ArticlePDF Available

Post-Restoration Monitoring of Wetland Restored from Farmland Indicated That Its Effectiveness Barely Measured Up

MDPI
Water
Authors:
  • Chinese Academy of Sciences

Abstract and Figures

In the context of wetland restoration, the reconstruction of an ecosystem’s structure typically manifests within a relatively short timeframe, while the restoration of its function often necessitates an extended period of time following the implementation of restoration measures. Consequently, it becomes imperative to engage in the comprehensive, long-term dynamic monitoring of restored wetlands to capture timely information regarding the ecological health status of wetland restoration. In this paper, we aimed to precisely assess the ecosystem health of a typical wetland that had been converted from farmland to wetland in Fujin National Wetland Park in 2022. We selected 18 ecological, social, and economic indicators to establish a wetland ecological health evaluation model, and then used the method of an analytic hierarchy process (AHP) to calculate the weights for each indicator and acquire the ecological health index (EHI) score. The results of our study revealed that the ecosystem health index was 3.68, indicating that the FNWP wetland ecosystem was in “good” condition; this result was mainly affected by wetland water quality (0.382). The ecological health assessment of restored wetlands can monitor wetland ecological resources and provide a scientific basis for the management and protection of restored wetlands.
Content may be subject to copyright.
Water2024,16,410.https://doi.org/10.3390/w16030410www.mdpi.com/journal/water
Article
Post-RestorationMonitoringofWetlandRestoredfrom
FarmlandIndicatedThatItsEectivenessBarelyMeasuredUp
RuiCao
1,†
,JingyuWan g
2,†
,XueTian
3
,YuanchunZou
3
,MingJiang
3
,HanYu
4,
*,ChunliZhao
1,
*andXiranZhou
4
1
CollegeofForestryandGrassland,JilinAgriculturalUniversity,Changchun130118,China;
rxsmchh@163.com
2
JilinAcademyofAgriculturalSciences,Changchun130033,China;jlskjtwjy@163.com
3
KeyLaboratoryofWetl an dEcologyandEnvironment,NortheastInstituteofGeographyandAgricultural,
ChineseAcademyofSciences,Changchun130102,China;tianxue0431@163.com(X.T.);zouyc@iga.ac.cn(Y.Z.);
jiangm@iga.ac.cn(M.J.)
4
TheFacultyofAgronomy,JilinAgriculturalUniversity,Changchun130118,China;13639837189@163.com
*Correspondence:yuhan@jlau.edu.cn(H.Y.);zcl6368@163.com(C.Z.)
Theseauthorscontributedequallytothiswork.
Abstract:Inthecontextofwetlandrestoration,thereconstructionofanecosystem’sstructuretypi-
callymanifestswithinarelativelyshorttimeframe,whiletherestorationofitsfunctionoftenneces-
sitatesanextendedperiodoftimefollowingtheimplementationofrestorationmeasures.Conse-
quently,itbecomesimperativetoengageinthecomprehensive,long-termdynamicmonitoringof
restoredwetlandstocapturetimelyinformationregardingtheecologicalhealthstatusofwetland
restoration.Inthispaper,weaimedtopreciselyassesstheecosystemhealthofatypicalwetland
thathadbeenconvertedfromfarmlandtowetlandinFujinNationalWetland Parkin2022.Wese-
lected18ecological,social,andeconomicindicatorstoestablishawetlandecologicalhealthevalua-
tionmodel,andthenusedthemethodofananalytichierarchyprocess(AHP)tocalculatethe
weightsforeachindicatorandacquiretheecologicalhealthindex(EHI)score.Theresultsofour
studyrevealedthattheecosystemhealthindexwas3.68,indicatingthattheFNWPwetlandecosys-
temwasin“good”condition;thisresultwasmainlyaectedbywetlandwaterquality(0.382).The
ecologicalhealthassessmentofrestoredwetlandscanmonitorwetlandecologicalresourcesand
provideascienticbasisforthemanagementandprotectionofrestoredwetlands.
Keywords:wetlandecosystemhealth;landscapepatterns;remotesensing;ecosystemhealthassessment
1.Introduction
Wetla ndreferstoanaturalorarticial,long-termortemporaryswamp,peatland,or
waterarea,withorwithoutstaticorowing,fresh,brackish,orsalinewaterbodies,con-
sistingofwaterbodieswithadepthofnomorethan6matlowtide[1].Wetla nd sare
multifunctionalecosystemsthatplayanimportantroleinregulatingtheclimate,main-
tainingbiodiversity,purifyingwaterquality,thecarbonandnitrogencycles,andprovid-
ingbiologicalhabitats,andthusareconsideredtobeoneofthethreemajorecosystemsof
theEarth[2–7]knownasthe“kidneysoftheEarth”[8–12].Atthesametime,wetlandsare
oneofthemostthreatenedandsensitiveecosystemsduetointensifyinghumanactivities
[13–17].Between1700and2020,atotalof3.4×10
6
km
2
ofinlandwetlandshasbeenlost
globally,andmainlyacrossEurope,theUnitedStates,andChina[18,19].Thedecreasein
wetlandareaismainlyduetoirrationalhumanexploitationanduse,andwetlandloss
anddegradation,leadingtoseriousproblemssuchasnaturaldisastersandecological
degradation.Consequently,itisimperativethatnationalfocusisdirectedtowardthecon-
servation,restoration,andreconstructionofwetlandecosystems[20–22].Sincethe18th
NationalCongress,Chinahasimplementedits13thFive-YearImplementationPlanfor
Citation:Cao,R.;Wang,J.;Tian,X.;
Zou,Y.;Jiang,M.;Yu,H.;Zhao,C.;
Zhou,X.Post-RestorationMonitoring
ofWet landRestoredfromFarmland
IndicatedthatitsEffectivenessBarely
Measuredup.Wate r2024,16,410.
https://doi.org/10.3390/w16030410
AcademicEditor:RichardSmardon
Received:21December2023
Revised:24January2024
Accepted:24January2024
Published:26January2024
Copyright:©2024bytheauthor.
LicenseeMDPI,Basel,Swierland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Aribution(CCBY)license
(hps://creativecommons.org/license
s/by/4.0/).
Water2024,16,4102of16
NationalWetlandProtection,introducedtheWetl an dProtectionLawofthePeople’sRe-
publicofChina,andissuedtheNationalWetl andProtectionPlan(2022–2030)tocarryout
comprehensiveprotectionandrestorationmeasuresforwetlands[23].
Wetla ndecosystemhealthischaracterizedbythefollowingpoints:(1)thepreserva-
tionofunimpairedmaterialcirculationandenergyowwithinthesystem;(2)thatkey
ecologicalcomponentsandorganictissuesaremaintainedinanintactstatewithoutdis-
eases,exhibitingresilienceandstabilityinthefaceofbothprolongedandabruptnatural
oranthropogenicdisturbances;and(3)theoverallfunctionalityoftheecosystemmani-
festsasdiversiedecologicalprocesses,speciesdiversity,andheightenedbiological
productivity[24,25].On1June2022,theWetl an dProtectionLawofthePeople’sRepublic
ofChinacameintoforce,whichclearlystipulatestheprinciplesofprioritizingprotection,
systematicgovernance,scienticrestoration,andtherationalutilizationofwetlandsin
China.Traditionally,anecosystem’shealthassessmentisconductedusingeldobserva-
tiondataormodels.Commonlyusedmethodsincludeindicesofbiologicalintegrity(IBI)
[26],theHydrogeomorphicMethod(HGM)[27],pressure–state–response(PSR)modeling
methods[28],andtheevaluationofLDI(landscapedevelopmentintensity)[29].Mostre-
searchershavecombinedthesemethodswiththeanalytichierarchyprocess(AHP)and
FuzzyComprehensiveEvaluation(FCE)tosystematicallyandcomprehensivelyassessthe
healthstatusofanentirewetlandecosystem[30–37].Inaddition,themonitoringofwet-
landsinChinashouldbemorescienticallystandardizedandcontinuouslyoptimizedin
termsoftheselectionofacombinedindicatorsystem,eldmonitoringandcollection
methods,anddataanalysisandmanagement[38–40].
TheSanjiangPlain,situatedinthenortheasternpartofHeilongjiangProvince,China,
isthelargestmarshwetlandareawithinthecountry’sterritory.Atthebeginningofthe
19thcentury,thewetlandareainthisregionwas534.5×104ha,accountingfor49.08%of
thetotalareaoftheSanjiangPlain[41–43].Inresponsetoescalatingnationalrequirements
forgrainproductionandpopulationexpansion,theSanjiangPlainhasundergonefour
stagesoflarge-scaleagriculturaldevelopment(1949–1954,1956–1958,1969–1973,1975–
1983),leadingtothesubstantialconversionoflargeareasofnaturalwetlandsintoarable
land[44,45].Between2000and2015,thetotalwetlandareaintheSanjiangPlaindecreased
by250,856ha,andthewetlandvegetationcoveragedeclinedfrom91.8%to74.0%[46].
Thisstudyselectedatypicalconverted-farmlandwetlandintheFujinNationalWet-
landPark(FNWP)inthehinterlandoftheSanjiangPlain.Theaimistoevaluatetheeco-
systemhealthoftherestoredwetlandandanalyzethefactorsaectingtheecological
healthofthewetlandthroughthesystematicmonitoringofvariousindicatorsofhydrol-
ogy,waterquality,birds,soilcharacteristics,andthelandscapepaernoftherestored
wetland.Wealsoaimtoconstructarestoredwetlandecosystemhealthevaluationsystem
andusetheanalytichierarchyprocesstocalculatetheecosystemhealthindexofthewet-
landtoevaluatethecurrenthealthstatusoftherestoredwetland.
2.MaterialsandMethods
2.1.StudyArea
TheFNWPislocatedinnortheasternHeilongjiangProvince(46°5552.72″ N,
131°4451.33″E),onthesouthbankofthedownstreamoftheSonghuaRiver.Notably,the
FNWPoccupiesapivotalpositionwithinthecoreareaoftheSanjiangPlain(Figure1).
