,translation,andplastidsignaling.Similarlytomitogenomes,plastomesalsoencode
rRNAs,tRNAs,andvariousncRNAs[25,26].Multiplefactorsofnuclearoriginregulateandcontrol
theexpressionofplastidproteinsatdifferentstages,includingtranscription,RNAediting,post‐
transcriptionalmodification,splicing,andtranslation[27].Metabolitessynthesizedinplastidsare
oftensignalingmoleculesfordistantcommunicationpathwaysandplayanimportantroleinthe
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
3
responseofplantstostress[25,28].Therefore,knowledgeoninteractionsbetweenthenucleusand
theplastidsmightcontributetounderstandingtheplantfunctioningunderstress.
Thesizeofcopiesofthegivenorganellargenomescanvaryinthesamespecies,e.g.,the
mitogenomeofpotato(Solanumtuberosum)iscomposedoffewmoleculesfrom49,171bps,49,230bps,
and112,800bpsto247,843bpsand297,014bps(TableS1)[29].Ingeneral,thesizeofplant
mitogenomesrangesfrom208kbpsforwhitemustard(Brassicahirta),366kbpsforArabidopsis,up
to2,500kbpsformuskmelon(Cucumismelo);evenlarger,fastevolvingmitogenomes(ca.11.3Mbps)
occursinsomeSilenespecies(TableS1),whilethegenenumber(ca.60genes)remainrelativelystable
[30–32].Mitogenomesofhigherplantsarethusparticularlylargeandpossessacomplexstructure,
whichcouldariseduringplantterrestrializationandoptimizeseedgerminationinnovelland
ecosystems.Boththestructureandtheexpressionpatternoftheplantmitogenomesimprovedthe
regulationoforganellarfunctionsandmitochondrialbiogenesisinseeddevelopment[21].
WhilethegenomeissetofallDNAmoleculesincells,thetranscriptomeissetofvariousRNA
molecules(mRNA,rRNA,tRNA,aswellasnumerusncRNAs,e.g.,miRNAs,siRNAs,etc.)atagiven
spatialandtemporalstep.AccordingtoImadietal.[33],thetranscriptomecanbeseenasatranslated
fractionofgenomeinformationrequiredbytheorganismtofunctionandrespondtoitssurrounding
environment.Forinstance,withthecomparisontomaize(Zeamays)nucleargenomesizingof
approximately2,2Gbps,theestimatedtranscriptomecapacityspansonly97Mbps,whichconsistsof
ca.4%ofthenucleargenomesize[34].
Todate,Bestetal.[35]havepublishedpreliminarymapsofArabidopsisandcauliflower
(Brassicaoleraceavar.botrytis)mitochondrialtranscriptomes.Arabidopsisandcauliflower
mitogenomesencode28and33protein‐codinggenes,3and3rRNAs,22and18tRNAs,andcover
approximately.85and35ORFsof>100aminoacidresidues,respectively.InadditiontorRNAs,
numeroustRNAs,andncRNAmolecules[26],plantmitogenomesencodeOXPHOSapparatus
(respiratorychaincomplexes),ATPsynthasesubunits,mitoribosomalproteins,fewproteins
indispensableforcyt.cbiogenesis,andthetranslocaseofthetwinarginineprotein.Uptoday,atleast
42and33transcriptionunitswerefoundbyRNA‐seqofArabidopsisandcauliflowermitogenomes,
respectively.TheexpressionofseveralArabidopsismitogenesleadstotheformationofmono‐or
bicistronictranscripts;forexample,OXPHOSandribosomalproteingenesareoftenexpressedat
variouslevels.Variousopenreadingframeswithinthesamepolycistronictranscriptcouldbe
diverselyexpressedwithinthepost‐transcriptionalRNAprocessing,whichinvolvesfewkeysteps,
includingcis‐andtrans‐splicingandRNAediting;thelatteronearosefromembryophytesseparated
fromancestralalgallineagesandisthereforebelievedtobeabsentingreenalgae[35,36].
Itisworthnotingthatthetranscriptomecompositionwithinthesameorganismdependsnot
onlyonthetissue,butalsoonthesamplingprocedure[6].Transcriptomicstudiesallowusnotonly
toknowwhatproteinsaresynthesizedinthecell;factorsthatregulatethetranscriptionalactivityof
agivenbiologicalsystemmaybealsocharacterized[37].Tissue‐specifictranscriptomesillustratethe
distinctnesswithingeneexpressionpatternsacrossvariousplanttissues.Thesetranscriptomesoffer
valuableinformationontheunderlyingmolecularprocessesthataffecttissue‐specificfunctions,such
asphotosynthesisinleaves,nutrientuptakeinroots,orreproductiveprocessesinflowers.
Furthermore,bydecipheringtissue‐specifictranscriptomes,specificgenesandregulatory
mechanismsthatdisplayuniqueattributesandrolesindiverseplanttissuescanbedescribed,thus
propellingadvancementsinplantbiologyandagriculture[38].Thetranscriptomecompositionalso
changesdynamicallyundervariousenvironmentalcues.Tissue‐specifictranscriptomesplayacrucial
roleinunderstandinghowplantsrespondtotheseconditions.Thisknowledgeisinstrumentalinthe
developmentofstrategiestoimproveplantacclimationunderchallengingenvironmentalconditions
[39].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
4
3.Tissue‐SpecificandOrgano‐SpecificAlterationsinPlantTranscriptomes
3.1.XylemandPhloemTranscriptomesasExamplesofTissue‐SpecificTranscriptomes
Well‐investigatedexamplesoftissue‐specifictranscriptomesaretranscriptomesofvascular
elements.Duringtheprimarygrowthofthestemsandroots,procambiumderivedfromtheapical
meristemsdividesanddifferentiatesintoxylemandphloem.Precursorxylemcellsformxylem
crumbcellsorfibers.Duringunaffectedangiospermdevelopment,inthevascularbundle,xylem,
procambiumandphloemcellsshowdorsoventralpolarization:xylemislocatedonthedorsal
(adaxial)side,phloemoccursontheventral(axial)side,whereasprocambiumislocatedbetweenthe
phloemandxylem(Figure1a)[40,41].Currenttranscriptomicstudiesindicateanantagonistic
influenceofTFsfromHD‐ZIPIII(e.g.,ATHB8,ATHB15/CNA,PHV,PHB,REV/IFL1TFs)andthe
KANADIfamilies(e.g.,KAN1,KAN2,andKAN3)inthedifferentiationofprocambiumcellstoxylem
andphloem,respectively.MutationsinREV,PHB,andPHVgenesforspecificTFshavebeenshown
toaffecttheorganizationofvasculartissuethatcontainsthephloem,whichsurroundsthexylem
(Figure1b)[42].However,inthecaseofmutationswithinKANADIgenes,xylemstartstosurround
phloemelements(Figure1c)[43,44].Roszaketal.[45]employedsingle‐cellRNA‐seqapproachto
studythedevelopmentofprotophloemfromtheprogenitorcell.Thisstudyunderlinedtherelevance
ofotherTFs,namelyPEARproteinsthatinitiatedifferentiation(lineagebifurcation)program,
controlledbyPLETHORATFs.PEARTFsmediateearlyasymmetricdivisionsduringphloemcell
biogenesisandinlaterallyadjacentcellsofprocambium.
Figure1.Modelsofthevascularelementdevelopmentinhigherplants.(a)Organizationofvascular
elementsinwild‐typeplants(withoutmutationsingenesfortranscriptionfactorsgoverningvascular
biogenesis);(b)Organizationofvascularelementsinplantspecieswithmutationsingenescodingfor
REV,PHB,andPHVtranscriptionfactors;(c)Organizationofvascularelementsinplantspecieswith
mutationingenescodingforproteinsoftheKANADIfamily.Moredetailsinthetext.
Transcriptomicanalysesofthebiogenesisofplantvascularelementsshowedthatmore
differentiallyexpressedgenes(DEGs)appearedtobeupregulatedinphloemthaninxylem([46];
TableS2).AmongDEGsupregulatedinphloem,genesforRNApolymeraseIIsubunitsB2,B7,B9,
ABC3andABC5,andRNApolymeraseIIIsubunitsC1andC2aswellasgenesinvolvedingalactose
metabolismandpolysaccharidesynthesiswereenriched.Onthecontrary,genesinvolvedinfatty
acidbiogenesis(ACOX1,ACOX3,ACADM,PAAF,andECHS1)wereupregulatedinxylem,
indicatingthedemandforhigh‐energycompounds.Furthermore,theelevatedexpressionofthe
mentionedabovegenesaccompaniedtheactivityofgenesforthesynthesisoffibrouselementsfrom
thephloem[46–48].
Nearly26,898DEGsinpotato(Solanumtuberosum)leafpetiolesofthe39,000genesidentifiedin
thepotatogenomewereidentified.However,onlyalimitednumberofgenes(mostly
downregulated)differentiatedallstudiedtissues(TableS2).Theexpressionpatternsbetweenthe
tissuesstudiedwereenrichedwithDEGsinvolvedinsignalingpathways,plantresponsetolight,
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
5
hormonalresponse,flowering,orRNAbinding.Despitetissuesampling,geneexpressionvaried
dependingonwheretheplantmaterialwastaken[49].
Aninterestingstudyshowingtheseasonalvariationofchangesinthetranscriptomeduring
plantdevelopmentovermonthswascarriedoutbyMishimaetal.[50],whosequenced
transcriptomesoftissuesofthemeristemcambiumandderivativecellsofJapanesecedar
(Cryptomeriajaponica)fromafewdevelopmentalstages.Almost55,051DEGswerefound,with10,380
DEGsinvolvedinxylemformation.Moregeneswereexpressedduringinhibitionofcelldivisions
thanduringpeakxylembiogenesis(xylogenesis)atspringreactivation(TableS2).During
xylogenesis,genesassociatedwithprimarycellwallbiosynthesis,secondarycellwalldeposition,and
lignificationweremarkedlyupregulated.Theexpressionofgenes,codingforenzymesinvolvedin
thelignificationprocess,e.g.,PAL,4CL,C4H,HCT,CCOAOMT,andCCRintheperiodfromMarch
toAugustalsoincreasedbutdecreasedsinceSeptember.Therefore,thisstudyconfirms
environmentalanalyses,indicatingthatseveralcambiumcellsincreaserapidlybetweenMarchand
June.Suchresultssuggestthatthegenesinvolvedinlignificationbelongtothemaingenesinvolved
inthebiogenesisofJapanesecedarxylem[50].
3.2.SelectedOrgano‐SpecificTranscriptomes
Thespecializationofindividualplantorganstoperformspecificfunctionsisaconsequenceof
differencesintheexpressionlevelsofnumerousgenefamilies.Forexample,distinctgeneexpression
patternsarepresentedinroottissuesandleavesoringenerativeorgans[51].Detailsonaffectedgenes
fromdevelopmentalandorgano‐specificstudiesweresummarizedinTableS2.
3.2.1.RootandLeafTranscriptomes
Themainfunctionofrootsistostoreenergyintheformofhigh‐energycompounds,i.e.,complex
carbohydrates,whileleavesconvertsolarenergyintochemicalenergyduringphotosynthesis[52,53].
Ahigh‐resolutionsingle‐cellRNA‐seqexpressionatlasofArabidopsisrootwasconstructedby
Denyeretal.[54].Itallowsinunprecedentedmannertoretrieveexpressionfeaturesofallmajorcell
typeswithinroots(withfinelyresolvedmarkergenesdefininguniqueclusteridentitiesandgene
expressionwaves)andtocharacterizekeydevelopmentalregulatorsandgenesgoverningroot
morphogenesis.Amongthem,expressionprofilesofatleast239TFsweredistinctive,includingthe
onesforroothairbiogenesis.Inaddition,Shulseetal.[55]profiledArabidopsisroottranscriptome
bysingle‐cellRNA‐seqacrossmajortissuesanddevelopmentalstages(inparticular,during
endodermishistogenesis,whichresultedintheidentificationofatleast800dynamicallyresponding
genes).Thoseauthorsalsoinvestigatedtheimpactofsucrosesupplementationontheroot
transcriptomeunderitsdevelopment.Intheearlierstudy,Efronietal.[56]employedsingle‐cell
RNA‐seqtostudyrootcellsregenerationafterexcisionofroottip.Authorsconcludedthatthe
transcriptomeofregeneratingcellspriortostemcellactivationresemblesthatofanembryonicroot
progenitorcell.Plantrootregenerationfollowsthedevelopmentalstagesofembryonicpatterning
andisgovernedbyspatialinformationprovidedbycomplementaryhormonedomains.
Thepatternofthelateralrootsandcell‐specifictranscriptomicalterationsweresummarizedin
Kortzetal.[57]review.Intissue‐specifictranscriptomesinArabidopsisleaves,thenumberofDEGs
decreasedfromtheleafvasculature(thehighestone)totheepidermisandmesophyll,indicatingthe
variablecomplexityofthesetissuesandtheirdecreasedsensitivitytotranscriptionalresponsiveness.
Interestingly,boththeepidermisandmesophyllexpressionprofilesweremainlyenrichedwith
downregulatedDEGs.Genesspecificforepidermalbiogenesiscodedproteinsforlipidmetabolism,
stomataldevelopment,auxinsignaling,andcuticlewaxsynthesis.Genesactivespecificallyin
mesophyllcodedproteinsthatparticipateinhormonesignaling,oxidativestressresponse,defense,
andphotosynthesis(afewgenesonlyforthelatterGO:term)aswellasvariousDNAbinding
proteins(notably,ERFandWRKYTFs).Incontrast,vasculature‐specificgeneswereindispensable
forthebiogenesisofvascularelements,thecellwall,genesresponsiblefortheproteinfate,plant
development,andmorphogenesisaswellasfortheaccumulationofTFscontainingMYBandNAC
domains[39].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
6
Recently,TenorioBerríoetal.[58]investigatedtranscriptomesofover1,800Arabidopsisleaf
cellsbysingle‐cellRNA‐seq.Thisstudycharacterizedatleast14diversecellpopulations(notonly
fromthecoretissues)inyoungleavesanddetectedatleast19,000variousmessengersfocusingon
thecellulardiversityofdevelopingleavesintertwinedbydevelopmental,metabolic,orstress‐
responseroutes.Mainleaftissueswerewell‐identifiedbytranscriptomicanalysis(whichindicated
forthewhighsensitivityofmesophylltranscriptometolowwaterpotential)anddevelopmental
gradientsinleafepidermiswereanalyzed.Resultsindicatedalsoforthediversityofcellsbuilding
thevasculararchitecture.Thisstudyprovidedalsovaluablesetofgeneticmarkersfordistinctcell
populations.Incontrast,during3‐week‐longsenescence,thetranscriptomeofArabidopsisleaves
becamenotablydifferentfromtheoneofmatureleaves[59].SeveraldifferentTFsactiveindifferent
stagesofdevelopmentwereidentified.DEGsactivebetween29and33daysaftersowingwere
groupedintotwoclusters.Ingeneral,duringArabidopsisleafsenescenceDEGsrelatedwith
photosynthesis,chlorophyllbiogenesis,cytokininsignaling,ribosomebiogenesis,aminoacid
metabolism,theutilizationofcarbonskeletonsandcellcycleappeareddeclinedinexpressionlevel,
whilegenesforjasmonicacid(JA)andethylenesignaling,responsetostimulus,caspaseand
pectinoesteraseactivity,lipiddegradation,catalyticactivity,cytoskeleton,metalbindingand
transportwereupregulated.Thoseregulatedgenesperformprotectivefunctionsthattheplanttakes
instressacclimation.Novelgroupsofco‐regulatedgeneswerealsodiscoveredamongupregulated
DEGs.Moreover,Chroboketal.[60]performedthemeta‐analysisofBreezeetal.[59]data,that
allowedfortheidentificationofmorethan1,000genesformitochondrialproteinsactiveatleastata
singletimepoint;thosealterationswereespeciallyvisibleattheinitialstagesofsenescence.Few
clusterswereproposedbasedonexpressionvaluesofthemitochondrialcluster,particularlyenriched
ingenesforOXPHOSfunctions,auxinsignaling,reactiontonutrientandlightdepletion,plastid
functions,stressresponse,proteinfate,transport,andassembly.Thoseresultsindicateforthe
relevanceofmitochondrialbiogenesisduringplantsenescence.
Inthesugarcane(Saccharumspp.hybrids)transcriptome,moreorganspecificDEGswere
expressedinleaves,contrarytoroots;duringanalyses77,359geneswereidentified[61].Intheleaf
transcriptome,messengersforphotosyntheticproteinswereupregulated.Onthecontrary,theroot
transcriptomewasenrichedwithtranscriptsencodingproteinsforpolysaccharidebiogenesis,
aminoacidmetabolism,orinvolvedinhigh‐energycompoundcatabolism.Althoughorganospecific
differencesresultedfromvariousfunctionsofbothorgans,somegeneralcharacteristicsofexpression
profilesremainedunchanged[51,61].
Themaize(Zeamays)leaftranscriptomeshowedwell‐noteddifferencesingeneexpression
consistentwithleafaxialsymmetry[62].Inbasaltissues,genesforcellwallbiosynthesis,DNA
synthesis,cellcycleregulation,auxinbiosynthesis,andcellulartransportwereupregulated.In
contrast,intheapicalpartoftheleaves,photosyntheticgenesappearedvisiblyupregulated,
especiallygenesencodingenzymesforthebiosynthesisofisoprenoids(e.g.,carotenoids),Calvin
cycle,redoxhomeostasis,starch,andsucrosemetabolism.Thesedatashowthatglobalchangesinthe
levelofgeneexpressionalsooccurinsuchaseemingly‘uniform’organastheplantleaf.During
analysis,Lietal.[62]identifiedalmost25,800maizeunigenes.
3.2.2.TranscriptomesofGenerativeOrgans
Sexualreproductionofhigherplantsisperformedbygenerativeorgans‐ flowers.Their
morphologyisspecies‐specificanddependsmostlyonthepollinationstrategy.Despitethe
differencesbetweentheformationofgenerativeorgans,thetransitionfromthevegetativetothe
generativephaseisundoubtedlythemostimportantstepinplantdevelopmentandthusgenetically
controlled[63].Multiplestudieshaveshownthatfloweringdependsonthephotoperiod,
vernalization,activityofplanthormones(includingGA),thermosensing,andavarietyofageing‐
associatedprocesses[64–66].Boththephotoperiodandthevernalizationcontroltheinitiationof
flowering,whichprotecttheplantfromtheenergy‐consumingflowerdevelopmentinunfavorable
conditions[67,68].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
7
AnanalysisoftheAnnonasquamosatranscriptomeshowedelevatedexpressionlevelsofgenes
involvedinvernalizationandphotoperiodinduction[68].Morethan71,948A.squamosageneswere
identified,ofwhichaboutathirdweredifferentiallyexpressed.Genesinvolvedinthephotoperiod
pathwayembracedsomephytochrome(PHY)andcryptochrome(CRY)genesaswellasearly
floweringgenes(EF1,EF3).DistinctDEGsappearedtobehomologoustogenesinvolvedin
vernalization,includingFIEandVIN3genes.AnotherstudyshowedthatMADSproteingeneshave
alargemorphogeneticeffectonflowerformation.MADSbelongtotranscriptionallyimportant
regulators[69],forexample,SOC1andFULfactors.Disturbancesintheexpressionpatternofthese
genescontributedtodelayedflowerformation,despitetheunaffectedphotoperiod[64].
