Available via license: CC BY-NC-ND 4.0
Content may be subject to copyright.
Migration Letters
Volume: 21, No: S5 (2024), pp. 2101-2118
ISSN: 1741-8984 (Print) ISSN: 1741-8992 (Online)
www.migrationletters.com
Effect Of Formulation On The Fluffiness And Volume Of A
Commercial Cake Premix In Relation To Its Acceptability
Crispin-Sanchez, Fredy1 , Wenceslao T. Medina2 , Oscar Amado Crisóstomo Gordillo3 , Ivan
Crispin Sánchez4 , Nils Leander Huamán Castilla5 , Gabriela Chire-Fajardo6 , Milber Oswaldo
Ureña Peralta7
Abstract
Making a commercial cake based on a premix is a matter of finding the balance of key
ingredients that influence the uniform distribution and homogeneous size of the pockets in
order to obtain an acceptable commercial sponginess in a premix. The objective of this work
was to evaluate the formulation of a commercial premix in relation to its fluffiness and volume
employing image analysis and its acceptability. Initially, a screening was performed with
Taguchi's methodology evaluating statistical descriptors of texture by image analysis and
volume. The sponginess was evaluated by means of the statistical descriptors of texture ASM,
contrast, IDM, and entropy determined by the GLCM method. Two optimum formulations were
obtained, formula A consisting of monoglyceride, egg, oil, sugar, xanthan gum, and baking
powder, the values of 4.0, 80.0, 50.0, 70.0, 0.05, and 2.0 percent respectively, and formula B;
monoglyceride, egg, oil, sugar, xanthan gum, and baking powder; the values of 7.0, 80.0, 30.0,
70.0, 0.05 and 5.0 percent respectively, which were subjected to an acceptability test with 80
consumers. In the result, according to the statistic t = 0.375858 > α (significance level=0.05),
the null hypothesis is rejected and the alternative hypothesis is accepted, which means that
there is no statistically significant difference between formulas A and B for consumers. This
means that, in a cake, not only the volume is important, but also its sponginess (the latter is
due to the correct size, distribution, and dispersion of alveoli, as well as its homogeneity in all
the cut surface of the crumb of the cake).
Keywords: cake premixing, volume, porosity, image analysis, Taguchi.
1. Introduction
Bakery products
1
depend on quality and process adaptation; today's consumers demand value-
added products with a customized seal, variety, segmentation, and nutrition to meet different
1Fredy Crispín Sánchez: Facultad de Ingeniería Pesquera, Departamento de Acuicultura e Industrias Pesqueras, Universidad
Nacional Agraria La Molina, Lima 12, La Molina, Lima-Perú. https://orcid.org/0000-0002-0490-3739 (AUTOR)
https://orcid.org/0000-0002-0490-3739
Departamento Académico de Agroindustrias, Facultad de Ciencias Agrarias, Universidad Nacional del Altiplano de Puno, Puno-
Perú. https://orcid.org/0000-0002-4064-2652
3Facultad de Química e Ingeniería Química. Universidad Nacional Mayor de San Marcos. Lima-Perú. https://orcid.org/0000-
0002-4459-0589
4Facultad de Ingeniería Electrónica e informática. Universidad Nacional Federico Villarreal. Lima-Perú. https://orcid.org/0000-
0001-5980-6621
2102 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
market demands. For producers of cakes and premixes, the focus increases by adding maximum
ingredient yield and cost. The production of cakes is present throughout the confectionery
industry, whether small, medium, or large, becoming more competitive with the boom and
growth of confectionery in Peru. According to INEI (2022), in the consumer goods industry,
the production of bakery products contributed 17.24%, due to the increased production of cakes
and instant desserts for domestic and foreign consumption.
Formula adjustment corresponds to solving a formulation design problem by correlating the
results and their yield, based on the doses of the inputs and ingredients used (Villarroel et al.
2000). The sponginess and volume of a cake depends a lot on excellent aeration, which results
in good dough stability, uniform cell structure and, most importantly, no impairment of
structure and flavor, as well as pleasant sensation and moist crumb.
Another way to evaluate characteristic quality parameters of processed food products is image
analysis (Zhang et al. 2014). An image analysis system involves acquiring an image of the
product, processing that image, and extracting information about the inspected scene with the
idea of obtaining information about the appearance of food products (Golnabi and Asadpour,
cited by Gonzalez 2021).
The work registers a proposal for improvement in the development and redesign of the
formulation of a commercial premix of the company GFPERU, based on its volume and digital
texture (Grey Level Co-occurrence Matrix - GLCM) in relation to its commercial acceptability.
Thus, the main objective of this study is to evaluate the formulation of a commercial cake
premix in relation to its fluffiness, volume, and acceptability, and as secondary objectives, to
determine the factors that significantly influence, doses of ingredients that have maximum
effect and a formula of maximum acceptance by the consumer.
2. General Objective
Evaluate the formulation of a commercial cake premix concerning its fluffiness and volume
through image analysis and its acceptability.
3. Methodology
3.1 Place of execution
The research work was carried out in the application laboratories of GFPerú S.A.C. and
TTFoods, the Engineering Laboratory of the Image Acquisition Section of the Professional
School of Agroindustrial Engineering of the Universidad Nacional del Altiplano and the
Sensory Evaluation Laboratory of the Faculty of Food Industries - UNALM.
