Article

Effective and Imperceptible Adversarial Textual Attack Via Multi-objectivization

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The field of adversarial textual attack has significantly grown over the last few years, where the commonly considered objective is to craft adversarial examples (AEs) that can successfully fool the target model. However, the imperceptibility of attacks, which is also essential for practical attackers, is often left out by previous studies. In consequence, the crafted AEs tend to have obvious structural and semantic differences from the original human-written text, making them easily perceptible. In this work, we advocate leveraging multi-objectivization to address such issue. Specifically, we reformulate the problem of crafting AEs as a multi-objective optimization problem, where the attack imperceptibility is considered as an auxiliary objective. Then, we propose a simple yet effective evolutionary algorithm, dubbed HydraText, to solve this problem. HydraText can be effectively applied to both score-based and decision-based attack settings. Exhaustive experiments involving 44237 instances demonstrate that HydraText consistently achieves competitive attack success rates and better attack imperceptibility than the recently proposed attack approaches. A human evaluation study also shows that the AEs crafted by HydraText are more indistinguishable from human-written text. Finally, these AEs exhibit good transferability and can bring notable robustness improvement to the target model by adversarial training.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Multiobjecive Adversarial Problem: The multiobjective adversarial problem introduces an innovative optimization framework to the domain of adversarial robustness, targeting the enhancement of model robustness across a range of perturbation intensities [50], [51], [52]. While Suzuki et al.'s [50] analysis aligns with our investigation, it restricts its scope to preliminary results with the VGG16 model. ...
... In contrast, Baia et al. [51] adopt non-norm-bounded attacks using established filters to generate adversarial examples, narrowing the broader applicability of their findings. Furthermore, Liu et al. [52] propose a novel approach for generating adversarial examples in NLP tasks with custom objectives which, however, suffers from limited applicability to the well-established classical norm-bounded attacks. ...
Article
Full-text available
The escalating threat of adversarial attacks on deep learning models, particularly in security-critical fields, has highlighted the need for robust deep learning systems. Conventional evaluation methods of their robustness rely on adversarial accuracy, which measures the model performance under a specific perturbation intensity. However, this singular metric does not fully encapsulate the overall resilience of a model against varying degrees of perturbation. To address this issue, we propose a new metric termed as the adversarial hypervolume for assessing the robustness of deep learning models comprehensively over a range of perturbation intensities from a multi-objective optimization standpoint. This metric allows for an in-depth comparison of defense mechanisms and recognizes the trivial improvements in robustness brought by less potent defensive strategies. We adopt a novel training algorithm to enhance adversarial robustness uniformly across various perturbation intensities, instead of only optimizing adversarial accuracy. Our experiments validate the effectiveness of the adversarial hypervolume metric in robustness evaluation, demonstrating its ability to reveal subtle differences in robustness that adversarial accuracy overlooks.
... A white-box threat model is often considered for evaluating adversarial robustness, where the adversary has full access to the model's architecture, parameters, and gradients. While white-box existing strategies mainly focus on one surrogate loss function [1,18,25,51], a recent trend is the integration of multiple loss functions into the attack paradigm [5,14,33,42,44]. ...
... Concurrently, researchers have expanded the adversarial attack framework by introducing other types of objectives. Williams et al. investigated the inclusion of additional norm constraints [48], while Guo et al. and Liu et al. have investigated the trade-off between perturbation intensity and confidence measures [24,33]. These efforts have contributed to the development of more diversified attack methodologies. ...
Preprint
Full-text available
Crafting adversarial examples is crucial for evaluating and enhancing the robustness of Deep Neural Networks (DNNs), presenting a challenge equivalent to maximizing a non-differentiable 0-1 loss function. However, existing single objective methods, namely adversarial attacks focus on a surrogate loss function, do not fully harness the benefits of engaging multiple loss functions, as a result of insufficient understanding of their synergistic and conflicting nature. To overcome these limitations, we propose the Multi-Objective Set-based Attack (MOS Attack), a novel adversarial attack framework leveraging multiple loss functions and automatically uncovering their interrelations. The MOS Attack adopts a set-based multi-objective optimization strategy, enabling the incorporation of numerous loss functions without additional parameters. It also automatically mines synergistic patterns among various losses, facilitating the generation of potent adversarial attacks with fewer objectives. Extensive experiments have shown that our MOS Attack outperforms single-objective attacks. Furthermore, by harnessing the identified synergistic patterns, MOS Attack continues to show superior results with a reduced number of loss functions.
... Multiobjecive Adversarial Problem. The multiobjective adversarial problem introduces an innovative optimization framework to the domain of adversarial robustness, targeting the enhancement of model robustness across a range of perturbation intensities [50]- [52]. While Suzuki et al.'s [50] analysis aligns with our investigation, it restricts its scope to preliminary results with the VGG16 model. ...
... In contrast, Baia et al. [51] adopt non-norm-bounded attacks using established filters to generate adversarial examples, narrowing the broader applicability of their findings. Furthermore, Liu et al. [52] propose a novel approach for generating adversarial examples in NLP tasks with custom objectives which, however, suffers from limited applicability to the well-established classical norm-bounded attacks. ...