TheFNWPcoversanareaof2200ha,andisatypicalareaforrestoringfarmlandtowet-
land.Ourmainstudyareaislocatedinthe1152haofrestoredandreconstructedwetland,
accountingfor52.36%ofthetotalparkarea.FNWPbelongstothemiddletemperatecon-
tinentalsemi-humidmonsoonclimatezone,characterizedbymarkedseasonaltempera-
turevariations.Theaveragemulti-yeartemperatureis2.5°C,andtheaveragemulti-year
precipitationis512mm,withconcurrenthotconditionsandconcentratedprecipitationin
Water2024,16,4103of16
summer[47].Thewetlandsarerechargedbytwomainwatersources:naturalprecipita-
tion,includingsurfacerunofffromthesurroundingfarmlandcatchment,andrecharge
fromthecanalssouthofthepark[48].
Figure1.LocationofsamplingsitesinFNWP.
FNWPwasapprovedasanational(pilot)wetlandparkin2009,andhasexperienced
severalimportantstagesfrom“primitivenaturalmarshwetland—wetlandreclamationand
wetlanddegradation—returningfarmlandtowet/degradedwetlandrestoration”.We tland
restorationwascarriedout,throughscientificplanning,in2011,andthewetlandprotection
andrestorationandcapacitybuildingprojectwasofficiallylaunchedwithaloanfromthe
Germangovernmentin2013,includingtheconstructionofsluicegatesandembankments,
wetlandrestorationfromfarmland,andecologicalislands’construction,etc.Theprojectpe-
riodwasfromJuly2013toJune2018,andrestorationstartedinearly2014.
2.2.DataSourcesandProcessing
Theevaluationofwetlandecologicalhealthprimarilyreliesonlong-termmonitoring
datafromrestoredwetlandsandeldsurveys.Vari ous datacollectionmethods,suchas
experimentalanalysis,eldmonitoringsurveys,questionnaires,andliteraturereviews,
areemployedtoensurethecomprehensivenessandreliabilityofthedata.Dierenttypes
ofdatarequiredierentcollectionmethods,ensuringarobustevaluationprocess.
2.2.1.ExperimentalAnalysisData
Thedatausedinthisstudyincluderemotesensingdataandexperimentaldataob-
tainedthrougheldsurveys,experimentaltreatments,andquestionnaires.
2.2.2.RemoteSensingImageProcessingData
RemotesensingdatacomefromtheGaofen-2satellitedataofChina,whichare0.8m
four-bandbundledata.WeobtainedRSimagesofFNWPfor31August2022,thedata
wereacquiredwithdataprocessinglevel1A,andthereisnocloudcoverage;thedata
qualityisgood.Toimprovethevisualizationofremotesensingimages,wepre-processed
withatmosphericcorrection,topographiccorrection,colorleveling,fusion,andcropping.
Additionally,weusedImageEnhancementProcessingtomakethelandscapeofthestudy
Water2024,16,4104of16
areamorevisibleinthepicture,aidinginidentifyingandfurtherclassifyingthestudy
area,andremovingunimportantorirrelevantimageinformationtohighlightthekeycon-
tentsofthestudyarea[49].
2.3.Methods
2.3.1.SoilPhysicalandChemicalParameters
Sixquadrantswereselectedindifferentwetlandtypes,andatotalof18soilsamples
werecollectedtomeasurethephysicalandchemicalpropertyindicesofthesoil(Figure1),
includingpH,organicmattercontent,totalnitrogen(TN),andtotalphosphorus(TP).
2.3.2.Wat erQuality
Wesetup20monitoringsites(Figure1)includingfarmlandditches,naturalwetland
locations,andentranceandexitgates.pH,SecchiDepth(SD),dissolvedoxygen(DO),and
Chlorophyll-a(Chl-a)weremeasuredinsituwithYSI6920equipment(YSI,Yell ow
Spings,OH,USA).
LaboratorymeasurementsincludedTN,TP,biochemicaloxygendemand(BOD5),and
chemicaloxygendemand(CODMn),andweredeterminedaccordingtotheChinesenational
standard“EnvironmentalQualityStandardforSurfaceWater(GB3838-2002)[50].Further-
more,surfacewaterqualitywasclassifiedintofivelevels:I,II,III,IVandV[50].
Inordertotransformtheeutrophicationevaluationstandardvalueintoanevaluation
resultthatiseasyforthepublictounderstand,thecomprehensivetrophiclevelindexTLI
()[51–53]wasusedtoestimatethedenitewatertrophicstate.
TLI󰇛󰇜W
 TLI󰇛𝑗󰇜
whereTLI(j)isthetrophiclevelindexofjandWjisthecorrelativeweightforthetrophic
levelindexofj.
2.3.3.WetlandWaterfo wl
FNWPplaysasignicantroleasakeystopoverpointalongtheEastAsian–Austral-
asianbirdmigrationroute.Asitservesasacriticalbreedingandmigratoryhabitatfor
numerousprotectedavianspecies,thejudiciousselectionofbirdindicatorsbecomesim-
perative.BirdmonitoringwasconductedfromMarchtoSeptember2022,coveringas
muchofthesurroundingagriculturallandaspossible(Figure1)[54,55].Withthehelpof
binocularsandmonocularsinopenhabitats,wedirectlyrecordedthebirds’species,num-
ber,location,anddistribution.TheShannon–Weinerdiversityindex(H’),Margalefspe-
ciesrichnessindex(D),andPielou(J)evennessindexwereusedtoassessthespeciesdi-
versityofbirdcommunitiesinFNWP.
2.3.4.WetlandAreaandLandUse
Thechangesofthewetlandareawereobtainedbytheinterpretationofremotesens-
ingimagesfrom2017to2022.Basedontheresultsofremotesensingimpactclassication
derivedfromArcGIS10.8,theratioofnon-wetlandarea(farmland,buildinglandand
shelterbelt)tothetotalareawascalculatedasthelanduseintensityofFNWPwetlands.
2.3.5.LandscapeIndices
Inthisstudy,patchdensity(PD)andShannon’sdiversityindex(SHDI)wereusedto
indicatethedegreeoftheecologicalfragmentationofwetlandsandthedegreeofthehet-
erogeneityofwetlandlandscapes,respectively[56,57].Thesetwoindiceswereselected
basedontheclassicationresultsofArcGIS10.8,convertedtorasterdataandthenim-
portedintoFragstats4.2softwareforcalculation.
Water2024,16,4105of16
Patchdensitycanshowtheoveralldegreeofpatchdierentiationandfragmentation
ofawetlandlandscape,whichiscalculatedasfollows:
𝑃𝐷𝑁𝐴
Here,PDindicatesthepatchdensity,whichistheratioofthetotalnumberofwetland
landscapepatchestothetotalwetlandarea.
Shannon’sdiversityindexreectsthediversityofwetlandlandscape,whichiscalcu-
latedasfollows:
𝑆𝐻𝐷𝐼󰇛𝑃ln 𝑃󰇜

Here,SHDIindicatesShannon’sdiversityindexandPiistheratiooftheareaoccupiedby
landusetypeitothetotallandscapearea.
2.3.6.IndicatorSystemEstablishment
Basedonthelong-termmonitoringofwetlandecologicalcharacteristicsandusing
previousresearchasareference,18indicatorsincludingwetlandsoil,waterquality,bird
diversity,landscapestructure,andsocialvaluewereselectedtoconstructtheFNWPwet-
landecosystemhealthevaluationsystem.ThespecicindicatorsareshowninTable 1.
Tab le1.Hierarchicalchartofwetlandecosystemhealthassessmentindicators.
Level-1IndicatorLevel-2IndicatorDataSourceFrequency
Soil
SoilpH
Experimentalanalysis1timeperyear
Organicmattercontent
TP
TN
Hg
Water
WaterpH
Experimentalanalysis3times(spring,summer,
andautumn)
DO
BOD5
CODMn
Thecomprehensivenutritiveindex
WetlandwaterfowlWaterfowlspeciesandpopulationsSamplingthelinetransector
samplingsites’datastatistics1timeperyear
Landscapeindices
Changerateofwetlandarea
Remotesensingimage
processing1timeperyear
Land-useintensity
Largestpatchindex
Patchdensity
Shannon’sdiversityindex
SocietyTourismvalueQuestionnaire1timeperyear
Scientificresearchvalue
2.3.7.Questionnaire
Wecollecteddatabyrandomlydistributingsurveyquestionnairesaroundthestudy
area.Atotalof50questionnairesweredistributed,and48validquestionnaireswerecol-
lected.Thequestionnaireadopteda5-pointscale,whichconsistsof5integersranging
from1to5.Thehigherscore,thestrongerpeople’swillingnesstoplayarole,andthe
higherthevalueofsciencepopularizationandeducationintheresearcharea.
2.3.8.Indices’WeightandAssessmentMethods
Water2024,16,4106of16
Theevaluationprocessconsistsofseveralkeysteps:(1)Utilizinglong-termmonitor-
ingdata,alongwithreferenceliterature[50,58–60]andexpertguidance,eachindexwithin
theindexlayerwasassignedascore,andtheseindiceeswerethencategorizedintove
levelsandassignedstandardizedscoresof5,4,3,2,and1(Table2).(2)Therelativeim-
portanceoftheevaluationindicesateachlevelwasassessedusingtheexpertscoring
method,resultinginarelativeimportancematrix.Theweightofeachindexwasdeter-
minedusingthehierarchicalanalysismethod.(3)Theecosystemhealthindex(EHI)was
selectedtocalculatethewetlandecologicalhealthindexscoreforFNWP,enablingthe
assessmentofthelevelofthewetland’secologicalhealth(Table3).
Tab le2.Indicatorsofwetlandecologicalhealthassessmentsystemandclassicationstandards.
