An electromagnetoelastic actuator is electromagnetomechanical device, intended for actuation of mechanisms, systems or management, based on the piezoelectric, piezomagnetic, electrostriction, magnetostriction effects, converts electric or magnetic signals into mechanical movement and force. The piezo actuator is used in vibration compensation and absorption systems in aircraft and rotorcraft elements, in nanotechnology research for scanning microscopy, in laser systems and ring gyroscopes. The structural scheme of an electromagnetoelastic actuator for nanotechnology research is constructed by using the equation of electromagnetoelasticity and the linear ordinary second-order differential equation of the actuator under various boundary conditions. An electromagnetoelastic actuator is using in nanotechnology, microelectronics, nanobiology, astronomy, nanophysics for the alignment, the reparation of the gravitation and temperature deformations. The nanomanipulator with the piezo actuator is applied in the matching systems in nanotechnology. In the present work, the problem of building the structural scheme of the electromagnetoelastic actuator is solving in difference from Mason’s electrical equivalent circuit. The transformation of the structural scheme under various boundary conditions of the actuator is considered. The matrix transfer function is calculated from the set of equations for the structural scheme of the electromagnetoelastic actuator in control system. This matrix transfer function for the deformation of the actuator is used in nanotechnology research. The structural schemes and the elastic compliances of the piezo actuators are obtained by voltage or current control. The structural scheme of the magnetostriction actuator is constructed for nanotechnology research. The characteristics of the piezo actuator are determined. The structural scheme of the piezo actuator with the back electromotive force is obtained. The transformation of the elastic compliances of the piezo actuators is considered for the voltage and current control.