Preprint
Full-text available
The escalating threat of adversarial attacks on deep learning models, particularly in security-critical fields, has underscored the need for robust deep learning systems. Conventional robustness evaluations have relied on adversarial accuracy, which measures a model's performance under a specific perturbation intensity. However, this singular metric does not fully encapsulate the overall resilience of a model against varying degrees of perturbation. To address this gap, we propose a new metric termed adversarial hypervolume, assessing the robustness of deep learning models comprehensively over a range of perturbation intensities from a multi-objective optimization standpoint. This metric allows for an in-depth comparison of defense mechanisms and recognizes the trivial improvements in robustness afforded by less potent defensive strategies. Additionally, we adopt a novel training algorithm that enhances adversarial robustness uniformly across various perturbation intensities, in contrast to methods narrowly focused on optimizing adversarial accuracy. Our extensive empirical studies validate the effectiveness of the adversarial hypervolume metric, demonstrating its ability to reveal subtle differences in robustness that adversarial accuracy overlooks. This research contributes a new measure of robustness and establishes a standard for assessing and benchmarking the resilience of current and future defensive models against adversarial threats.
... The model used a sparrow search algorithm (SSA)-based hyperparameter tuning method to increase system effectiveness. Liu et al. [19] presented a model utilizing multi-objectivization, particularly reformulating the issue of crafting autoencoders (AEs) as a multi-objective optimizing issue. An evolutionary model called HydraText has also been efficiently employed. ...
Article
Full-text available
Accurately predicting and anticipating financial crises becomes of paramount importance in the rapidly evolving landscape of financial technology (Fintech). There is an increasing reliance on predictive modeling and advanced analytics techniques to predict possible crises and alleviate the effects of Fintech innovations reshaping traditional financial paradigms. Financial experts and academics are focusing more on financial risk prevention and control tools based on state-of-the-art technology such as machine learning (ML), big data, and neural networks (NN). Researchers aim to prioritize and identify the most informative variables for accurate prediction models by leveraging the abilities of deep learning and feature selection (FS) techniques. This combination of techniques allows the extraction of relationships and nuanced patterns from complex financial datasets, empowering predictive models to discern subtle signals indicative of potential crises. This study developed an extended osprey optimization algorithm with a Bayesian NN to predict financial crisis (EOOABNN-PFC) technique. The EOOABNN-PFC technique uses metaheuristics and the Bayesian model to predict the presence of a financial crisis. In preprocessing, the EOOABNN-PFC technique uses a min-max scalar to scale the input data into a valid format. Besides, the EOOABNN-PFC technique applies the EOOA-based feature subset selection approach to elect the optimal feature subset, and the prediction of the financial crisis is performed using the BNN classifier. Lastly, the optimal parameter selection of the BNN model is carried out using a multi-verse optimizer (MVO). The simulation process identified that the EOOABNN-PFC technique reaches superior accuracy outcomes of 95.00% and 95.87% compared with other existing approaches under the German Credit and Australian Credit datasets.
... Inspired by this progress, we propose to employ the evolutionary multi-objective algorithms [39,40] to optimize the weights of the policy directly for three reasons. First, evolutionary multi-objective algorithms have been the mainstream methods for multi-objective optimization problems and have successfully shown their power in many real-world applications [41][42][43][44]. Second, it does not need to set the aggregation weights manually but directly compare solutions with the domination relation. ...
Article
In recent years, various companies have started to shift their data services from traditional data centers to the cloud. One of the major motivations is to save on operational costs with the aid of cloud elasticity. This paper discusses an emerging need from financial services to reduce the incidence of idle servers retaining very few user connections, without disconnecting them from the server side. This paper considers this need as a bi-objective online load balancing problem. A neural network based scalable policy is designed to route user requests to varied numbers of servers for the required elasticity. An evolutionary multi-objective training framework is proposed to optimize the weights of the policy. Not only is the new objective of idleness reduced by over 130% more than traditional industrial solutions, but the original load balancing objective itself is also slightly improved. Extensive simulations with both synthetic and real-world data help reveal the detailed applicability of the proposed method to the emergent problem of reducing idleness in financial services.
Article
Dynamic pickup and delivery problems (DPDPs) with various constraints, such as docks, time windows, capacity, and last-in-first-out loading, have posed significant challenges for existing vehicle routing algorithms, as most of them only optimize a single weighted objective function, which makes it difficult to maintain the solutions’ diversity and may easily become stuck in local optima. To alleviate this issue, this paper introduces a decomposition-based multiobjective evolutionary algorithm with tabu search for solving the above DPDPs. First, our algorithm leverages multiobjectivization and reformulates the DPDP as a multiobjective optimization problem (MOP), which is further decomposed into multiple subproblems. Then, these subproblems are approached simultaneously and collaboratively by using a crossover process to enhance the diversity of the solutions, followed by using an efficient tabu search to speed up the convergence. In this way, our algorithm can better balance the trade-off between exploration and exploitation for solving this MOP, and then one promising solution can be selected from the population to complete some pickup and delivery tasks in an interval of the DPDP. Simulation results on 64 test problems from a practical scenario of Huawei demonstrate that the proposed algorithm outperforms other competitive algorithms for tackling DPDPs. Additionally, more experiments are conducted on 20 large-scale distribution problems within JD Logistics to validate the generalization capability of our algorithm.