OverallNormalizedScore54321
SoilpH7–86–7,8–95–6,9–103–5,10–120–3,12–14
Organicmattercontent(%)>43-42-31-2<1
TP(g/kg)>1.00.7–1.00.4–0.70.2–0.4<0.2
TN(g/kg)>2.01.5–2.01.0–1.50.5–1.0<0.5
Hg(mg/kg)<0.050.05–0.10.1–0.150.15–0.2>0.2
WaterpH6–95–6,9–103–5,10–122–3,12–130–2,13–14
DO(mg/L)≥7.5≥6≥5≥3≥2
BOD5(mg/L)≤3≤3≤4≤6≤10
CODMn(mg/L)≤15≤15≤20≤30≤40
Thecomprehensivenutritiveindex(TLI)0–3030–5050–6060–70>70
Waterfowlspeciesandpopulations>43–42–31–2<1
ChangerateofwetlandareaFirstSecondThirdForthFifth
Land-useintensity<0.20.2–0.40.4–0.60.6–0.8>0.8
Largestpatchindex(LPI)80–10060–8040–6020–400–20
Shannon’sdiversityindex(SHDI)>0.80.6–0.80.4–0.60.2–0.4<0.2
Patchdensity(PD)<22–1010–2020–40>40
Tourismvalue4–53–42–31–20–1
Scientificresearchvalue4–53–42–31–20–1
Tab le3.Classicationstandardofwetlandecosystemhealth[61].
LevelExcellentGoodFairPoorVeryPoor
EHI4~53~42~31~20~1
Weusedtheanalytichierarchyprocess(AHP)methodtoanalyzeandcalculatethe
appropriateweightofeachfactor.TheAHPisamature,multi-objectiveanalysismethod
introducedanddevelopedbySaaty[62].Itviewsacomplexproblemwithmultipleobjec-
tivefactorsasanintegratedsystem.Itinvolvesbreakingdowntheoverarchingobjective
intomultipleindices,subsequentlyestablishingorganizedandinterconnectedhierar-
chies.Thismethodnotonlyformulatesinherentlyintricateproblemsintoahierarchical
structurebutalsoallowsfortheconsiderationofdiversequalitativeandquantitativecri-
teriawithintheproblem-solvingframework[63–66].TheAHPiscurrentlywidelyusedto
solvethedicultyindirectlyandaccuratelyquantifyingdecisionresults,takingad-
vantageofitsstrongsystematicity,easyuse,andsmallerquantitativedatarequirement
[65].Atthesametime,thismethodhasthedisadvantagesofbeinghighlysubjective,hav-
ingtoomanyfactors,andahighnumberofpairwisecomparisonsrequired[67,68].
Theelementsoftheupperlevelareusedascriteriaandhaveadominantrelationship
withtheelementsofthenextlevel.Theimportanceoftherelevantcomponentsonthis
levelandtheupperleveliscomparedinpairs,andthecomparisonresultsareexpressed
quantitativelyfrom1to9(Table4).Afterconstructingthejudgmentmatrix,themaximum
eigenvalueλmaxofthematrixiscalculatedandtheeigenvectorobtained.Theeigenvector
Water2024,16,4107of16
isusedastheweightvectorW,andthenaconsistencytestisperformed.Theconsistency
indexisdenedbytheequationCI=
 ,CR=CI/RI,whereλmaxisthelargesteigen-
valueofapreferencematrixandnisthenumberofparameters[69–71].WhentheCRis
lessthan0.10,itmeansthatthematrixhaspassedtheconsistencycheck,otherwisethe
matrixneedstobereconstructed.
Tab le4.ThefundamentalscaleofabsolutenumbersinAHP[71,72].
Intensityof
ImportanceDenitionExplanation
1EqualimportanceTwocriteria/sub-criteriaareequallyim-
portant
2Weak
3ModerateimportanceOnecriterion/sub-criterionisslightlyfa-
voredoveranother
4Moderateplus
5StrongimportanceOnecriterion/sub-criterionisstronglyfa-
voredoveranother
6Strongplus
7Ver ystrongOnecriterion/sub-criterionisvery
stronglyfavoredoveranother
8Ver y, verystrong
9Extremeimportance
Evidencefavoringonecriterion/sub-cri-
terionovertheotheristhehighestpossi-
b
leorderofarmation
Reciprocalsof
theabove
Ifactivityiisthejudgement
valuewheniiscomparedwith
activityj,thenjhasareciprocal
valuewhencomparedwithi
Areasonableassumption
Theecosystemhealthindex(EHI)isaneffectiveshort-termmonitoringindex.Ahigher
EHIindicatesamorefunctionalecosystem,whereaslowervaluesindicatethattheecosys-
temisapoorlyfunctioninglandscape[73].Itscalculatedusingthefollowingformula[74]:
𝐸𝐻𝐼𝐸𝑊

whereEHIrepresentstheecosystemhealthindex,nrepresentsthenumberofevaluation
indicators,Eirepresentsthestandardizedvalueofthei-thevaluationindicator,andWi
representstheweightofthei-thevaluationindicator.
Thederivedwetlandecologicalhealthindexwasalsovalidatedbythemulti-objective
linearweightingfunctionmethod[75],withthevalidationequation[60]
𝐸𝐻𝐼𝐸𝑊
 𝑊

whereEHIrepresentstheecosystemhealthindex,Eirepresentsthegradedevaluation
valueofthei-thevaluationindicator,Wbirepresentstheweightofthei-thindicatorrelative
tothecriterionlayerBinasingleranking,Wirepresentsthetotalrankingweightofthei-
thindicator,andnrepresentsthenumberofevaluationindicators.
3.Results
Water2024,16,4108of16
3.1.RestorationofWetlan dEcologicalHealthIndicatorCharacteristics
3.1.1.SoilPhysicalandChemicalParameters
ThemainphysicochemicalpropertiesoftherestoredwetlandsoilsintheFNWPwere
determinedthroughthelaboratorytestingof18soilsamples(Figure2).In2022,theaver-
agepHofthewetlandsoilswas8.01,indicatingaslightalkalinecondition.Theorganic
carbon(TOC)contentrangedfrom1.31%to2.88%,thetotalnitrogen(TN)contentranged
from671.03mg/kgto1769.98mg/kg,thetotalphosphorus(TP)contentrangedfrom
394.68mg/kgto659.40mg/kg,themercury(Hg)contentrangedfrom0.037mg/kgto0.104
mg/kg,andtheiron(Fe)contentrangedfrom26,794mg/kgto34,688mg/kg.Thesevalues
donotmeetthestandardsfortypicalwetlands[60,76],indicatingthatthebasicstructure
andinternalcomponentsofthesoilwerestillinastateofgradualrecovery.
(a)
(b)(c)
Figure2.SoilphysicochemicalcharacteristicsinFNWP.((a)SoilpH,TOCandSOM,(b)TNand
TP,(c)FeandHg)
3.1.2.Wetla nd WaterQuality
Byconductingexperimentalanalysesonsamplescollectedfrom20watermonitoring
pointsintheFNWP,wefoundthattheaveragewaterpHvalueoftherestoredwetlandin
2022was6.45,indicatinganeutralcondition(Figure3).TheaverageTLIwas56.34,indi-
catingamildeutrophicstate.
Water2024,16,4109of16
(a)
(b)
(c)
Figure3.ThewaterqualityindicesoftheFNWP.((a)SD,(b)Wate rpH/COD
Mn
/BOD
5
/DO/Chl-a,
(c)TNandTP).
3.1.3.Wetla nd AreaChangeRateandLandscapeIndices
Thewetlandarea(swampandwater )wasextractedbyacquiringremotesensingim-
agesoftheFNWPfor2017,2020,and2022.Briey,theFNWPwetlandareashowedaslow
increasingtrendcombinedwithamaximumwetlandareaof910.73hain2022(Table5).
TheFNWPwetlandlandscapepatternindexwascalculatedbasedontheclassification
results,andtheresultsareshowninTab le4.Theland-usetypesoftheFNWPwetlandsin
2022includefivecategories:swamp,water,farmland,building,andshelterbelt(Figure4).
Marshhasthelargestarea,accountingfor69%ofthetotalarea.Thenon-wetlandareawas
110.43ha,andthecalculatedland-useintensityfortheFNWPis0.096(Table5).
Water2024,16,41010of16
Figure4.Land-useclassicationmapofFNWP.
Tab le5.Statisticsofwetlandlandscapepaernindex.
Farmland(ha)Building
(ha)
Shelterbelt
(ha)Land-UseIntensityLPIPDSHDIWetlandArea
(ha)
88.2912.1959.9450.09653.4082.090.986910.73
3.1.4.BirdDiversity
Atotalof33birdspeciesbelongingto7ordersand14familieswererecordedin2022.
CommonspeciesincludedAnasformosa,Fulicaatra,Podicepscristatus,Chlidoniasleucoptera,
Anasplatyrhynchos,Larusridibundusandsoon,mostofwhicharewadingbirds.Thesea-
sonalvariationintheFNWP’sbirddiversityisshowninTabl e6.TheMeanShannon–
Winnerdiversityforbirdsin2022was1.66,thePielouevennesswas0.50,andMargalef
speciesrichnesswas2.76.
Tab le6.BiodiversityindicesofbirdsindierentseasonsinFNWPwetlandin2022.
SpringSummerAutumn
Shannon–Winnerindex1.51.821.65
Margalefindex2.562.623.10
Pielouindex0.460.560.48
3.2.WetlandEcologicalHealthIndex
Inthisstudy,wedeterminedtheweightoftheevaluationindicatorsbasedonthe
ecologicalmonitoringresultsoftherestoredwetlandandexpertopinions,takingintoac-
countoftheactualsituationofconstructionandmanagementintheFNWP.Weightjudg-
mentmatriceswereconstructedforthecriterionlayerandindicatorlayer.TheEHIscore
forthewetlandintheFNWPisshowninTable7.TheresultsoftheEHI(3.68)indicated
thattherestoredwetland’sstateisata“good”level.Furthermore,thewetlandexhibited
apronouncedtrendinitslandscapepaernandremotesensingimagesin2022.Inthe
Water2024,16,41011of16
year2022,althoughthecomprehensivephysicalandchemicalcharacteristicsofthewet-
landsoildidnotyetmeetthestandardssetfortypicalwetlands,therestoredwetland
providedeectivewaterqualitypuricationandbirdbiodiversitycapabilities.