3.2 Materials and Equipment
3.2.1 Inputs
• Alicorp® vegetable cooking oil
• Boiled water
• Refined white sugar
• Glodamix Vanillin
5Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001,
Perú; https://orcid.org/0000-0002-3748-0883
6Facultad de Industrias, Universidad Nacional Agraria La Molina, Perú. https://orcid.org/0000-0001-7422-7636
7Facultad de Industrias, Universidad Nacional Agraria La Molina, Perú. https://orcid.org/0000-0002-0716-0176
Crispin-Sanchez, Fredy et al. 2103
Migration Letters
• Xanthan gum Glodamix Xanthan 200
• Unprepared wheat flour Nieve®
• Fresh eggs
• Skim milk powder (LPD)
• Glodamix Emul 300® distilled monoglyceride
• Royal® baking powder
• Glodamix flavored® butter flavor
• Demesa® salt ®
3.2.2 Materials
• Baking trays
• High-density polypropylene bags
• Serrated cutting blade
• Manual cutter
• 500 g rectangular aluminum molds
• Rubber spatula and tongs
• 150 ml PYREX® test tubes
• Cutting board
3.2.3 Equipment
• Analytical balance SORES® 250 g +/- 0.001 g
• SORES® Balance 10 kg +/- 0,5 g
• Oster® 5L blender
• STANLEY® 150mm digital caliper
• D7000 4F-S DX digital camera with micro-Nikkor 40 mm NIKON® lens.
• Computer I Core ™ i7-2600 CPU@3.40 GHz
• Digital stopwatch
• BOCH® stationary home oven with temperature control
• Manual sealer 30 cm
• LED lighting system (4) ALGUI103WCW of 3,1 W 220-240V with color temperature
6400 oK equivalent to
• Adapted camera support.
3.2.4 Software
• Camera Control Pro 2 version 2.8.001
• MATLAB® version 7.14.0.739 (R2012a)
• STATGRAPHICS Centurion 8.1.
3.3 Methods of análisis
3.3.1 Volume
Volumetric method described by Gallegos L. (2002) where samples of 40 ml are taken and
placed in test tubes of 3.55 cm of internal diameter of a capacity of 150 ml (obtained from 250
ml test tubes that were already cut with precision and previously). Then they are placed in the
test tubes (3 repetitions) in the middle of the oven tray. Then, they are baked for 20 min at a
constant temperature. The test tube is removed and allowed to cool for 15 min, and finally, the
volume of the 40 g of baked dough is measured by the difference between the total volume of
the test tube (150 ml) and the volume not occupied by the baked dough. It is possible to measure
using kañigua seeds and it is rooted with the metal sheet. These grains are poured into another
2104 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
test tube and thus it is possible to measure the volume of the cake (apparent volume) in indirect
form by subtracting 150 ml from the volume of the grains.
3.3.2 Image analysis
The computational method described by Vilca (2013) consists of a black box with a support
for the digital camera model NIKON D7000 with a micro Nikkor 40 mm lens, located vertically
at a distance of 22.5 cm from the sample with an angle of 45° between the camera axis and the
LED light sources (Figure 9). The camera is operated remotely using Camera Control Pro 2
software (version 2.8.001), connected to the USB port of the computer. The images were
captured at their maximum resolution (4928 x 3264 pixels). The lighting system is composed
of 4 LED lights 3.1W 220-240V 50-60Hz 14mA PF>0.43 6400K corresponding to 103.3
lumens.
Figure 1. Image acquisition system
SOURCE: Vilca (2013)
The following are the trigger settings made on the camera in the image acquisition process:
• Flash: Off mandatory
• ISO Speed: ISO - 100
• Aperture: f/22
• Metering mode: Matrix
• AF Focus Mode - S
• Size/Quality: Good
• Focal Length: 40 mm
a) Preprocessing. Once the images are obtained, the quality of the images is improved, and for
this purpose, digital filters are used to eliminate the noise in the image and can also increase
the contrast and make it ready for segmentation. In the pre-processing, the original images
(RGB format) are converted to grayscale (1-256) and black and white (0-1) using the respective
Matlab code.
b) Image segmentation. The preprocessed image is segmented and is used as a routine
developed in MATLAB software where the algorithms were programmed to simulate the
process of biological vision. The segmentation is performed with the conversion to black and
white using the Bim_segbau function (Mery, 2011), using the RGB channel and the G channel.
Crispin-Sanchez, Fredy et al. 2105
Migration Letters
The threshold value during the segmentation process is generated based on the results of the
histogram analysis of the grayscale image and is constant for all samples. Dilation and erosion
operations are also performed to determine more clearly the sectors of interest (area and
porosity).
c) Measurement or extraction of characteristics. In this stage, the measurement of the
characteristics of the area proportion of the cake, and textural characteristics is performed. The
matlab code works on the whole sample, after the segmentation process it determines the sector
of interest through the calculation of the area, and the porosity and subtracting the sectors that
do not correspond to the sample itself (external edges, etc.), and the porosity of the sample).
d) Interpretation of results. Finally, the characteristics extracted from each cut of cake
according to the experimental design are interpreted.
4. Results and discussion
4.1 Determination of the factors (p<0.05) influencing the volume and sponginess of the
cake
The factors (independent variables of the process) that significantly influence the volume of
the cake were determined. The Taguchi method was applied, where 12 proposed formulations
are presented as shown in Table 1.
MD90
Egg
Oil
Sugar
Xanthan
Gum
Baking
powder
Formulation
F1
F2
F3
F4
F5
F6
1
4
30
30
40
0,05
2
2
4
30
30
70
0,1
5
3
4
30
50
40
0,05
5
4
4
80
50
40
0,1
5
5
4
80
30
70
0,1
2
6
4
80
30
70
0,05
2
7
7
30
50
40
0,1
2
8
7
30
50
70
0,05
5
9
7
30
30
70
0,1
2
10
7
80
30
40
0,1
5
11
7
80
50
40
0,05
5
12
7
80
50
40
0,05
2
Table 1. Cake formulations for evaluation according to Taguchi
Table 2 shows the analysis criteria for each factor.
