Content uploaded by Wendel K. M. Oliveira
Author content
All content in this area was uploaded by Wendel K. M. Oliveira on Feb 25, 2024
Content may be subject to copyright.
Available via license: CC BY-NC 4.0
Content may be subject to copyright.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171) 733
DOI: 10.5965/223811712242023733
Revista de Ciências Agroveterinárias 22 (4): 2023
Universidade do Estado de Santa Catarina
Floristic and phytosociological study of an urban fragment of
secondary Amazonian forest in Capitão Poço – PA
Estudo florístico e fitossociológico de um fragmento urbano de floresta amazônica secundária em
Capitão Poço – PA
Ana Laura da Silva Luz1 (ORCID 0000-0001-5230-3394), Nívea Maria Mafra Rodrigues2 (ORCID 0000-0002-3750-0813),
Denyse Cássia de Maria Sales*2 (ORCID 0000-0001-6182-0975), Wendel Kaian Mendonça Oliveira3 (ORCID 0000-0002-
7778-0151), Raimundo Thiago Lima da Silva4 (ORCID 0000-0002-1596-4852), João Olegário Pereira de Carvalho4
(ORCID 0000-0001-9396-2417)
1Universidade Federal Rural da Amazônia, Belém, PA, Brazil.
2Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, Brazil. * Author for correspondence: denysecmariasales@gmail.com
3Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
4Universidade Federal Rural da Amazônia, Capitão Poço, PA, Brazil.
Submission: 10/05/2023 | Acceptance: 10/07/2023
ABSTRACT
Secondary forests constitute important regenerating areas and they are expanding rapidly in the
Amazonian landscape. The characterization of forest remnants provides essential information for
conservation, management and recovery actions. The objective of the present study was to conduct a
floristic and phytosociological evaluation of an urban fragment of secondary Amazonian forest (8.12 ha) in
Capitão Poço, Pará. Trees with DBH ≥ 3.2 cm were inventoried in five 15 m x 30 m plots. The floristic
diversity, importance value, and diametric distribution were investigated. In the survey, 236 individuals
from 23 species were recorded. The floristic diversity index was 2.58. The most important species were
Cecropia obtusa Trécul and Lacistema pubescens Mart. The curve of distribution of individuals in diametric
classes followed a negative exponential pattern (inverted J-shape), with most individuals in the smallest
diametric classes. These results imply that the forest presents species typical of initial stages of
succession. Thus, conservation actions are needed to increase the local diversity. In addition, the studied
forest is essential for academic and environmental education activities. We recommend further floristic
studies in the area in order to assess the dynamics of the species in the forest community.
KEYWORDS: Amazon; ecological succession; floristic composition; biodiversity; nature conservation.
RESUMO
As florestas secundárias constituem importantes áreas em regeneração e estão se expandindo
rapidamente na paisagem amazônica. A caracterização dos remanescentes florestais fornece
informações essenciais para ações de conservação, manejo e recuperação. O objetivo do presente
estudo foi realizar uma avaliação florística e fitossociológica de um fragmento urbano de floresta
amazônica secundária (8,12 ha) em Capitão Poço, Pará. Árvores com DAP ≥ 3,2 cm foram inventariadas
em cinco parcelas de 15 m x 30 m. A diversidade florística, valor de importância e distribuição diamétrica
foram investigados. No levantamento, foram registrados 236 indivíduos de 23 espécies. O índice de
diversidade florística foi de 2,58. As espécies mais importantes foram Cecropia obtusa Trécul e Lacistema
pubescens Mart. A curva de distribuição dos indivíduos nas classes diamétricas seguiu um padrão
exponencial negativo (formato de J invertido), com a maioria dos indivíduos nas menores classes
diamétricas. Esses resultados implicam que a floresta apresenta espécies típicas de estágios iniciais de
sucessão. Assim, ações de conservação são necessárias para aumentar a diversidade local. Além disso,
a floresta estudada é essencial para atividades acadêmicas e de educação ambiental. Recomendamos a
realização de estudos florísticos na área para avaliar a dinâmica da espécie na comunidade florestal.