Tab le7.TheAHPweightoftheevaluationindexoftheFujinwetland’secologicalhealth.
Level-1IndicatorLevel-2IndicatorWeightEHIScore
Soil(0.184)
pH0.073
3.68
Organicmattercontent0.045
TP0.031
TN0.022
Hg0.013
Water(0.382)
pH0.019
DO0.116
BOD50.057
CODMn0.037
Thecomprehensivenutritiveindex0.153
Wetlandwaterfowl(0.114)Waterfowlspeciesandpopulation0.114
Landscapeindices(0.243)
Changerateofwetlandarea0.056
Land-useintensity0.056
Largestpatchindex0.088
Patchdensity0.031
Shannon’sdiversityindex0.013
Society(0.077)Tourismvalue0.052
Scientificresearchvalue0.026
4.Discussion
4.1.WetlandLandscapePaern
Thelandscapepaernindexisanimportantindextomeasurethespatialstructure
characteristicsofalandscape.Itisamanifestationoflandscapeheterogeneityasaresult
ofvariousecologicalprocesses,includingdisturbance,actingatdierentscales.Fromthe
perspectiveoftheentirewetlandlandscape,swampaccountsforthelargestproportion,
followedbywater.Intermsofthelandscapepaernindex,theLPIhasthelargestweight
ofthelandscapeindices,andtheSHDIhasthesmallestweight(Table5).Insimilarstudies,
Liuetal.developedalandscape-basedmulti-metricindex(LMI)toassessthecondition
ofthePoyangLakewetland;theresultsofthisstudyshowedthatahigherLPIvalueis
associatedwithabeerhealthstatusandahigherSHDIvalueisassociatedwithapoorer
healthstatus[77],whichisconsistentwiththeresultsofthisstudy.From2017to2022,the
wetlandareaofFNWPgraduallyincreased(876.72ha,910.73ha),whilethenumberof
patches(NP)andPDshowedadecreasingtrend(Table8).ThesignicantincreaseinLPI
indicatedthatthefragmentationofwetlandareahadbeendecreasingyearbyyear,and
thelandscape’sresistancetodisturbancehadincreased.SHDIreectsthediversityand
heterogeneityofthelandscape[57,78].From2017to2022,theSHDIofthewetlands
slightlydecreased,indicatingaslightdecreaseintheheterogeneityofthewetlandland-
scape.Thefragmentedpatchesweregraduallyreplacedbywetlands,indicatingthatthe
landscapepaernofthewetlandswasgraduallyandslowlyrecovering.
Tab le8.Calculationresultsofwetlandlandscapeindicesin2017–2022.
YearNPPDLPISHDI
201744654.3837.941.16
202030302.9025.931.39
202224082.0953.410.99
Water2024,16,41012of16
4.2.EcologicalIndicators
Wetla ndwaterqualityandsoilareimportantindicatorsthatcharacterizetheeec-
tivenessofwetlandrestorationandhaveahugeimpactonwetlandecologicalhealth.The
resultsofthisstudyindicatethat,in2022,thesoilTNandTPintheFNWPwetlandde-
creasedcomparedto2017.Themeanconcentrationofheavymetalmercury(Hg)inthe
soilsurfacewas0.06mg/kg,andtheiron(Fe)contentwas32,053mg/kg,whichweresig-
nicantlylowerthanthevaluesin2017(Hg:0.198mg/kg,Fe:35,497mg/kg)[60].These
ndingssuggestedthatthewetlandsoilwashealthierandundergoingrecovery.Thismay
beduetotheincreaseinthewetlandarea,theriseofthewaterlevel,theaccelerationof
thereleaseratesofHgandFefromthesoil,andthereductioninfertilizeruseinthesur-
roundingfarmland[79,80].
Theresultsofthisstudyindicatedthat,in2022,theDOandCODMninthewaterof
theFNWPwetlandmetthenationalClassIwaterstandard(7.5,≤15).Theoverallcon-
centrationofBOD5waswithintheoptimalrange(3~4mg/L),suggestingthatthewater
qualityoftheFNWPwasgenerallygood[50].Wetlandshaveeectivelyplayedtheirrole
inpurifyingthewaterquality.TheoverallwaterqualityofwetlandsintheFNWPin2022
wasmildlyeutrophic,withavalueof56.1,whichwasconsistentwithpreviousstudies
[43].Thismaybeaributedtothecontinuousaccumulationofnutrientsinfarmland
drainageditchesandtheincreaseinorganicmaercontentinthewaterbodies[53,81,82].
Asoneofthemostsensitiveindicatorspeciesofwetlands,wetlandbirdscancharac-
terizethediversityofspeciesandreectthehealthofwetlands[83].Meretaetal.found
thatenvironmentalfactorsandanthropogenicdisturbanceswerethemaininuencingfac-
torsonbirddiversity,whilespatialfactorsplayedanunimportantrole[84].Inthisstudy,
theShannon–WinnerdiversityandPielouevennessofbirdsin2022werefoundtobethe
highestinsummer,withvaluesof1.82and0.56(Table6),respectively,possiblyduetothe
abundanceoffoodinthemarshduringthisseason.Additionally,thelushgrowthof
plantssuchasreedsandirisesprovidebirdswithsuitablehidingconditions[54,55].
4.3.AnalysisoftheFNWPWetland’sHealthStatus
Theassessmentofecosystemhealthisaneectivemethodforunderstandingthese-
curitystatusofecosystems,whichcanprovidebasicsupportforthehealthydevelopment
andplanningmanagementofecosystems[85].Inthisstudy,weutilizedeldsurveys,on-
sitemonitoring,remotesensingtechnology,andlandscapepaernindicestoconstructan
ecologicalhealthevaluationsystemfortherestoredwetlandsintheFNWP.Weemployed
hierarchicalanalysistodeterminetheweightsofthevariousindicesandcalculatedthe
EHI,andthentheeectivenessofthewetlandrestorationcouldbeinitiallyassessedbased
onitsEHIscore.Inapreviousstudy,Lietal.developedasystemtoassesstheeective-
nessoftheFNWPwetlandrestoration,consideringfactorssuchaswatersupplyfunction,
waterquality,soilresources,speciesdiversity,landscapeadaptability,andparkconstruc-
tion,andtheresultsshowedthattheFNWPwetlandEHIscorewas3.5[60].Finally,the
FNWPwetlandwasconsideredtoberecoveringatasatisfactorylevel,whichalignswith
thendingsofthisstudy,albeitwithaslightincrease(3.68).Accordingtothenalassess-
mentofthewholeecosystem,theFNWPwetlandecosystemwasin“good”condition,this
resultismainlyaectedbythewetlandwaterquality(Table6).Thisresultsuggeststhat
theecosystemmaintainsgoodnaturalconditions,itsstructureisreasonableandcomplete,
itsresilienceisstronganditsfunctionisnormal,theoutsidepressureonitissmall,its
restorationabilityisstrong,andabnormalphenomenadonotappearinsystem[61,86].
Thisstudyconstructedaswampwetlandecologicalhealthevaluationsystemforwet-
landsthatwereconvertedfromfarmlandtowetland,andappliedthissystemtothelater
healthevaluationofswampwetlands.However,duetolimitedresources,obtainingdata
forsomeindicatorsremainschallengingandthesystemisnotcomprehensiveenough.
Therefore,wewillcontinuetoconductin-depthresearchinthefuture,focusingonsup-
Water2024,16,41013of16
plementingandexpandingthesystemtoenhanceitsscienticnatureanduniversalap-
plicability.Intermsofwetlandsupervisionandmanagement,itiscrucialforrelevantgov-
ernmentdepartmentstoenhancepublicawarenessandeducation,increasepeople’s
awarenessoftheprotectionandsustainableutilizationofwetlandresources,andreduce
theuseofpesticides.Additionally,themanagementandconstructiondepartmentsre-
sponsiblefortheparkshouldprioritizethedevelopmentofecologicalandenvironmental
protectionfacilities.Duringtheconstructionprocess,carefulconsiderationshouldbe
giventowhetherthelevelofwetlandresourcesandecologicalutilizationrequirements,
aswellastheneedsofthecommunity,areultimatelyachievingaharmoniousbalance
betweenwetlandprotection,economicdevelopment,andsocialprogress[87,88].
5.Conclusions
TheecosystemhealthindexscoreoftherestoredwetlandintheFNWPis3.68,and
thewetlandecosystemisin“good”condition.Themainfactorsaectingthehealthof
wetlandecosystemsarewetlandwaterquality,landscapestructure,andsoilproperties.
Theresultsofthisstudycanprovideascienticreferencefortheprotectionandmanage-
mentofrestoredwetlands.Inthefuture,weaimtoprocureamorecomprehensivedataset,
facilitatingthedevelopmentofascienticallyrigorousevaluationframework.
Aut ho rContributions:R.C.:conceptualization,methodology,investigation,software,formalanal-
ysis,writing—originaldraft,writing—reviewandediting.J.W.:conceptualization,methodology,
investigation,formalanalysis,writing—originaldraft,writing—reviewandediting.X.T.:supervi-
sion,conceptualization,datacuration,writing—originaldraft.Y.Z.:methodology,software,super-
vision,writing—reviewandediting.M.J.:datacuration,methodology,supervision,visualization.
H.Y.:fundingacquisition,projectadministration,visualization,resources.C.Z.:conceptualization,
fundingacquisition,supervision,resources.X.Z.:formalanalysis,investigation,software.Allau-
thorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(42001112).
