We prove an estimate of Carleman type for the one dimensional heat equation
ut - ( a( x )ux )x + c( t,x )u = h( t,x ), ( t,x ) Î ( 0,T ) ( 0,1 ), u_t - \left( {a\left( x \right)u_x } \right)_x + c\left( {t,x} \right)u = h\left( {t,x} \right),\quad \left( {t,x} \right)
\in \left( {0,T} \right) \times \left( {0,1} \right), where a(·) is degenerate at 0. Such an estimate is derived for a
special pseudo-convex weight function related to the degeneracy rate of a(·). Then, we study the null controllability on [0,
1] of the semilinear degenerate parabolic equation
ut - ( a( x )ux )x + f( t,x,u ) = h( t,x )cw ( x ), u_t - \left( {a\left( x \right)u_x } \right)_x + f\left( {t,x,u} \right) = h\left( {t,x} \right)\chi _\omega \left( x \right),
where (t, x) ∈(0, T) × (0, 1), ω=(α, β) ⊂⊂ [0, 1], and f is locally Lipschitz with respect to u.