PALAVRAS-CHAVE: Amazônia; sucessão ecológica; composição florística; biodiversidade; conservação
da natureza.
da Silva Luz et al.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171)
734
INTRODUCTION
The Brazilian Amazon region has been affected by a high rate of deforestation for logging and farming
activities (COPERTINO et al. 2019, BRANDÃO et al. 2022). The use of inadequate management practices
have altered the soil properties and local biodiversity over time, resulting in a reduction of forested areas,
compromised environmental sustainability, and a growing number of forest fragments at different
successional stages (ALMEIDA et al. 2022, BRANDÃO et al. 2022).
The regenerating ecosystem resulting from the process of ecological succession, with characteristics
determined by the degree and sources of disturbance, is known as secondary vegetation (CORDEIRO et al.
2017, ROZENDAAL et al. 2019).
Secondary forests correspond to 4% (130,000 km²) of the native vegetation in the Amazon (PROJETO
MAPBIOMAS 2022) and occupy 4,358.50 km² of the northeastern region of the state of Pará (CORDEIRO et
al. 2017). The extent of these forests in this state has been increasing at an alarming pace due to
deforestation (COPERTINO et al. 2019, FONSECA et al. 2022, PROJETO MAPBIOMAS 2022), causing the
loss of diversity and altering the composition of species in the communities, which may require decades to
recover (ROZENDAAL et al. 2019).
Studies conducted in northeastern Pará (MUNIZ et al. 2007, RODRIGUES et al. 2007, CARIM et al.
2007, PINHEIRO et al. 2021, ROCHA et al. 2012) highlight the need for conservation and management
strategies to promote environmental recovery.
The knowledge about the phytosociology of secondary forests is fundamental to understand the
mechanisms underlying the process of natural regeneration and, consequently, forest succession. The
objective of this study was to conduct a phytosociological evaluation of a secondary forest located in the
municipality of Capitão Poço, Pará, Brazil. This work is a starting point for the creation of an environmental
protection area in Capitão Poço, which will serve for conservation, environmental education, and scientific
research purposes in the region.
MATERIAL AND METHODS
Study site
The study was carried out in an area of secondary forest located in the campus of the Federal Rural
University of Amazonia - UFRA (01º44'05" S; 47º03'11" W), in the municipality of Capitão Poço, northeastern
Pará, Brazil. The forest has an area of 8.12 ha and is located near the urban zone of the municipality and
inserted in a landscape composed of pasture fields (Fig. 1). The area suffered deforestation for the
implementation of agricultural crops, but has been regenerating since 2007.
Figure 1. Location of the study area in urban fragment of secondary Amazonian forest in Capitão Poço – PA.
da Silva Luz et al.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171)
735
The regional climate is Am type, according to the Köppen classification, with annual precipitation
around 2,500 mm, a short dry season from September to November (monthly precipitation around 60 mm),
average temperature of 26 °C, and relative humidity of 75% to 89% in the months with less and more
precipitation, respectively (SCHWARTZ 2007).
In general, the municipality has soils of the Yellow Latosol type of medium texture. Dense
Ombrophilous Forest is the predominant vegetation, but the forest fragments are considerably altered and
secondary forests (broad-leafed “capoeiras”) in different stages of development prevail (CORDEIRO et al.
2017).
Data collection
Five 15 m x 30 m plots (0.225 ha) were randomly established in the studied forest (8.12 ha) to conduct
a phytosociological survey. All individuals with DBH (diameter at 1.30 m from the ground) equal or greater
than 3.2 cm within the plots were surveyed from October 2016 to May 2017. Samples of botanical material
from the individuals measured were collected for later identification at the Herbarium of the Emílio Goeldi
Museum of Pará, Belém, Pará. The samples were identified at the family, genus, and species level using the
APG IV (Angiosperm Phylogeny Group) classification system (APG 2016). The individuals of the identified
species were also classified into the following ecological groups: pioneer (P), early secondary (ES) and late
secondary (LS) (GANDOLFI et al. 1995) through literature review.