Factor
Criteria
Volume
More is Better
ASM – Uniformity
More is Better
Contrast
Less is Better
2106 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
IDM – Homogeneity
More is Better
Entropy
Less is Better
Table 2. Analysis criteria for each factor analyzed
4.1.1 Determination of volume
Table 3 shows the volume results obtained for the 12 formulations according to the
experimental design under study.
Fn
Volume (g)
F1
64.00 ± 1.00
F2
76.00 ±2.00
F3
76.00 ± 1.00
F4
84.00 ± 2.00
F5
88.00 ± 2.00
F6
68.67 ± 0.58
F7
77.00 ± 0.58
F8
79.67 ± 0.58
F9
60.00 ± 1.00
F10
90.00 ± 1.00
F11
100.00 ± 1.00
F12
100.00 ± 1.00
Table 3. Volumes obtained from the study formulations
Table 4 presents the ANOVA results, showing that the factors: monoglycerides, egg, oil, sugar,
xanthan gum, and baking powder exert significant effects on volume, all these ingredients
contribute in one way or another in providing volume, the monoglyceride in facilitating fat
emulsification and improving the aeration of the dough and thus improving volume (Corke et
al. 2008). Similarly, xanthan gum improves gas retention and texture, as well as stability,
moisture, and less crumbling (Miller and Hoseney 1993). There is also the egg which gives
structure and has emulsifying action helping the incorporation of air in the oven, gluten, starch,
and egg become stiff and the subdivided air bubbles become more inflated (Potter and
Hotchkiss 1999), which when coupled with oil as a fat source helps to improve the emulsion
with the ingredients covering the need for air absorption creating a water/oil emulsion that in
baking stabilizes the gas cells through small crystals distributed around them contributing to
volume and fluffiness (Wilderjans et al. 2013). Sugar helps with its hygroscopic property in
maintaining softness, also promoting the aggregation of fat crystals and thus improving air
entrainment during beating and its stabilization in baking (Beesley 1995). Finally, baking
powder also contributes to volume through its property of releasing carbon dioxide in the
reaction of acid and a weak base, conferring sponginess (Gallegos 2002). Likewise, the
Crispin-Sanchez, Fredy et al. 2107
Migration Letters
interactions between the ingredients also significantly influenced the volume of the baking
powder.
Factor
SC
g.l.
CM
F
p
{1}MD
47.4747
1
47.4747
3388.01
5.216E-157
{2}EGG
218.4834
1
218.4834
15591.98
7.217E-245
{3}MD-EGG
0.1038
1
0.1038
7.41
0.00690237
{4}OIL
27.0329
1
27.0329
1929.19
1.445E-126
{5}OIL-MD
2.9806
1
2.9806
212.71
4.1295E-36
{6}OIL-EGG
10.3872
1
10.3872
741.28
3.6987E-80
{7}AZUCAR
3.1005
1
3.1005
221.27
3.7222E-37
{8}AZUCAR-MD
2.8946
1
2.8946
206.57
2.385E-35
{9}XANTAN
14.6582
1
14.6582
1046.08
6.9744E-96
{10}XANTAN-MD
120.5687
1
120.5687
8604.34
4.468E-210
{11}POLVO HORNEAR
65.4204
1
65.4204
4668.70
5.592E-175
Residual
3.8675
276
0.0140
Table 4. Analysis of Variance of the Effect of Ingredients on Volume
Figure 2. Signal Noise Values for Volume
Figure 2 shows that the factors with the highest slope, such as egg and baking powder and the
xanthan gum-monoglyceride interaction, maximize the S/R robustness, influencing the volume
2108 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
of the cake. The proposed formula to maximize the robustness recommends using the
monoglyceride, egg, baking powder, and sugar factors at a high level and the oil and xanthan
gum factors at a low level, which is concretized with an optimum proposal in Table 5.
Ingredient / Descriptor
Volume
%
Analysis criteria
More is better
Egg
80
Oil
30
Sugar:
70
Xanthan Gum
0.05
Baking Powder
5
Table 5. Optimal combination for volume with the more-is-better criterion
4.1.2 Determination of statistical descriptors of texture
The changes in the texture characteristics were evaluated according to the variation of the
grayscale of the images of the 12 formulations according to Hernán (1996), as shown in Figure
3.
Original image
(a)
Gray image (b)
Binary image (c).
Total area (d)
F1
F2
F3
F4
F5
Crispin-Sanchez, Fredy et al. 2109
Migration Letters
F6
F7
F8
F9
F10
F11
F12
Figure 3. Results of the determination of the proportions of the cake
Next, the statistical descriptors of texture are determined, such as ASM (uniformity), contrast
(heterogeneity), IDM (homogeneity), and entropy: ASM (uniformity), contrast (heterogeneity),
IDM (homogeneity) and entropy as shown in Table 6.