Atthestageofcolorfulpetalformation,genesresponsibleforencodingenzymesforpigment
synthesis,genesinvolvedinthesynthesisofsecondarymetabolitesintissue,suchascarotenoidsor
anthocyanins,weresignificantlyupregulatedinAchimenes[70].Othergenefamilieswereinvolved
duringthedevelopmentofbroccoli(Brassicaoleraceavar.italica)floralbuds[71].DEGsinvolvedin
broccolicurdheterosisactiveinlightandH2O2‐mediatedsignalingappearedamongnewly
discoveredfunctionalclassesthatcontrolcropyield,hormonesignalingstressresponse,and
flowering.Overall,expressedgenes(especiallytheupregulatedones)seemedtoprevailinhybrid
linesratherthaninparentallines.NumerousDEGsfromthisgroupencodedproteinsimportantfor
growthanddevelopment,fattyacidandcarbohydratemetabolism,proteinsynthesisand
modifications.
3.2.3.SeedTranscriptomes
Seedsperformareproductivefunctionamongangiospermsandallowthedevelopmentofanew
plantgeneration,resultingfromsexualreproduction,aswellasprotecttheembryofromadverse
conditions.Theseedendospermandembryoaredevelopingafteradoublefertilization.Incontrast,
theseedcoverisformedfromembryostemcells.Seedsoftencontainhigh‐energycompounds,
allowingforthegermination.Analysisoftheseedtranscriptomeappearsthusextremelyimportant
forthecharacterizationofgenesactiveinseedbiogenesisandgermination[72,73].
Recently,aspatialtranscriptomicprofilingofgerminatingbarley(Hordeumvulgare)seedswas
exhaustivelystudiedbyPeirats‐Llobetetal.[74].Suchmethodology(VisiumGeneExpressionslides,
10xGenomics)allowedforacompletestudyofgeneexpressionprofilesacrossindividualcelltypes
withintheplantseeds.Forsequencing,8m‐thicklongitudinalsectionsofthebarleygrainswere
prepared.Thestudyallowedtoobtainspatiallyresolvedcellularmapforbarleygerminationand
identifiesspecificfunctionalgenomicstargetstocharacterizebettercellularprocessesduring
germination.ResultsofPeirats‐Llobetetal.[74]studyextendspreviousattemptsofusingsingle‐cell
RNA‐seqfordecipheringofrootandotherorgantranscriptomes[55,75],astime‐seriesspatial
transcriptomicanalysisoftranscriptomeallowsfarmorecomplexoutputfromallcelltypesinthe
investigatedtissue/organwithpreservedinformationontheirspatiallocation.Visiummethodology
allowedalsofordetectionof83‐90%transcriptsreportedfromtheprevious,tissue‐specificstudies
[76],howeveronlyaportionofseedtissuewassubjectedtoRNA‐seq.Thisapproachallowedclear
distinguishingoftissuesandtissueregionsbothbytheirphysicallocationandgeneco‐expression
patterns.Variousfunctionalgenecategorieswererevealedamongover14,000DEGsattheinitial24
hafterseedimbibition(at0[dry],1,3,6and24hour‐timepoints).Selectedgenefamilies,including
aquaporins(highlyexpressedinmesocotyl,scutellumandcoleorhiza),thionins(inendospermand
aleurone),starchcatabolismenzymes(invariousseedtissues,includingaleuroneandendosperm),
cellwallmodificationproteins(inradicleandscutellum),transporters(includingmitochondrialones
incoleorhiza,embryo,andscutellumduringearlyimbibition),ribosomalproteins,RNA‐binding
proteinsandelongationfactors(thelastthreecategoriesinembryotissues)andTFs(includingbZIP,
bHLH,andDREBproteins)displayedaspatiallytemporalexpressionpattern.Distinctgeneclusters
wereobservedincoleorhiza,radicleandscutellum,andembryowasdividedinto3expression
clusters.Mostgenesencodingtranscriptionandtranslationfunctionswereexpressedintheembryo.
Thespatialgeneexpressionpatternssuggestedthattheabilityofgerminationtoproceedwithout
transcriptionisaspecificembryofunction.Genesformitochondrialbiogenesiswerenotexpressed
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
8
ataveryhighlevelsuntil24hafterimbibition,however,genesformitochondrialexpression
machinerywereinitiallyexpressedandgenesforglycolyticenzymesappearedevenmoreactive.
LEAgenesweremostlyexpressedatearlyimbibitionstages.Endospermandaleuronetranscriptomes
weredistinct.
AvaluableanalysisoftheArabidopsisseedtranscriptomeatmultipledevelopmentalstages
allowedtheidentificationofactivegenesbefore,duringandafterseedripening.Thehighly
expressedgenesforseeddevelopmentweredetectedintheglobularembryoandthedeveloped
cotyledon.Alower,butnoticeable,expressionlevelofgenesspecificforseeddevelopmentwas
observedinthematureandpost‐maturestagesofthegreenembryo,associatedwiththetransitionof
theseedintodormancy.Ofthegenesfor48diverseTFs,LEC1,LEC1‐LIKE,LEC2,FUS3,MEDEAand
PEI1wereactive.Mutationsthatoccurredinthesegenesresultedinembryodefects,whichconfirmed
theirkeyroleinseeddevelopment[77].Furtherstudiesofthettranscriptionalreprogrammingin
ArabidopsisgerminatingseedsresultedinthefirstdynamicTFnetworkmodelofseedgermination.
NumerousalreadyknownaswellasnovelTFswerefound.AfterseedstratificationgenesforbZIP
andAP2/EREBPTFsappeareddownregulated.TheDEGsaffectedbyseedgerminationcountfor
significantlynoveldatainthefield.AmongthefunctionaltermsrelatedwithDEGsinseeds,the
functionsofRNAsplicing,andhistoneprevailed,unlikethefunctionsrelatedtolightandroots.
Genesencodingproteinsthatinteractwithnucleicacidsandmetabolicenzymeswerealsoenriched.
Moreover,geneticisoformsvariedbetweendryandpost‐imbibedseeds[78].
AnanalysisofthePolygonatumcyrtonemaseedtranscriptomerevealedupregulatedgenesforthe
synthesisofsecondarymetabolites;theothergenesforproteinsactiveinthesynthesisoflignininthe
germinatedseedstageweredownregulated.Inaccordancewithpreviousanalyses,upregulationof
genesinvolvedinstarchcatabolism,whichcanprovidetheenergyforPolygonatumseedlings,were
evident[79].
3.3.TranscriptomicAnalysesofPlantSpecieswithMedicinalApplications
Transcriptomicstudieshavefoundapplicationsinmedicinalplantresearch,e.g.,forthe
functionalgenecharacterizationandtheidentificationofkeymetabolicpathwaysofpharmaceutical
importance.Althoughmostmedicinalspeciesdonotbelongtothemodelones,transcriptomicdata
fromvariousplantstudiesallowacomparisonofnewlydiscoveredgeneswithexistingdata,helping
todeterminethepotentialfunctionofgeneexpressionproductandtofindgenesresponsibleforthe
synthesisofbioactivecomponents[80,81].Forinstance,understandingtissuesresponsibleforthe
increasedsynthesisofgivencompoundsmayallowoptimizationoftheproductionofmedicinal
substancesproducedbyaloe(Aloevera),whichcanbeused,forexample,inthepharmaceuticalor
cosmeticindustries.Analysisofaloerootandleaftranscriptomesidentifiedintotal113,063and
141,310unigenes,respectively.DEGsinleaves(butnotinroots)weremainlydownregulated.Some
DEGswereinvolvedinlignin,saponin,andalloinbiosynthesis[82].Incontrast,analysisofTrillium
govanianumroot,leaf,fruit,andstemtranscriptomesrevealedthehighestnumberofDEGsbetween
leavesandroots[83].Amongthem,severalgenesinvolvedinthebiosynthesisofsteroidsaponins
andothersecondarymetabolites,includingbrassinosteroids,carotenoids,terpenoids,flavonoids,
phenylpropanoids,andsteroids,wereenriched.Almost141DEGswereinvolvedinthemetabolic
pathwaysofthesemetabolitesand78genesappearedtissuespecific.Genesfortheflavonoid
synthesiswereupregulatedprimarilyinfruitsandstems.Contrarytothat,genesinvolvedinthe
synthesisofterpenoidhadincreasedexpressioninleaves,whilegenesresponsibleforthesynthesis
ofsteroidsappearedtobeupregulatedinroots.Thoseresultsillustratethefact,howdiverse
compoundswiththepharmaceuticalpotentialmaybesynthesizedintissue‐ ororgan‐specific
manner.Ingeneral,thestudybySinghetal.[83]mayallowtheproductionandextractionof
medicinalsubstancesfromT.govanianum.
Transcriptomicanalysesoftheroots,stems,andleavesofEntadaphaseolidesallowedthe
identificationof61,046DEGsintotalinthesethreeorgans.Atleast26genesforcytochromeP450
biogenesisand17genesforuridinediphosphateglycosyltransferaseisoformsinvolvedinthe
biosynthesisoftriterpenoidsaponinswereupregulatedinstemscomparedtorootsandleaves.The
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
9
elevatedexpressionlevelofthesegenesinstemscorrespondstothefactthatthecontentof
triterpenoidsaponinsinthisplantorganishigherthaninrootsandleaves[84].
TranscriptomicstudiesofmedicinalspeciesalsocoverDEGsforanthocyaninbiogenesis.
AnalysisoftheleaftranscriptomeofTetrastigmahemsleyanum,aspeciesfromwhichanimportant
extractwithantibioticpropertiesisobtained,allowedforidentificationofalmost100,540unigenes
andDEGsinvolvedmainlyinanthocyaninbiogenesis(e.g.,CHS,CHI,F3H,DFR,AS,UF3GT).The
resultsofthisstudyalsosuggestedthedifferentialparticipationofsecondarymetabolitebiogenesis
pathwaysinleafmetabolismdependedonthedevelopmentalstage[85].
Duetoitsbroadpharmacologicalactivities,Dendrobiumhuoshanensestemsbelongtothewidely
usedmedicalherbamonghealthcareproducts.However,thebiosyntheticpathwaysofbioactive
substancesandthemolecularregulationofstemdevelopmentareoftenunclearinfewpoints.The
studyontranscriptomesofleaves,stems,androotsofD.huoshanenserevealedcandidategenes
involvedinstemdevelopmentandpolysaccharidebiosynthesis(atleast103genes).Thecollected
datawasenrichedin27genesrelatedtofructoseandmannosemetabolismaswellas74genesfor
glycosyltransferasesand15genesinvolvedinthebiosynthesisofflavonoids.Forphotoperiodcontrol
andmaintenance,genescodingforspecificTFs,includingCO,MADS‐box,andAP2‐likeones,were
notable.Othergenescodedproductsrelatedtohormonebiogenesis[86].Ingeneral,thosedatamay
provideanimportantresourceforfuturestudies,inparticularfortheinvestigationofmolecular
processesengagedintheactivecompoundbiogenesisandtheorganogenesis.Foradditionalanalysis
ofgenesnecessaryforpolysaccharidebiosynthesisamongmedicinalplants,transcriptomesofleaf,
root,andrhizomeofPolygonatumcyrtonema,anedibleplantusedintraditionalChinesemedicine,
wereinvestigated.Inthisstudy,164,573genesintotalwereidentified,while59,271,52,184and45,893
geneswereexpressedinleaves,roots,andrhizomes,respectively.Upregulatedgenesinvolvedin
polysaccharidemetabolismwerenotablyenrichedinrhizomes.Furthermore,1,131genesfor
candidateTFsgoverningexpressionofgenesforpolysaccharidebiosynthesiswerefound,e.g.,for
MYB,AP2‐EREBP,WRKY,bHLH,zincfingerC3HandC2H2,andNACTFs[87].
AnotherspeciescontainingsecondarymetabolitesusedinmedicineisPolygonumcuspidatum.It
containsresveratrolandbioactiveanthraquinones,emodinandphysicon,displayingantimicrobe
andanticanceractivities[88].DuetothelackofavailabilityofP.cuspidatumwholegenomicdata,
functionalstudiesarehampered.Toaddressgeneticinsightsintothemetabolicpathwaysofnatural
products,acomprehensiveanalysisofP.cuspidatumroot,stem,leaf,flower,andfruittranscriptomes
revealed27,18and20genesthatencodeenzymesforthemevalonate,methylerythritolphosphate,
andshikimatebiosynthesispathways,respectively.Fewgenescodingimportantenzymesinvolved
inresveratrolsynthesis(PAL,C4H,4CL,aswellasSTS/CHSsynthasesforthelaststepofresveratrol
condensation)wereidentified.SomeSTS/CHSgeneswereupregulatedinroottissuesofP.
cuspidatum,suggestingthattheycouldbespecificallyinvolvedintheresveratrolandflavonoid
metabolism[89].
Basedonthegeneinventoryinvolvedintheprocessesoccurringinvariousplantorgans,itwas
possibletoselectgenescodingproteinsparticipatingingivenmetabolicpathways,andthusit
becamepossibletooptimizetheoccurrenceofachosenprocess,ortomanipulateagivenmechanism
ofspecificmetabolitebiogenesisbygeneticengineering.Furthermore,analysisofthetranscriptome
ofmedicinalspeciesallowedustounderstandthemetabolicpathwaysofsecondarymetabolites,
whichplayanimportantroleintheadaptationofplantstoenvironmentalconditionsandhave
therapeuticeffectsonvariousplantorgansatdifferentdevelopmentalstages.Dataobtainedfrom
thesestudiescanprovideinformationontheaccumulationofsecondarymetabolitesandtheefficient
productionofactiveingredientsindifferentpartsofmedicinalplants,aswellascanbeusedto
developnovelgenotypeswithenhancedstressresistance[81].Furtheranalysisofmetabolic
pathwayswillhelptounderstandhownaturalproductsaresynthesizedandprovideresourcesfor
engineeringlarge‐scaleproductionofnaturalproductsandgeneratingnovelchemicalsinfuture
syntheticbiologyapplications.
ResultsoftranscriptomicanalysesofmedicinalspeciesweresummarizedinTableS2.
4.PlantTranscriptomicResponseunderStressAcclimation
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
10
Stresscanbedefinedasinternalandexternalfactorsthataffecttheefficiencyofphysiological,
metabolic,andmolecularplantprocessesthatleadtoareductionintheefficiencyofenergy‐to‐
biomassconversion.Thesestressorscanbedividedintoabiotic(Section4.1)andbiotic(Section4.2)
ones[90].Duetothesedentarylifestyle,plantshavedevelopedadaptiveabilitiesatmultiplelevels
tocopewithadverseconditions.Plants‘sense’externalcues,whichinturngenerateacellular
responsetransmittingstimulifromthecellsurfaceorcytoplasmicreceptorstothetranscription
machinery.Thislinksspecific‘cellularsensitivity’toenvironmentalfactors.Studiesonplant
transcriptomes,whichparticipateinsuchresponsemaythusallowforbetterunderstandinghow
plantsadapttochangingenvironmentalconditions[91].Figure2showsthewidelyused
methodologicalpipelineforstudyingthetranscriptomicresponseunderstressinplantspecies.It
combinesbothexperimentalandinsilicoanalysestoidentifysystematicallystress‐responsivegenes
incultivarsvaryingwiththestressresistance.Belowdiscussedarethemostinterestingalterations
thatoccuringeneexpressionprofilesunderdiversestressconditionsfromselectedbasicandapplied
studies.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
11
Figure2.Thegeneralpipelineforthehigh‐throughputanalysisoftheplanttranscriptomeunder
stressacclimationbetweengenotypesvaryingwithstressresistance(stresssusceptibleandresistant
lines).Keysteps,fromstressdosage(top)totheidentificationofdifferentiallyexpressedgenesets
(bottom)wereshown.Inthistypeofanalysis,expressionpatternsareoftencomparedpairwise
betweenthestresstreatedandcontrolgrownplantsforeachgenotypetestedandthelistofaffected
geneswithfoldchange(FC)valuesisgenerated.Moredetailsinthetext.
4.1.AlterationsinPlantTranscriptomesduringAbioticStress–theSelectedExamples
Abioticstress(e.g.,drought,suboptimaltemperatureincludingcoldandheat,salinity,heavy
metals,radiation,nutrientdeficiency,andmechanicaldamage)resultsfromtheactionofmultiple
physicalorchemicalstimuli[80,92].Duringacclimationtoabioticstress,planttranscriptomes
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
12
respondparticularlydynamically.Detailsongenesaffectedunderabioticstressfromhigh‐
throughputtranscriptomicstudiesaregiveninTablesS2andS3andthesummaryofthecellular
functionsgovernedbydiversestressorsaffectinggeneexpressionprofilesinvariousplantspecies
wasdepictedinFigure3.Inpublictranscriptomicrepositories,e.g.,ExpressionAtlas[93],relatively
completeArabidopsistranscriptomicdataisavailable.Theg:Profileranalysis[94]offunctionalGO:
termsrelatedtoArabidopsisstress‐responsivegenescollectedfromExpressionAtlasshowedthehuge
variabilityofgeneresponseunderthoseconditions,evenbetweensimilartreatments.However,
stressresponseinvolvesnotonlydistinct,butalsosimilargenefamilies,especiallyacrossdiverse
durationofthegiventreatment,althoughdependingonstressorqualityanddosage(Figure4,Table
S3).Regardingorgan‐specificresponse,leavesareparticularlyaffectedbyvariousstressconditions.
Theybelongtoplantorgansinvolvedincarbonskeletonmetabolismandphotosyntheticenergy
capture;however,studiesregardingtheimpactofstressonleaftissues,contrarytoroots,maybestill
underrepresentedincertainaspects[39].