Calculations and data analysis
Sample sufficiency was tested by constructing a rarefaction curve (Fig. 2), showing the relationship
between the size of the sample area (plot) and the richness of species found in the sample. It was observed
that the number of plots used in this study was not sufficient to meet the sampling sufficiency of the data.
Figure 2. Rarefaction curve of a 0.225 ha sample considering individuals with a minimum diameter of 3.2 cm.
The floristic diversity was calculated by the Shannon Index (SHANNON & WEAVER 1949) and the
horizontal structure of the forest was evaluated based on the procedures suggested by FINOL (1971) for
absolute and relative frequency, absolute and relative density, absolute and relative dominance. The
Importance Value Index (IVI) was obtained by the arithmetic sum of the relative frequency, density, and
dominance values. Diameter class intervals were calculated according to WATZLAWICK et al. (2011).
RESULTS
A total of 236 individuals (1,049 ind ha-1) of 23 species distributed in 23 genera and 17 families were
identified in the survey (Tab. 1). The identity of wo species belonging to Loranthaceae and Myrtaceae could
not be determined. As for ecological groups, most species were classified as pioneer and early secondary
species.
da Silva Luz et al.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171)
736
Table 1. Floristic composition and Ecological Group (EG) of species recorded in urban fragment of
secondary Amazonian forest in Capitão Poço – PA.
Famíly
Scientifc name
EG
Anacardiaceae
Astronium lecointei Ducke
LS1
Apocynaceae
Himatanthus sucuuba (Spruce ex Mull. Arg) Woodson
P2
Apocynaceae
Tabernaemontana angulata Mart. ex Mull Arg.
ES3
Arecaceae
Astrocaryum gynacanthum Mart.
P4
Fabaceae
Abarema cochleata (Willd.) Barneby & J.W. Grimes
P1
Fabaceae
Inga macrophylla Humb. & Bonpl ex Willd.
-
Fabaceae
Machaerium quinata (Aubl.) Sandwith
-
Fabaceae
Pterocarpus amazonicus Huber
ES5
Fabaceae
Swartzia laurifolia Benth.
P1
Humiriaceae
Sacoglottis guianensis Benth.
LS2
Hypericaceae
Vismia guianensis (Aubl.) Pers.
P4
Lacistemaceae
Lacistema pubescens Mart.
IS6
Lecythidaceae
Couratari guianensis Aubl.
LS1
Loranthaceae
Indeterminated I
-
Melastomaceae
Miconia minutiflora (Bonpl.) DC.
P 1
Meliaceae
Guarea guidonia (L.) Sleumer
ES6
Myrtaceae
Indeterminated II
-
Salicaceae
Casearia grandiflora Cambess.
ES7
Sapindaceae
Matayba guianensis Aubl.
ES8
Sapindaceae
Talisia retusa R. S. Cowan
ES9
Sapotaceae
Pradosia granulosa Pires & T.D. Penn.
-
Simaroubaceae
Simarouba amara Aubl.
ES3
Urticaceae
Cecropia obtusa Trécul
P4
Where: P= pioneer; ES = early secondary; LS = late secondary; 1AMARAL et al. (2009); 2LIMA et al. (2011); 3CONDÉ &
TONINI (2013); 4NARDUCCI et al. (2020); 5SILVA et al. (2016); 6CARVALHO et al. (2006); 7LOPES et al. (2012); 8SÁ et
al. (2012); 9SILVA & MOURA (2021).