Article
Full-text available
In the last few decades, the particle swarm optimization (PSO) algorithm has been demonstrated to be an effective approach for solving real-world optimization problems. To improve the effectiveness of the PSO algorithm in finding the global best solution for constrained optimization problems, we proposed an improved composite particle swarm optimization algorithm (ICPSO). Based on the optimization principles of the PSO algorithm, in the ICPSO algorithm, we constructed an evolutionary update mechanism for the personal best position population. This mechanism incorporated composite concepts, specifically the integration of the ε \varepsilon -constraint, differential evolution (DE) strategy, and feasibility rule. This approach could effectively balance the objective function and constraints, and could improve the ability of local exploitation and global exploration. Experiments on the CEC2006 and CEC2017 benchmark functions and real-world constraint optimization problems from the CEC2020 dataset showed that the ICPSO algorithm could effectively solve complex constrained optimization problems.
Article
Full-text available
It has been widely observed that there exists no universal best Multi-Objective Evolutionary Algorithm (MOEA) dominating all other MOEAs on all possible Multi-Objective Optimization Problems (MOPs). In this work, we advocate using the Parallel Algorithm Portfolio (PAP), which runs multiple MOEAs independently in parallel and gets the best out of them, to combine the advantages of different MOEAs. Since the manual construction of PAPs is non-trivial and tedious, we propose to automatically construct high-performance PAPs for solving MOPs. Specifically, we first propose a variant of PAPs, namely MOEAs/PAP, which can better determine the output solution set for MOPs than conventional PAPs. Then, we present an automatic construction approach for MOEAs/PAP with a novel performance metric for evaluating the performance of MOEAs across multiple MOPs. Finally, we use the proposed approach to construct an MOEAs/PAP based on a training set of MOPs and an algorithm configuration space defined by several variants of NSGA-II. Experimental results show that the automatically constructed MOEAs/PAP can even rival the state-of-the-art multi-operator-based MOEAs designed by human experts, demonstrating the huge potential of the automatic construction of PAPs in multi-objective optimization.
Article
Full-text available
Deep neural networks are vulnerable to adversarial examples, even in the black-box setting where the attacker is only accessible to the model output. Recent studies have devised effective black-box attacks with high query efficiency. However, such performance is often accompanied by compromises in attack imperceptibility, hindering the practical use of these approaches. In this paper, we propose to restrict the perturbations to a small salient region to generate adversarial examples that can hardly be perceived. This approach is readily compatible with many existing black-box attacks and can significantly improve their imperceptibility with little degradation in attack success rate. Further, we propose the Saliency Attack, a new black-box attack aiming to refine the perturbations in the salient region to achieve even better imperceptibility. Extensive experiments show that compared to the state-of-the-art black-box attacks, our approach achieves much better imperceptibility scores, including most apparent distortion (MAD), L 0 and L 2 distances, and also obtains significantly better true success rate and effective query number judged by a human-like threshold on MAD. Importantly, the perturbations generated by our approach are interpretable to some extent. Finally, it is also demonstrated to be robust to different detection-based defenses.
Article
Full-text available
Deep neural networks are vulnerable to adversarial examples, even in the black-box setting where the attacker is only accessible to the model output. Recent studies have devised effective black-box attacks with high query efficiency. However, such performance is often accompanied by compromises in attack imperceptibility, hindering the practical use of these approaches. In this paper, we propose to restrict the perturbations to a small salient region to generate adversarial examples that can hardly be perceived. This approach is readily compatible with many existing black-box attacks and can significantly improve their imperceptibility with little degradation in attack success rate. Further, we propose the Saliency Attack, a new black-box attack aiming to refine the perturbations in the salient region to achieve even better imperceptibility. Extensive experiments show that compared to the state-of-the-art black-box attacks, our approach achieves much better imperceptibility scores, including most apparent distortion (MAD), L 0 and L 2 distances, and also obtains significantly better true success rate and effective query number judged by a human-like threshold on MAD. Importantly, the perturbations generated by our approach are interpretable to some extent. Finally, it is also demonstrated to be robust to different detection-based defenses.
Article
Full-text available
We study an important and challenging task of attacking natural language processing models in a hard label black box setting. We propose a decision-based attack strategy that crafts high quality adversarial examples on text classification and entailment tasks. Our proposed attack strategy leverages population-based optimization algorithm to craft plausible and semantically similar adversarial examples by observing only the top label predicted by the target model. At each iteration, the optimization procedure allow word replacements that maximizes the overall semantic similarity between the original and the adversarial text. Further, our approach does not rely on using substitute models or any kind of training data. We demonstrate the efficacy of our proposed approach through extensive experimentation and ablation studies on five state-of-the-art target models across seven benchmark datasets. In comparison to attacks proposed in prior literature, we are able to achieve a higher success rate with lower word perturbation percentage that too in a highly restricted setting.