4.1.1.ChemicalTreatmentandUVRadiation
Dataontheinfluenceofchemicalstimulionplanttranscriptomescomefrequentlyfromleaf
studies.AvariabilityofArabidopsisleaftissuetranscriptomicresponsesunderUVradiation,aswell
asunderchemicaltreatments(antimycinA,3‐amino‐1,2,4‐triazole,methylviologenandsalicylicacid
[SA])wascharacterizedbyBerkowitzetal.[39].Theepidermisandmesophyllcellshadahigher
numberofpoorlyexpressedgenesthanthevasculatureafteralltreatments(comparewithSection
3.2.1data).Inthoseconditions,thetissue‐specificgenesrangedbetween20and80%innumber.The
responsepatternsofthosetissuestostresswerecomplexandhighlyspecificforeachtreatment.For
example,antimycinAresultedinsimilarresponsesinalltissuesstudied;however,UV‐affectedgenes
wereexpressedmainlyinthevasculatureandepidermis.Genesforphotosyntheticproteinswere
downregulatedinallArabidopsistissuesafter3‐amino‐1,2,4‐triazoleandSAtreatments,whileonly
thegenesthatencodethecomponentsofPSIandPSIIwereupregulatedbymethylviologen,andUV
radiationdownregulatedphotosyntheticgenesintheepidermisandupregulatedtheminthe
mesophyll.InArabidopsis,UVcanalsoaffecttheexpressionlevelofgenesforproteinsnecessaryfor
chlorophyllbiogenesis,proteinfolding,oxidoreductaseandligasegenes,andgenesfor
glyceraldehyde‐3‐phosphatedehydrogenaseindiverseextentbetweenUV‐AandUV‐Btreatments;
however,participationofTFsinbothradiationresponsesisnotable.Tissuesstudiedalsohave
distinctmitochondrialresponsestoantimycinA[39],whichaffecttheexpressionpatternof
respiratorygenes(includingalternativeoxidase),generaloxidoreductaseactivitygenes,glutathione
transferase,aswellasgenesrelatedtoSer/Thrkinaseactivityandexportacrosstheplasma
membrane.Onthecontrary,SAtreatmentresultedingenesaffectedforpolysaccharideandheme
binding,lactoperoxidaseactivity,H2O2scattering,Ca2+bindingandgenesforERresponseproteins
(Figure4,TableS3).
ToprotectthemselvesagainsttheharmfulactionofUV‐BonDNA,plantsaccumulatevarious
compounds,includingflavonol,anthocyanin,andproanthocyanidin.Flavonoidsareeconomically
importantsubstancesinfruitsthatarealsobeneficialforhumanhealth.Accordingly,Songetal.[95]
observedthatamongtheupregulatedDEGsinV.corymbosum,genesforthephenylpropanoidand
flavonoidbiosyntheticpathwaysprevailed.Genesinvolvedinplanthormonesignaltransduction
weresignificantlyenrichedafter1h,followedbygenesinvolvedinphenylpropanoidbiosynthesis
after3h,andbygenesinvolvedintheflavonoidanthocyaninpathwayafter6hofUV‐Bexposure.
Theseresultssuggestthatphytohormone‐relatedgenesmayconstitutetheprimaryresponsetoUV‐
Bradiation.Thealteredexpressionofseveralgenesinvolvedinflavonoidbiosynthesiswas
characterized.Genesinvolvedinproanthocyanidinandflavanolbiosynthesis,includingthePal1,
4CL2,CHS,CHI3,VcFSLandVcUFGTgenes(forphenylalanineammonialyase,4‐coumarateCoA
ligase,chalconesynthase,chalconeisomerase,flavanolsynthase,andanthocyanidin3‐O‐
glucosyltransferase,respectively)wereallupregulatedunderradiation,andtheirexpressionlevel
lastedhighafterthe24htreatment.Arabidopsisgenesessentialforoxidoreductaseactivity,
porphyrinmetabolism,plastidorganization,andcarbohydratemetabolismregulationalso
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
13
respondedtoUV‐B(Figure4,TableS3),however,accordingtoDongetal.[96]transcriptional
analysis,inUV‐BresponseofPachycladoncheesemanii,anativeNewZealandspeciescloseto
Arabidopsis,multiplegenesactiveinthewoundhealing,regeneration,flavonoidbiosynthesisare
specificallyenrichedandtheproductionofanthocyaninsbelongtothemostimportantstrategyof
acquiringoftolerancetoradiation.Nevertheless,commongenesforUV‐BresponseinArabidopsis
andP.cheesemaniiincludedtheonesfortheaminoacid,vitamin,pigment,andsecondarycompound
metabolism[96].Toexplorethemolecularmechanismunderlyingtheincreaseinflavonoid
biosynthesisunderUV‐Bradiation,Songetal.[95]investigatedthetranscriptomesofVaccinium
corymbosumexposedtovariousdosages(1‐24h)ofUV‐Bradiation.Comparativeanalysisofthedata
obtaineddetected16,899DEGsbetweendifferenttreatments,while806commongeneswere
differentiallyexpressedinallsamplestested.ThehighestnumberofDEGsappearedamongplants
exposedtoUV‐Btreatmentfor24h.
Lettuce(Lactucasativa)growningreenhouseconditionsusuallycontainsaloverlevelofascorbic
acid(ASC)comparedtoplantsgrowninfieldconditions.ASCisanantioxidativenutrientfor
humangrowth,reproduction,andhealth.AstheaccumulationlevelofASCiscorrelatedwithlight
intensity,lettuceplantsweretreatedwithlow,intermediate,andhighdoseofUV‐Btoinvestigate
itseffectontheASClevelinplants.Thesubsequenttranscriptomicanalysisresultedinthe
identificationofnumerousDEGswithinthelow‐doseandthehigh‐doseradiationtreatedgroups.
Furthermore,thecomparisonofthesetwogroupsrevealed809DEGsthatoverlappedbetween
them,ofwhich351geneswereupregulatedand458genesappeareddownregulated;twoMIOX
genes(formyo‐inositoloxygenase,importantenzymeinmyo‐inositolpathway)geneswere
significantlyupregulatedwithinthehigh‐doseUV‐Btreatedvariant.TheexpressionoftheMIOX
genewaselevated2‐3timesbyASCinArabidopsis.GenessuchasAPXandMDHARthatare
relatedtotherecyclingofASC,werealsosignificantlyupregulatedinthisvariant[97,98].In
general,resultsofthosestudiessuggestthatexpressionoftheMIOX,APXandMDHARgenesmay
contributetotheregulationoftheASClevelinducedbyUV‐Bradiation.Inthismodel,UV‐Bmight
notdirectlyincreaseASCsynthesis,butratherindirectly‐byaffectingotherbiologicalpathways
thatleadtoanincreaseintheASClevelinplanttissues.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
14
Figure3.Summaryofthecellularfunctionsgovernedbystressaffectedgenesinvariousplantspecies.
Inaddition,abbreviationsforthekeygeneaswellasgenefamilies(particularlyformostrelevant
transcriptionfactors)wereindicatednexttoeachstressoridentifier.Onlymostrelevant,joindatafor
bothupregulatedanddownregulatedgeneswereindicated(peripherally).Literaturereferences,cited
inthetext,wereshown(nexttoeachstressoricons).Signalingroutesbetweenactivelytranscribed
nuclear,plastidandmitochondrialgenomes(smallarrowswithinmarkedorganelles)thatare
indispensable,forinstance,fortheproperorganellarbiogenesisunderstressacclimationwerealso
depicted(center).Moredetailsinthetext.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
15
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
16
Figure4.InsilicofunctionalprofilingofdifferentiallyexpressedArabidopsisgenesundervarious
stresstreatments.Countsofaffectedgenes,experimentaccessionnumbers,linkstotheExpression
Atlasdataandexperimentdescriptors(italicized,inquotes)wereallshown(aboveeachtable).The
experimentdescriptorscarrytheinformationonthecomparedvariants(treatmentvscontrol
conditions).Forinsilicoanalysis,treatmentidentifiers(‘UV‐Aradiation’,‘UV‐Bradiation’,
‘antimycineAʹ,‘salicylicacid’,‘drought’,‘cold’,‘heat’)wereusedforbrowsingoftheExpressionAtlas
dataunderʹBiologicalconditionsʹ option.ThecompleteArabidopsisdataweretakenfromthe
ExpressionAtlas(https://www.ebi.ac.uk/gxa/home;[93])andplacedinTableS1.Next,theretrieved
ArabidopsisGenomeInitiative(AGI)locuscodes,representingaffectedgenesetsfromthegiven
experimentwithwild‐typeArabidopsis,wereusedasqueries(organism:Arabidopsisthaliana)for
thesearchofthemostrelevantdriverfunctionalterms(thefunctionalprofiling)ing:Profiler
(https://biit.cs.ut.ee/gprofiler/gost;[94]).DuringGO:termenrichmentanalysis,termswereextracted
anddepictedintables,togetherwiththeirIDsandthesource(BP‐biologicalprocess;MF‐molecular
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
17
function;CC‐ cellularcomponent).Thecountsfortheuniqueandthecommondifferentially
expressedgenesfromvariousexperiments(indicatedbydiversecolors)withplantstreatedwithdiverse
UV‐A,UV‐B,antimycinA,salicylicacidandcolddosageswerecomparedonDeepVenndiagrams(at
thebottomornexttotheg:Profilertables).DeepVenndiagrams(circleareaproportionaltogenequantity)
weregeneratedusinganonlinetoolfromthehttp://www.deepvenn.com/Webpage[99].Colorson
diagramsarethesameaswithincompareddatasets.AlllinkswereaccessedJanuary9,2024.(a)The
dataforUVandchemical/hormoneresponse;(b)Thedatafordrought,heat,andcoldstressresponse.
4.1.2.WaterDeficiency(drought)
Toacclimatetowaterdeficiencies,plantsundergoseveralbiochemical,physiological,and
molecular(ABA‐dependentorindependent)responses,including,forexample,stomatallimitation
ofgasexchangeduetostomatalclosure,whichisaconsequenceofreducedosmoticpressureand
decreasedcellturgor[100]aswellasmultiplealterationsingeneexpressionprofiles.Asdrought
belongstoenvironmentalfactorsthataffectmostcropproductivity,thecharacterizationofthose
adjustmentsbyomicsstudieswouldrevealdroughtmechanismsincropsthatresultinrational
developmentofstressresistantcultivars[101].Characterizationofsweetpotato(Ipomoeabatatas)
transcriptomeindroughtallowedforthedetectionofalmost73,636unigenesandvariousgenesfor
ABA(IbZEP,IbNCED,IbABA2andIbAAO2),ethylene(IbACS,IbACO)andJA(IbLOX,IbAOS,IbOPR,
IbACOX1I,IbACOX3,IbMFP2)biosynthesis,whichappearedallupregulated.Thoseresultsindicate
fortheinvolvementofhormonalsignalingunderwaterdeficit.Interestingly,thoseanalysesalso
showedthatgenesassociatedwithSAsynthesiswerenotaffectedwhileamongthemaingenes
affectedindrought,genesforsomeenzymessuchasABIphosphataseorCa2+‐ATPasewereidentified
[102].
Analysisofthetranscriptomeoftwodrought‐resistantchickpea(Cicerarietinum)cultivarsunder
droughtrevealedaveryfewDEGswhichwerecommonforthoselines.Interestingly,
downregulationsinthetranscriptomesofbothgenotypesprevailed,showingdetrimentaldrought
impactonthetranscriptomiclevel.MultiplegenesforAP2‐EREBP,bHLH,bZIP,C3H,MYB,WRKY
orMADSTFswereinvolvedindroughtacclimation.ThoseTFsgovernedsignalingregulation,
secondarymetabolism,ortransitiontothegenerativephase[103].Thetranscriptomicresponseof
Phoebebournei,aChinesewoodspecies,todroughtemployedalsonumerousgenesforTFsfrom25
families,includingWRKY,AP2,HLH,bZIP,CCAAT‐binding,GATAzincfinger,SBPdomain,TCP,
Dof,GRFzincfinger,HD,andNAMTFs.Interestingly,AP2domaincontainingTFsaswellassome
NAMTFswerepreferentiallyexpressedat30hand45h‐longstress.Moreover,POD,SOD,andCAT
geneswereupregulatedandgenesnecessaryforplant‐hormonesignaltransduction,MAPK
signaling,phenylpropanoidbiosynthesis,flavonoidbiosynthesis,andstarchandsucrosemetabolism
weresignificantlyaffected,especiallyafter15d‐longdrought.Inaddition,genesfortwolight‐
harvestingcomplexIchlorophylla/bbindingproteins(LHCA1andLHCA2),light‐harvesting
complexIIchlorophylla/bbindingproteins(LHCB1,LHCB2,LHCB4)andporphyrinbiosynthesis
proteinsweredifferentiallyexpressedacrosstreatments[104].
Anotherstudy[105]includedadifferentialanalysisoftranscriptomesfromtwowheat(Triticum
aestivum)varietieswithcontrastingdroughtsensitivities.Duringthecomparativeanalysisofboth
transcriptomes,asignificantdifferencewasshowningeneexpressioninthedroughtresistant
cultivar,whichinvolvedgenesforthesynthesisofsecondarymetabolites.Genesnecessaryforthe
droughtacclimationincluded,amongothers,thosecodingimportantTFs(e.g.,asMT,FT,AP2,ABA2,
ARF6,WRKY6,AOS,LOX2).Furthermore,therecentinvestigationofgenesandpathwaysinvolved
intranscriptomicresponseoftworice(Oryzasativa)cultivars(stress‐susceptibleandresistant)in
terminaldroughtrevealedthegeneralprevalenceofdownregulatedgenesacrosstestedlinesand
organs[106].Notably,thenumberofaffectedDEGsdecreasedinstress‐resistantline.Thedifferential
expressionofgenesforNACandZIPTFs,ABAsignaling,LEAproteinsandproteinsrelatedwith
redoxhomeostasisplayedcrucialrolesinachievingofstresstolerance.Tyagietal.[106]concluded
thatthosegenesaregoodcandidatesforthegeneticimprovementofdroughttoleranceinrice.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
18
DenovosequencingofthetranscriptomeofMedicagofalcataseedlingssubjectedtodrought
revealedalmost4,460DEGsinresponseto2h‐longwaterdeficiency;theupregulatedDEGs
prevailed.M.falcatahousekeepinggeneswereexpressedatarelativelyhighlevel,althoughwithlittle
variation.ThesignalingpathwaysofthehormoneandNodfactors(interplaywithlegumesymbiosis)
wereprimarilyenrichedamongDEGs.GenesfornumerousTFs(e.g.,NACfamily)werealso
enrichedandgenesforABAbiosynthesiswereupregulated,incontrasttogenesforABAcatabolism.
Also,genesforABFTFs(e.g.,ABF1),JAbiosynthesis,ERFs,nucleicacidhelicasesanddiversegenes
forRNApolymerasesandDNArepairproteinsappearedupregulated.Incontrast,gibberellin
biogenesisgeneswereantagonisticallyexpressedcomparingtoABA‐relatedgenes,exceptforGID1
gene[107].FortheglobalanalysisoftranscriptomeofanotherFabaceaemember,Glycinemax,inthe
progressingdrought,Transcriptogramertoolwasemployed[108].Sixtosixteendiversefunctional
categorieswereenrichedamongDEGsat1‐,6‐and12h‐longdrought,includingcelldivision,cell
cycle,cellwallorganization,stressresponses,hormonesignaling,signaltransduction,andregulation
ofgeneexpression.TheparticipationofgenesforCa‐bindingproteinsinthestressresponsewas
notable.AnalysesofDeOliveira‐Busattoetal.[108]indicatedalsoforthepresenceofmostobservable
responsesinthefirsthourofdroughtaction,includingdownregulationsinDEGsforFemetabolism
andoxidativestressresponseandupregulatedgenesforchaperonebinding/proteinfolding,helicase
activity,nucleotide‐bindingsite,leucine‐richrepeatproteins,programmedcelldeath(PCD),
proteasome,cellcycle,DNAmetabolism,proteinbiosynthesisandRNAregulatorymechanisms.
However,mostfunctionalcategorieswererepressedafter6h‐longdrought.
Atranscriptomicreprogrammingunderrecurrentdehydrationandrehydrationcyclesin
Ceratostigmaplantagineum,aresurrectionspecies,wasstudied[109].DEGsweregroupedintoseven
functionalgroups.Themostabundantinfunctionaltermswasclusterwithgenesactiveduringstress
response,hormonesignaling,aminoacidcatabolism,sucroseandfattyacidbiogenesis,energyand
respiratorymetabolism,proteinmodificationandtransport,andmembraneorganization.Insilico
analysesindicateddownregulationofphotosyntheticgenesforlightreactionsandCalvincycle
proteinstodecreasephotooxidativedamageduringdehydration.Notably,amongthemultitudeof
genesinducedintheinitialstagesofdehydration,theOXPHOSgenesweredistinctive,allowingthe
recoveryofrespiratorymetabolismrecovery.Understress,numerousgenesforRNAprocessingand
regulationwereenrichedandgenesfortheubiquitinproteasomesystemweresignificantly
upregulated.Overall,datafromXuetal.[109]indicatetheflexibilityofprimaryandsecondary
metabolisminwatershortageandrewatering,using,amongothers,analternativerespiratory
pathway,theC3‐CAMswitch,andtheGABAshunt.
Drought‐affectedArabidopsisgenescodevariousproteinsforcellwallbiogenesis,carbohydrate
andhemebinding,transmembraneproteins,waterchannels,detoxificationprocesses,secondary
metabolism,extracellularregion,cell‐celljunctions,andsecretoryactivities(Figure4,TableS3).
TranscriptomicanalysisofanotherrepresentativeofBrassicaceae‐rapeseed(Brassicanapus)revealed
thatmostsignificantlyenrichedGOtermsoftheupregulatedDEGswererelatedwiththeresponse
towaterdeprivation,ABAsignaling,osmoticstress,andotherabioticstimuliandlipidmetabolism
aswellascutin,suberin,andwaxbiogenesis,fattyaciddegradationandsecondarycompound
metabolism.Onthecontrary,downregulatedDEGswereconnectedmainlywithphotosynthetic
activities,porphyrinmetabolism,carbon,andnitrogenmetabolism[110].
Duetothegrowingtrendofglobalwarmingandthesimultaneousseverescarcityofwater
resources,discussedanalysescanhelpdevelopnewvarietiesofcropsthatareresistanttodrought
andwillbeabletogrowinareaswithlimitedwaterresourcesinthefuture[80].Inaddition,theusage
ofstress‐alleviatingcompoundsmaybealsobeneficial.Forinstance,thegrowthregulator5‐
aminolevulinicacid(ALA)hasbeenusedtoalleviateabioticstressconsequences,includingattempts
tomitigatedroughtingrapevine(Vitisvinifera),bytheincreaseofanti‐oxidativeresponses[111].