The Shannon Diversity Index for the studied area was 2.58 nats ind-1, likely related to low equitability
and uniformity of the distribution of individuals among the species, which is typical of areas in initial stages of
succession. Information on frequency, abundance, dominance, and IVI values are presented in Table 2. Of
the 23 species found in the survey, six were represented by only one individual and had an IVI of 2.4,
frequency of 20%, density of 4.4 trees ha-1, and dominance of 0.001 to 0.006 m² ha-1. The total basal area in
the studied area was 1.23 m² ha-1. The species with the highest IVI belong to the pioneer and early
secondary ecological groups. Cecropia obtusa Trécul was the species with the highest IVI (98) and occurred
in four of the five plots. Cecropia obtusa together with Lacistema pubescens Mart., Pterocarpus amazonicus
Huber, and Vismia guianensis (Aubl.) Choisy represented almost two thirds in proportion of importance in the
floristic complex.
The 236 individuals measured in the forest were distributed into 9 diametric classes, with fixed
intervals of 2.3 cm. The curve obtained (Fig. 3) followed a negative exponential pattern (inverted j-shape)
with 87.28% of the individuals in the first three diameter classes (3.3 cm to 10.2 cm). Only four species
presented individuals with diameters above 10 cm: C. obtusa with 21 individuals, which placed this species
prominently in the largest diametric class (21.7-24.0 cm); V. guianensis (22 individuals); S. guianensis (3
individuals); and P. amazonicus (one individual).
da Silva Luz et al.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171)
737
Table 2. Horizontal structure of urban fragment of secondary Amazonian forest in Capitão Poço – PA.
Species
N
FA (%)
FR (%)
DA
(árv. ha-¹)
DR (%)
DoA
(m² ha-¹)
DoR (%)
I
VI
C. obtusa
4
7
80
8
208.9
19.9
21.844
70.091
9
8.0
L. pubescens
3
9
100
10
173.3
16.5
2.292
7.355
3
3.9
P.
amazonicus
2
6
100
10
115.6
11.0
1.576
5.056
2
6.1
V. guianensis
2
2
60
6
97.8
9.3
3.076
9.869
2
5.2
M. minutiflora
1
7
60
6
75.6
7.2
0.453
1.455
1
4.7
M, quinata
1
1
60
6
48.9
4.7
0.235
0.755
1
1.4
A. colhleata
6
80
8
26.,7
2.5
0.170
0.547
1
1.1
Und. I
1
0
60
6
44.4
4.2
0.235
0.753
1
1.0
S. amara
1
0
60
6
44.4
4.2
0.178
0.571
1
0.8
S, guianensis
1
0
40
4
44.4
4.2
0.715
2.295
1
0.5
Und. II
5
40
4
22.2
2.1
0.026
0.084
6
.2
M, guianensis
8
20
2
35.6
3.4
0.159
0.511
5
.9
A.
gynacanthum
8
20
2
35.6
3.4
0.109
0.350
5
.7
P. glanulosa
3
40
4
13.3
1.3
0.031
0.099
5
.4
C. guianensis
3
20
2
13.3
1.3
0.020
0.065
3
.3
T. retusa
3
20
2
13.3
1.3
0.014
0.045
3
,3
C. grandiflora
2
20
2
8.9
0.8
0.010
0.032
2
.9
S. laurifolia
1
20
2
4.4
0.4
0.006
0.019
2
.4
I. macrophylla
1
20
2
4.4
0.4
0.006
0.018
2
.4
A. lecointei
1
20
2
4.4
0.4
0.004
0.014
2
.4
G. guidonia
1
20
2
4.4
0.4
0.003
0.008
2
.4
H. sucuuba
1
20
2
4.4
0.4
0.001
0.004
2
.4
T. angulata
1
20
2
4.4
0.4
0.001
0.003
2
.4
Where: N= number of individuals found in the sample, AF = Absolute Frequency, RF = Relative Frequency, DA =
Absolute Density, DR = Relative Density, DoA = Absolute Dominance, DoR = Relative Dominance and IVI = Importance
Value Index.
da Silva Luz et al.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171)
738
Figure 3. Diametric distribution of the number of individuals with DBH≥ 3.2 cm in a 2.250 m² sample.
DISCUSSION
Of the 17 families recorded in the studied forest, Fabaceae had the highest number of species (five).