Article
Full-text available
Deep learning approaches for facial Emotion Recognition (ER) obtain high accuracy on basic models, e.g., Ekman’s models, in the specific domain of facial emotional expressions. Thus, facial tracking of users’ emotions could be easily used against the right to privacy or for manipulative purposes. As recent studies have shown that deep learning models are susceptible to adversarial examples (images intentionally modified to fool a machine learning classifier) we propose to use them to preserve users’ privacy against ER. In this paper, we present a technique for generating Emotion Adversarial Attacks (EAAs). EAAs are performed applying well-known image filters inspired from Instagram, and a multi-objective evolutionary algorithm is used to determine the per-image best filters attacking combination. Experimental results on the well-known AffectNet dataset of facial expressions show that our approach successfully attacks emotion classifiers to protect user privacy. On the other hand, the quality of the images from the human perception point of view is maintained. Several experiments with different sequences of filters are run and show that the Attack Success Rate is very high, above 90% for every test.
Conference Paper
Full-text available
Recent studies have shown that Deep Leaning models are susceptible to adversarial examples, which are data, in general images, intentionally modified to fool a machine learning classifier. In this paper, we present a multi-objective nested evolutionary algorithm to generate universal unrestricted adversarial examples in a black-box scenario. The unrestricted attacks are performed through the application of well-known image filters that are available in several image processing libraries, modern cameras, and mobile applications. The multi-objective optimization takes into account not only the attack success rate but also the detection rate. Experimental results showed that this approach is able to create a sequence of filters capable of generating very effective and undetectable attacks.
Article
Full-text available
Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of “training” problem instances, which is often referred to as PAP construction. However, compared to traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This paper proposes a novel competitive co-evolution scheme, named Co-Evolution of Parameterized Search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this paper. Two concrete algorithms, namely CEPS-TSP and CEPS-VRPSPDTW, are presented for the Traveling Salesman Problem (TSP) and the Vehicle Routing Problem with Simultaneous Pickup–Delivery and Time Windows (VRPSPDTW), respectively. Experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances.
Conference Paper
Full-text available
We study an important and challenging task of attacking natural language processing models in a hard label black box setting. We propose a decision-based attack strategy that crafts high quality adversarial examples on text classification and entailment tasks. Our proposed attack strategy leverages population-based optimization algorithm to craft plausible and semantically similar adversarial examples by observing only the top label predicted by the target model. At each iteration , the optimization procedure allow word replacements that maximizes the overall semantic similarity between the original and the adversarial text. Further, our approach does not rely on using substitute models or any kind of training data. We demonstrate the efficacy of our proposed approach through extensive experimentation and ablation studies on five state-of-the-art target models across seven benchmark datasets. In comparison to attacks proposed in prior literature, we are able to achieve a higher success rate with lower word perturbation percentage that too in a highly restricted setting.
Article
Full-text available
Over the last decade, research on automated parameter tuning, often referred to as automatic algorithm configuration (AAC), has made significant progress. Although the usefulness of such tools has been widely recognized in real world applications, the theoretical foundations of AAC are still very weak. This paper addresses this gap by studying the performance estimation problem in AAC. More specifically, this paper first proves the universal best performance estimator in a practical setting, and then establishes theoretical bounds on the estimation error, i.e., the difference between the training performance and the true performance for a parameter configuration, considering finite and infinite configuration spaces respectively. These findings were verified in extensive experiments conducted on four algorithm configuration scenarios involving different problem domains. Moreover, insights for enhancing existing AAC methods are also identified.
Article
Full-text available
Since automatic algorithm configuration methods have been very effective, recently there is increasing research interest in utilizing them for automatic solver construction, resulting in several notable approaches. For these approaches, a basic assumption is that the given training set could sufficiently represent the target use cases such that the constructed solvers can generalize well. However, such an assumption does not always hold in practice since in some cases, we might only have scarce and biased training data. This article studies effective construction approaches for the parallel algorithm portfolios that are less affected in these cases. Unlike previous approaches, the proposed approach simultaneously considers instance generation and portfolio construction in an adversarial process, in which the aim of the former is to generate instances that are challenging for the current portfolio, while the aim of the latter is to find a new component solver for the portfolio to better solve the newly generated instances. Applied to two widely studied problem domains, that is, the Boolean satisfiability problems (SAT) and the traveling salesman problems (TSPs), the proposed approach identified parallel portfolios with much better generalization than the ones generated by the existing approaches when the training data were scarce and biased. Moreover, it was further demonstrated that the generated portfolios could even rival the state-of-the-art manually designed parallel solvers.
Article
Full-text available
Simultaneously utilizing several complementary solvers is a simple yet effective strategy for solving computationally hard problems. However, manually building such solver portfolios typically requires considerable domain knowledge and plenty of human effort. As an alternative, automatic construction of parallel portfolios (ACPP) aims at automatically building effective parallel portfolios based on a given problem instance set and a given rich design space. One promising way to solve the ACPP problem is to explicitly group the instances into different subsets and promote a component solver to handle each of them.This paper investigates solving ACPP from this perspective, and especially studies how to obtain a good instance grouping.The experimental results showed that the parallel portfolios constructed by the proposed method could achieve consistently superior performances to the ones constructed by the state-of-the-art ACPP methods,and could even rival sophisticated hand-designed parallel solvers.