Transcriptomicandphysiologicalanalysesallowedtoestablishthatchlorophyllmetabolismand
photosyntheticapparatusareprimarilyaffectedbyALA,whichusessynergisticmechanismsto
alleviatedrought.Underdrought,intheALApresence,alterationsintheexpressionpattenofDEGs
forchlorophyllsynthesis(upregulatedgenes)anddegradation(downregulatedgenes),Rubisco‐
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
19
relatedgenes(upregulated)andphotorespiratoryDEGs(attenuated)playedimportantrolesthat
enableALAtomaintaincellhomeostasisinthewaterscarcity.
4.1.3.ElevatedTemperature(HeatStress)
Elevatedtemperatureaffectscerealdevelopmentandproductivity,especiallythedevelopment
ofmalereproductiveorgansandtheviabilityandmaturationofpollengrains[112,113].Heatstress
leadstotheincreasedlipidperoxidationanddegradation,membranedamage,elevatedamountof
reactiveoxygenspecies(ROS),andsimultaneousdecreaseinROSscavengeractivity,leadingto
nucleicaciddamageandconsequentlytoapoptosis[114,115].Assengetal.[116]intheirmodeltested
theimpactofgrowingtemperatureonwheatyield;whentheaveragetemperatureincreasedby2°C
duringthegrowingseason,thepossibilityofadecreaseinyieldincreasedbyupto50%.Itispossible
toalleviatetheconsequencesofheattreatmentbychemicaltreatmentofplants,forexample,by
endogenousmelatonin.Chrysanthemumleaftranscriptomesinheatwithorwithoutadditional
supplementationwithmelatoninwerecomparedbyXingetal.[117].Ingeneral,heattreatmentalone
downregulatedmoregenesthanupregulatedothers.Doubletreatments(melatonin+heat)
significantlyincreasedtheexpressionlevelofseveralDEGs.Interestingly,melatonintreatment
regulatedtheexpressionpatternoftheHSFandHSPgenes,genesforstarchandsucrosemetabolism,
signaling,andchlorophyll,flavonoid,carotenoidbiosynthesis.,andthelevelofvariousTFs,
includingMADS,MYB,NAC,TCP,WRKY,andbHLH(Figure3).
Thecomparisonofmicrosporetranscriptomesinheatstressintwotomato(Solanum
lycopersicum)genotypeswithcontrastingheattolerancerevealedamongtheupregulatedDEGsat
least11HSPgenes,whichencodecytosolic,mitochondrial,plastid,andERHSPs.Theincreased
expressionofHSPgenessuggestsitskeyroleinresponsetoplantheat.FiveAPXgenes(which
expressionproductsallowustocombattheincreasedROSlevelmoreeffective)werenotably
upregulatedinmaturingmicrospores[118].
Sometranscriptomicreportsfocusedontheroottranscriptomeinheat.Thedynamicsofthe
transcriptomeinroothairswasstudiedbyValdés‐Lópezetal.[119]insoybean(Glycinemax)plants
subjectedtoelevatedtemperatureatdiversetimepoints.Theauthorsidentified46,366soybeangenes
expressedinallvariants,aswellasonaverage1,849and3,091DEGsinheatedroothairsandstripped
rootspergiventimepoint.Interestingly,alimitednumberofDEGswascommonforalltimepoints
(465genesonly)within10functionalmodulesregulatedbyafewTFs(HSF,AP2/EREBP,MADS‐box
andWIRKY).Ingeneral,heataffectedtheexpressionpatternofgenesforsoybeanrootmetabolism,
proteinfoldinggenes,chromatinremodeling,andlipidandATPsynthesisveryefficiently.
Arabidopsisleaftranscriptomeundervariousstressconditions(salinity,osmoticstress,andheat
stress)wasrecentlyinvestigatedbySewelametal.[120].Ofallthesetreatments,theelevated
temperatureappearedtohavethemostnotableeffectontranscriptomicprofiles(withthedominant
upregulatedDEGs).Interestingly,onlytripletreatmentreachedthemaximumDEGnumber.
However,eightclusterscontainedresponsivegenesandselectedconditions(osmoticandheatstress)
actedantagonistically,whiletogethertheylargelyreprogrammedthegeneexpressionpattern.The
DEGsaffectedbyheatcoveredmultiplegenesthatencodedHSPs(11genesinduced,exceptHSFA1E,
HSF3andHSFA5),lateembryogenesisabundant(LEA)proteins,receptor‐likekinases(RLKs),
glutathioneS‐transferasesandWRKYTFs.Furthermore,heatstressaffectedArabidopsisgenesfor
carbohydratebinding,UDP‐galactosyltransferases,membranetransporters,andPCD(Figure4,
TableS3).Heatanditscombinationswithotherstressorsinducedvariousmitochondrialgenes,
presumablyasacompensativeresponsetoexcessiveproteindegradation,whichwaspreviously
suggested[121].However,heatalsorepressedseveralcellcyclegenes,ribosomalproteingenes(234
genesinthetripletreatment)aswellasgenesinvolvedinDNAsynthesisandrepair[120].
Thetranscriptomesinthepreexistedleavesofriceunderheatacclimation(afterashiftfrom
30/25oCto40/35oC[day/night])werealsostudied[122].Notably,afterthethermalshift,atransient
adjustmentinmetabolicgenetranscriptlevelinpreexistedleavesbeforehomoeostasiswasreached
within1day,whichaccompanieddeclineintheabundanceofsomeproteins.Atleast19,308rice
geneswereretainedforexpressionanalysisbyRNA‐seqinthreetimepointsaftertransferringof
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
20
plantstotheheattreatment.1,818and1,465genesinpreexistedleavesappeareddifferentially
expressedafter2and6hafterthethermaltransfer,respectively,andmultipleDEGsoverlapped
betweenthosetimepoints.Numerousgenesforprimarymetabolismandrespondingtoabiotic
stimuli,andformetabolitebiosynthesiswereaffected,includingonlyfewphotosynthetic/respiratory
geneswereaffected(genesforcomplexIIsubunits,externalNAD(P)Hdehydrogenase,uncoupling
proteins,alternativeoxidase,andsomeglycolyticenzymes).
Theelevatedtemperatureoftenactssimultaneouslywiththewaterdeficit.Afewrecentstudies
focusedoninvestigationoftheimpactofheatstress,drought,andthedoubletreatment(heatplus
drought)ontotalplanttranscriptomes.Thediscussedresponsesinbarley(Hordeumvulgare)flag
leaveswererecentlystudiedbyMikołajczaketal.[123].Heataloneresultedinanotablylower
numberofDEGsinthreetimepointsandacrossthreesizegroupsofflagleaves,thanthedrought;
however,thedoubletreatmentengagedalmostasmuchDEGsasdroughtstress.Inmedium‐sized
leaves,heatstress(similarlytodrought)affectedthehighergenenumber,irrespectivelyofstress
duration.However,duringlongerheatanddroughttreatments,moreDEGswerealsonotablefor
large‐sizedleaves.Genesetsassignedtovariousprocessesunderlyingthedroughtandheat
response,includingphotosynthesis,theabscisicacidpathway,andlipidtransportwereidentified.
InvestigatedstressorsaffectedespeciallyexpressionlevelofLEAandHSPgenes.Overall,
Mikołajczaketal.[123]studyprovidednovelinsightintothemolecularmechanismsofbarleyflag
leafthatdeterminedroughtandheatresponse,aswellastheirco‐occurrence.Furthermore,according
totheMahalingametal.[124]study,thenumberofDEGsincreasedinbarleyheads(butnotinflag
leaves)instress‐tolerantgenotypeasheatprogressed.Onthecontrary,instress‐sensitivegenotype,
DEGsdeclinedinnumberinthoseconditions.Heatresponseengagedtransporterproteingenes,
genesforABAresponseaswellasresultedindifferentialexpressionofLEAgenesinstress‐sensitive
genotype;incontrast,genesfornon‐specificlipidtransferproteinsandcarbonatedehydratase
activitywereenrichedinstress‐tolerantgenotype.Onlyprolongeddroughtresultedintheincreased
numberof(mostlydownregulated)affectedgenesirrespectivelyfromthetissueorgenotype.The
combinedtreatment(heatwithdrought)resultedinthenotableincreaseofDEGnumberonlyin
stress‐sensitivebarleyline,howeveralterationsinDEGpatternwereverydistinctfromthesingle
treatments.Ingeneral,multiplegenesforRNAmetabolismandHsp70chaperonecomponents
(HsP70,ClpBandHsp70‐dependentnucleotideexchangefactor)appearedhubgenesforheat,
droughtandthedoubletreatmentinco‐expressionnetworkanalysisthatcanbeusefulforfuture
attemptsinengineeringstresstolerance.Atleast900TFsaidedtranscriptionalreprogrammingintwo
linesofbarleyacrossalltreatments.Anotherstudy[125]pointedouttohighernumberofDEGs
affectedindouble(heatanddrought)treatmentofLoliumtemulentum,whichcodedforproteins
necessaryforthetranscriptionalregulation,proteinfolding,cellcycle,organellarbiogenesis,binding,
transport,oxidoreductase,andantioxidantactivity,andcellularsignaling.Affectedgenescodedalso
forTFsfromAPETALA2/EthyleneResponsiveFactor,NAC,WRKY,bHLH,MYB,andGATA
familiesaswellasmultiplezincfinger‐typeproteins.
WhenheatstresswascombinedwiththeelevatedCO2level,thedetrimentaleffectofheatwas
alleviatedonlybypartialderegulationofprimaryandsecondarymetabolismgenes.The
transcriptomeofflagleavesofdurumwheat(Triticumdurum)inheat,elevatedCO2,andthe
combinationofthosestimuliwasinvestigated.Theirdatacoveredalmost60,209transcripts,ofwhich
29%ofmessengersspecificallyrespondedinabundancetoheat.MostDEGscodedproteinsinvolved
instressresponse,nucleicacidmetabolism,miscellaneousenzymes,andcellularsignaling.Genes
upregulatedbyCO2wereoftendownregulatedbyheat(theycoded,interalia,photosynthetic,and
OXPHOSproteins,enzymesoflipidandaminoacidmetabolismandglutathione‐ascorbatecycle,
hormonesignaling,nucleicacidmetabolism,andtransportproteins).However,heatupregulated
surprisinglyRubiscosubunits[126].
ChenandLi[127]studyincludedBrachypodiumdistachyonleaftranscriptomeanalysis,showing
DEGsparticipatinginprocessessuchasthespliceosomeandPSI,andPSIIbiogenesis,orinprotein
folding.Notably,morethan43upregulatedgenescodedmachineryforalternativeRNAsplicing.
Accordingtothoseanalyses,theupregulationofgenesinvolvedinalternativesplicingindicatesan
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
21
increasedabilityofplantcellstoperformalternativesplicinginresponsetohightemperaturesto
createalternativeformsofproteinsthatcanalleviatephysiologicalconsequencesofheatexposure.
Todescribethermotoleranceandprotectivemechanismsagainstthermalstressindesertspecies,
Obaidetal.[128]studiedthetranscriptomeofRhizyastricta,theevergreenshrub,atelevated
temperature.DEGsweregroupedinto32and38groupsformatureandapicalleaves,respectively.
Massivedownregulationsincluded,amongothers,genesforcyclin,cytochromep450/secologanin
synthaseandU‐box‐containingproteins.Onthecontrary,theupregulatedgenescoveredthosefor
HSPs,chaperones,UDP‐glycosyltransferase,aquaporinsandtransparentproteintesta12,indicating
thatthermotoleranceinR.strictaleavesiscontrolledmainlybyimprovingproteinfoldingand
preventingproteindegradation.TFsputativelyregulatingexpressionofHSPgenesunderheat
includedHSFA,AP2‐EREBP,andWRKYTFs(Figure3).Ingeneral,numerousmetabolites,including
polyols,sugars,methionine,andphenolicswereinvolvedinthedevelopmentofR.stricta
thermotolerance.
4.1.4.LowTemperature
Similarly,toelevatedtemperature,alsoreducedtemperature(e.g.,coldtreatmentandfreeze)
cancontributetoplantgrowthanddevelopmentaberrations.Thecoldresponsecovers,interalia,the
directinhibitionofmetabolicreactions,andbecauseofthelimitedosmosis,celldehydrationandthe
oxidativestressoccursimultaneouslywithotherloweredtemperatureeffects.Theformationofice
crystalsunderconditionsofreachingthefreezingpointisthegreatestthread,whichresultsinprotein
degradationandmechanicaldamage.Mostplants,however,canadapttothecoldandgaintolerance
toiceformationintheircellsbygraduallybeingexposedtoreduced(non‐freezing)temperatures
undercoldacclimationprocess[129].
AnalysisofAmurvine(Vitisamurensis)transcriptomeundercoldtreatmentallowedforthe
categorizationofDEGproductsindiversefamilies,includingsignaltransduction,transcription
regulation,andalternativesplicing.Atleast38majorfamiliesofTFsinvolvedintheregulationof
coldresponseinV.amurensisweredetected,includingnovelTFs(e.g.,PLATZ,LIM,EIL,NIN‐like,
TUB,WHIRLY,andPcG).Regardinggenesforthesignaltransduction,CIPK8,CXIP4,CDP,and
CRK2genes,whoseexpressionproductsareresponsibleforCa2+binding,appearedupregulated.
Notably,resultsofthoseanalysesmayfurtherallowustoelucidatethemechanismsofcoldtolerance
[130].
ManyearlycoldresponsegenesencodeTFsthatinducetheexpressionofgenesforthe
subsequentstressresponse[92].Chengetal.[131]studiedeffectsoftheoverexpressionofMeTCP4
(aspecificTFfromcassava[Manihotesculenta])inArabidopsisplantsduringcoldstress.Theaffected
geneswereclassifiedasstress‐responsiveinallconditionstested,toTFactivityandDNAbindingin
control,andtooxidoreductase,peroxidase,andantioxidativeactivityundercoldstress.Duetal.[132]
analyzedthetranscriptomeofAgropyronmongolicumseedsatdifferentdevelopmentalstages.191,204
unigenesweredetected,whichwereclassifiedinto25functionalgroups.TheresponsetocoldofA.
mongolicumengagedABAreceptorsandincreasedthelevelofexpressionofgenesforbZIPandNAC
TFs.Thisresultsinthedownregulationoftargetgenesascoldtoleranceincreases.DEGswere
assignedto136metabolicpathways,ofwhichthemajoritywereenrichedincarbohydrate
metabolism,hormonalandphosphatidylinositolsignalingaswellastobiogenesisof
phenylpropanoids,flavonoids,stilbenoids,diaryloheptanoids,gingerolsandisoflavonoids.
ThecoldtreatmentappeareddetrimentalalsotoMedicago.falcataseedlingtranscriptome
(downregulatedtranscriptsprevailed).ThestudyofM.falcatastressresponsesfocusedon
phytohormoneandnodulationsignaling,revealingsomesimilaritieswithdroughtresponses
(Section4.1.2),however,ABF1andGID1transcriptsdecreasedinabundance.Interestingly,theGH3
auxin‐responsivegenewasintenselyupregulatedincold(similarlytoDIMI1,butcontrarytoDIMI2
andDIMI3,allofwhichencodeimportantnodulationfactors).Onthecontrary,theAUXtranscripts
encodingtheauxinreceptordecreasedinabundance.Furthermore,atleast16genesforMYBand12
genesforNACTFswereinducedbycold,indicatingtheirparticipationintheacquisitionofcold
tolerance[107].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
22
Arabidopsisdataforchillingresponse(contrarytosub‐zerocoldresponse)coveredparticularly
ahighnumberofaffectedgenes;interestinglythosetworesponsesoverlappedsurprisinglylittle
(Figure4).Chillingengaged,interalia,secondarymetabolism(e.g.,flavonoidbiogenesis)genesand
genesfortransporterproteins.Instead,duringsub‐zeroArabidopsisacclimation,genesforproteins
participatinginhormonesignaling,especiallyJAsignalingandABAreceptors,wereaffected.In
general,Arabidopsisresponsetocoldstressinvolved,interalia,genesforPSIbiogenesis,
carbohydrate,andsecondarycompoundmetabolism,O‐glycosylcompoundhydrolases,flavonoid
biosynthesis,nitratetransporteractivity,andpigmentmetabolism(Figure4,TableS3).Interestingly,
inP.cheesemanii,Arabidopsiscloserelative,thecoldresponseemploysmorefunctionalgenefamilies
thaninArabidopsisleaves,includingthespecificallyaffectedgenesfortheglycosinolatemetabolism
[96].However,inbothArabidopsisandP.cheesemanii,genesforwound‐like,circadianclockaswell
asforflavonoid,trehalose,phenylpropanoidandoxylipinmetabolismbecomeimportantunderthe
earlycoldresponse.
Animportantstageduringcoldacclimationisalsotheregulationofmetabolicprocesses
occurringinplantcellorganelles.Naydenovetal.[133]investigatedmitochondrialandnuclear
transcriptomesofgerminatedwheat(Triticumaestivum)germ.Somegenesencodingmitochondrial
proteins,includingMnsuperoxidedismutase(SOD)andalternativeoxidase(AOX),appeared
upregulated;however,thelevelofexpressionofnucleargenesessentialformitochondrialbiogenesis
visiblydecreased.Thisindicatesmutualcontrolofgeneexpressionbetweenmitochondrialand
nucleartranscriptomes,executedbyanterogradeandretrogradesignaling.
4.2.PlantTranscriptomicResponseunderBioticStress
Tocopewithbioticstress,plantshavedevelopedseveraldefensiveresponses,manyofwhich
arepreciselyinducedbythepathogenattack[100].Plantcellscontainplasmamembranereceptors,
thepurposeofwhichistorecognizethepathogenassociatedmolecularpatterns(PAMPs).Whena
pathogenisrecognizedbyareceptor,PAMP‐triggeredimmunity(PTI)isinitiated,whichusually
stopstheinfectionbeforeitspreadsthroughouttheplant.However,duetotheconstantcombat
betweenpathogensandtheirvictims,pathogenscanneutralizePTIbysecretingspecialproteins
calledeffectorsintothecytosoloftheplantcell.Plants,inresponsetotheeffectorssecretedby
pathogens,developedtheabilitytodetectmicroorganismsbyrecognizingaspecificeffector,which
iseffector‐triggeredimmunity(ETI).Thisresponseconsistsoftheproductionbytheplantof
intracellularreceptorsdesignedtorecognizeeffectormoleculesproducedbypathogens.The
interactionbetweenthereceptorandtheeffectortriggersacomplexnetworkofcellresponsesaimed
atdetermininginfectionresistance[134].