DataAvailabilityStatement:Thedatapresentedinthisstudyareavailableonrequestfromthe
correspondingauthor.
ConictsofInterest:Theauthorsdeclarenoconictofinterest.
References
1. Ma,Z.;Zhang,M.ProspectiveonDevelopmentTrendsofInternationalWet la nd ConservationandManagementfromthe12th
MeetingoftheConferenceofthePartiesoftheConventiononWetland s. Wetl.Sci.Manag.2015,13,523–527.
2. Moreno-Mateos,D.;Power,M.E.;Comín,F.A.;Yoc kt eng,R.Structuralandfunctionallossinrestoredwetlandecosystems.PLoS
Biol.2012,10,e1001247.
3. Wahlroos,O.M.;Valkama,P.;Mäkinen,E.;Ojala,A.;Vasa nder, H.;Väänänen,V.-M.;Halonen,A.;Linden,L.;Nummi,P.;
Ahponen,H.;etal.UrbanwetlandparksinFinland:Improvingwaterqualityandcreatingendangeredhabitats.Int.J.Biodiv.
Sci.Ecosyst.Serv.Manag.2015,11,46–60.
4. Wondie,A.EcologicalconditionsandecosystemservicesofwetlandsintheLakeTana Area,Ethiopia.Ecohydrol.Hydrobiol.
2018,18,231–244.hps://doi.org/10.1016/j.ecohyd.2018.02.002.
5. Chen,W.;Cao,C.;Liu,D.;Tian,R.;Wu,C.;Wan g, Y.; Qian,Y.; Ma,G.;Bao,D.Anevaluatingsystemforwetlandecological
health:CasestudyonnineteenmajorwetlandsinBeijing-Tianjin-Hebeiregion,China.Sci.TotalEnviron.2019,666,1080–1088.
6. Cao,T.G.;Yi ,Y.;Liu,H.X.;Yang, Z.F.Integratedecosystemservices-basedcalculationofecologicalwaterdemandforamacro-
phyte-dominatedshallowlake.Glob.Ecol.2020,21,e00858.
7. Cai,Y.;Liang,J.;Zhang,P.;Wan g,Q.;Wu,Y.;Ding,Y.;Wang ,H.;Fu,C.;Sun,J.Reviewonstrategiesofclose-to-naturalwetland
restorationandabriefcaseplanforatypicalwetlandinnorthernChina.Chemosphere2021,285,131534.
8. Maltby,E.;Acreman,M.C.Ecosystemservicesofwetlands:Pathnderforanewparadigm.Hydrol.Sci.J.2011,56,1341–1359.
9. Mitsch,W.J.;Bernal,B.;Hernandez,M.E.Ecosystemservicesofwetlands.Int.J.Biodiv.Sci.Ecosyst.Serv.Manag.2015,11,1–4.
10. Jiang,T.T.;Pan,J.F.;Pu,X.M.;Wa ng ,B.;Pan,J.J.CurrentstatusofcoastalwetlandsinChina:Degradation,restoration,and
futuremanagement.Estuar.Coast.ShelfSci.2015,164,265-275.
11. Xu,S.;Liu,X.;Li,X.;Tian,C.Soilorganiccarbonchangesfollowingwetlandrestoration:Aglobalmeta-Analysis.Geoderma
2019,353,89–96.
12. Ekumah,B.;Armah,F.A.;Afrifa,E.K.;Aheto,D.W.;Odoi,J.O.;Atiri,A.-R.Geospatialassessmentofecosystemhealthofcoastal
urbanwetlandsinGhana.OceanCoast.Manag.2020,193,105226.
Water2024,16,41014of16
13. Zhang,Y.;Jeppesen,E.;Liu,X.;Qin,B.;Shi,K.;Zhou,Y.;Thomaz,S.M.;Deng,J.Globallossofaquaticvegetationinlakes.Earth
Sci.2017,173,259–265.
14. Sieben,E.J.J.;Khubeka,S.P.;Sithole,S.;Job,N.M.;Koe,D.C.Theclassicationofwetlands:Integrationoftop-downandbot-
tom-upapproachesandtheirsignicanceforecosystemservicedetermination.Wetl.Ecol.Manag.2018,26,441–458.
15. Sizo,A.;Noble,B.;Bell,S.FuturesanalysisofurbanlanduseandwetlandchangeinSaskatoon,Canada:Anapplicationin
strategicenvironmentalassessment.Sustainability2015,7,811–830.
16. Tong,Y.;Zhang,W.;Wang,X.;Couture,R.-M.;Larssen,T.;Zhao,Y.;Li,J.;Liang,H.;Liu,X.;Bu,X.;etal.DeclineinChinese
lakephosphorusconcentrationaccompaniedbyshiftinsourcessince2006.Nat.Geosci.2017,10,507–511.
17. Best,J.Anthropogenicstressesontheworld’sbigrivers.Nat.Geosci.2018,12,7–21.
18. Davidson,N.C.Howmuchwetlandhastheworldlost?Long-termandrecenttrendsinglobalwetlandarea.Mar.Freshw.Res.
2014,65,219–235.hps://doi.org/10.1016/B978-0-12-817803-4.00019-X.
19. Fluet-Chouinard,E.;Stocker,B.D.;Zhang,Z.;Malhotra,A.;Melton,J.R.;Poulter,B.;Kaplan,J.O.;Goldewijk,K.K.;Siebert,S.;
Minayeva,T.;etal.Extensiveglobalwetlandlossoverthepastthreecenturies.Nature2023,614,281–286.
20. Costanza,R.;deGroot,R.;Suon,P.;vanderPloeg,S.;Anderson,S.J.;Kubiszewski,I.;Farber,S.;Turner,R.K.Changesinthe
globalvalueofecosystemservices.Glob.Environ.Chang.2014,26,152–158.
21. Liu,W.;Guo,Z.;Jiang,B.;Lu,F.;Wang,H.;Wang,D.;Zhang,M.;Cui,L.ImprovingwetlandecosystemhealthinChina.Ecol.
Ind.2020,113,106184.hps://doi.org/10.1016/j.ecolind.2020.106184.
22. Chatanga,P.;Koe,D.C.;Okello,T.W.;Sieben,E.J.Ecosystemservicesofhigh-altitudeAfromontanepalustrinewetlandsin
Lesotho.Ecosyst.Serv.2020,45,101185.
23. Zhu,H.;Wu,H.T.;Xing,X.X.;Xie,T.;Song,C.;Wang ,G.;Jiang,M.Achievementofwetlandprotectionandrestorationand
developmentstrategiesinChina.Bull.Chin.Acad.Sci.2023,38,365–375.(InChinese)
24. Cui,B.;Ya ng ,Z.Researchadvanceofwetlandecosystemhealth.Chin.J.Ecol.2001,20,31–36.(InChinese)
25. Keiter,R.B.Ecosystemsandthelaw:Towardanintegratedapproach.Ecol.Appl.1998,8,332–341.
26. Kim,J.J.;Atique, U.;An,K.G.Long-TermEcologicalHealthAssessmentofaRestoredUrbanStreamBasedonChemicalWater
Quality,PhysicalHabitatConditionsandBiologicalIntegrity.Water2019,11,114.
27. Hruby,T.Te st in gtheBasicAssumptionoftheHydrogeomorphicApproachtoAssessingWetl an dFunctions.Environ.Manag.
2001,27,749–761.
28. Rapport,D.J.;Friend,A.M.TowardsaComprehensiveFrameworkforEnvironmentalStatistics:AStressResponseApproach;Statistics
Canada:Oawa,ON,Canada,1979;Volume11,p.87.
29. Brown,M.T.;Vivas,M.B.Landscapedevelopmentintensityindex.Environ.Monit.Assess.2005,101,289–309.
30. Malekmohammadi,B.;Jahanishakib,F.Vulnerabilityassessmentofwetlandlandscapeecosystemservicesusingdriver-pres-
sure-state-impact-response(DPSIR)model.Ecol.Indic.2017,82,293–303.
31. Chen,F.;Su,S.C.;Chen,Y.;Li,N.;Wa ng ,R.;Yo u, W.B.;He,D.J.EcologicalHealthAssessmentofCoastalWetlan ds Basedon
PSRModelinEasternFujian.Wetl.Sci.Manag.2020,16,25–29.(InChinese)
32. Zhang,L.L.;Liu,J.L.;Yang ,Z.F.;Li,Y.;Ya ng, Y.Integratedecosystemhealthassessmentofamacrophyte-dominatedlake.Ecol.
Model.2013,252,141–152.
33. Mo,M.;Wang,X.;Wu,H.;Cai,S.;Zhang,X.;Wang,H.EcosystemHealthAssessmentofHonghuLakeWetl an dofChinaUsing
ArticialNeuralNetworkApproach.Chin.Geogra.Sci.2009,19,349–356.
34. Sun,R.;Yao, P.;Wan g, W.;Yue,B.;Liu,G.AssessmentofWe tl an dEcosystemHealthintheYangeandAmazonRiverBasins.
ISPRSInt.J.GeoInf.2017,6,81.
35. Wu,C.;Chen,W.;Cao,C.;Tian,R.;Liu,D.;Bao,D.DiagnosisofWe tl an dEcosystemHealthintheZoigeWetlan d, Sichuanof
China.Wetla nds2018,38,469–484.
36. Wu,C.;Chen,W.Indicatorsystemconstructionandhealthassessmentofwetlandecosystem—TakingHongzeLakeWetla nd ,
Chinaasanexample.Ecol.Indic.2020,112,106164.
37. Wang,W.;Sun,M.;Li,Y.;Zhao,S.;Zhang,Z.;Luan,X.Multi-LevelComprehensiveAssessmentofConstructedWetla nd Eco-
systemHealth:ACaseStudyofCuihuWetl an dinBeijing,China.Sustainability2022,14,13439.
hps://doi.org/10.3390/su142013439.