Article
Full-text available
Recent research has revealed that the output of Deep neural networks(DNN) is not continuous and very sensitive to tiny perturbation on the input vectors and accordingly several methods have been proposed for crafting effective perturbation against the networks. In this paper, we propose a novel method for optically calculating extremely small adversarial perturbation (few-pixels attack), based on differential evolution. It requires much less adversarial information and works with a broader classes of DNN models. The results show that 73.8%\% of the test images can be crafted to adversarial images with modification just on one pixel with 98.7%\% confidence on average. In addition, it is known that investigating the robustness problem of DNN can bring critical clues for understanding the geometrical features of the DNN decision map in high dimensional input space. The results of conducting few-pixels attack contribute quantitative measurements and analysis to the geometrical understanding from a different perspective compared to previous works.
Conference Paper
Full-text available
Machine learning models are known to lack robustness against inputs crafted by an adversary. Such adversarial examples can, for instance, be derived from regular inputs by introducing minor—yet carefully selected—perturbations. In this work, we expand on existing adversarial example crafting algorithms to construct a highly-effective attack that uses adversarial examples against malware detection models. To this end, we identify and overcome key challenges that prevent existing algorithms from being applied against malware detection: our approach operates in discrete and often binary input domains, whereas previous work operated only in continuous and differentiable domains. In addition, our technique guarantees the malware functionality of the adversarially manipulated program. In our evaluation, we train a neural network for malware detection on the DREBIN data set and achieve classification performance matching state-of-the-art from the literature. Using the augmented adversarial crafting algorithm we then manage to mislead this classifier for 63% of all malware samples. We also present a detailed evaluation of defensive mechanisms previously introduced in the computer vision contexts, including distillation and adversarial training, which show promising results.
Article
Feature selection in classification can be considered a multiobjective problem with the objectives of increasing classification accuracy and decreasing the size of the selected feature subset. Dominance-based and decomposition-based multiobjective evolutionary algorithms (MOEAs) have been extensively used to address the feature selection problem due to their strong global search capability. However, most of them face the problem of not effectively balancing convergence and diversity during the evolutionary process. In addressing the aforementioned issue, this study proposes a unified evolutionary framework that combines two search forms of dominance and decomposition. The advantages of the two search methods assist one another in escaping the local optimum and inclining toward a balance of convergence and diversity. Specifically, an improved environmental selection strategy based on the distributions of individuals in the objective space is presented to avoid duplicate feature subsets. Furthermore, a novel knowledge transfer mechanism that considers evolutionary characteristics is developed, allowing for the effective implementation of positive knowledge transfer between dominance-based and decomposition-based feature selection methods. The experimental results demonstrate that the proposed algorithm can evolve feature subsets with good convergence and diversity in a shorter time compared with 9 state-of-the-art feature selection methods on 20 classification problems.
Article
In recent years, various companies have started to shift their data services from traditional data centers to the cloud. One of the major motivations is to save on operational costs with the aid of cloud elasticity. This paper discusses an emerging need from financial services to reduce the incidence of idle servers retaining very few user connections, without disconnecting them from the server side. This paper considers this need as a bi-objective online load balancing problem. A neural network based scalable policy is designed to route user requests to varied numbers of servers for the required elasticity. An evolutionary multi-objective training framework is proposed to optimize the weights of the policy. Not only is the new objective of idleness reduced by over 130% more than traditional industrial solutions, but the original load balancing objective itself is also slightly improved. Extensive simulations with both synthetic and real-world data help reveal the detailed applicability of the proposed method to the emergent problem of reducing idleness in financial services.
Article
Traditional solvers for tackling combinatorial optimization (CO) problems are usually designed by human experts. Recently, there has been a surge of interest in utilizing deep learning, especially deep reinforcement learning, to automatically learn effective solvers for CO. The resultant new paradigm is termed neural combinatorial optimization (NCO). However, the advantages and disadvantages of NCO relative to other approaches have not been empirically or theoretically well studied. This work presents a comprehensive comparative study of NCO solvers and alternative solvers. Specifically, taking the traveling salesman problem as the testbed problem, the performance of the solvers is assessed in five aspects, i.e., effectiveness, efficiency, stability, scalability, and generalization ability. Our results show that the solvers learned by NCO approaches, in general, still fall short of traditional solvers in nearly all these aspects. A potential benefit of NCO solvers would be their superior time and energy efficiency for small-size problem instances when sufficient training instances are available. Hopefully, this work would help with a better understanding of the strengths and weaknesses of NCO and provide a comprehensive evaluation protocol for further benchmarking NCO approaches in comparison to other approaches.
Article
Multi-objective optimization problems (MOPs) containing a large number of decision variables, which are also known as large-scale multi-objective optimization problems (LSMOPs), pose great challenges to most existing evolutionary algorithms. This is mainly because that a high dimensional decision space degrades the effectiveness of search operators notably, and balancing convergence and diversity becomes a challenging task. In this paper, we propose a two-population based algorithm for large-scale multi-objective optimization named LSTPA. In the proposed algorithm, solutions are classified in to two subpopulations: a Convergence subPopulation (CP) and a Diversity subPopulation (DP), aiming at convergence and diversity respectively. In order to improve convergence speed, a fitness-aware variation operator (FAVO) is applied to drive DP solutions towards CP. Besides, an adaptive penalty based boundary intersection (APBI) strategy is adopted for environmental selection in order to balance convergence and diversity temporally during different stages of evolution process. Experimental results on benchmark test problems with 100-2000 decision variables demonstrate that the proposed algorithm can achieve the best overall performance compared with several state-of-the-art large-scale multi-objective evolutionary algorithms.