Higherplantsdonotpossessspecializeddefensecells,andtoprotectagainstpathogens,they
useʹoxidativeoutbreakʹ.Furthermore,ahighlevelofROSisrequiredtoinitiatethehypersensitive
response(HR).ThisreactionbelongstoPCDmanifestations,whichissupposedtolimittheaccessof
thepathogentowaterandnutrientsandisaimedatlimitingthespreadofthepathogen[135].Details
ongenesaffectedunderbioticstress(fundalandbacterialinfections)describedacrosshigh‐
throughputtranscriptomicstudiesweregiveninTableS2andthesummaryofthecellularfunctions
governedbybioticstressaffectedgenesinvariousplantspecieswaspresentedonFigure3.
4.2.1.FungalInfections
Pathogenicfungicanbedividedintobiotrophicandnecrotrophicfungi.Biotrophicfungifeed
onlivinghosttissue.Necrotrophicfungikillthehostandthen,secretingspecialenzymes,‘digest’
hosttissuesandfeedonthem.Numerousspeciesofpathogenicfungi,dependingonthe
developmentalstage,behaveasbiotrophicornecrotrophicones.Dependingonthestageoffungal
infection,differentresistancesignalingpathwayscanbeactivated.SAsignalingisbelievedtobe
involvedinresistancetobiotrophicandhemibiotrophicpathogens(pathogensthatareearly
biotrophsandnecrotrophslater).JAandethylenesignalingappearedtobeindispensablefor
necrotrophicresistance[136].
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
23
Recently,transcriptomicanalysesbroadenedourknowledgeonplantaffectedgenesunder
attackoffungalpathogens.Analysisofthetranscriptomeofpumpkinleaves(Cucurbitamoschata)
infectedwithpowderymildew(Blumeriagraminis)24and48haftertheonsetofinfectionshoweda
downregulationofmultipleDEGsincludingbHLH87,WRKY21,ERF014(codingTFsforethylene
signaling)aswellastheHSFandMLO3genes(codingpowderymildewresistance).GenesforPSI
andPSIIsubunits,oxygen‐enhancingproteins,chlorophyll‐bindingproteins,andmagnesium
chelatasewereadditionallyregulated.Upregulationofgenesassociatedwithfoliarphotosynthesis
after48hofinfectionindicatesforuntouchedphotosyntheticactivityduringinfectionandassociates
withtheappearanceofinitialfungalhyphae.Theupregulationofgenesassociatedwiththe
photosynthesiswasalsoshowninthecaseoffungal‐infectedwheat(Triticumaestivum)[137].
Thetranscriptomeofwheatleavesinfectedwithpowderymildew(Erysiphalesspecies)aswell
aswithstripedrust(Pucciniastriiformis)werecomparedwiththeonefromsamplenotinfectedwith
anypathogenandamongthemselves[138].Intotal,186,632unigenesweredetected.Comparative
analysisofpowderymildew‐ andwithstripedrust‐infectedsamplesshowedaderegulationof
numerousgenesamongthreevariants.Theresponsetopowderymildewinfectioninducedstronger
changesinthegeneexpressionpattern.Genesforphenylalaninemetabolism,phenylpropanoid
biosynthesis,alpha‐linolenicacidmetabolism,flavonoidbiosynthesis,andphenylalanine,tyrosine
andtryptophanbiosynthesisweredifferentiallyregulatedunderpowderymildewinfection.
However,inthecaseoftheattackbystripedrust,genesinvolvedinmetabolicprocessessuchas
carbonbindinginthephotosynthesis,carotenoidsynthesis,PSantennaproteinsynthesis,and
ubiquinonebiosynthesiswereallupregulated.Thisindicatestheuseofdifferentialgeneexpression
patternsassociatedwithdefensemechanismsinresponsetovariousfungalinfections[138].
Twotranscriptomedatasetsoffungus‐infectedsilkofmaize(Zeamays)obtainedfromNational
CentreforBiotechnologyInformation‐SequenceReadArchive(NCBISRA)databasewerecompared
byKumaretal.[139].EachdatasetconsistedofresultsofRNA‐seqanalysisforleavesofmaize
infectedbydifferentfungalspeciesbelongingtoHypocreaceae(e.g.,Trichodermaatroviride),Nectriaceae
(e.g.,Fusariumverticillioides,F.graminearum),andUstilaginaceae(e.g.,Ustilagomaydis).SetAcontained
dataforsilksamplesaffectedbyF.graminearumandU.maydis,whilesetBcontaineddatafrom
samplesinfectedbyF.verticillioidesandT.atroviride(everydatasetalsocontainedthecontrolresults).
Analysisofsuchdataresultedintherevealof14,694and14,808DEGsbetweencontroldatasetsofA
andB,respectively.Almost4,519upregulatedand5,125downregulatedgeneswereidentified,
however,only21genesweredifferentiallyexpressedinthefourdifferentvariantsoffungalinfection.
Amongthesegenes,thegenesencodingtheperoxidase(POD)enzymethatcontrolsthelengthening
ofgermtubetoprotectmaizekernelsfromfungaldiseasewereupregulated.Strongexpressionof
SKIP19genesthatinfluenceandrespondtobioticandabioticstressconditions.Differential
expressionpatternwasfoundfortheOSM34(osmotin‐likeprotein)gene,whichimproveshost
defenseandimmunedefenseagainststress,andtheDUF26geneforthereceptor‐likeproteinkinase
subfamily(itsdomainplayscrucialroleinstressresistanceandantifungaldefense);thosetwogenes
wereupregulatedinF.verticillioides,F.graminearum,andU.maydisinfectedsamples,however,they
appeareddownregulatedinsamplesaffectedbyT.atroviride.Genesaffectedbetweenthree,two,and
afterinfectionbyasinglefungalspecieswerealsorevealed.
Identifyinggenesexpressedduringinfectionbyvariousfungalspeciescanhelptofindgenes
essentialfordefenseagainstthosemicrobes.Astheglobalclimateisaltered,importantagriculturally,
plantspeciesbecomegraduallyexposedalsotoincreasingbioticstress.Thefindingsdiscussedabove
wouldhelpdevelopplantcultivarsthatarehighlyresistanttofungalinfections.
4.2.2.BacterialInfections
Analysisofthetranscriptomeofriceplants(Oryzaindica)infectedwithXanthomonasoryzae
revealedmultipleDEGs;theupregulatedoneswereclassifiedinto10functionalgroups,among
whichgenescodingproteinsinvolvedinprocessessuchassignaltransduction,carbohydrate
metabolism,andtranscriptionregulationwereenriched.Onthecontrary,downregulatedgeneswere
assignedto12functionalgroups,amongwhichthegroupsofgenescodingforTFsandproteins
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
24
involvedinlipidcatabolism,oxidativeburst,andassociatedwiththecellcycleormetabolicpathways
werethemostdistinctive[140].
Analysisofthetranscriptomeoftomatoplants(Solanumlycopersicon)infectedwithClavibacter
michiganensisallowedabetterunderstandingoftheresponseoftheplanthosttoinfection.
Upregulatedgenescodedproteinsthatparticipateinprocessessuchasproteinphosphorylation,
plantdefenseresponse,andhormonalsignaling.Theresistancegeneanalogues(RGAs)inresponse
toC.michiganensiswereupregulated,alsoincludinggenesRLKgenes.Theexpressionofgenes
encodingTFs,suchasWRKY,NAC,HSF,andCBP60,whichbelongtofactorsinvolvedinthe
antibacterialplantresponse,wasalsoelevated(Figure3).Inaddition,anincreaseintheSA
accumulationintomatotissuesduetobacterialinfectionwasshowed.Moreover,theuseof
exogenousSAresultedintheinductionofgenesforWRKYTFs.Thissuggeststheappearanceofgene
regulationbySAinresponsetoinfectionwithC.michiganensis,resultinginimprovedqualityofthe
plantimmuneresponse[141].
Inturn,Luetal.[142]investigatedtranscriptomesofrice(Oryzasativa)cultivarsresistantand
susceptibletoinfectionwithXanthomonasoryzaena.Thispathogencausesacerealdiseasecalled
bacterialleafstreak(BLS).Dataanalysisshowedthat,generally,moretranscriptsrespondedin
abundanceamongtheinfection‐susceptiblecultivar.Theseanalysesrevealedelevatedlevelsof
expressionofgenesencodingproteinsinvolvedinphenylpropanemetabolicpathways,
phenylalaninemetabolism,andflavonoidbiosynthesis,whichwerecloselyrelatedtoresistanceto
plantdiseases.Furthermore,theresultsofthestudybyLuetal.[142]alsosuggestedtheparticipation
ofselectedWRKY,NAC,MYB,andbHLHTFsinplantresponsetobacterialinfection(Figure3).
Recentresearchonresistant(IBL2353)andsusceptible(Ohio88119)tomato(S.lycopersicum)
cultivarsinfectedbyC.michiganensispresentednewgenefamiliesindefensemechanismsand
confirmedtheimportantroleoftheWRKYfamilyofTFsintheresponsetobioticstress.Comparison
oftranscriptomicdataderivedfromresistantandnon‐resistanttomatocultivarsaffectedbyC.
michiganensisrevealedthat215geneswereupregulatedandfurther362genesappeared
downregulatedamongallstressvariants(12h‐ and24h‐post‐infection)inbothgenotypes,
respectively.FromtheanalysesoftheGOandKEGGpathwayofgenesassociatedwithresistance,
almost25tomatogeneswereselectedforfurtheranalysis.Tocomparethedifferencesinthosegenes
betweensusceptibleandresistantgenotypes,aheatmapwascreated.Thankstothis,outof25genes
codingproteinsassociatedwiththeplantdefenseresponse,aWAKL20gene(forthewall‐associated
receptorkinasesimilartowall20)wasparticularlycharacterized,duetoitsincreasedexpressionlevel
intheIBL2353cultivar.TheWAKL20proteinistheonlymemberoftheWAKSsubfamilythatplays
animportantroleininnateresistancetomultiplepathogens.Thevirus‐inducedsilencingofthe
WAKS20geneintheIBL2353tomatocultivarresultedintheappearanceofsusceptibilitytoC.
michiganensisinfection.TheseresultsseemtoconfirmanimportantrolefortheWAKS20geneinthe
defensemechanismofplantsandestablishthefoundationforfurtherresearchintothesearchfornew
moreresistantplantvarieties[143].
5.ConclusionsandFuturePerspectives
Planttranscriptomecanbedynamicallyshapedbymanyfactors,functioningondiverselevels
ofbiologicaldiversity[81,91,93].Understandingthecompositionofthetranscriptomeallowsto
recognizemechanismsandgenesinvolvedinacclimationtoadverseenvironmentalconditionsto
whichplantshavebeensubjected.Inplantcells,inadditiontothetranscriptomebeingaproductof
nucleargenomeexpression,plastidandmitochondrialtranscriptomesarealsopresent,contributing
totheoveralldynamicityandcomplexityofplanttranscriptomes[25–27,35,121].Diversenuclearand
organellargenesareinducedinvariousorgansandunderacclimationtonumerousabioticandbiotic
stressors[121,133].Inthecurrentreview,wefocusedmainlyonsuchdiversityofglobalplant
transcriptomicresponsestovariousabiotic(UV,chemicaltreatments,drought,heat,low
temperature)andbiotic(bacterialandfungalinfections)stressconditionsassayedbyhigh
throughputtranscriptomesequencingstudies.Inaddition,wecharacterizeddistincttissue/organ‐
specifictranscriptionpatternsalsoanalyzedbyRNA‐seq,includingsinglecellRNA‐seqapproach
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
25
andothercurrentmethodologies.Forthat,wefocusedmostlyonthetranscriptionalbiogenesisof
vascularelementsaswellasonseed,leaf,andgenerativeorgantranscriptomes.Wecommentedalso
onperspectivesofapplicationofbiomedicinallyimportantspeciesintranscriptomicanalyses.
Extensiveresearchontheplanttranscriptomeisbeingdevelopedatvariouslevels.
Transcriptomicdatacanbeacquiredbothfromdifferentialexpressionstudiesontissue/organsor
evenfromsinglecells,andmodernRNA‐seqapproachesconsiderablyextendedourknowledgeon
transcriptomecontentandsize.OwingBestetal.[35]study,moreorganellartranscriptomesfor
importantcropspeciesshouldbeanalyzedinthefuturethatwouldallowforthebetter
understandingofplastomeandmitogenomeresponsesinstressandtheirrelevanceinparticular
developmentalsteps.Also,moretranscriptomicstudiesemployingsinglecellRNA‐seqcoupledwith
microscopicanalyzesareexpected,inorder(1)tobroadenthespatio‐temporaldataoftissue/organ
transcriptomes,(2)toexplorediversityoftranscriptomesindistinctcellscontributingtotheorgan
architecturalintegrity,and(3)tobuildcompleteexpressiondatasets/atlasesforagriculturally
importantspeciesinthefuture.Duetotheunderrepresentationofthetranscriptomicdatainstress
forsomeplantorgans,furtherstudiesarestillexpected[39].Inafuture,cleardistinguishingoftissues
andtissueregionsbothbytheirphysicallocationandinvestigatingofgeneco‐expressionpatternsin
transcriptomicanalyseswouldbealsonecessary[76].
Higherplants,ascomplexorganismswithspecializedstructures,showdiverseandvery
dynamicallychanginggeneexpressionpatternsdependingontheorganorconditionstowhichthey
aresubjected,whichleadstothemetabolicflexibility[80,109].Inaddition,stressresponseatthe
transcriptomiclevelisactivelymodulateddependingonthestressorqualityanditsduration(for
somestressors,likedrought,affectingtranscriptomicpatternmostlyafteraprolongedexposure
[108]).Inthisreview,transcriptomicdatacomingnotonlyfromArabidopsis(TableS3),butalsofrom
diverseplantspecieswithvariouspotentialsofagriculturalapplicationswerediscussed.Notably,
DEGsconnectedwiththegivenstressresponsesincropspeciesvariedfromtheArabidopsisones,
employingdiversegenefamiliesorgenesfordiverseregulatoryproteins;nevertheless,commonly
regulatedgenesoftencoveredtheonesforthelow‐molecularcompoundbiogenesisandfor
secondarymetabolismenzymes[96].
Evensimilarenvironmentalcuesresultedinthediversityofgeneresponses,leadingtothe
inductionorupregulationofdistinctgenes.Transcriptomicstressresponsesengagedinductionof
bothcommongenesfordiversestressorsaswellasspecificgenemodules,codingcertainprotein
familiesactiveinselectedtreatmentsonly.Thiswasalsoevidentinthediscussedmeta‐analysisof
Arabidopsistranscriptomicdata(Figure4),whereonlylimitednumberofDEGsappearedcommon
fordiverseabioticstresstreatments;evenmultipledosageofthegivenstressorresultedinahigh
variabilityoftranscriptomicresponse.Somegenesforthegivenhormone(e.g.,SA)signalingwere
unaffectedbycertaintreatments,forinstance,bywaterdeficitwhichappearedparticularly
detrimentalalsoatthetranscriptomiclevel[102,103,106].Amongaffectedtranscripts,numerous
mRNAsencodedforaplethoraoftranscriptionfactorsfromdiversefamilies(Figure3).Itseemsthat
somemostdetrimentalstressors(forinstancehightemperaturetreatments)employedparticularly
highnumberoftranscriptionfactorsregulatinggeneexpression[124].
Doublestresstreatmentsresultedinhighlyspecificresponses,insomecasesincreasingthe
numberofaffectedDEGs[120,125]asmuchasthemostdetrimentalstressor[123],indicatingthatstill
thereisaneedformultiplestressoranalyses.Generally,stress‐sensitivecultivarsengagemoreDEGs
intheirstressresponses,however,thosepatternshighlydependonactualtissue/organstressed
(TableS3)[124].However,mostofthetranscriptomicdatadiscussedherecamefromplantmaterial
cultivatedunderhighlycontrolledlaboratoryconditions.Therefore,inouropinion,fieldexperiments
testingthevariationsofmultiplestressresponses(whichactsimultaneouslyonfieldcultivated
plants)inplantnuclearandorganellartranscriptomeswillbecontinuouslyawaited.Additionally,
plantresponsesonbioticstressindicatedfortheimportanceofplant‐microorganisminteractions
whichcanoverallinfluencestresstolerance[144],andthiswouldbechallengingpointalsoforfuture
transcriptionalstudies.Thus,impactoftheplantmicrobiomeonstressresponseonthe
transcriptionallevelshouldbeinvestigatedinmorebroadenedcontext.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
26
Withtheknowledgeofindividualgeneprofilesandmechanismsresponsible,forexample,for
thesynthesisofsecondarymetabolites,itwouldbepossibletousethempractically(1)duringgenetic
engineeringofmedicinalplantspecies,(2)toinvestigateofprocessesengagedintheactive
compoundbiogenesisandtheorganogenesis,and(3)tounderstandbetterhowmetabolicpathways
contributetovariousstressacclimationstrategies.Thiswouldalsoallowanexemplarymanipulation
ofplantmetabolicpathwaysinthefuturetoobtainmoresecondarymetabolites,whichoftendepends
onthedevelopmentalstage[83,85].Last,butnotleast,understandingmetabolicpathwaysandplant
responsestounfavorableconditions,suchasdrought,reducedorelevatedtemperature,orpathogen
infection,cancontributetothedevelopmentofnewmorestress‐resistantplantcultivars.Those
pendingactionswillincludemodernmethodologicaltools,includingadvancedgeneticengineering
andgeneeditingstrategiestoalleviatefuturecroplossesduetosuboptimalweatherandthe
increasedfooddemandsinthefuture[81,145].
SupplementaryMaterials:Thefollowingsupportinginformationcanbedownloadedatthewebsiteofthis
paperpostedonPreprints.org.thissubmissioncontainsthreeSupplementaryTables:TableS1:Comparisonof
theselected,differentlysizedplantnuclearandorganellar(plastid,mitochondrial)genomes,TableS2:
Differentiallyexpressedgenes(DEGs)instudiesonorgan‐/tissue‐specifictranscriptomes(lines3‐26)aswellas
planttranscriptomesunderstressacclimation(lines27‐64),TableS3:Arabidopsisdifferentiallyexpressedgenes
(DEGs)forvarioustreatmentsandstressconditions.