Fn
ASM
Uniformity
Contrast
Heterogeneity
IDM
Homogeneity
Entropy
F1
0.30741 ± 0.067
0.19515 ±0.038
0.92364 ± 0.014
1.84362 ± 0.181
F2
0.29634 ± 0.052
0.17677 ±0.029
0.92871 ± 0.011
1.80525 ± 0.197
F3
0.32650 ± 0.056
0.16897 ± 0.025
0.93080 ± 0.010
1.70433 ± 0.150
F4
0.37526 ± 0.056
0.15251 ± 0.028
0.93503 ± 0.012
1.45922 ± 0.229
2110 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
F5
0.39037 ± 0.041
0.15152 ± 0.030
0.93614 ± 0.013
1.47915 ± 0.092
F6
0.41700 ± 0.072
0.13447 ± 0.029
0.94272 ± 0.013
1.42007 ± 0.180
F7
0.29444 ± 0.032
0.18303 ± 0.039
0.93181 ± 0.013
1.83580 ± 0.113
F8
0.31375 ± 0.028
0.18352 ± 0.028
0.92297 ± 0.012
1.63254 ± 0.054
F9
0.24186 ± 0.048
0.19229 ± 0.025
0.92491 ± 0.009
1.99903 ± 0.134
F10
0.29231 ± 0.053
0.17830 ± 0.032
0.92646 ± 0.012
1.73467 ± 0.243
F11
0.30931 ± 0.039
0.17467 ± 0.021
0.92754 ± 0.008
1.62193 ± 0.177
F12
0.33834 ± 0.062
0.17212 ± 0.030
0.92679 ± 0.013
1.56649 ± 0.210
Table 6. Results of the statistical descriptors of texture
The results of ANOVA on CSA (Table 7) showed that the most significant factors with the
highest criterion are monoglyceride, egg, sugar, and xanthan gum, which occur when the gray
level distribution has a constant or periodic shape and their values are high (Gadkari 2004)
while oil and baking powder do not significantly influence. In addition, the interactions of
monoglycerides with egg and sugar also significantly influenced the ASM. With this
information, there could be an inversely proportional relationship between the inclusion of
monoglycerides and xanthan gum with oil as proposed by Corke et al. (2008) as a total or partial
replacement of fats, in substitute products and/or fat extenders.
Factor
SC
g.l.
CM
F
p
{1}MD
140.1769
1
140.1769
69.22464
0.000000
{2}EGG
163.4725
1
163.4725
80.72889
0.000000
{3}MD-EGG
43.1697
1
43.1697
21.31883
0.000006
{4}OIL
0.0795
1
0.0795
0.03925
0.843100
{5}OIL-MD
6.7104
1
6.7104
3.31384
0.069782
{6}OIL-EGG
0.4061
1
0.4061
0.20056
0.654623
{7}SUGAR
45.2874
1
45.2874
22.36462
0.000004
{8}SUGAR-MD
25.2344
1
25.2344
12.46169
0.000487
{9}XANTHAN
15.8654
1
15.8654
7.83494
0.005486
{10}XANTHAN-MD
1.9583
1
1.9583
0.96709
0.326269
{11}BAKING POWDER
2.9582
1
2.9582
1.46087
0.227826
Residual
558.8879
276
2.0250
Table 7. Analysis of Variance of the Effect of Ingredients on ASM
The results of the ANOVA on the contrast (CT) and MDI indicate that the factors
monoglyceride, egg, oil, and sugar have a significant influence, while oil and baking powder
do not (Tables 8 and 9). In Annex 12 and 13, it can be seen that monoglyceride, egg, oil, and
sugar exert significant effects on the IDM which has maximum value when all elements in the
Crispin-Sanchez, Fredy et al. 2111
Migration Letters
image are equal and decreases if the contrast increases while the ASM remains constant
(Gadkari 2004), a characteristic that coincides with the properties of monoglyceride in
reduction of the size of the alveolus (Tejero 2018), but not the homogeneity of the size of the
crumb (DANISCO 2006). Likewise, the interaction of monoglyceride with egg also
significantly influenced Homogeneity.
Factor
SC
g.l.
CM
F
p
{1}MD
68.1404
1
68.1404
27.99647
0.000000
{2}EGG
103.7442
1
103.7442
42.62482
0.000000
{3}MD-EGG
24.9171
1
24.9171
10.23756
0.001537
{4}OIL
14.4017
1
14.4017
5.91714
0.015630
{5}OIL-MD
1.3857
1
1.3857
0.56935
0.451162
{6}OIL-EGG
7.5753
1
7.5753
3.11243
0.078803
{7}SUGAR
21.0287
1
21.0287
8.63995
0.003567
{8}SUGAR-MD
0.2400
1
0.2400
0.09863
0.753721
{9}XANTHAN
1.4432
1
1.4432
0.59295
0.441938
{10}XANTHAN-MD
0.0046
1
0.0046
0.00188
0.965447
{11}BAKING POWDER
1.9112
1
1.9112
0.78524
0.376314
Residual
671.7543
276
2.4339
Table 8. Analysis of Variance on the Effect of Ingredients on Contrast
Factor
SC
g.l.
CM
F
p
{1}MD
0.231551
1
0.231551
19.38491
0.000015
{2}EGG
0.175964
1
0.175964
14.73131
0.000154
{3}MD-EGG
0.101765
1
0.101765
8.51949
0.003803
{4}OIL
0.138559
1
0.138559
11.59982
0.000758
{5}OIL-MD
0.003012
1
0.003012
0.25217
0.615950
{6}OIL-EGG
0.012402
1
0.012402
1.,03824
0.309124
{7}SUGAR
0.059141
1
0.059141
4.95112
0.026882
{8}SUGAR-MD
0.013102
1
0.013102
1.09683
0.295880
{9}XANTHAN
0.001910
1
0.001910
0.15993
0.689526
{10}XANTHAN-MD
0.006723
1
0.006723
0.56283
0.453759
{11}BAKING POWDER
0.035534
1
0.035534
2.97482
0.085689
2112 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
Residual
3.296795
276
0.011945
Table 19. Analysis of Variance of the Effect of Ingredients on the WDI
For entropy, it is shown that monoglycerides, egg, sugar, and xanthan gum exert significant
effects. On the other hand, the interactions of monoglycerides with egg, oil, and sugar
significantly influenced.
Factor
SC
g.l.