Article
Attack Ensemble (AE), which combines multiple attacks together, provides a reliable way to evaluate adversarial robustness. In practice, AEs are often constructed and tuned by human experts, which however tends to be sub-optimal and time-consuming. In this work, we present AutoAE, a conceptually simple approach for automatically constructing AEs. In brief, AutoAE repeatedly adds the attack and its iteration steps to the ensemble that maximizes ensemble improvement per additional iteration consumed. We show theoretically that AutoAE yields AEs provably within a constant factor of the optimal for a given defense. We then use AutoAE to construct two AEs for l∞ and l2 attacks, and apply them without any tuning or adaptation to 45 top adversarial defenses on the RobustBench leaderboard. In all except one cases we achieve equal or better (often the latter) robustness evaluation than existing AEs, and notably, in 29 cases we achieve better robustness evaluation than the best known one. Such performance of AutoAE shows itself as a reliable evaluation protocol for adversarial robustness, which further indicates the huge potential of automatic AE construction. Code is available at https://github.com/LeegerPENG/AutoAE.
Chapter
Many recent studies have shown that deep neural networks (DNNs) are vulnerable to adversarial examples. Adversarial attacks on DNNs for natural language processing tasks are notoriously more challenging than that in computer vision. This paper proposes an attention-based genetic algorithm (dubbed AGA) for generating adversarial examples under a black-box setting. In particular, the attention mechanism helps identify the relatively more important words in a given text. Based on this information, bespoke crossover and mutation operators are developed to navigate AGA to focus on exploiting relatively more important words thus leading to a save of computational resources. Experiments on three widely used datasets demonstrate that AGA achieves a higher success rate with less than 48%48\% of the number of queries than the peer algorithms. In addition, the underlying DNN can become more robust by using the adversarial examples obtained by AGA for adversarial training.KeywordsAttention mechanismAdversarial attackGenetic algorithmNatural language processing
Article
Multiobjectivization has emerged as a new promising paradigm to solve single-objective optimization problems (SOPs) in evolutionary computation, where an SOP is transformed into a multiobjective optimization problem (MOP) and solved by an evolutionary algorithm to find the optimal solutions of the original SOP. The transformation of an SOP into an MOP can be done by adding helper-objective(s) into the original objective, decomposing the original objective into multiple subobjectives, or aggregating subobjectives of the original objective into multiple scalar objectives. Multiobjectivization bridges the gap between SOPs and MOPs by transforming an SOP into the counterpart MOP, through which multiobjective optimization methods manage to attain superior solutions of the original SOP. Particularly, using multiobjectivization to solve SOPs can reduce the number of local optima, create new search paths from local optima to global optima, attain more incomparability solutions, and/or improve solution diversity. Since the term "multiobjectivization" was coined by Knowles et al. in 2001, this subject has accumulated plenty of works in the last two decades, yet there is a lack of systematic and comprehensive survey of these efforts. This article presents a comprehensive multifacet survey of the state-of-the-art multiobjectivization methods. Particularly, a new taxonomy of the methods is provided in this article and the advantages, limitations, challenges, theoretical analyses, benchmarks, applications, as well as future directions of the multiobjectivization methods are discussed.
Article
Over the past few years, various word-level textual attack approaches have been proposed to reveal the vulnerability of deep neural networks used in natural language processing. Typically, these approaches involve an important optimization step to determine which substitute to be used for each word in the original input. However, current research on this step is still rather limited, from the perspectives of both problem-understanding and problem-solving. In this paper, we address these issues by uncovering the theoretical properties of the problem and proposing an efficient local search algorithm (LS) to solve it. We establish the first provable approximation guarantee on solving the problem in general cases. Extensive experiments involving 5 NLP tasks, 8 datasets and 26 NLP models show that LS can largely reduce the number of queries usually by an order of magnitude to achieve high attack success rates. Further experiments show that the adversarial examples crafted by LS usually have higher quality, exhibit better transferability, and can bring more robustness improvement to victim models by adversarial training.
Article
Surrogate-assisted evolutionary algorithms have the potential to be of high value for real-world optimization problems when fitness evaluations are expensive, limiting the number of evaluations that can be performed. In this article, we consider the domain of pseudo-Boolean functions in a black-box setting. Moreover, instead of using a surrogate model as an approximation of a fitness function, we propose to precisely learn the coefficients of the Walsh decomposition of a fitness function and use the Walsh decomposition as a surrogate. If the coefficients are learned correctly, then the Walsh decomposition values perfectly match with the fitness function, and, thus, the optimal solution to the problem can be found by optimizing the surrogate without any additional evaluations of the original fitness function. It is known that the Walsh coefficients can be efficiently learned for pseudo-Boolean functions with k -bounded epistasis and known problem structure. We propose to learn dependencies between variables first and, therefore, substantially reduce the number of Walsh coefficients to be calculated. After the accurate Walsh decomposition is obtained, the surrogate model is optimized using GOMEA, which is considered to be a state-of-the-art binary optimization algorithm. We compare the proposed approach with standard GOMEA and two other Walsh decomposition-based algorithms. The benchmark functions in the experiments are well-known trap functions, NK-landscapes, MaxCut, and MAX3SAT problems. The experimental results demonstrate that the proposed approach is scalable at the supposed complexity of O (ℓ log ℓ) function evaluations when the number of subfunctions is O (ℓ) and all subfunctions are k -bounded, outperforming all considered algorithms.