AuthorContributions:M.R.andM.S.:carriedouttheliteraturereview;M.R.:conceptualization;M.R.andM.S.:
writing—originaldraftpreparation;M.S.:preparationofFigures1‐2andTableS1;M.R.:preparationofFigures
3‐4,andTablesS2‐S3;M.R.:writing—reviewandediting;M.R.:supervision;M.R.:fundingacquisition.All
authorshavereadandagreedthesubmittedversionofthemanuscript.Authorsagreetobepersonally
accountablefortheirowncontributionsandforensuringthatquestionsrelatedtotheaccuracyorintegrityof
anypartofthework.Allauthorscontributedtothearticleandapprovedthesubmittedversion.
Funding:ThisresearchwasfundedbytheExcellentInitiative–ResearchUniversity(ID‐UB)programatthe
AdamMickiewiczUniversity,Poznań andKNOWRNAResearchCenteratAdamMickiewiczUniversity,
Poznań,grantno.01/KNOW2/2014.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Publiclyavailabledatasets(TablesS1andS3)wereanalyzedinthisstudy;those
datacanbefoundhere:https://www.ncbi.nlm.nih.gov/datasets/genome/,https://www.ebi.ac.uk/gxa/home,
https://biit.cs.ut.ee/gprofiler/gost,
Acknowledgments:WewouldliketothankcolleaguesfromourInstituteforthevaluableremarksduringthe
preparationofthemanuscript.
ConflictsofInterest:Theauthorsdeclarenoconflictsofinterest.
Abbreviations
AAO aldehydeoxidase
ABAabscisicacid
ABFABSCISICACIDRESPONSIVEELEMENT‐BINDINGFACTOR
ACADMmedium‐chainacyl‐CoAdehydrogenase
ACO 1‐aminocyclopropane‐1‐carboxylicoxidase
ACOXacyl‐CoAoxidase
ACS1‐aminocyclopropane‐1‐carboxylicsynthase
ALA5‐aminolevulinicacid
AOSalleneoxidesynthase
AOX alternativeoxidase
APAPETALA
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
27
APXascorbateperoxidase
ARFauxinresponsefactor
ASanthocyanidinsynthase
asMTacetylserotoninO‐methyltransferase
ASCL‐ascorbicacid
ATHBsmallhomeodomain‐leucinezipperfamily
AUXauxinreceptor
bHLHbasichelix–loop–helix
BLS bacterialleafstreak
bZIP basic(region)leucinezipper
CAM crassulaceanacidmetabolism
CATcatalase
CBP CALMODULIN‐BINDINGPROTEIN
CCOAOMTcaffeoyl‐CoAO‐methyltransferase
CDP CAATdisplacementprotein(transcriptionalrepressor)
CCR cinnamoyl‐CoA:NADPreductase
C3H zincfingertranscriptionfactor
CHI chalconeisomerase
CHS chalconesynthase
C4H 4‐cinnamatehydroxylase
CIPK CBL‐interactingproteinkinase
4CL 4‐coumarate:CoAligase
Clpcaseinolyticprotease
CO CONSTANS
CRK cysteine‐richreceptor‐likekinase
CRY cryptochrome
CXIP CAX‐interactingprotein
DEGs differentially‐expressedgenes
DFR dihydroflavonol4‐reductase
DIMI DIMINUTO
DofDNA‐bindingwithonefinger
DREBdehydration‐responsiveelement‐binding
ECHS shortchainenoyl‐CoAhydratase
EF earlyflowering
EIL ethyleneinsensitive‐like
ER endoplasmicreticulum
EREBP ethylene‐responsiveelementbindingprotein
ERF ethyleneresponsefactor
ESTs expressedsequencetags
ETI effector‐triggeredimmunity
F3H flavanone‐3‐hydroxylase
FIE fertilization‐independentendospermia
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
28
FSL flavonolsynthase
FT FLOWERINGLOCUST
FUL FRUITFUL
FUS fusedinsarcoma
GABA g‐aminobutyricacid
GID GA‐INSENSITIVEDWARF
GRF GrowthRegulatingFactor
HCT hydroxycinnamoyltransferase
HDhomeodomain
HLHhelix‐loop‐helix
HR hypersensitiveresponse
HSF heatshockfactor
HSP heatshockprotein
IFL INTERFASCICULARFIBERLESS
JA jasmonicacid
KAN KANADI
LEA late‐embryogenesisabundant
LHClight‐harvestingcomplex
LEC littleelongationcomplex
LIM homeoboxtranscriptionfactor
LOX lipoxygenase
MADS MINICHROMOSOMEMAINTENANCE1/AGAMOUS/DEFICIENS/SERUMRESPONSE
FACTOR
MAPKmitogen‐assiociatedproteinkinase
MDHAR monodehydroascorbatereductase
MEDEA motifenrichmentindifferentialelementsofaccessibility
MFP multifunctionalprotein
MIOX myo‐inositoloxygenase
MLO mildewlocuso
MYB myeloblastosis
NAC noapicalmeristem/ATAF1/cup‐shapedcotyledon
NAMnoapicalmeristem
NCED 9‐cis‐epoxycarotenoiddioxygenase
NIN noduleinception
OPR 12‐oxophytodienoicacidreductase
OSM osmotin‐likeprotein
OXPHOS oxidativephosphorylation
PAAF 23‐dehydroadipyl‐CoAhydratase
PAL phenylalanineammonialyase
PAMP pathogen‐associatedmolecularpattern
PCD programmedcelldeath
PcG Polycombgroup
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
29
PEAR PHLOEMEARLYDNA‐BINDING‐WITH‐ONE‐FINGER
PEI Cys3Hiszincfingerdomain‐containingprotein
PHB PHABULOSA
PHV PHAVOLUTA
PHY phytochrome
POD peroxidase
PS photosystem
PTI PAMP‐triggeredimmunity
PLATZ plantAT‐richsequenceandzinc‐bindingprotein
REV REVOLUTA
RGA resistancegeneanalogue
RLK receptor‐likekinase
ROS reactiveoxidativespecies
SA salicylicacid
SBPSQUAMOSA‐pROMOTERBINDINGPROTEIN
SOC suppressorofoverexpressionofconstans
SOD superoxidedismutase
STS stachyosesynthase
TCP bHLHDNA‐bindingdomain
TF transcriptionfactor
TUB transcriptionfactorfamily
UF3GT UDP‐glucose:flavonoid3‐O‐glycosyltransferase
WAKL20 wall‐associatedreceptorkinase‐like2
WGD whole‐genomeduplication
WRKYtranscriptionfactorfamily
VIN VERNALIZATIONINSENSITIVE
ZEP zeaxanthinepoxidase
ZIPleucinezipper
References
1. Kenrick,P.;Crane,P.R.TheOriginandEarlyDiversificationofLandPlants:ACladisticStudy;Smithsonianseries
incomparativeevolutionarybiology,1sted.;SmithsonianInstitutionPress:Washing ton,DC,U.S.A.,1997;
2. Forster,B.P.;Heberle‐Bors,E.;Kasha,K.J.;Touraev,A.TheResurgenceofHaploidsinHigherPlants.Trend
PlantSci.2007,12,368–375,doi:10.1016/j.tplants.2007.06.007.
3. Morris,J.L.;Puick,M.N.;Clark,J.W.;Edwards,D.;Kenrick,P.;Pressel,S.;Wellman,C.H.;Ya n g , Z.;
Schneider,H.;Donoghue,P.C.J.TheTimescaleofEarlyLandPlantEvolution.Proc.Natl.Acad.Sci.U.S.A.
2018,115,E2274–E2283,doi:10.1073/pnas.1719588115.
4. Thompson,S.;Prahalad,S.;Colbert,R.IntegrativeGenomics.TextbookofPediatricRheumatology;7thed.;
Elsevier;Philadelphia,PA,U.S.A.,2016,pp.43‐53.e3
5. Schliesky,S.;Gowik,U.;Weber,A.P.M.;Bräutigam,A.RNA‐SeqAssembly–AreWeThereYet?Front.Plant
Sci.2012,3,doi:10.3389/fpls.2012.00220.
6. Tyagi,P.;Singh,D.;Mathur,S.;Singh,A.;Ranjan,R.UpcomingProgressofTranscriptomicsStudieson
Plants:AnOverview.Front.PlantSci.2022,13,1030890,doi:10.3389/fpls.2022.1030890.
7. Chen,C.;Ge,Y.;Lu,L.OpportunitiesandChallengesintheApplicationofSingle‐CellandSpatial
TranscriptomicsinPlants.Front.PlantSci.2023,14,1185377,doi:10.3389/fpls.2023.1185377.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
30
8. Singh,S.;Parihar,P.;Singh,R.;Singh,V.P.;Prasad,S.M.HeavyMetalToleranceinPlants:Roleof
Transcriptomics,Proteomics,Metabolomics,andIonomics.Front.PlantSci.2016,6,1143,
doi:10.3389/fpls.2015.01143.
9. Ahmad,M.GenomicsandTranscriptomicstoProtectRice(Oryzasativa.L.)fromAbioticStressors:‐
PathwaystoAchievingZeroHunger.Front.PlantSci.2022,13,1002596,doi:10.3389/fpls.2022.1002596.
10. Bhat,K.A.;Mahajan,R.;Pakhtoon,M.M.;Urwat,U.;Bashir,Z.;Shah,A.A.;Agrawal,A.;Bhat,B.;Sofi,P.A.;
Masi,A.;etal.LowTemperatureStressTolerance:AnInsightIntotheOmicsApproachesforLegume
Crops.Front.PlantSci.2022,13,888710,doi:10.3389/fpls.2022.888710.
11. Kourani,M.;Mohareb,F.;Rezwan,F.I.;Anastasiadi,M.;Hammond,J.P.GeneticandPhysiological
ResponsestoHeatStressinBrassicanapus.Front.PlantSci.2022,13,832147,doi:10.3389/fpls.2022.832147.
12. Son,S.;Park,S.R.PlantTranslationalReprogrammingforStressResilience.Front.PlantSci.2023,14,
1151587,doi:10.3389/fpls.2023.1151587.
13. Tu,M.;Du,C.;Yu,B.;Wang,G.;Deng,Y.;Wang,Y.;Chen,M.;Chang,J.;Yang,G.;He,G.;etal.Current
AdvancesintheMolecularRegulationofAbioticStressToleranceinSorghumviaTranscriptomic,
Proteomic,andMetabolomicApproaches.Front.PlantSci.2023,14,1147328,doi:10.3389/fpls.2023.1147328.
14. Jin,X.;Wang,Z.;Li,X.;Ai,Q.;Wong,D.C.J.;Zhang,F.;Yang,J.;Zhang,N.;Si,H.CurrentPerspectivesof
lncRNAsinAbioticandBioticStressToleranceinPlants.Front.PlantSci.2024,14,1334620,
doi:10.3389/fpls.2023.1334620.
15. Hirsch,C.N.;RobinBuell,C.TappingthePromiseofGenomicsinSpecieswithComplex,Nonmodel
Genomes.Annu.Rev.Pla ntBiol.2013,64,89–110,doi:10.1146/annurev‐arplant‐050312‐120237.
16. Kress,W.J.;Soltis,D.E.;Kersey,P.J.;Wegrzyn,J.L.;Leebens‐Mack,J.H.;Gostel,M.R.;Liu,X.;Soltis,P.S.
GreenPlantGenomes:WhatWeKnowinanEraofRapidlyExpandingOpportunities.Proc.Natl.Acad.Sci.
U.S.A.2022,119,e2115640118,doi:10.1073/pnas.2115640118.
17. Pellicer,J.;Hidalgo,O.;Dodsworth,S.;Leitch,I.GenomeSizeDiversityandItsImpactontheEvolutionof
LandPlants.Genes2018,9,88,doi:10.3390/genes9020088.
18. Margulis,L.OriginofEukaryoticCells:EvidenceandResearchImplicationsforaTheoryoftheOriginand
EvolutionofMicrobial,Plant,andAnimalCellsonthePrecambrianEarth,1sted.;YaleUniv.Press:NewHaven,
U.S.A.,1970.
19. McFadden,G.I.PrimaryandSecondaryEndosymbiosisandtheOriginofPlastids.J.Phycol.2001,37,951–
959,doi:10.1046/j.1529‐8817.2001.01126.x.
20. Rockwell,N.C.;Lagarias,J.C.;Bhaacharya,D.PrimaryEndosymbiosisandtheEvolutionofLightand
OxygenSensinginPhotosyntheticEukaryotes.Front.Ecol.Evol.2014,2,doi:10.3389/fevo.2014.00066.
21. Best,C.;Mizrahi,R.;Osterseer‐Biran,O.WhysoComplex?TheIntricacyofGenomeStructureandGene
Expression,AssociatedwithAngiospermMitochondria,MayRelatetotheRegulationofEmbryo
QuiescenceorDormancy—IntrinsicBlockstoEarlyPlantLife.Plants2020,9,598,
doi:10.3390/plants9050598.
22. Dobrogojski,J.;Adamiec,M.;Luciński,R.TheChloroplastGenome:AReview.ActaPhysiol.Plant.2020,42,
98,doi:10.1007/s11738‐020‐03089‐x.
23. Provan,J.;Powell,W.;Hollingsworth,P.M.ChloroplastMicrosatellites:NewToolsforStudiesinPlant
EcologyandEvolution.TrendsEcol.Evol.2001,16,142–147,doi:10.1016/S0169‐5347(00)02097‐8.
24. Asaf,S.;Khan,A.L.;AaqilKhan,M.;MuhammadImran,Q.;Kang,S.‐M.;Al‐Hosni,K.;Jeong,E.J.;Lee,K.E.;
Lee,I.‐J.ComparativeAnalysisofCompletePlastidGenomesfromWildSoybean(GlycineSoja)andNine
OtherGlycineSpecies.PLoSONE2017,12,e0182281,doi:10.1371/journal.pone.0182281.
25. Daniell,H.;Lin,C.‐S.;Yu,M.;Chang,W.‐J.ChloroplastGenomes:Diversity,Evolution,andApplications
inGeneticEngineering.GenomeBiol2016,17,134,doi:10.1186/s13059‐016‐1004‐2.
26. Rurek,M.ParticipationofNon‐CodingRNAsinPlantOrganelleBiogenesis.ActaBiochim.Pol.2016,63,
653–663,doi:10.18388/abp.2016_1346.
27. Barkan,A.;Goldschmidt‐Clermont,M.ParticipationofNuclearGenesinChloroplastGeneExpression.
Biochimie2000,82,559–572,doi:10.1016/S0300‐9084(00)00602‐7.
28. Wats on,S.J.;Sowden,R.G.;Jarvis,P.AbioticStress‐InducedChloroplastProteomeRemodelling:A
MechanisticOverview.J.Exp.Bot.2018,69,2773–2781,doi:10.1093/jxb/ery053.
29. Cho,K.‐S.;Cho,J.‐H.;Im,J.‐S.;Choi,J.‐G.;Park,Y.‐E.;Hong,S.‐Y.;Kwon,M.;Kang,J.‐H.;Park,T.‐H.The
CompleteMitochondrialGenomeSequencesofPotato(SolanumtuberosumL.,Solanaceae).Mitochondrial
DNAPartB2017,2,781–782,doi:10.1080/23802359.2017.1398607.
30. Logan,D.C.PlantMitochondrialDynamics.Biochim.Biophys.Acta‐MolecularCellResearch2006,1763,430–
441,doi:10.1016/j.bbamcr.2006.01.003.
31. Sloan,D.B.;Alverson,A.J.;Chuckalovcak,J.P.;Wu,M.;McCauley,D.E.;Palmer,J.D.;Taylor,D.R.Rapid
EvolutionofEnormous,MultichromosomalGenomesinFloweringPlantMitochondriawithExceptionally
HighMutationRates.PLoSBiol2012,10,e1001241,doi:10.1371/journal.pbio.1001241.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
31
32. Sloan,D.B.;Keller,S.R.;Berardi,A.E.;Sanderson,B.J.;Karpovich,J.F.;Taylor, D.R.DenovoTranscriptome
AssemblyandPolymorphismDetectionintheFloweringPlantSilenevulgaris(Caryophyllaceae).Mol.Ecol.
Res.2012,12,333–343,doi:10.1111/j.1755‐0998.2011.03079.x.
33. Imadi,S.R.;Kazi,A.G.;Ahanger,M.A.;Gucel,S.;Ahmad,P.PlantTranscriptomicsandResponsesto
EnvironmentalStress:AnOverview.J.Genet.2015,94,525–537,doi:10.1007/s12041‐015‐0545‐6.
34. Schneider,G.F.;Dekker,C.DNASequencingwithNanopores.Nat.Biotechnol.2012,30,326–328,
doi:10.1038/nbt.2181.
35. Best,C.;Sultan,L.D.;Murik,O.;Osterseer,O.InsightsintotheMitochondrialTranscriptomeLandscapes
ofTwoBrassicalesPlantSpecies,Arabidopsisthaliana(var.Col‐0)andBrassicaoleracea(var.botrytis).Endocyt.
CellRes.2020,30,16–38,doi:10.1101/2020.10.22.346726.
36. Cahoon,A.;Nauss,J.;Stanley,C.;Qureshi,A.DeepTranscriptomeSequencingofTwoGreenAlgae,Chara
vulgarisandChlamydomonasreinhardtii,ProvidesNoEvidenceofOrganellarRNAEditing.Genes2017,8,
80,doi:10.3390/genes8020080.
37. Zhang,H.TheReviewofTranscriptomeSequencing:Principles,HistoryandAdvances.IOPConf.Ser.:
EarthEnviron.Sci.2019,332,042003,doi:10.1088/1755‐1315/332/4/042003.
38. Booth,M.W.;Breed,M.F.;Kendrick,G.A.;Bayer,P.E.;Severn‐Ellis,A.A.;Sinclair,E.A.Tissue‐Specific
TranscriptomeProfilesIdentifyFunctionalDifferencesKeytoUnderstandingWholePlantResponsetoLife
inVariableSalinity.BiologyOpen2022,11,bio059147,doi:10.1242/bio.059147.
39. Berkowi,O.;Xu,Y.;Liew,L.C.;Wang,Y.;Zhu,Y.;Hurgobin,B.;Lewsey,M.G.;Whelan,J.RNA‐seq
AnalysisofLaserMicrodissectedArabidopsisThalianaLeafEpidermis,MesophyllandVascula t ureDefines
Tissue‐specificTranscriptionalResponsestoMultipleStressTreatments.PlantJ.2021,107,938–955,
doi:10.1111/tpj.15314.
40. Wang,H.‐Z.;Dixon,R.A.On–OffSwitchesforSecondaryCellWa llBiosynthesis.Mol.Plant2012,5,297–
303,doi:10.1093/mp/ssr098.
41. Růžička,K.;Ursache,R.;Hejátko,J.;Helariua,Y.XylemDevelopment–fromtheCradletotheGrave.New
Phytol.2015,207,519–535,doi:10.1111/nph.13383.