CM
F
p
{1}MD
27.2235
1
27.2235
32.8879
0.000000
{2}EGG
135.5696
1
135.5696
163.7776
0.000000
{3}MD-EGG
10.8289
1
10.8289
13.0821
0.000354
{4}OIL
0.2194
1
0.2194
0.2651
0.607063
{5}OIL-MD
9.7357
1
9.7357
11.7614
0.000697
{6}OIL-EGG
2.0006
1
2.0006
2.4168
0.121182
{7}SUGAR
24.9664
1
24.9664
30.1612
0.000000
{8}SUGAR-MD
12.8709
1
12.8709
15.5489
0.000102
{9}XANTHAN
5.5602
1
5.5602
6.7171
0.010058
{10}XANTHAN-MD
0.0190
1
0.0190
0.0230
0.879539
{11}BAKING POWDER
1.0856
1
1.0856
1.3115
0.253113
Table 10. Analysis of Variance of the Effect of Ingredients on Entropy
From Figure 4, the factors with the highest slope maximize the S/R robustness, which can be
observed when the formula proposal is made, where it is recommended to use the egg, oil, and
sugar factors at their high level and the monoglyceride factors at their low level. For the case
of the ASM factors, xanthan gum delivers its maximum S/R robustness at its low level, while
for the case of the IDM factor, baking powder obtains its maximum S/R robustness at its
minimum level, although it has no significant effect against the texture statistical factors, while
they do have significance on volume (Miller and Hoseney 1993; Picas and Vigata 1997 and
Lee et al. 2014).
Table 11 presents the summary of the optimal combinations according to the best ASM,
Contrast, IDM, and Entropy conditions. The overall optimal combination is also presented in
the last column, which is chosen for convenience with the company.
Ingredient / Statistical
descriptors
ASM
%
Contrast
%
IDM
%
Entropy
%
Optimum
%
Analysis criteria
More is
better
Less is
better
More is
better
Less is
better
Monoglyceride
4
4
4
4
4
Egg
80
80
80
80
80
Oil
30
50
50
30
50
Crispin-Sanchez, Fredy et al. 2113
Migration Letters
Sugar
70
70
70
70
70
Xanthan Gum
0,05
0.05
0.05
0.05
0.05
Baking Powder
2
2
2
5
2
Table 11. Summary of the optimal combination of the statistical texture descriptors
After statistically evaluating the volume and texture descriptors observed in Tables 5 and 11, a
summary table can be obtained (Table 12) showing the significant ingredients in the cake
formula studied, where it is observed that monoglycerides, egg, and sugar have a significant
effect on the uniformity, heterogeneity, homogeneity, entropy, and volume of the crumb of
commercial cakes. This does not occur at all for oil, xanthan gum, and baking powder.
Ingredients
Image analysis
Volume
ASM
Contrast
IDM
Entropy
Volume
MD
X
X
X
X
X
Egg
X
X
X
X
X
Oil
-
X
X
-
X
Sugar
X
X
X
X
X
Xanthan gum
X
-
-
X
X
Baking powder
-
-
-
-
X
Table 11. Summary of formulation ingredients that have a significant effect
Each ingredient used has an effect on the volume, height, and shrinkage in the crumb of the
cake (Miller and Hoseney 1993) but the relationship between them and their doses can increase
or delay their performance, as in the case of replacing the oil; which contributes to mix the
ingredients and change texture, by competing with the monoglyceride for its softening effect
(Picas & Vigata 1997). Xanthan gum is related to eggs, due to its functional properties such as
water binding, emulsifying capacity, and texture improvement (Lee et al. 2014). The
significance of sugar is due to its softening and hygroscopic capacity (Quaglia 1991).
4.1.3 Determination of factors by acceptability test
Table 12 shows the optimal combinations of image and volume analysis obtained from Table
8 and Table 10, respectively.
Image analysis
%
Formulation A
Volume
%
Formulation B
Monoglyceride
4
7
Egg
80
80
Oil
50
30
Sugar:
70
70
Xanthan Gum
0.05
0.05
Baking Powder
2
5
Table 12. Summary of the optimal combinations of Taguchi analysis
2114 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
The cakes made from formulations A and B shown in Figure 4 were subjected to sensory
evaluation using a panel of 80 potential consumers for each sample. The consumers were of
different ages (16-66 years) with a predominance of young people (16-30 years).
Sample A
Sample B
Table 4. Sample A and B for sensory evaluation of consumer acceptability
Sample A
Sample B
No. of samples
88
91
Average
13.2057
12.6857
Standard deviation
8.51225
9.91682
Coefficient of variation
64.459
78.1731
Minimum
0.6
4
Maximum
87
102
Range
86.4
98
Standardized bias
28.981
32.156
Standardized kurtosis
127.442
146.183
Table 13. Results of sensory evaluation of acceptability of samples A and B
Table 13 presents the results obtained, where the average score of samples A and B is 13.2057
and 12.6857 respectively. The results were high, indicating high acceptability. For being close
to the extreme "I like it very much" in the evaluation card.
The result according to the t statistic = 0.375858 > α (significance level=0.05) the null
hypothesis is rejected and the alternative hypothesis is accepted, this means that there is no
statistically significant difference between formulae A and B for consumers. Indicating a clear
inverse relationship between monoglyceride and oil (Picas and Vigata 1997; Tejero 2018).
5. Conclusions
• It was determined that all the ingredients of the formulation have a significant effect on
volume.
• Two formulations of the commercial premix for cakes were obtained through the Taguchi
methodology that improved the sponginess and volume of the product, the first from image
analysis, consisting of monoglyceride (4.0%), egg (80.0%), oil (50.0%), sugar (70.0%),
xanthan gum (0.05%) and baking powder (2.0%), which improved the sponginess and
Crispin-Sanchez, Fredy et al. 2115
Migration Letters
volume of cakes. The second by volume measurement, constituted by: monoglyceride
(7.0%), egg (80.0%), oil (30.0%), sugar (70.0%), xanthan gum (0.05%), and baking
powder (5.0%), which improved the fluffiness and volume of cupcakes.