Article
The Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows (VRPSPDTW) has attracted much research interest in the last decade, due to its wide application in modern logistics. Since VRPSPDTW is NP-hard and exact methods are only applicable to small-scale instances, heuristics and meta-heuristics are commonly adopted. In this paper we propose a novel Memetic Algorithm with efficienT local search and Extended neighborhood, dubbed MATE, to solve this problem. Compared to existing algorithms, the advantages of MATE lie in two aspects. First, it is capable of more effectively exploring the search space, due to its novel initialization procedure, crossover and large-step-size operators. Second, it is also more efficient in local exploitation, due to its sophisticated constant-time-complexity move evaluation mechanism. Experimental results on public benchmarks show that MATE outperforms all the state-of-the-art algorithms, and notably, finds new best-known solutions on 12 instances (65 instances in total). Moreover, a comprehensive ablation study is also conducted to show the effectiveness of the novel components integrated in MATE. Finally, a new benchmark of large-scale instances, derived from a real-world application of the JD logistics, is introduced, which can serve as a new and more challenging test set for future research.
Article
Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of, e.g., (possibly, unmanned) vehicles and humans where, despite a lack of continuous connectivity, data must be transmitted while the network conditions change due to the nodes’ mobility. In these contexts, routing is NP-hard and is usually solved by heuristic “store and forward” replication-based approaches, where multiple copies of the same message are moved and stored across nodes in the hope that at least one will reach its destination. Still, the existing routing protocols produce relatively low delivery probabilities. Here, we genetically improve two routing protocols widely adopted in DTNs, namely, Epidemic and PRoPHET, in the attempt to optimize their delivery probability. First, we dissect them into their fundamental components, i.e., functionalities such as checking if a node can transfer data, or sending messages to all connections. Then, we apply Genetic Improvement (GI) to manipulate these components as terminal nodes of evolving trees. We apply this methodology, in silico, to six test cases of urban networks made of hundreds of nodes and find that GI produces consistent gains in delivery probability in four cases. We then verify if this improvement entails a worsening of other relevant network metrics, such as latency and buffer time. Finally, we compare the logics of the best evolved protocols with those of the baseline protocols, and we discuss the generalizability of the results across test cases.
Article
Machine learning algorithms are often vulnerable to adversarial examples that have imperceptible alterations from the original counterparts but can fool the state-of-the-art models. It is helpful to evaluate or even improve the robustness of these models by exposing the maliciously crafted adversarial examples. In this paper, we present TextFooler, a simple but strong baseline to generate adversarial text. By applying it to two fundamental natural language tasks, text classification and textual entailment, we successfully attacked three target models, including the powerful pre-trained BERT, and the widely used convolutional and recurrent neural networks. We demonstrate three advantages of this framework: (1) effective—it outperforms previous attacks by success rate and perturbation rate, (2) utility-preserving—it preserves semantic content, grammaticality, and correct types classified by humans, and (3) efficient—it generates adversarial text with computational complexity linear to the text length.1
Article
With the development of high computational devices, deep neural networks (DNNs), in recent years, have gained significant popularity in many Artificial Intelligence (AI) applications. However, previous efforts have shown that DNNs are vulnerable to strategically modified samples, named adversarial examples . These samples are generated with some imperceptible perturbations, but can fool the DNNs to give false predictions. Inspired by the popularity of generating adversarial examples against DNNs in Computer Vision (CV), research efforts on attacking DNNs for Natural Language Processing (NLP) applications have emerged in recent years. However, the intrinsic difference between image (CV) and text (NLP) renders challenges to directly apply attacking methods in CV to NLP. Various methods are proposed addressing this difference and attack a wide range of NLP applications. In this article, we present a systematic survey on these works. We collect all related academic works since the first appearance in 2017. We then select, summarize, discuss, and analyze 40 representative works in a comprehensive way. To make the article self-contained, we cover preliminary knowledge of NLP and discuss related seminal works in computer vision. We conclude our survey with a discussion on open issues to bridge the gap between the existing progress and more robust adversarial attacks on NLP DNNs.
Book
This book constitutes the proceedings of the 32nd Australasian Joint Conference on Artificial Intelligence, AI 2019, held in Adelaide, SA, Australia, in December 2019. The 48 full papers presented in this volume were carefully reviewed and selected from 115 submissions. The paper were organized in topical sections named: game and multiagent systems; knowledge acquisition, representation, reasoning; machine learning and applications; natural language processing and text analytics; optimization and evolutionary computing; and image processing.