42. Dinneny,J.R.;Yanofsky,M.F.Vascular Paerning:XylemorPhloem?Curr.Biol.2004,14,R112–R114,
doi:10.1016/j.cub.2004.01.017.
43. Eshed,Y.;Baum,S.F.;Perea,J.V.;Bowman,J.L.EstablishmentofPolarityinLateralOrgansofPlants.Curr.
Biol.2001,11,1251–1260,doi:10.1016/S0960‐9822(01)00392‐X.
44. Eshed,Y.;Izhaki,A.;Baum,S.F.;Floyd,S.K.;Bowman,J.L.AsymmetricLeafDevelopmentandBlade
ExpansioninArabidopsisAreMediatedbyKANADIandYABBYActivities.Development2004,131,2997–
3006,doi:10.1242/dev.01186.
45. Roszak,P.;Heo,J.;Blob,B.;Toyokura,K.;Sugiyama,Y.;DeLuisBalaguer,M.A.;Lau,W.W.Y.;Hamey,F.;
Cirrone,J.;Madej,E.;etal.Cell‐by‐CellDissectionofPhloemDevelopmentLinksaMaturationGradientto
CellSpecialization.Science2021,374,eaba5531,doi:10.1126/science.aba5531.
46. Chen,J.;Liu,F.;Tang,Y.;Yuan,Y.;Guo,Q.TranscriptomeSequencingandProfilingofExpressedGenesin
PhloemandXylemofRamie(BoehmerianiveaL.Gaud).PLoSONE2014,9,e110623,
doi:10.1371/journal.pone.0110623.
47. Kalckar,H.M.GalactoseMetabolismandCell“Sociology”:Galactose,OneoftheFreaksofEvolution,
FurnishesaSimpleIllustrationoftheExtravagancesofNature.Science1965,150,305–313,
doi:10.1126/science.150.3694.305.
48. Web er,H.FayAcid‐DerivedSignalsinPlants.TrendPlantSci.2002,7,217–224,doi:10.1016/S1360‐
1385(02)02250‐1.
49. Lin,T.;Lashbrook,C.C.;Cho,S.K.;Butler,N.M.;Sharma,P.;Muppirala,U.;Severin,A.J.;Hannapel,D.J.
TranscriptionalAnalysisofPhloem‐AssociatedCellsofPotato.BMCGenomics2015,16,665,
doi:10.1186/s12864‐015‐1844‐2.
50. Mishima,K.;Fujiwara,T.;Iki,T.;Kuroda,K.;Yam a s hi ta,K.;Tamur a,M.;Fujisawa,Y.;Wa tana be,A.
TranscriptomeSequencingandProfilingofExpressedGenesinCambialZoneandDifferentiatingXylem
ofJapaneseCedar(Cryptomeriajaponica).BMCGenomics2014,15,5920,doi:10.1186/1471‐2164‐15‐219.
51. Huang,Q.;Huang,X.;Deng,J.;Liu,H.;Liu,Y.;Yu,K.;Huang,B.DifferentialGeneExpressionbetween
LeafandRhizomeinAtract ylodesLancea:AComparativeTranscriptomeAnalysis.Front.PlantSci.2016,7,
348,doi:10.3389/fpls.2016.00348.
52. Mason,P.J.;Furtado,A.;Marquardt,A.;Hodgson‐Kratky,K.;Hoang,N.V.;Botha,F.C.;Papa,G.;Mortimer,
J.C.;Simmons,B.;Henry,R.J.Variatio n inSugarcaneBiomassCompositionandEnzymaticSaccharification
ofLeaves,InternodesandRoots.Biotechnol.Biofuels2020,13,201,doi:10.1186/s13068‐020‐01837‐2.
53. Schmidt‐Rohr,K.O2andOtherHigh‐EnergyMoleculesinPhotosynthesis:WhyPlantsNeedTwo
Photosystems.Life2021,11,1191,doi:10.3390/life11111191.
54. Denyer,T.;Ma,X.;Klesen,S.;Scacchi,E.;Nieselt,K.;Timmermans,M.C.P.SpatiotemporalDevelopmental
TrajectoriesintheArabidopsisRootRevealedUsingHigh‐ThroughputSingle‐CellRNASequencing.Dev.
Cell2019,48,840‐852.e5,doi:10.1016/j.devcel.2019.02.022.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
32
55. Shulse,C.N.;Cole,B.J.;Ciobanu,D.;Lin,J.;Yoshinaga,Y.;Gouran,M.;Turco,G.M.;Zhu,Y.;O’Malley,R.C.;
Brady,S.M.;etal.High‐ThroughputSingle‐CellTranscriptomeProfilingofPlantCellTypes.CellRep.2019,
27,2241‐2247.e4,doi:10.1016/j.celrep.2019.04.054.
56. Efroni,I.;Mello,A.;Nawy,T.;Ip,P.‐L.;Rahni,R.;DelRose,N.;Powers,A.;Satija,R.;Birnbaum,K.D.Root
RegenerationTriggersanEmbryo‐likeSequenceGuidedbyHormonalInteractions.Cell2016,165,1721–
1733,doi:10.1016/j.cell.2016.04.046.
57. Kor,A.;Hochholdinger,F.;Yu,P.CellType‐SpecificTranscriptomicsofLateralRootFormationand
Plasticity.Front.PlantSci.2019,10,21,doi:10.3389/fpls.2019.00021.
58. Ten orioBerrío,R.;Versta en,K.;Vandamme,N.;Pevernagie,J.;Achon,I.;Van Duyse,J.;VanIsterdael,G.;
Saeys,Y.;DeVeylder,L.;Inzé,D.;etal.Single‐CellTranscriptomicsShedsLightontheIdentityand
MetabolismofDevelopingLeafCells.PlantPhysiol.2022,188,898–918,doi:10.1093/plphys/kiab489.
59. Breeze,E.;Harrison,E.;McHaie,S.;Hughes,L.;Hickman,R.;Hill,C.;Kiddle,S.;Kim,Y.;Penfold,C.A.;
Jenkins,D.;etal.High‐ResolutionTemporalProfilingofTranscriptsduringArabidopsisLeafSenescence
RevealsaDistinctChronologyofProcessesandRegulation.PlantCell2011,23,873–894,
doi:10.1105/tpc.111.083345.
60. Chrobok,D.;Law,S.R.;Brouwer,B.;Lindén,P.;Ziolkowska,A.;Liebsch,D.;Narsai,R.;Szal,B.;Mori,T.;
Rouhier,N.;etal.DissectingtheMetabolicRoleofMitochondriaduringDevelopmentalLeafSenescence.
PlantPhysiol.2016,172,2132–2153,doi:10.1104/pp.16.01463.
61. Mason,P.J.;Hoang,N.V.;Botha,F.C.;Furtado,A.;Marquardt,A.;Henry,R.J.ComparisonoftheRoot,Leaf
andInternodeTranscriptomesinSugarcane(SaccharumSpp.Hybrids).Curr.Res.Biotech.2022,4,167–178,
doi:10.1016/j.crbiot.2022.02.005.
62. Li,P.;Ponnala,L.;Gandotra,N.;Wang,L.;Si,Y.;Taus ta,S.L.;Kebrom,T.H.;Provart,N.;Patel,R.;Myers,
C.R.;etal.TheDevelopmentalDynamicsoftheMaizeLeafTranscriptome.Nat.Genet.2010,42,1060–1067,
doi:10.1038/ng.703.
63. Huang,Y.‐J.;Liu,L.‐L.;Huang,J.‐Q.;Wang, Z.‐J.;Chen,F.‐F.;Zhang,Q.‐X.;Zheng,B.‐S.;Chen,M.Useof
TranscriptomeSequencingtoUnderstandthePistillateFloweringinHickory(CaryacathayensisSarg.).BMC
Genomics2013,14,691,doi:10.1186/1471‐2164‐14‐691.
64. Melzer,S.;Lens,F.;Gennen,J.;Vanneste,S.;Rohde,A.;Beeckman,T.Flowering‐TimeGenesModulate
MeristemDeterminacyandGrowthForminArabidopsisthaliana.Nat.Genet.2008,40,1489–1492,
doi:10.1038/ng.253.
65. Mutasa‐Gogens,E.;Hedden,P.GibberellinasaFactorinFloralRegulatoryNetworks.J.Exp.Bot.2009,
60,1979–1989,doi:10.1093/jxb/erp040.
66. Srikanth,A.;Schmid,M.RegulationofFloweringTime:AllRoadsLeadtoRome.Cell.Mol.LifeSci.2011,
68,2013–2037,doi:10.1007/s00018‐011‐0673‐y.
67. Kim,D.‐H.;Doyle,M.R.;Sung,S.;Amasino,R.M.Vernalization:WinterandtheTimingofFloweringin
Plants.Annu.Rev.CellDev.Biol.2009,25,277–299,doi:10.1146/annurev.cellbio.042308.113411.
68. Liu,K.;Feng,S.;Pan,Y.;Zhong,J.;Chen,Y.;Yuan,C.;Li,H.TranscriptomeAnalysisandIdentificationof
GenesAssociatedwithFloralTransitionandFlowerDevelopmentinSugarApple(AnnonasquamosaL.).
Front.PlantSci.2016,7,1695,doi:10.3389/fpls.2016.01695.
69. Jiao,Y.;Hu,Q.;Zhu,Y.;Zhu,L.;Ma,T.;Zeng,H.;Zang,Q.;Li,X.;Lin,X.ComparativeTranscriptomic
AnalysisoftheFlowerInductionandDevelopmentoftheLeiBamboo(Phyllostachysviolascens).BMC
Bioinformatics2019,20,687,doi:10.1186/s12859‐019‐3261‐z.
70. Roberts,W.R.;Roalson,E.H.ComparativeTranscriptomeAnalysesofFlowerDevelopmentinFourSpecies
ofAchimenes(Gesneriaceae).BMCGenomics2017,18,240,doi:10.1186/s12864‐017‐3623‐8.
71. Li,H.;Yuan,J.;Wu,M.;Han,Z.;Li,L.;Jiang,H.;Jia,Y.;Han,X.;Liu,M.;Sun,D.;etal.Transcriptomeand
DNAMethylomeRevealInsightsintoYieldHeterosisintheCurdsofBroccoli(BrassicaoleraceaLvar.
italica).BMCPlantBiol.2018,18,168,doi:10.1186/s12870‐018‐1384‐4.
72. Boesewinkel,F.D.;Bouman,F.TheSeed:Structure.InEmbryologyofAngiosperms,1sted.;Johri,B.M.,Ed.;
SpringerBerlinHeidelberg:Berlin,Heidelberg,Germany,1984;pp.567–610.
73. Martín‐Gómez,J.J.;GutiérrezdelPozo,D.;Ucchesu,M.;Bacchea,G.;CabelloSáenzdeSantamaría,F.;
Tocino,Á.;Cervantes,E.SeedMorphologyintheVitaceaeBasedonGeometricModels.Agronomy2020,10,
739,doi:10.3390/agronomy10050739.
74. Peirats‐Llobet,M.;Yi,C.;Liew,L.C.;Berkowi,O.;Narsai,R.;Lewsey,M.G.;Whelan,J.SpatiallyResolved
TranscriptomicAnalysisoftheGerminatingBarleyGrain.Nucl.AcidsRes.2023,51,7798–7819,
doi:10.1093/nar/gkad521.
75. Zhu,M.;Taylor,I.W.;Benfey,P.N.Single‐CellGenomicsRevolutionizesPlantDevelopmentStudiesacross
Scales.Development2022,149,dev200179,doi:10.1242/dev.200179.
76. Bes,N.S.;Berkowi,O.;Liu,R.;Collins,H.M.;Skadhauge,B.;Dockter,C.;Burton,R.A.;Whelan,J.;
Fincher,G.B.IsolationofTissuesandPreservationofRNAfromIntact,GerminatedBarleyGrain.PlantJ.
2017,91,754–765,doi:10.1111/tpj.13600.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
33
77. Le,B.H.;Cheng,C.;Bui,A.Q.;Wag mais ter, J.A.;Henry,K.F.;Pelletier,J.;Kwong,L.;Belmonte,M.;
Kirkbride,R.;Horvath,S.;etal.GlobalAnalysisofGeneActivityduringArabidopsisSeedDevelopmentand
IdentificationofSeed‐SpecificTranscriptionFactors.Proc.Natl.Acad.Sci.U.S.A.2010,107,8063–8070,
doi:10.1073/pnas.1003530107.
78. Narsai,R.;Gouil,Q.;Secco,D.;Srivastava,A.;Karpievitch,Y.V.;Liew,L.C.;Lister,R.;Lewsey,M.G.;
Whelan,J.ExtensiveTranscriptomicandEpigenomicRemodellingOccursduringArabidopsisthaliana
Germination.GenomeBiol.2017,18,172,doi:10.1186/s13059‐017‐1302‐3.
79. Liu,R.;Lu,J.;Xing,J.;Du,M.;Wang,M.;Zhang,L.;Li,Y.;Zhang,C.;Wu,Y.Transcriptomeand
MetabolomeAnalysesRevealingthePotentialMechanismofSeedGerminationinPolygonatumcyrtonema.
Sci.Rep.2021,11,12161,doi:10.1038/s41598‐021‐91598‐1.
80. Wang,X.;Li,N.;Li,W.;Gao,X.;Cha,M.;Qin,L.;Liu,L.AdvancesinTranscriptomicsintheResponseto
StressinPlants.GlobalMed.Genet.2020,07,030–034,doi:10.1055/s‐0040‐1714414.
81. Guo,J.;Huang,Z.;Sun,J.;Cui,X.;Liu,Y.ResearchProgressandFutureDevelopmentTrendsinMedicinal
PlantTranscriptomics.Front.PlantSci.2021,12,691838,doi:10.3389/fpls.2021.691838.
82. Choudhri,P.;Rani,M.;Sangwan,R.S.;Kumar,R.;Kumar,A.;Chhokar,V.DeNovoSequencing,Assembly
andCharacterisationofAloeVeraTranscriptomeandAnalysisofExpressionProfilesofGenesRelatedto
SaponinandAnthraquinoneMetabolism.BMCGenomics2018,19,427,doi:10.1186/s12864‐018‐4819‐2.
83. Singh,P.;Singh,G.;Bhandawat,A.;Singh,G.;Parmar,R.;Seth,R.;Sharma,R.K.SpatialTranscriptome
AnalysisProvidesInsightsofKeyGene(s)InvolvedinSteroidalSaponinBiosynthesisinMedicinally
ImportantHerbTrilliumgovanianum.Sci.Rep.2017,7,45295,doi:10.1038/srep45295.
84. Liao,W.;Mei,Z.;Miao,L.;Liu,P.;Gao,R.ComparativeTranscriptomeAnalysisofRoot,Stem,andLeaf
TissuesofEntadaPhaseoloidesRevealsPotentialGenesInvolvedinTriterpenoidSaponinBiosynthesis.
BMCGenomics2020,21,639,doi:10.1186/s12864‐020‐07056‐1.
85. Yan,J.;Qian,L.;Zhu,W.;Qiu,J.;Lu,Q.;Wang,X.;Wu,Q.;Ruan,S.;Huang,Y.IntegratedAnalysisofthe
TranscriptomeandMetabolomeofPurpleandGreenLeavesofTetrastigmahemsleyanumRevealsGene
ExpressionPaernsInvolvedinAnthocyaninBiosynthesis.PLoSONE2020,15,e0230154,
doi:10.1371/journal.pone.0230154.
86. Zhou,P.;Pu,T.;Gui,C.;Zhang,X.;Gong,L.TranscriptomeAnalysisRevealsBiosynthesisofImportant
BioactiveConstituentsandMechanismofStemFormationofDendrobiumhuoshanense.Sci.Rep.2020,10,
2857,doi:10.1038/s41598‐020‐59737‐2.
87. Wang,C.;Peng,D.;Zhu,J.;Zhao,D.;Shi,Y.;Zhang,S.;Ma,K.;Wu,J.;Huang,L.TranscriptomeAnalysis
ofPolygonatumcyrtonemaHua:IdentificationofGenesInvolvedinPolysaccharideBiosynthesis.Plant
Methods2019,15,65,doi:10.1186/s13007‐019‐0441‐9.
88. Hong,M.;Tan, H.;Li,S.;Cheung,F.;Wa ng,N.;Nagamatsu,T.;Feng,Y.CancerStemCells:ThePotential
Tar getsofChineseMedicinesandTheirActiveCompounds.Int.J.Mol.Sci.2016,17,893,
doi:10.3390/ijms17060893.
89. Zheng,L.;Zhou,C.;Li,T.;Yuan,Z.;Zhou,H.;Tamad a ,Y.;Zhao,Y.;Wang,J.;Zheng,Q.;Hao,X.;etal.
GlobalTranscriptomeAnalysisRevealsDynamicGeneExpressionProfilingandProvidesInsightsinto
BiosynthesisofResveratrolandAnthraquinonesinaMedicinalPlantPolygonumcuspidatum.Ind.Cropsand
Prod.2021,171,113919,doi:10.1016/j.indcrop.2021.113919.
90. Umar,O.;Ranti,L.;Abdulbaki,A.;Bola,A.;Abdulhamid,A.;Biola,M.StressesinPlants:BioticandAbiotic.
InCurrentTrendsinWheatResearch;ed.Mahmood‐ur‐RahmanAnsari,GovernmentCollegeUniversity,
Faisalabad:IntechOpen2021,doi:10.5772/intechopen.100501.
91. Zhu,J.‐K.SaltandDroughtStressSignalTransductioninPlants.Annu.Rev.PlantBiol.2002,53,247–273,
doi:10.1146/annurev.arplant.53.091401.143329.
92. Gull,A.;AhmadLone,A.;UlIslamWani, N.BioticandAbioticStressesinPlants.InAbioticandBioticStress
inPlants,1sted.;BoscodeOliveira,A.,Ed.;IntechOpen,2019.
93. EMBL‐EBI.ExpressionAtlas .Geneexpressionacrossspeciesandbiologicalconditions.Availableonline:
hps://www.ebi.ac.uk/gxa/home(accessedon9012024).
94. ELIXIRRecommendedInteroperabilityResource.g:Profiler.Availableonline:
hps://biit.cs.ut.ee/gprofiler/gost(accessedon9012024).
95. Song,Y.;Ma,B.;Guo,Q.;Zhou,L.;Lv,C.;Liu,X.;Wang,J.;Zhou,X.;Zhang,C.UV‐BInducesthe
ExpressionofFlavonoidBiosyntheticPathwaysinBlueberry(Vacciniumcorymbosum)Calli.Front.PlantSci.