This family is known to predominate in primary and secondary forests in Brazil (BFG 2015, FLORA E
FUNGA DO BRASIL 2021). The predominance Fabaceae in secondary forests is often observed and
explained by the ability of its species to establish in a variety of environments and at different stages of
ecological succession, as well as the ability to fix nitrogen, which facilitates the permanence of the species in
naturally regenerating areas (HASANUZZAMAN et al. 2020).
As for the number of species, the richness was higher than that found in a study conducted in Belém
(ROCHA et al. 2012) but lower than that found in another survey conducted in secondary forests of rural
communities in Capitão Poço (PINHEIRO et al. 2021). These differences can be explained in part by the
different times of secondary succession and sampling methods used in the studies.
The diversity index indicated that the studied forest is at initial stage of succession. This was also
observed in other studies, such as some conducted in northeastern Pará (RODRIGUES et al. 2007, SILVA
et al. 2016). Indices ranging from 2.4 to 3.9 were found in these studies, with a predominance of species of
the most initial groups of succession, which was understood to be associated with high solar incidence, rapid
colonization restricted to a few species, and high competition, leading to a low number of species in the
floristic composition of the forests.
The number of species is expected to fall in areas under anthropic disturbance, which culminates in
the simplification of the biota and the low number of species with high density of individuals (FREITAS et al.
2016). This pattern is common in tropical and subtropical forests, where the majority of the species have few
individuals (EISFELD et al. 2014).
The species C. obtusa, L. pubescens, P. amazonicus and V. guianensis were the most important
according to IVI and were present in all plots (Tab. 2). Cecropia obtusa, L. pubescens and V. guianensis
were also the most abundant species in secondary forests in other studies conducted in the northeastern
region of Pará (ARAÚJO et al. 2005, MUNIZ et al. 2007, PRATA et al. 2010, PINHEIRO et al. 2021). The
high abundance of these species can be attributed to their ability to regrow and subsequently reproduce
within short time intervals. In addition, L. pubescens and C. obtusa are species that occur frequently in early
successional areas, acting as indicators of natural regeneration, being typical of altered areas, and important
for the process of forest regeneration (PRATA et al. 2010).
Among the species found in the forest, P. granulosa presented a low abundance of individuals. This
species is classified as vulnerable to extinction due to overexploitation for timber production and conversion
of natural habitats for activities such as mining (MARTINELI & MORAES 2013, IUNC 2022).
The greater frequency of individuals in the smallest diametric classes leads to a negative exponential
accumulation curve, a pattern commonly found in natural forests (SANTOS et al. 2016). The diametric
distribution curve and the predominant ecological groups of species found in the studied forest allow us to
da Silva Luz et al.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171)
739
infer that the forest is at an initial stage of succession with the possibility of changes to an intermediate
stage, requiring new surveys of species. The occurrence and dominance of species of some ecological
groups (specimens of the genera Lacistema, Inga, Vismia) in early stages of succession was also observed
by CARVALHO et al. (2022) in fallow areas after deforestation for mining.
The basal area of the forest (1.23 m² ha-1) was lower than that found by PINHEIRO et al. (2021) in a
secondary forest also located in the municipality of Capitão Poço. The authors found from 9.2 to 11.5 m² ha-1
in a 20-year-old fallow forest. Thus, we recommend new studies in order to evaluate the population dynamics
of the forest.
We recommend the inclusion of the studied area in conservation plans aimed at promoting the
enrichment of the forest, such as the possible establishment of ecological corridors to favor the gene flow of
the species and the advancement of ecological succession (MANESCHY et al. 2022, CORDEIRO et al.
2017).
CONCLUSION
The forest studied presented characteristics of an early successional stage, with the presence of
regenerating species, greater frequency of individuals in the smallest diametric classes, and prevalence of
initial secondary species. We recommend that further floristic studies in the area be conducted (continuous
inventories), including studies with a focus on natural regeneration (individuals in smaller diameter classes).
REFERENCES
ALMEIDA AS et al. 2022. Potencial de pressão antrópica na região Nordeste Paraense, Brasil. Ciência Florestal 32: 1-
18.