Article
Deep learning has been broadly leveraged by major cloud providers, such as Google, AWS and Baidu, to offer various computer vision related services including image classification, object identification, illegal image detection, etc. While recent works extensively demonstrated that deep learning classification models are vulnerable to adversarial examples, cloud-based image detection models, which are more complicated than classifiers, may also have similar security concern but not get enough attention yet. In this paper, we mainly focus on the security issues of real-world cloud-based image detectors. Specifically, (1) based on effective semantic segmentation, we propose four attacks to generate semantics-aware adversarial examples via only interacting with black-box APIs; and (2) we make the first attempt to conduct an extensive empirical study of black-box attacks against real-world cloud-based image detectors. Through the comprehensive evaluations on five major cloud platforms: AWS, Azure, Google Cloud, Baidu Cloud, and Alibaba Cloud, we demonstrate that our image processing based attacks can reach a success rate of approximately 100%, and the semantic segmentation based attacks have a success rate over 90% among different detection services, such as violence, politician, and pornography detection. We also proposed several possible defense strategies for these security challenges in the real-life situation.
Article
Subset selection, aiming to select the best subset from a ground set with respect to some objective function, is a fundamental problem with applications in many areas, such as combinatorial optimization, machine learning, data mining, computer vision, information retrieval, etc. Along with the development of data collection and storage, the size of the ground set grows larger. Furthermore, in many subset selection applications, the objective function evaluation is subject to noise. We thus study the large-scale noisy subset selection problem in this paper. The recently proposed DPOSS algorithm based on multi-objective evolutionary optimization is a powerful distributed solver for large-scale subset selection. Its performance, however, has been only validated in the noise-free environment. In this paper, we first prove its approximation guarantee under two common noise models, i.e., multiplicative noise and additive noise, disclosing that the presence of noise degrades the performance of DPOSS largely. Next, we propose a new distributed multi-objective evolutionary algorithm called DPONSS for large-scale noisy subset selection. We prove that the approximation guarantee of DPONSS under noise is significantly better than that of DPOSS. We also conduct experiments on the application of sparse regression, where the objective evaluation is often estimated using a sample data, bringing noise. The results on various real-world data sets, whose size can reach millions, clearly show the excellent performance of DPONSS.
Conference Paper
We address the problem of adversarial attacks on text classification, which is rarely studied comparing to attacks on image classification. The challenge of this task is to generate adversarial examples that maintain lexical correctness, grammatical correctness and semantic similarity. Based on the synonyms substitution strategy, we introduce a new word replacement order determined by both the word saliency and the classification probability, and propose a greedy algorithm called probability weighted word saliency (PWWS) for text adversarial attack. Experiments on three popular datasets using convolutional as well as LSTM models show that PWWS reduces the classification accuracy to the most extent, and keeps a very low word substitution rate. A human evaluation study shows that our generated adversarial examples maintain the semantic similarity well and are hard for humans to perceive. Performing adversarial training using our perturbed datasets improves the robustness of the models. At last, our method also exhibits a good transferability on the generated adversarial examples.
Conference Paper
Following great success in the image processing field, the idea of adversarial training has been applied to tasks in the natural language processing (NLP) field. One promising approach directly applies adversarial training developed in the image processing field to the input word embedding space instead of the discrete input space of texts. However, this approach abandons such interpretability as generating adversarial texts to significantly improve the performance of NLP tasks. This paper restores interpretability to such methods by restricting the directions of perturbations toward the existing words in the input embedding space. As a result, we can straightforwardly reconstruct each input with perturbations to an actual text by considering the perturbations to be the replacement of words in the sentence while maintaining or even improving the task performance.
Conference Paper
Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available.
Article
Due to their complex nature, it is hard to characterize the ways in which machine learning models can misbehave or be exploited when deployed. Recent work on adversarial examples, i.e. inputs with minor perturbations that result in substantially different model predictions, is helpful in evaluating the robustness of these models by exposing the adversarial scenarios where they fail. However, these malicious perturbations are often unnatural, not semantically meaningful, and not applicable to complicated domains such as language. In this paper, we propose a framework to generate natural and legible adversarial examples by searching in semantic space of dense and continuous data representation, utilizing the recent advances in generative adversarial networks. We present generated adversaries to demonstrate the potential of the proposed approach for black-box classifiers in a wide range of applications such as image classification, textual entailment, and machine translation. We include experiments to show that the generated adversaries are natural, legible to humans, and useful in evaluating and analyzing black-box classifiers.
Conference Paper
Several machine learning models, including neural networks, consistently mis- classify adversarial examples—inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that the perturbed in- put results in the model outputting an incorrect answer with high confidence. Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks' vulnerability to ad- versarial perturbation is their linear nature. This explanation is supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets. Moreover, this view yields a simple and fast method of generating adversarial examples. Us- ing this approach to provide examples for adversarial training, we reduce the test set error of a maxout network on the MNIST dataset.
Conference Paper
Deep neural networks (DNNs) play a key role in many applications. Current studies focus on crafting adversarial samples against DNN-based image classifiers by introducing some imperceptible perturbations to the input. However, DNNs for natural language processing have not got the attention they deserve. In fact, the existing perturbation algorithms for images cannot be directly applied to text. This paper presents a simple but effective method to attack DNN-based text classifiers. Three perturbation strategies, namely insertion, modification, and removal, are designed to generate an adversarial sample for a given text. By computing the cost gradients, what should be inserted, modified or removed, where to insert and how to modify are determined effectively. The experimental results show that the adversarial samples generated by our method can successfully fool a state-of-the-art model to misclassify them as any desirable classes without compromising their utilities. At the same time, the introduced perturbations are difficult to be perceived. Our study demonstrates that DNN-based text classifiers are also prone to the adversarial sample attack.