38. Mao,X.;Wei ,X.;Jina,X.;Ta o,Y.;Zhang,Z.;Wan g, W.MonitoringurbanwetlandsrestorationinQinghaiPlateau:Integrated
performancefromecologicalcharacters,ecologicalprocessestoecosystemservices.Ecol.Indic.2019,101,623–631.
hps://doi.org/10.1016/j.ecolind.2019.01.066.
39. Galatowitsch,S.;Bohnen,J.Predictingrestorationoutcomesbasedonorganizationalandecologicalfactors.Restor.Ecol.2020,
28,1201–1212.
40. Galatowitsch,S.;Bohnen,J.Long-TermRecoveryofaRestoredPalustrineWetland :TheRoleofMonitoringandAdaptiveMan-
agement.Wetlands2021,41,80.
41. Zhao,K.MiresinChina;SciencePress:Beijing,China,1999.(InChinese)
42. Li,X.BlackswanswerefoundinSanhuanpaoNatureReserve.Chin.Wildl.2005,3,29.hps://doi.org/10.19711/j.cnki.issn2310-
1490.2005.03.014.(InChinese)
43. Li,N.;Tian,X.;Fu,H.C.;Li,Y.;Jia,X.;Jin,G.;Jiang,M.SeasonalandSpatialVariabilityofWate rQualityandNutrientRemoval
EciencyofRestoredWetland :ACaseStudyinFujinNationalWet la ndPark,Chin.Chin.Geogr.Sci.2018,28,123–133.
Water2024,16,41015of16
44. Liu,X.;Ma,X.InuenceofLarge-ScaleReclamationonNaturalEnvironmentandRegionalEnvironmentalProtectioninthe
SanjiangPlain.Sci.Geogr.Sin.2000,20,14–19.(InChinese)
45. Liu,D.W.LandUse/CoverChangeanditsEnvironmentalEectsinSanjiangPlaininthePast50Ye ars.Master’sThesis,Jilin
University,Changchun,China,2006.
46. Yuan,Z.;Liu,X.;Du,H.;Zhang,M.Canarticialecologicalislandsalterthebiodiversityofmacroinvertebrate?Acasestudyin
FujinNationalWetlandPark,theSanjiangPlain,China.Ecol.Evol.2021,11,14988–15003.
47. Wan,H.L.;Wang,S.G.;Chen,B.;Xia,C.Y.;Su,R.Ecologicalriskassessmentandspatialthresholdanalysisofwetlandinthe
SanjiangPlain.ActaEcol.Sin.2022,42,6595–6606.
48. Sun,M.Y.;Tian,X.;Zou,Y.C.;Jiang,M.Ecologicalaestheticassessmentofarebuiltwetlandrestoredfromfarmlandandman-
agementimplicationsforNationalWetlandParks.PLoSONE2019,14,e0223661.
49. Liu,J.;Ye,J.;Yang ,W.;Guo,H.C.;Yu,S.X.AGIS-BasedLandscapePaernOptimizationApproachforLakeDianchiWater sh ed .
J.Nat.Resour.2012,5,801–808.(InChinese)
50. GB38382002;EnvironmentalQualityStandardsforSurfaceWate r. ChinaEnvironmentalSciencePress:Beijing,China,2002.(In
Chinese)
51. Zhang,J.Y.;Ni,W.M.;Luo,Y.;Stevenson,R.J.;Qi,J.G.ResponseoffreshwateralgaetowaterqualityinQinshanLakewithin
Tai huWatershed,China.Phys.Chem.Earth2011,36,360–365.
52. Huo,S.;Ma,C.;Xi,B.;Su,J.;Zan,F.;Ji,D.;He,Z.Establishingeutrophicationassessmentstandardsforfourlakeregions,China.
J.Environ.Sci.2013,25,2014–2022.
53. Liu,X.;Zhang,G.;Sun,G.;Wu,Y.;Chen,Y.AssessmentofLakeWaterQualityandEutrophicationRiskinanAgricultural
IrrigationArea:ACaseStudyoftheChaganLakeinNortheastChina.Water2019,11,2380.
54. Liu,H.;Li,T.;Chen,L.;Wang,Q.SeasonalVariation ofBirdDiversityinWetlands alongRiverinFujinCity,Heilongjiang
Province.Wetl.Sci.2015,13,577–581.
55. Zhou,Y.;Sheng,C.;Yuan,Y.ChangesofBirdDiversityinFujinNationalWetlandParkinHeilongjiangProvince.We tl.Sci.
Manag.2017,13,57–60.
56. Sun,Y.EcosystemHealthEvaluationofRizhaoFutongEstuaryWetlandBasedonRSandGIS.Master’sThesis,QufuNormal
University,Jining,China,2016.
57. Zhou,Y.AssessmentoftheEcologicalHealthofWetl an dsinBaiyangdianNatureReservebyRSandGISTech ni qu es .Master’s
Thesis,HebeiUniversity,Baoding,China,2017.
58. Zhang,F.;Wang,X.;Liang,X.;Kong,X.;Zhang,Q.;Yan g,L.AnalysisofClassicationandMappingforGreatGroup,Subgroup
inSecondNationalSoilSurvey.Soils2014,46,761–765.(InChinese)
59. Ren,J.;Sun,Y.;Chen,X.;Fan,Z.AnAssessmentofEcosystemHealthinJiuduanshaWetl andbasedonPSRModel.Wetl.Sci.
Manag.2012,8,12–16.
60. Li,N.EcologicalCharacteristicsChangeandEectEvaluationforTypicalRestoredWe tlan dsintheSanjiangPlain.Ph.D.Thesis,
NortheastForestryUniversity,Harbin,China,2019.
61. Hua,G.;Li,Y.;Huang,C.;Liang,C.;Wang ,J.StudyontheAssessIndexSystemoftheEcologicalRestorationtotheLaluWe tland
inTibet.J.SichuanUniv.(Eng.Sci.Ed.)2005,37,20–25.
62. Saaty,T.L.Ascalingmethodforprioritiesinhierarchicalstructures.Math.Psychol.1977,15,234–281.
63. Höfer,T.;Sunak,Y.;Siddique,H.;Madlener,R.WindfarmsitingusingaspatialAnalyticHierarchyProcessapproach:Acase
studyoftheStädteregionAachen.Appl.Energy2016,163,222–243.
64. Achour,Y.;Boumezbeur,A.;Hadji,R.;Chouabbi,A.;Cavaleiro,V.;Bendaoud,E.A.Landslidesusceptibilitymappingusing
analytichierarchyprocessandinformationvaluemethodsalongahighwayroadsectioninConstantine,Algeria.Arab.J.Geosci.
2017,10,194.
65. Sun,B.;Tang,J.;Yu,D.;Song,Z.PenggangWang.Ecosystemhealthassessment:APSRanalysiscombiningAHPandFCEmeth-
odsforJiaozhouBay,China.OceanCoast.Manag.2019,168,41–50.
66. Khodaparast,M.;Rajabi,A.M.;Edalat,A.MunicipalsolidwastelandllsitingbyusingGISandanalyticalhierarchyprocess
(AHP):AcasestudyinQomcity,Iran.Environ.EarthSci.2018,77,52.
67. Thanh,L.N.;DeSmedt,F.ApplicationofananalyticalhierarchicalprocessapproachforlandslidesusceptibilitymappinginA
Luoidistrict,ThuaThienHueProvince,Vietnam.Env.EarthSci.2011,66,1739–1752.
68. Carmone,F.J.,Jr.;Kara,A.;Zanakis,S.H.AMonteCarloinvestigationofincompletepairwisecomparisonmatricesinAHP.
Eur.J.Oper.Res.1997,102,538–553.
69. Sutadian,A.D.;Muil,N.;Yilmaz,A.G.;PereraBJ,C.UsingtheAnalyticHierarchyProcesstoidentifyparameterweightsfor
developingawaterqualityindex.Ecol.Indic.2017,75,220–233.
70. Chen,Y.;Bouferguene,A.;Al-Hussein,M.Analytichierarchyprocess-simulationframeworkforlightingmaintenancedecision-
makingbasedontheclusterednetwork.J.Perform.Constr.Facil.2018,32,04017114.
71. Luu,C.;Meding,J.V.;Kanjanabootra,S.Assessingoodhazardusingoodmarksandanalytichierarchyprocessapproach:A
casestudyforthe2013oodeventinQuangNam,Vietnam.Nat.Hazards2018,90,1031–1050.
72. Saaty,T.L.Theanalytichierarchyandanalyticnetworkprocessesforthemeasurementofintangiblecriteriaandfordecision-
making.InMultipleCriteriaDecisionAnalysis:StateoftheArtSurveys;Figueira,J.,Greco,S.,Ehrgo,M.,Eds.;Springer:New
York,NY,USA,2005;pp.345–405.
Water2024,16,41016of16
73. Xu,S.;Rowntree,J.;Borrelli,P.;Hodbod,J.;Raven,M.R.Ecologicalhealthindex:Ashorttermmonitoringmethodforland
managerstoassessgrazinglandsecologicalhealth.Environments2019,6,67.
74. Song,C.Y.;Hu,H.X.;Huang,H.;Ren,H.X.;Huang,C.Assessingthehealthofrehabilitatedreedwetlandecosysteminthe
Yellow RiverDelta.ActaEcol.Sin.2016,36,2705–2714.hps://doi.org/10.5846/stxb201505060923.
75. Liu,J.;Guo,J.;Guo,J.;Zheng,S.;Lin,L.TheEcologicalEvaluationoftheForestEcosystemsinMangdangshanNatureReserve.
J.FujianColl.For.2003,23,106–110.