• It is confirmed that the duality of oil and monoglyceride contribute to obtaining the best
texture of the cake, mixing different ingredients in the first one and softening the second
one, showing an inversely proportional relationship when comparing the two optimal
formulations and generating an application range of 4.0 - 7.0% of monoglyceride and 30 -
50% of oil.
• The same amount of xanthan gum, egg, and sugar in both optimal formulations makes them
contributing factors in fluffiness and volume.
• Baking powder had a significant effect on obtaining the optimum formulation that
maximizes the volume of the cake and not on the one obtained from the image analysis.
• Applying the image analysis, it was determined that the ingredients monoglyceride, egg,
and sugar have a significant effect on the uniformity, heterogeneity homogeneity and
entropy of the cake.
• By the statistical contrasts found in the screening, there are 2 formulations A and B, which
were submitted to an acceptability evaluation with 80 consumers where the result
according to the t statistic = 0.375858 > α (significance level=0.05) the null hypothesis is
rejected and the alternative hypothesis is accepted, this means that there is no statistically
significant difference between formulas A and B for consumers.
6. Recommendations
• Determine porosity by image analysis and correlate it with direct porosity, seeking a
methodology that eliminates bias.
• Evaluate wheat flour for the improvement of textural characteristics and porosity.
• To correlate the data obtained by image analysis with TPI and Uniaxial physical texture
analysis.
• Identify a statistical texture descriptor that evaluates freshness.
• Evaluate the effect of monoglyceride levels on the optimal formulation obtained versus
the size of the generated cells.
References
AACC International Methods. (s.f.). AACC International Approved Methods of Analysis, 11th Ed.
Baking Quality of Cake Flour. (AACC International) Recuperado el 05 de Octubre de 2018, de
http://methods.aaccnet.org/methodnumbering.aspx
Abdullah, M. Z. (2016). Image Acquisition Systems. En D. Sun, Computer vision technology for food
quality evaluation (2da. ed., págs. 3-40 pp). Penang: Elsevier .
al., Z. e. (2014). Principles, developments and applications of computer vision for external quality
inspection of fruits and vegetables: A review. Food Research International, 62, 326-343.
doi:https://doi.org/10.1016/j.foodres.2014.03.012
ASQ. (01 de octubre de 2018). Obtenido de https://asq.org/about-asq/honorary-members/taguchi
Beesley, P. (1995). Sugar functionality reviewed. Food Technol Int Eu, 87-89.
Brennan, J. (2008). Manual del procesado de alimentos. Acribia.
Calavera C., J. (2004). Nuevo tratado de panificación y bolleria (2da. ed.). España: Antonio Madrid
Vicente.
Carrero, P., & Armendariz , J. (2019). Elaboraciones de pasteleria y resposteria en cocina (2da. ed.).
Madrid, España: Ediciones Paraninfo SA.
Castleman, K. (1996). Digital image processing. Englewood Cliffs, N.J. : Prentice-Hall.
Clausi, D. (2002). An analysis of co-occurrence texture statistics as a function of grey level quantization.
Canadian Journal of Remote Sensing, 28, 45-62 pp.
2116 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
CODEX ALIMENTARIUS. (2016). NORMA PARA LA HARINA DE TRIGO CODEX STAN 152-
1985. Recuperado el 20 de Octubre de 2018, de http://www.fao.org/fao-who-
codexalimentarius/sh-
proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex
%252FStandards%252FCODEX%2BSTAN%2B152-1985%252FCXS_152s%2B.pdf
Corke, H., Leyn I., Nip , W., & Cross, N. (2008). Bakery products Science and Technlogy. (Y. Huy,
Ed.) Blackwell Publising.
Cuevas, E., Zalvivar, D., & Perez, M. (2010). Procesamiento digital de imagenes usando MATLAB y
Simullink (1era. ed.). Mexico: Alfaomega Grupo Editor S.A.
DANISCO. (2006). Suavidad de la miga y aumento de la vida util. (TM 1014-4s).
Du, C., & Sun, D. (Mayo de 2004). Recent developments in the applications of image processing
techniques for food quality evaluation. Trends in Food Science & Technology, 15(5), 230-
249pp.
el., V. a. (Marzo de 2000). Optimización de formulaciones para productos dietéticos de pastelería.
Archivos Latinoamericanos de Nutrición, 50(1), 62-68. Recuperado el 18 de enero de 2023, de
http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-
06222000000100008&lng=es&tlng=es.
Gadkari, D. (2004). Image Quality Analysis Using Glcm. University of Central Florida. Florida: Stars.
Obtenido de https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1186&context=etd
Gallart, F., & Pardini, G. (1996). Perfilru: Un programa para el analisis de la rugosidad de perfiles
microtopograficos mediante el estudio de la geometria fractal. IV Reunión de Geomorfología.
Coruña: Grandal d'Anglade, A. y Pagés Valcarlos, J., Eds.
Gallegos L., S. (2002). Diseño y desarrollo de cup-cakes elaboprado a partir de torta de castañas (
Bertholletia excelsa H.B.K.). TESIS, UNALM FIAL, Lima, La Molina.
Gallegos, G., Leal, J., Rojas, E., & Martinez, E. (2011). Obtención de la curva de retención mediante el
análisis de imagen y el modelo probabilista. Revista de la Construcción, 10(3), 75-85 pp.
Garcia M., G. (05 de octubre de 2018). Gines Garcia Mateo. Obtenido de
http://dis.um.es/profesores/ginesgm/pi.html#apuntes
Garti, N. (2001). Food Emulsifiers and stabilizers. (I. A. Taub, & R. Singh, Edits.) USA: CRC Press
LLC.