2022,13,1079087,doi:10.3389/fpls.2022.1079087.
96. Dong,Y.;Gupta,S.;Wargent,J.J.;Puerill,J.;Macknight,R.C.;Gechev,T.S.;Mueller‐Roeber,B.;Dijkwel,
P.P.ComparativeTranscriptomicsofMulti‐StressResponsesinPachycladoncheesemaniiandArabidopsis
thaliana.Int.J.Mol.Sci.2023,24,11323,doi:10.3390/ijms241411323.
97. Lorence,A.;Chevone,B.I.;Mendes,P.;Nessler,C.L.Myo‐InositolOxygenaseOffersaPossibleEntryPoint
intoPlantAscorbateBiosynthesis.PlantPhysiol.2004,134,1200–1205,doi:10.1104/pp.103.033936.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
34
98. Zhou,H.;Yu,L.;Liu,S.;Zhu,A.;Yan g , Y.;Chen,C.;Yang,A.;Liu,L.;Yu,F.TranscriptomeComparison
AnalysesinUV‐BInducedAsAAccumulationofLactucasativaL.BMCGenomics2023,24,61,
doi:10.1186/s12864‐023‐09133‐7.
99. DeepVenn‐CreateArea‐ProportionalVennDiagramsUsingtheDeepLearningFrameworkTensorflow.
Availableonline:hp://www.deepvenn.com/(accessedon8012024).
100. Verma,S.;Nizam,S.;Ve rma, P.K.BioticandAbioticStressSignalinginPlants.InStressSignalinginPlants:
GenomicsandProteomicsPerspective,Volume1,1sted.;Sarwat,M.,Ahmad,A.,Abdin,M.,Eds.;SpringerNew
York : NewYork,NY,U.S.A.,2013;pp.25–49.
101. Shanker,A.K.;Maheswari,M.;Yadav,S.K.;Desai,S.;Bhanu,D.;Aal,N.B.;Venkateswarlu,B.Drought
StressResponsesinCrops.Funct.Integr.Genomics2014,14,11–22,doi:10.1007/s10142‐013‐0356‐x.
102. Zhu,H.;Zhou,Y.;Zhai,H.;He,S.;Zhao,N.;Liu,Q.TranscriptomeProfilingRevealsInsightsintothe
MolecularMechanismofDroughtToleranceinSweetpotato.J.Integr.Agri.2019,18,9–23,
doi:10.1016/S2095‐3119(18)61934‐3.
103. Kumar,M.;Chauhan,A.S.;Kumar,M.;Yusuf,M.A.;Sanyal,I.;Chauhan,P.S.TranscriptomeSequencing
ofChickpea(CicerarietinumL.)GenotypesforIdentificationofDrought‐ResponsiveGenesUnderDrought
StressCondition.PlantMol.Biol.Rep.2019,37,186–203,doi:10.1007/s11105‐019‐01147‐4.
104. Li,X.;Liu,L.;Sun,S.;Li,Y.;Jia,L.;Ye,S.;Yu,Y.;Dossa,K.;Luan,Y.Leaf‐TranscriptomeProfilesofPhoebe
bourneiProvideInsightsintoTempo ralDroughtStressResponses.Front.PlantSci.2022,13,1010314,
doi:10.3389/fpls.2022.1010314.
105. Kumar,J.;Gunapati,S.;Kianian,S.F.;Singh,S.P.ComparativeAnalysisofTranscriptomeinTwoWheat
GenotypeswithContrastingLevelsofDroughtTolerance.Protoplasma2018,255,1487–1504,
doi:10.1007/s00709‐018‐1237‐x.
106. Tyagi,A.;Kumar,S.;Mohapatra,T.Biochemical,PhysiologicalandMolecularResponsesofRiceto
Termina lDroughtStress:TranscriptomeProfilingofLeafandRootRevealstheKeyStress‐Responsive
Genes.J.Pla ntBiochem.Biotechnol.2023,doi:10.1007/s13562‐023‐00865‐x.
107. Miao,Z.;Xu,W.;Li,D.;Hu,X.;Liu,J.;Zhang,R.;Tong,Z.;Dong,J.;Su,Z.;Zhang,L.;etal.DeNovo
TranscriptomeAnalysisofMedicagofalcataRevealsNovelInsightsabouttheMechanismsUnderlying
AbioticStress‐ResponsivePathway.BMCGenomics2015,16,818,doi:10.1186/s12864‐015‐2019‐x.
108. DeOliveira‐Busao,L.A.;DeAlmeida,R.M.C.;Weber,R.L.M.;Favero,D.;Bredemeier,C.;DaSilva
Giordano,C.P.;Bodanese‐Zaneini,M.H.TheSoybeanTranscriptogramAllowsaWideGenome‐to‐Single‐
GeneAnalysisThatEvincesTime‐DependentDroughtResponse.PlantMol.Biol.Rep.2022,40,1–27,
doi:10.1007/s11105‐021‐01297‐4.
109. Xu,X.;Legay,S.;Sergeant,K.;Zorzan,S.;Leclercq,C.C.;Charton,S.;Giarola,V.;Liu,X.;Challabathula,D.;
Renaut,J.;etal.MolecularInsightsintoPlantDesiccationTolerance:Transcriptomics,Proteomicsand
TargetedMetaboliteProfilinginCraterostigmaplantagineum.PlantJ.2021,107,377–398,
doi:10.1111/tpj.15294.
110. Fang,S.;Zhao,P.;Tan, Z.;Peng,Y.;Xu,L.;Jin,Y.;Wei,F.;Guo,L.;Yao,X.CombiningPhysio‐Biochemical
CharacterizationandTranscriptomeAnalysisRevealtheResponsestoVarying DegreesofDroughtStress
inBrassicanapusL.Int.J.Mol.Sci.2022,23,8555,doi:10.3390/ijms23158555.
111. Yang,Y.;Xia,J.;Fang,X.;Jia,H.;Wang, X.;Lin,Y.;Liu,S.;Ge,M.;Pu,Y.;Fang,J.;etal.DroughtStressin
‘ShineMuscat’Grapevine:ConsequencesandaNovelMitigationStrategy–5‐AminolevulinicAcid.Front.
PlantSci.2023,14,1129114,doi:10.3389/fpls.2023.1129114.
112. Young , L.W.;Wilen,R.W.;Bonham‐Smith,P.C.HighTemperatu reStressofBrassicanapusduringFlowering
ReducesMicro‐andMegagametophyteFertility,InducesFruitAbortion,andDisruptsSeedProduction.J.
Exp.Bot.2004,55,485–495,doi:10.1093/jxb/erh038.
113. Wu,L.;Taohua,Z.;Gui,W.;Xu,L.;Li,J.;Ding,Y.FivePectinaseGeneExpressionsHighlyRespondingto
HeatStressinRiceFloralOrgansRevealedbyRNA‐SeqAnalysis.Biochem.Biophys.Res.Commun.2015,463,
407–413,doi:10.1016/j.bbrc.2015.05.085.
114. Bita,C.E.;Gerats,T.PlantTolerancetoHighTemperatur einaChangingEnvironment:Scientific
FundamentalsandProductionofHeatStress‐TolerantCrops.Front.Pla ntSci.2013,4,273,
doi:10.3389/fpls.2013.00273.
115. Guan,Q.;Lu,X.;Zeng,H.;Zhang,Y.;Zhu,J.HeatStressInductionofmiR398TriggersaRegulatoryLoop
ThatIsCriticalforThermotoleranceinArabidopsis.PlantJ.2013,74,840–851,doi:10.1111/tpj.12169.
116. Asseng,S.;Foster,I.;Turner,N.C.TheImpactofTem peratureVariabilityonWheatYields.GlobalChange
Biology2011,17,997–1012,doi:10.1111/j.1365‐2486.2010.02262.x.
117. Xing,X.;Ding,Y.;Jin,J.;Song,A.;Chen,S.;Chen,F.;Fang,W.;Jiang,J.PhysiologicalandTranscripts
AnalysesRevealtheMechanismbyWhichMelatoninAlleviatesHeatStressinChrysanthemumSeedlings.
Front.PlantSci.2021,12,673236,doi:10.3389/fpls.2021.673236.
118. Frank,G.;Pressman,E.;Ophir,R.;Althan,L.;Shaked,R.;Freedman,M.;Shen,S.;Firon,N.Transcriptional
ProfilingofMaturingTomato(SolanumLycopersicumL.)MicrosporesRevealstheInvolvementofHeat
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
35
ShockProteins,ROSScavengers,Hormones,andSugarsintheHeatStressResponse.J.Exp.Bot.2009,60,
3891–3908,doi:10.1093/jxb/erp234.
119. Valdé s ‐López,O.;Batek,J.;Gomez‐Hernandez,N.;Nguyen,C.T.;Isidra‐Arellano,M.C.;Zhang,N.;Joshi,
T.;Xu,D.;Hixson,K.K.;Wei,K.K.;etal.SoybeanRootsGrownunderHeatStressShowGlobalChanges
inTheirTranscriptionalandProteomicProfiles.Front.PlantSci.2016,7,517,doi:10.3389/fpls.2016.00517.
120. Sewelam,N.;Brilhaus,D.;Bräutigam,A.;Alseekh,S.;Fernie,A.R.;Maurino,V.G.MolecularPlant
ResponsestoCombinedAbioticStressesPutaSpotlightonUnknownandAbundantGenes.J.Exp.Bot.
2020,71,5098–5112,doi:10.1093/jxb/eraa250.
121. Rurek,M.;Czołpińska,M.;Pawłowski,T.;Krzesiński,W.;Spiżewski,T.ColdandHeatStressDiversely
AlterBothCauliflowerRespirationandDistinctMitochondrialProteinsIncludingOXPHOSComponents
andMatrixEnzymes.Int.J.Mol.Sci.2018,19,877,doi:10.3390/ijms19030877.
122. Rashid,F.A.A.;Crisp,P.A.;Zhang,Y.;Berkowi,O.;Pogson,B.J.;Day,D.A.;Masle,J.;Dewar,R.C.;
Whelan,J.;Atkin,O.K.;etal.MolecularandPhysiologicalResponsesduringThermalAcclimationofLeaf
PhotosynthesisandRespirationinRice.PlantCellEnviron.2020,43,594–610,doi:10.1111/pce.13706.
123. Mikołajczak,K.;Kuczyńska,A.;Krajewski,P.;Kempa,M.;Nuc,M.TranscriptomeProfilingDisclosedthe
EffectofSingleandCombinedDroughtandHeatStressonReprogrammingofGenesExpressioninBarley
FlagLeaf.Front.PlantSci.2023,13,1096685,doi:10.3389/fpls.2022.1096685.
124. Mahalingam,R.;Duhan,N.;Kaundal,R.;Smertenko,A.;Nazarov,T.;Bregier,P.HeatandDrought
InducedTranscriptomicChangesinBarleyVar ieties withContrastingStressResponsePhenotypes.Front.
PlantSci.2022,13,1066421,doi:10.3389/fpls.2022.1066421.
125. Martin,R.C.;Kronmiller,B.A.;Dombrowski,J.E.TranscriptomeAnalysisofLoliumtemulentumExposedto
aCombinationofDroughtandHeatStress.Plants2021,10,2247,doi:10.3390/plants10112247.
126. Vicente,R.;Bolger,A.M.;Martínez‐Carrasco,R.;Pérez,P.;Gutiérrez,E.;Usadel,B.;Morcuende,R.DeNovo
TranscriptomeAnalysisofDurumWheatFlagLeavesProvidesNewInsightsIntotheRegulatoryResponse
toElevatedCO2andHighTemperature.Front.PlantSci.2019,10,1605,doi:10.3389/fpls.2019.01605.
127. Chen,S.;Li,H.HeatStressRegulatestheExpressionofGenesatTranscriptionalandPost‐Transcriptional
Levels,RevealedbyRNA‐SeqinBrachypodiumdistachyon.Front.PlantSci.2017,7,2067,
doi:10.3389/fpls.2016.02067.
128. Obaid,A.Y.;Sabir,J.S.M.;Atef,A.;Liu,X.;Edris,S.;El‐Domyati,F.M.;Mutwakil,M.Z.;Gadalla,N.O.;
Hajrah,N.H.;Al‐Kordy,M.A.;etal.AnalysisofTranscriptionalResponsetoHeatStressinRhazyastricta.
BMCPlantBiol.2016,16,252,doi:10.1186/s12870‐016‐0938‐6.
129. Chinnusamy,V.;Zhu,J.;Zhu,J.‐K.ColdStressRegulationofGeneExpressioninPlants.TrendPlantSci.
2007,12,444–451,doi:10.1016/j.tplants.2007.07.002.
130. Xu,W.;Li,R.;Zhang,N.;Ma,F.;Jiao,Y.;Wang, Z.TranscriptomeProfilingofVitisamurensis,anExtremely
Cold‐TolerantChineseWildVitisSpecies,RevealsCandidateGenesandEventsThatPotentiallyConnected
toColdStress.PlantMol.Biol.2014,86,527–541,doi:10.1007/s11103‐014‐0245‐2.
131. Cheng,Z.;Lei,N.;Li,S.;Liao,W.;Shen,J.;Peng,M.TheRegulatoryEffectsofMeTCP4onColdStress
ToleranceinArabidopsisThaliana:ATranscriptomeAnalysis.PlantPhysiol.Biochem.2019,138,9–16,
doi:10.1016/j.plaphy.2019.02.015.
132. Du,J.;Li,X.;Li,T.;Yu,D.;Han,B.Genome‐WideTranscriptomeProfilingProvidesOverwintering
MechanismofAgropyronMongolicum.BMCPlantBiol.2017,17,138,doi:10.1186/s12870‐017‐1086‐3.
133. Naydenov,N.G.;Khanam,S.;Siniauskaya,M.;Nakamura,C.ProfilingofMitochondrialTranscriptomein
GerminatingWheatEmbryosandSeedlingsSubjectedtoCold,SalinityandOsmoticStresses.GenesGenet.
Syst.2010,85,31–42,doi:10.1266/ggs.85.31.
134. McDowell,J.M.;Dangl,J.L.SignalTransductioninthePlantImmuneResponse.TrendBiochem.Sci.2000,
25,79–82,doi:10.1016/S0968‐0004(99)01532‐7.
135. Sato,M.;Tsuda,K.;Wang,L.;Coller,J.;Watanab e,Y.;Glazebrook,J.;Katagiri,F.NetworkModelingReveals
PrevalentNegativeRegulatoryRelationshipsbetweenSignalingSectorsinArabidopsisImmuneSignaling.
PLoSPathog.2010,6,e1001011,doi:10.1371/journal.ppat.1001011.
136. Pieterse,C.M.J.;Leon‐Reyes,A.;Van derEnt,S.;Van Wees,S.C.M.NetworkingbySmall‐Molecule
HormonesinPlantImmunity.Nat.Chem.Biol.2009,5,308–316,doi:10.1038/nchembio.164.
137. Guo,W.‐L.;Chen,B.‐H.;Chen,X.‐J.;Guo,Y.‐Y.;Ya n g,H.‐L.;Li,X.‐Z.;Wang,G.‐Y.TranscriptomeProfiling
ofPumpkin(CucurbitamoschataDuch.)LeavesInfectedwithPowderyMildew.PLoSONE2018,13,
e0190175,doi:10.1371/journal.pone.0190175.
138. Zhang,H.;Yang,Y.;Wang,C.;Liu,M.;Li,H.;Fu,Y.;Wang ,Y.;Nie,Y.;Liu,X.;Ji,W.Large‐Scale
TranscriptomeComparisonRevealsDistinctGeneActivationsinWheatRespondingtoStripeRustand
PowderyMildew.BMCGenomics2014,15,898,doi:10.1186/1471‐2164‐15‐898.
139. Kumar,A.;Kanak,K.R.;Arunachalam,A.;Dass,R.S.;Lakshmi,P.T.V.ComparativeTranscriptome
ProfilingandWeight edGeneCo‐ExpressionNetworkAnalysistoIdentifyCoreGenesinMaize(Zeamays
L.)SilksInfectedbyMultipleFungi.Front.Pla ntSci.2022,13,985396,doi:10.3389/fpls.2022.985396.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1
36
140. Koapalli,K.R.;Rakwal,R.;Satoh,K.;Shibato,J.;Koapalli,P.;Iwahashi,H.;Kikuchi,S.Transcriptional
ProfilingofIndicaRiceCultivarIET8585(Ajaya)InfectedwithBacterialLeafBlightPathogenXanthomonas
oryzaepvoryzae.PlantPhysiol.Biochem.2007,45,834–850,doi:10.1016/j.plaphy.2007.07.013.
141. Yokot a ni,N.;Hasegawa,Y.;Sato,M.;Hirakawa,H.;Kouzai,Y.;Nishizawa,Y.;Yamamoto,E.;Naito,Y.;
Isobe,S.TranscriptomeAnalysisofClavibactermichiganensissubsp.michiganensis‐InfectedTomatoes:ARole
ofSalicylicAcidintheHostResponse.BMCPlantBiol.2021,21,476,doi:10.1186/s12870‐021‐03251‐8.
142. Lu,L.;Yang,D.;Tang, D.;Li,S.;Chen,Z.TranscriptomeAnalysisofDifferentRiceCultivarsProvidesNovel
InsightsintotheRiceResponsetoBacterialLeafStreakInfection.Funct.Integr.Genomics2020,20,681–693,
doi:10.1007/s10142‐020‐00744‐x.
143. Deng,S.;Li,Z.;Liu,X.;Yang,W.;Wang,Y.ComparativeTranscriptomeAnalysisRevealsPotentialGenes
ConferringResistanceorSusceptibilitytoBacterialCankerinTomato.Horticulturae2023,9,242,
doi:10.3390/horticulturae9020242.
144. Rivero,R.M.;Miler,R.;Blumwald,E.;Zandalinas,S.I.DevelopingClimate‐resilientCrops:Improving
PlantTolerancetoStressCombination.PlantJ.2022,109,373–389,doi:10.1111/tpj.15483.
145. Kumar,M.;Prusty,M.R.;Pandey,M.K.;Singh,P.K.;Bohra,A.;Guo,B.;Varshney,R.K.Applicationof
CRISPR/Cas9‐MediatedGeneEditingforAbioticStressManagementinCropPlants.Front.PlantSci.2023,
14,1157678,doi:10.3389/fpls.2023.1157678.
Disclaimer/Publisher’sNote:Thestatementsopinionsanddatacontainedinallpublicationsaresolelythoseof
theindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)
disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideasmethodsinstructionsor
productsreferredtointhecontent.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 doi:10.20944/preprints202403.1654.v1