76. Li,R.;Chai,M.;Qiu,G.;Shi,F.;Sasa,K.ProleNutrientDistributionandSedimentaryCharacteristicsinTypicalMarshesof
SanjiangPlain.Environ.Sci.2014,35,2928–2936.(InChinese)
77. Liu,D.;Liu,L.;You,Q.;Hu,Q.;Jian,M.;Liu,G.;Cong,M.;Yao, B.;Xia,Y.;Zhong,J.;etal.DevelopmentofaLandscape-Based
Multi-MetricIndextoAssessWetl andHealthofthePoyangLake.RemoteSens.2022,14,1082.hps://doi.org/10.3390/rs14051082.
78. Ma,R.StudyonLandscapeEcologicalHealthinPanjinShuangtaiziEstuarineandCoastalWetl an dBasedonRemoteSensing
Image.Master’sThesis,DalianMaritimeUniversity,Dalian,China,2015.
79. Jiao,W.;Ouyang,W.;Hao,F.;Wa ng ,F.;Liu,B.Long-termcultivationimpactontheheavymetalbehaviorinareclaimedwet-
land,NortheastChina.J.SoilsSediments2014,14,567–576.
80. Zhang,H.;Wan g,S.;Wang,J.;Wu,X.;Ma,S.;Wu,Y.;Li,J.;Xu,N.Eectsofdierentlandusetypesonsoilphysicochemical
propertiesandaggregatecompositioninSanjiangPlainwetland.Chin.J.Ecol.2019,38,1679–1687.
81. Liu,J.T.;Fang,S.W.;Sun,J.J.NutrientzoningofPoyangLakebasedonaquaticeco-environmentindices.Environ.EarthSci.2016,
75,61.
82. Fang,N.;You ,Q.;Liu,L.;Li,J.;Lu,C.;Zhang,L.;Yang ,T.;Yu,Z.;Lü,Z.;Yang ,W.EvaluationofeutrophicationinPoyangLake
wetlandduringautumnbasedonthecloudmodel.ActaEcol.Sin.2019,39,6314–6321.
83. Xiao,K.;Zhu,Y.;Zhou,M.;Fan,R.HealthAssessmentofWetlandinSuzhouBasedonBird-basedIndexofBioticintegrity.J.
Chin.UrbanFor.2022,20,114–119.(InChinese)
84. Mereta,S.T.;Lemmens,P.;DeMeester,L.;Goethals,P.L.M.;Boets,P.TheRelativeImportanceofHumanDisturbance,Environ-
mentalandSpatialFactorsontheCommunityCompositionofWe tlandBirds.Water2021,13,3448.
85. Peng,C.;Li,B.;Nan,B.Ananalysisframeworkfortheecologicalsecurityofurbanagglomeration:AcasestudyoftheBeijing-
Tianjin-Hebeiurbanagglomeration.J.Clean.Prod.2021,315,128111.
86. Cui,B.S.;Yan g,Z.F.EstablishinganIndicatorSystemforEcosystemHealthEvaluationonWetlan ds .ATheoreticalFramework.
ActaEcol.Sin.2002,22,1005–1011.
87. Jiang,M.;Zou,Y.C.;Zhang,G.X.;Tong,S.;Wu,H.;Liu,X.;Zhang,Z.;Xue,Z.;Lü,X.Progressandprospectsofwetlandscience
inChina-Commemorationonthe60thanniversaryofthefoundingofNortheastInstituteofGeographyandAgroecology,Chi-
neseAcademyofSciences.Wetl.Sci.2018,16,279–287.(InChinese)
88. Yu,G.R.;Yang ,M.;Hao,T.X.Coordinatetheve-poolfunctionsofecosystemandbuildstrongnationalecologicalinfrastruc-
tures—Ecologicalconstructionideology,tasksandgoalsinthenewdevelopingeraofChina.Bull.Chin.Acad.Sci.2022,37,1534–
1538.(InChinese)
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualau-
thor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto
peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.
... Wetlands can be natural or artificial, temporary or long-term, and include swamps, peatlands, and soil rich in organic matter from decaying plants. They also encompass natural or semi-natural areas that experience periodic flooding or remain covered by shallow water, supporting hydrophytic vegetation during the growing season [2][3][4][5]. Wetlands, also known as the "kidneys of the Earth" [2], are one of Earth's three major ecosystems and encompass a diverse range of types, including mangroves, swamps, fens, deltas, bogs, tidal wetlands, peatlands, floodplains, face significant security threats, vulnerabilities, and challenges due to resource constraints, diverse architectures, and exposure to cyber threats. This survey explores the role of ML and DL approaches in securing IoWT systems, focusing on safeguarding sensitive data and mitigating cyber threats unique to wetland IoT networks. ...
... They also encompass natural or semi-natural areas that experience periodic flooding or remain covered by shallow water, supporting hydrophytic vegetation during the growing season [2][3][4][5]. Wetlands, also known as the "kidneys of the Earth" [2], are one of Earth's three major ecosystems and encompass a diverse range of types, including mangroves, swamps, fens, deltas, bogs, tidal wetlands, peatlands, floodplains, face significant security threats, vulnerabilities, and challenges due to resource constraints, diverse architectures, and exposure to cyber threats. This survey explores the role of ML and DL approaches in securing IoWT systems, focusing on safeguarding sensitive data and mitigating cyber threats unique to wetland IoT networks. ...
Article
Full-text available
Wetlands are essential ecosystems that provide ecological, hydrological, and economic benefits. However, human activities and climate change are degrading their health and jeopardizing their long-term sustainability. To address these challenges, the Internet of Wetland Things (IoWT) has emerged as an innovative framework integrating advanced sensing, data collection, and communication technologies to monitor and manage wetland ecosystems. Despite its potential, the IoWT faces substantial security and privacy risks, compromising its effectiveness and hindering adoption. This survey explores integrating machine learning (ML) and deep learning (DL) techniques as solutions to address the security threats, vulnerabilities, and challenges inherent in IoWT ecosystems. The survey examines findings from 231 sources, encompassing peer-reviewed journal articles, conference papers, books, book chapters, and websites published between 2020 and 2025. It consolidates insights from prominent platforms such as the Springer Nature, Emerald Insight, ACM Digital Library, Frontiers, Wiley Online Library, SAGE, Taylor & Francis, IGI Global, Springer, ScienceDirect, MDPI, IEEE Xplore Digital Library, and Google Scholar. Machine learning and DL methods have proven highly effective in detecting adversarial attacks, identifying anomalies, recognizing intrusions, and uncovering man-in-the-middle attacks, which are crucial in securing systems. These techniques also focus on detecting phishing, malware, and DoS/DDoS attacks and identifying insider and advanced persistent threats. They help detect botnet attacks and counteract jamming and spoofing efforts, ensuring comprehensive protection against a wide range of cyber threats. The survey examines case studies and the unique requirements and constraints of IoWT systems, such as limited energy resources, diverse sensor networks, and the need for real-time data processing. It also proposes future directions, such as developing lightweight, energy-efficient algorithms that operate effectively within the constrained environments typical of IoWT applications. Integrating ML and DL methods strengthens IoWT security while protecting and preserving wetlands through intelligent and resilient systems. These findings offer researchers and practitioners valuable insights into the current state of IoWT security, helping them drive and shape future advancements in the field.
... According to Bernhardt et al., (2007) less than half of the restoration projects set SMART objectives and project/program-level factors are crucial in determining the success or failure of restoration interventions. The selection of appropriate restoration practices, availability of technical support and resources, and effectiveness of monitoring and evaluation systems are key factors that influence restoration outcomes (Cao et al., 2024). However, it is important to consider these project/program-level factors in conjunction with other factors at different scales to achieve successful restoration programs. ...
Article
Full-text available
Wetlands are the “natural filters with a variety of important ecosystem benefits and are more relevant in improving people’s livelihoods. However, as a result of increasing global economic pressures, they have drastically decreased resulting in more global environmental challenges such as climate change. This has attracted international and regional attention for wetland management through restoration which has several success and failure stories. This review aimed at establishing the dynamics for wetland restoration success and failure in Uganda through narrative literature review. This showed that institutional and policy environment, land tenure systems, traditional and indigenous knowledge, and project scope significantly affect the restoration outcomes. Therefore, there is a need for comprehensive interdisciplinary collaboration for effective and efficient governance and alternative live- hoods analysis, the integration of traditional knowledge for land tenure system support, fostering gender sensitive and a multisectoral, approach and prioritizing community-centered practices to address land tenure system complexities and ensure the sustainability of wetland ecosystems for future generations in restoration initiatives
Article
Full-text available
Water scarcity and ecological degradation in arid zones present significant challenges to regional ecological health. Despite this, integrating the water supply–demand balance and water supply security (SEC) into ecological health assessments—particularly through composite indicators—remains underexplored in arid regions. In this study, we assessed the ecological health changes in Xinjiang by utilizing multivariate remote sensing data, focusing on the balance between water supply and demand, the degree of SEC, and ecosystem resilience (ER). Our results indicate that while water supply and demand remained relatively stable in northern Xinjiang between 2000 and 2020, the conflict between supply and demand intensified in the southern and eastern agricultural regions. SEC evaluations revealed that 73.3% of the region experienced varying degrees of decline over the 20-year period. Additionally, ER assessments showed that 7.12% of the region exhibited a significant decline, with 78.6% experiencing overall reductions in ecological health. The indicators’ response to drought demonstrated that improvements in ecological health during wet conditions were less pronounced than declines during droughts. This study underscores the necessity of prioritizing areas with lower ecological health in future water allocation strategies to optimize water resource utilization.
Article
Full-text available
Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain³. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km² (confidence interval 2.9–3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16–23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration⁴.