AMARAL DD et al. 2009. Checklist da flora arbórea de remanescentes florestais da região metropolitana de Belém e
valor histórico dos fragmentos, Pará, Brasil. Boletim do Museu Paraense Emilio Goeldi Ciências Naturais 4: 231-289.
ARAÚJO MM et al. 2005. Padrão e processo sucessionais em florestas secundárias de diferentes idades na Amazônia
Oriental. Ciência Florestal 15: 343-357.
BFG. 2015. The Brazil Flora Group. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguésia 66:
1085-1113.
BRANDÃO DO et al. 2022. The effects of environmental changes on plant species and forest dependent communities in
the Amazon region. Forests 13: 466.
CARIM S et al. 2007. Riqueza de espécies, estrutura e composição florística de uma floresta secundária de 40 anos no
leste da Amazônia. Acta Botânica Brasilica 21: 293-308.
CARVALHO ANC. et al. 2022. Fitossociologia de espécies florestais em áreas mineradas e em fragmento florestal em
Capitão Poço-PA. In: SILVA et al. Ciências agrárias: conhecimento e difusão de tecnologias 2. Ponta Grossa: Atena.
CARVALHO FA et al. 2006. Composição e riqueza florística do componente arbóreo da Floresta Atlântica submontana
na região de Imbaú, Município de Silva Jardim, RJ. Acta Botanica Brasilica 20: 727-740.
CONDÉ TM & TONINI H. 2013. Fitossociologia de uma Floresta Ombrófila Densa na Amazônia Setentrional, Roraima,
Brasil. Acta Amazonica 43: 247-260.
COPERTINO M et al. 2019. Desmatamento, fogo e clima estão intimamente conectados na Amazônia. Ciência e Cultura
71: 2. Disponível em: http://cienciaecultura.bvs.br. Acesso em: 22 apr. 2021.
CORDEIRO IMCC et al. 2017. Nordeste Paraense: panorama geral e uso sustentável das florestas secundárias. 4.ed.
Belém: Edufra.
EISFELD RL et al. 2014. Caracterização florística e estrutura fitossociológica das espécies arbóreas da Floresta
Nacional do Açungui, Campo Largo – PR. Ambiência 10: 429 – 448.
FINOL UH. 1971. Nuevos parâmetros a considerarse en el analisis estructural de las sevas virgenes tropicales. Revista
Forestal Venezolana 14: 29-42.
FLORA E FUNGA DO BRASIL. 2021. Fabaceae in Flora e Funga do Brasil. Avaiable from:
https://floradobrasil.jbrj.gov.br. Acess em: 15 apr. 2021.
FONSECA A et al. 2022. Sistema de Alerta de Desmatamento (SAD): janeiro de 2022. Imazon. Available at:
https://imazon.org.br/publicacoes/sistema-de-alerta-de-desmatamento-sad-janeiro-de-2022/. Accessed on: Jan 22,
2022.
FREITAS WK et al. 2016. Estrutura horizontal de um trecho da Floresta Decidual da região oeste de Santa Catarina,
Brasil. Ambiência 12: 217 – 232.
GANDOLFI S et al. 1995. Estudo florístico e caráter sucessional das espécies arbustivo arbóreas de uma floresta
mesófila semidecidual no município de Guarulhos, SP. Revista Brasileira de Biologia 55: 753-767.
HASANUZZAMAN M et al. 2020. The Plant Family Fabaceae: Biology and Physiological Responses to Environmental
Stresses. Singapore: Springer Nature.
IUCN. 2022. The IUCN Red List of Threatened species. Available in: https://www.iucnredlist.org/. Accessed in: 20 ago.
da Silva Luz et al.
Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171)
740
2022.
LIMA RBA et al. 2011. Sucessão ecológica de um trecho de Floresta Ombrófila Densa de Terras Baixas, Carauari,
Amazonas. Pesquisa Florestal Brasileira 31: 161-172.