GFPERU. (10 de Febrero de 2013). Base de datos de formulas comerciales de GFPERU. Reportes del
de area de I+D, GFPERU, Lima, Lima. Recuperado el 2013
Gonzales, R., & Woods, R. (2002). Digital Image Processing (2da. ed.). New Jersey: Prentice Hall.
Gonzalez Morales, M. E. (Marzo 2021). Técnicas de procesamiento de imágenes aplicadas al monitoreo
de procesos alimentarias. Tesis Magister en Ingeniería Química, Universidad de la Republica,
Facultad de Ingenieria , Montevideo - Uruguay. Recuperado el 15 de Enero de 2023, de
https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/26835/1/GON21.pdf
Haralick, R., Shanmugam, K., & Dinstein , I. (November de 1973). Textural Features for image
classification. SMC-3(6), 610-621 pp. Obtenido de
http://haralick.org/journals/TexturalFeatures.pdf
He, H., H., Zheng, C., & Sun, D. (2016). Image Segmentation Techniques. En D. Sun, Computer vision
technology for food quality evaluation (2da. ed., págs. 45-61 pp). Elsevier.
Hernandez, A., De La Paz, M., & Garcia, L. (Mayo de 2015). La metodología de Taguchi en el control
estadistico de la calidad. (C. d.-U. Sur, Ed.) Investigación Operativa, XXIII(37), 65-83.
Recuperado el 10 de Septiembre de 2018, de
https://revistas.unc.edu.ar/index.php/epio/article/viewFile/11986/12697
Huy, Y., De Leyn, I., Nip, W., & Cross, N. (2006). Bakery Products Science and Technology (Vol. 2).
IEH. (2003). El libro del huevo (2da. ed.). Madrid, España: Instituto de Estudios del Huevo. Recuperado
el 10 de Octubre de 2018, de http://institutohuevo.com/wp-content/uploads/2017/07/EL-
LIBRO-DEL-HUEVO.pdf
Imeson, A. (1999). Thickening and Gelling Agents for Food. (2da edn. Aspen). Gaithersburg, MD.:
Publishers Inc.
INEI. (2022). Informe Técnico Producción Nacional. INEI. Lima: INEI. Recuperado el 12 de Enero de
2023, de https://www.inei.gob.pe/media/MenuRecursivo/boletines/04-informe-tecnico-
produccion-nacional-feb-2022.pdf
Crispin-Sanchez, Fredy et al. 2117
Migration Letters
Kiosseoglou, V., & Paraskevopoulou, A. (2014). eggs en bakery products science and technology
(Sedunda ed. ed.). West Sussex, UK: John Wiley & Sons Ltd.
Lai, H., & Lin, T. (Set de 2002). Bakery Products. Boca Raton FL: CRC Press.
Lai, H., & Lin, T. (2005). Bakery Products. En Handbook of Food Science, Technology, and Engineering
(Vol. 4 Vol Set). Boca Raton FL CRC Press.
Latham, M. C. (2002). NUTRICIÓN HUMANA EN EL MUNDO. Recuperado el 12 de Feb de 2019,
de Cap 29 Carne, pescado, huevos, leche y productos derivados:
http://www.fao.org/3/w0073s/w0073s0x.htm
Lechevalier, V., Anton, M., Croguennec, T., & Nau, F. (2011). (Y. Nys, M. Bain, & F. Van, Edits.) Food
Science, 538-581. doi:https://doi.org/10.1533/9780857093912.4.538
Lee, L. Y., Chin, N. L., Lim, C. H., Yusof, Y. A., & Talib, R. A. (2014). Saturated distilled
monoglycerides variants en gel-form cake emulsifiers. Agriculture and Science Procedia, 2,
191-198.
León, K., Mery, D., Pedreschi, F., & León, J. (2006). Color measurement in L*a*b units from RGB
digital images. Food Research International(39), 1084-1091 pp. Obtenido de
https://pdfs.semanticscholar.org/74d2/fd52d71a0e80febed81e1093846d6bbb837c.pdf
Lopez Iturriaga, M. (24 de marzo de 2017). Cocina para lerdos: las leyes del bizcocho. Bizcochuelo.
Lima. Recuperado el 4 de octubre de 2018, de https://es.wikipedia.org/wiki/Bizcochuelo
Mary, D. (2001). Domingo Mery: Balu Toolbox Matlab . Recuperado el 10 de diciembre de 2018, de
Domingo Mery: Balu Toolbox Matlab : http://dmery.ing.puc.cl/index.php/balu
Masco, R. (1996). Manual para la aplicación del método de taguchi en la ingenieria de la calidad y el
diseño de experimentos industriales. Rosario, Argentina: UNR Editora ISBN 950-673-131-4.
Mery, D. (2011). A Matlab toolbox for computer vision, pattern recognition and image processing.
Mery, D., & Arteta, C. (2017). Automatic Defect Recognition in X-ray Testing using Computer Vision.
Conference on Applications of Computer Vision (WACV) (págs. 1026-1035). IEEE. doi:DOI
10.1109/WACV.2017.119
Mery, D., & Pedreschi, F. (2005). Segmentation of colour food images using a robust algorithm. Journal
of Food Engineering 66, 353–360. Recuperado el 02 de Octubre de 2018, de
http://dmery.sitios.ing.uc.cl/Prints/ISI-Journals/2005-JFoodEng-Segmentation.pdf
Miller, R. A., & Hoseney, R. C. (1993). The role of xanthan gum in white layer cakes. Cereal chemistry
(USA).
Moiraghi, e. (16 de Diciembre de 2005). Análisis de la aptitud de trigos pan para la elaboración de
galletitas y bizcochos. Agriscientia, XXII(2), 47-54.