Article
Full-text available
Wetlands are one of the world’s three major ecosystems. They not only maintain regional ecological balance but also provide an important guarantee for human survival. Wetland ecosystem health assessment serves as the foundation for wetland protection, management, and restoration. In this study, the method for wetland ecosystem health assessment proposed by the United States Environmental Protection Agency (US EPA) was selected and improved to systematically evaluate the health status of the Cuihu wetlands’ ecosystem at three levels. The results revealed that the Cuihu wetlands’ landscape development intensity index was 1.55, the total landscape pattern value was 10 points, and the total score for rapid evaluation was 0.79. Levels I and II indicated that the Cuihu wetlands’ ecosystem was in a good near-natural state. Additionally, level III revealed that ecosystem health is higher in area B than in area A. The Cuihu wetlands were characterized by low species diversity and low distribution of benthic animals and aquatic plants. The comprehensive evaluation results revealed that the Cuihu wetlands’ ecosystem is in a good health. In the future, the health status of the wetland ecosystem should be monitored regularly, the cultivation and propagation of aquatic plants should be strengthened, and effective methods to improve water quality and reduce soil salinity should be used to achieve the best health status of the Cuihu wetlands.
Article
Full-text available
Human-induced changes in landscapes are one of the major drivers of wetland loss and degradation. The Poyang Lake wetland in China has been experiencing severe degradation due to human disturbance and landscape modification. Indicators to assess the condition of this wetland are thus needed urgently. Here, a landscape-based multi-metric index (LMI) is developed to evaluate the condition of the Poyang Lake wetland. Twenty-three candidate metrics that have been applied to wetland health assessment in published studies were tested. Metrics that show strong discriminative power to identify reference and impaired sites, having significant correlations with either benthic macroinvertebrate- or vegetation-based indices of biotic integrity (B-IBI or V-IBI), were chosen to form the LMI index. Five of these metrics (largest patch index, modified normalized differential built-up index, Shannon’s diversity index, connectance index, and cultivated land stress index) were selected as our LMI metrics. A 2 km buffer zone around sample sites had the strongest explanatory power of any spatial scale on IBIs, suggesting that protecting landscapes at local scales is essential for wetland conservation. The LMI scores ranged between 1.05 and 5.00, with a mean of 3.25, suggesting that the condition of the Poyang Lake wetland is currently in the “fair” category. The areas along lakeshores were mainly in poor or very poor conditions, while the less accessible inner areas were in better conditions. This study demonstrates significant links between landscape characteristics and wetland biotic integrity, which validates the utility of satellite imagery-derived data in assessing wetland health. The LMI method developed in this study can be used by land managers to quickly assess broad regions of the Poyang Lake wetland.
Article
Full-text available
The present study investigates the relative importance of human disturbance, local environmental and spatial factors on variations in bird community composition in natural Ethiopian wetlands with high biodiversity conservation value. We quantified bird abundances, local environmental variables and human disturbances at 63 sites distributed over ten wetlands in two subsequent years. Variation partitioning analyses were used to explore the unique and shared contributions of human disturbance, local environmental variables and spatial factors on variations in community compositions of wetland bird species. Local environmental variables explained the largest amount of compositional variation of wetland bird species. Productivity-related variables were the most important local environmental variables determining bird community composition. Human disturbance was also an important determinant for wetland bird community composition and affected the investigated communities mainly indirectly through its effect on local environmental conditions. Spatial factors only played a minor role in variations in bird community composition. Our study highlights the urgent need for integrated management approaches that consider both nature conservation targets and socio-economic development of the region for the sustainable use and effective conservation of wetland resources.
Article
Full-text available
• Many policies and studies globally have highlighted the pivotal role of wetland ecosystems regarding wetland biota and their ecological status. With the strengthening of wetland ecosystem management legislation and policy, wetland restoration should also consider increasing habitat diversity to improve biota. We explore whether the construction of artificial ecological islands can increase the diversity of and macroinvertebrates before assessing the effects of actively constructing islands via human intervention on wetland protection. • We discuss changes in macroinvertebrate diversity (i) with and without islands, (ii) at different water-level gradients surrounding the islands, (ⅲ) on different island substrates, and (ⅳ) at different time scales. We used ANOVA, ANOSIM, and cluster analysis to test the differences. • The macroinvertebrate communities had spatially heterogeneous distributions which changes over time due to both natural and anthropogenic stresses. The establishment of islands significantly increased the community composition and biodiversity of the macroinvertebrate. Water depth and substrate affect community composition of macrozoobenthos. The abundance and diversity of macroinvertebrates can influence the biodiversity of their predators (fish and waterbirds). Potentially, the construction of islands could provide some cobenefits for the conservation of wetland fauna. Synthesis and applications. Establishing artificial ecological islands in broad open-water areas and increasing water-level gradient and substrate diversity can increase microhabitat availability and habitat heterogeneity. These changes can adapt to different ecological niches of aquatic organisms, increase biodiversity, and have a positive effect on the ecological restoration of inland freshwater marshes and wetlands.
Article
In wetland restoration, adaptive management is a rarely used but potentially effective way to test initial assumptions of factors controlling recovery and adjust ongoing management to encourage ecosystem recovery. Limited development of monitoring practices and governance approaches hinder broader adoption of adaptive management. Reports of adaptive management for small wetlands, in particular, are lacking. We report here on lessons learned from monitoring a 3-ha, restored, palustrine wetland in central Minnesota for 23 years and using this information to guide management. The restoration was undertaken to convert a drained wetland dominated by invasive species to a high-quality meadow and marsh. Invasive species were treated, the drainage-tile system disabled, and 112 native wetland species seeded or planted. We installed a staff gauge for weekly hydrologic monitoring and monuments to delineate 26 vegetation monitoring units that encompassed the entire wetland. Five vegetation surveys were conducted between 2000 and 2019, consisting of comprehensive meanders of each monitoring unit; cover was estimated within each unit for all species observed. Coordination meetings of management staff and scientists were held to review evidence from monitoring that indicated a need to adjust vegetation or water management. Hydrologic monitoring provided evidence that the ecosystem goals needed to be adjusted and vegetation monitoring informed invasive species management. However, the linkage between monitoring and management could have been strengthened with a formal adaptive management plan at the initiation of restoration and with more frequent coordination cycles.
Article
https://authors.elsevier.com/a/1dPytAOM9vpIV Wetlands play an important role in sustaining ecosystems on the earth, which regulate water resources, adjust local climate and produce food for human beings, etc. However, wetlands are facing huge challenges due to human activities and other natural evolution, such as area shrinkage, function weakening and biodiversity decrease, and so on, therefore, some wetlands need to be urgently restored. In this study, the main technology components of close-to-natural restoration of wetlands were summarized. The ecological water requirement and water resource allocation can be optimized for the water balance between social, economy and ecology, which is a key prerequisite for maintaining wetland ecosystem. The pollution of wetland sediments and soils can be assessed by various indicators to provide the scientific basis for natural restoration of wetland base, and suitable strategies should be taken according to the actual conditions of wetland bases. The hydrological connectivity in wetlands and with related water system can be numerically simulated to make the optimal plan for improvement of hydrological connectivity. The ecological restoration of wetlands with the synergetic function of plants, animals and microorganisms was summarized, to improve the quality of wetland water environment and maintain the ecosystem stability. Based on the wetland close-to-natural restoration strategies, a brief ecological restoration plan for a typical wetland, Zaozhadian Wetland, near Xiong'an New Area in the north China was proposed from water resource guarantee, base pollution management, hydrological connectivity improvement and biological restoration. The close-to-natural restoration shows more effective, sustainable and long-lasting and thus a practical prospect.
Article
The ecological security (ES) of urban agglomeration (UA) is an important guarantee and necessary condition for the sustainable development of the region and the country. Based on ecological system theory, this study established a new ES analysis framework for UA; a DPSIR-DEA model was built to evaluate ES from the perspective of system coordination, and Geodetector was used to explore the internal mechanism of the ES system. Taking the Beijing-Tianjin-Hebei urban agglomeration (BTH) as the empirical study area, the results showed that the ES of the BTH was generally insecure during the four periods, and it experienced a process in which it first improved, then declined, and finally recovered gradually. The spatial differentiation in the north-south, where the counties in the north have a better ES status than the southern counties, was further aggravated. The spatial autocorrelation analysis indicated that the spatial distribution of ES in BTH has a certain degree of aggregation, and the homogeneity of aggregation is enhanced. The main dominant factors affecting the ES in 2018 included the population density, proportion of construction land, ESV, PM2.5, fertilizer pollution and irrigation area ratio, and the interaction between factors was strengthened. Moreover, the results proved that human production and life play a leading role in the ES maintenance. The study also constructed the driving mechanism of ES and offered suggestions for improving the ES of the BTH.
Article
A comprehensive assessment of ecosystem health of wetlands is needed to guide protection and restoration activities. However, the conventional methods used in evaluating ecosystem health of wetlands largely rely on field observational data which often do not provide spatio-temporal perspectives to the assessment. Geospatial assessment of remotely sensed data has enormous potentials for assessing ecosystem health of wetlands at different temporal and spatial scales. This study employed geospatial techniques to assess ecosystem health of Densu Delta, Sakumo II and Muni-Pomadze Ramsar Sites over a 32-year period using structure, function and resilience indicators. Landsat satellite images of 1985, 2002 and 2017 were obtained for this study. Analytic hierarchy process (AHP) was used to weight the indicators. The importance of the ecosystem health indicators in decreasing order was as follows: Structure > Resilience > Function. The findings of the study also indicated that ecosystem health of the wetlands progressively deteriorated in 2002 and 2017 compared to the reference year of 1985. In 2002, the Densu Delta experienced the least decline (11.8%) from the 1985 state among the three wetlands and Sakumo II recorded the highest deterioration (38.0%). Unlike 2002, in 2017 the health of the Densu Delta experienced the worse deterioration (46.3%) whereas Sakumo II recorded the least decline (26.2%). Ecosystem health of Muni-Pomadze Ramsar Site deteriorated at a similar magnitude, 27.0% and 29.1% in 2002 and 2017, respectively. The critical underlying factor for the degradation of the wetlands is urbanization largely due to increase in human population which led to the expansion of built-up areas in the wetlands, fragmentation of natural land use and land cover (LULC) classes and reduction of vegetation cover.