LOPES SF et al. 2012. Estrutura e grupos ecológicos de um remanescente florestal urbano com histórico de
perturbação recente em Uberlândia, MG. Biotemas 25: 91-102.
MANESCHY RQ et al. 2022. Áreas prioritárias para inclusão de componente arbóreo e redesenho de sistemas
pecuários no assentamento Belo Horizonte II, São Domingos do Araguaia, Pará, Brasil. Research, Society and
Development 11: 1-11.
MARTINELLI G & MORAES MA (Eds.). 2013. Livro vermelho da flora do Brasil. 1. Ed. Rio de Janeiro: Instituto de
Pesquisas Jardim Botânico do Rio de Janeiro.
MUNIZ ALV et al. 2007. Dinâmica do Estrato Arbóreo de Florestas Secundárias no Nordeste do Pará (Bragança).
Revista Brasileira de Biociências 5: 603-605.
NARDUCCI TS et al. 2020. Regeneração natural do sub-bosque em plantios de Taxi-branco (Tachigali vulgaris L.F.
Gomes da Silva & H.C. Lima) sob diferentes espaçamentos na Amazônia Brasileira. Biota Amazônia 10: 16-21.
PINHEIRO KAO et al. 2021. Floristic and structural analysis of a secondary forest in two successional phases in the
municipality of Capitão Poço in the northeast of Pará. Research, Society and Development 10: e29410816894.
PRATA SS et al. 2010. Floristic gradient of the northeast Paraense secondary forests. Acta Amazonica 40: 523 – 534.
PROJETO MAPBIOMAS. 2022. Mapeamento anual de cobertura e uso da terra na Amazônia. Coleção 7. Avaiable from:
<https://mapbiomas-br-site.s3.amazonaws.com/MapBiomas_AMAZ%C3%94NIA>. Acess:_2023 June 24.
ROCHA NCV et al. 2012. Levantamento florístico de floresta tropical secundária na área do Parque Ambiental do
Utinga, Belém-PA. Enciclopédia Biosfera 8: 1299-1309.
RODRIGUES MAC. 2007. Estrutura de florestas secundárias após dois diferentes sistemas agrícolas no nordeste do
estado do Pará, Amazônia Oriental. Acta Amazônica 37: 591-598.
ROZENDAAL DMA et al. 2019. Biodiversity recovery of neotropical secondary forests. Science Advances 5: 1-10.
SÁ D et al. 2012. Estrutura e grupos ecológicos de uma floresta estacional semidecidual no triângulo mineiro, Brasil.
Caminhos de Geografia 13: 89-101.
SANTOS RO et al. 2016. Distribuição diamétrica de uma comunidade arbórea na Floresta Estadual do Amapá, Brasil.
Biota Amazônia, Macapá 6: 24-31.
SCHWARTZ G. 2007. Manejo sustentável de florestas secundárias: espécies potenciais no Nordeste do Pará, Brasil.
Amazônia: Ciência & Desenvolvimento 3: 125-147.
SHANNON CE & WEAVER W. 1949. The mathematical Theory of Comunication. Illinois: The University of Illinois Press.
p.177.
SILVA CVJ. 2016. Floristic and structure of an Amazonian primary forest and a chronosequence of secondary
succession. Acta Amazônica 46: 133-150.
SILVA JM & MOURA CHR. 2021. Análise da vegetação de um remanescente de Floresta Atlântica: subsídios para o
projeto paisagístico. Revista Brasileira de Meio Ambiente 9: 2-24.
APG. 2016. THE ANGIOSPERM PHYLOGENY GROUP. The Angiosperm Phylogeny Group and others, An update of
the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV, Botanical
Journal of the Linnean Society 181: 1–20. https://doi.org/10.1111/boj.12385.
WATZLAWICK LF et al. 2011. Estrutura, diversidade e distribuição espacial da vegetação arbórea na Floresta
Ombrófila Mista em Sistema Faxinal, Rebouças (PR). Ambiência 7: 415-427.