Morales, C. (2008). Clasificación de calidad sensorial de papas fritas tipo chips. Universidad de Chile .
Santiago: Universidad de Chile .
Nashat, S., & Abdullah, M. (2016). Quality evaluation of bakery products. Computer vision technology
for food quality evaluation, 525-589 pp. Recuperado el 10 de octubre de 2018, de
https://books.google.com.pe/books?id=cM8cCwAAQBAJ&pg=PA601&lpg=PA601&dq=mE
RY+Y+PEDRESCHI+2005&source=bl&ots=dnV2YD8ypn&sig=Yn0b4bPlsGuastWb994zN
FCQVeI&hl=es-
419&sa=X&ved=2ahUKEwi21oSwt6feAhXFwFkKHQfhCrAQ6AEwBXoECAgQAQ#v=on
epage&q&f=false
Panipan Group SAC. (2013). Informes de producción del 2013. PANISELVA SAC, Lima.
Pedreschi, F., León, J., Mery, D., & Moyano, P. (2007). Color development and acrylamide content of
pre-dried potato chips. Journal of Food Engineering 79(79), 786–793 pp.
Pérez C., C. (2014). Computo evolutivo como enfoque en la descripción del contenido de la imagen
aplicado al reconocimiento de objetivos. Universidad de Extremadura. CICESE. Obtenido de
http://dehesa.unex.es/handle/10662/1677
Picas, C., & Vigata, A. (1997). Tecnicas de pasteleria, panaderia y conservación de alimentos. Madrid,
España: Sintesis.
Potter, N., & Hotchkiss, J. (1999). Ciencia de los Alimentos. España: Acribia.
Quaglia, G. (1991). Ciencia y tecnologia de la panificación (2da. ed.). Zaragoza, España: Acribia.
Quitral, V., Carrera, M., Gallo, G., Salinas, P., & Jimenez P. (2017). Efecto de edulcorantes no calóricos
en la aceptabilidad sensorial de un producto horneado. Revista chilena de nutrición , 44 (2),,
44(2), 137-143. doi:http://dx.doi.org/10.4067/S0717-75182017000200004
2118 Effect Of Formulation On The Fluffiness And Volume Of A Commercial Cake Premix In Relation
To Its Acceptability
Romero Villafranca, R., & Zúnica Ramajo, L. (2004). Métodos estadisticos en ingenieria. Valencia,
España: Universidad Politecnica de Valencia.
Rosenthal, A. (2001). Textura de los alimentos. Acribia Editorial.
Salas, F. (2009). Analisis de la propiedad textural por analisis de perfil de textura (TPA) y ensayo
uniaxial de compresión. Lima, Lima, Perú: UNALM.
Schmidt-Hebbel, H. (1990). Avances en Aditivos alimentarios y la reglamentación de los alimentos:
Aplicaciones y comentarios de orden químico y tecnológico. (F. Chile, Ed.) Santiago, Chile.
Obtenido de http://repositorio.uchile.cl/bitstream/handle/2250/121409/schmidth04.pdf
Silva, M. (10 de Diciembre de 2014). Entrevista al maestro pastelero asesor de varias pastelerias en
Lima. (F. Crispin, Entrevistador) Lima, Lima, Perú.
Sworn, G. (2009). Handbook of hydrocolloids. Xanthan gun(2da.). (G. Phillips, & P. Williams, Edits.)
CRC Press.
Tejero, F. (26 de noviembre de 2018). Asesoria técnica en panificación. Obtenido de
http://www.franciscotejero.com/tecnicas/los-emulsionantes-en-la-panificacion/
Telis, J., & Sobral, P. (Diciembre de 2003). Caida de presión en lecho fijo de cubos de papa, remolacha
y zanahoria considerando encogimiento. Cienc. Tecnol. Aliment., 23(Supl), 110-115. Obtenido
de http://www.scielo.br/pdf/cta/v23s0/19481.pdf
Turabi, E., Sumnu, G., & Sahin, S. (2008). Rheological properties and quality of rice cakes formulated
with different gums and an emulsifier blend. Food Hidrocolloids, 2(22), 305-312 pp.
Ureña O., M., D´Arrigo, M., & Girón, O. (1999). Evaluación sensorial de los alimentos. Lima: Editorial
Agraria.
Vargas, W., Pineda, L., & Santaella, L. (Diciembre de 2006). Rugosidad y textura de superficies:
Experimentos y simulaciones. Ciencia e ingenieria neogranadina, 16(2), 54-63 pp. Obtenido de
https://revistas.unimilitar.edu.co/index.php/rcin/article/view/1234/963
Vilca, R. (2013). Evaluación del proceso de cocción de tres variedades de papa peruana utilizando el
análisis de imagenes. Tesis pre-grado, Universidad Nacional del Altiplano. Facultad de
Ciencias Agrarias. Escuela profesional de Ingenieria Agroindustrial, Puno.
Villanueva Flores, R. (2007). Harina para bizcochos. (U. d. Lima, Ed.) Ingenieria Industrial(25), pp.
163-175. Recuperado el 10 de octubre de 2018, de
http://fresno.ulima.edu.pe/sf/sf_bdfde.nsf/OtrosWeb/Ing25Harina/$file/11-Ingenieria25-
VILLANUEVAweb.pdf
Wilderjans, E., Luyts, A., Brijs, K., & Delcour , J. (2013). Ingredient functionality in batter type cake
making. (6-15, Ed.) Trends in Food Food Science & Technology, 1(30).
doi:10.1016/j.tifs.2013.01.001
Yamazaki, W., & Kissell, L. (1978). Cake flour and baking research: A review. Creal Foods World.