Available via license: CC BY 4.0
Content may be subject to copyright.
Water2024,16,410.https://doi.org/10.3390/w16030410www.mdpi.com/journal/water
Article
Post-RestorationMonitoringofWetlandRestoredfrom
FarmlandIndicatedThatItsEffectivenessBarelyMeasuredUp
RuiCao
1,†
,JingyuWan g
2,†
,XueTian
3
,YuanchunZou
3
,MingJiang
3
,HanYu
4,
*,ChunliZhao
1,
*andXiranZhou
4
1
CollegeofForestryandGrassland,JilinAgriculturalUniversity,Changchun130118,China;
rxsmchh@163.com
2
JilinAcademyofAgriculturalSciences,Changchun130033,China;jlskjtwjy@163.com
3
KeyLaboratoryofWetl an dEcologyandEnvironment,NortheastInstituteofGeographyandAgricultural,
ChineseAcademyofSciences,Changchun130102,China;tianxue0431@163.com(X.T.);zouyc@iga.ac.cn(Y.Z.);
jiangm@iga.ac.cn(M.J.)
4
TheFacultyofAgronomy,JilinAgriculturalUniversity,Changchun130118,China;13639837189@163.com
*Correspondence:yuhan@jlau.edu.cn(H.Y.);zcl6368@163.com(C.Z.)
†
Theseauthorscontributedequallytothiswork.
Abstract:Inthecontextofwetlandrestoration,thereconstructionofanecosystem’sstructuretypi-
callymanifestswithinarelativelyshorttimeframe,whiletherestorationofitsfunctionoftenneces-
sitatesanextendedperiodoftimefollowingtheimplementationofrestorationmeasures.Conse-
quently,itbecomesimperativetoengageinthecomprehensive,long-termdynamicmonitoringof
restoredwetlandstocapturetimelyinformationregardingtheecologicalhealthstatusofwetland
restoration.Inthispaper,weaimedtopreciselyassesstheecosystemhealthofatypicalwetland
thathadbeenconvertedfromfarmlandtowetlandinFujinNationalWetland Parkin2022.Wese-
lected18ecological,social,andeconomicindicatorstoestablishawetlandecologicalhealthevalua-
tionmodel,andthenusedthemethodofananalytichierarchyprocess(AHP)tocalculatethe
weightsforeachindicatorandacquiretheecologicalhealthindex(EHI)score.Theresultsofour
studyrevealedthattheecosystemhealthindexwas3.68,indicatingthattheFNWPwetlandecosys-
temwasin“good”condition;thisresultwasmainlyaffectedbywetlandwaterquality(0.382).The
ecologicalhealthassessmentofrestoredwetlandscanmonitorwetlandecologicalresourcesand
provideascientificbasisforthemanagementandprotectionofrestoredwetlands.
Keywords:wetlandecosystemhealth;landscapepatterns;remotesensing;ecosystemhealthassessment
1.Introduction
Wetla ndreferstoanaturalorartificial,long-termortemporaryswamp,peatland,or
waterarea,withorwithoutstaticorflowing,fresh,brackish,orsalinewaterbodies,con-
sistingofwaterbodieswithadepthofnomorethan6matlowtide[1].Wetla nd sare
multifunctionalecosystemsthatplayanimportantroleinregulatingtheclimate,main-
tainingbiodiversity,purifyingwaterquality,thecarbonandnitrogencycles,andprovid-
ingbiologicalhabitats,andthusareconsideredtobeoneofthethreemajorecosystemsof
theEarth[2–7]knownasthe“kidneysoftheEarth”[8–12].Atthesametime,wetlandsare
oneofthemostthreatenedandsensitiveecosystemsduetointensifyinghumanactivities
[13–17].Between1700and2020,atotalof3.4×10
6
km
2
ofinlandwetlandshasbeenlost
globally,andmainlyacrossEurope,theUnitedStates,andChina[18,19].Thedecreasein
wetlandareaismainlyduetoirrationalhumanexploitationanduse,andwetlandloss
anddegradation,leadingtoseriousproblemssuchasnaturaldisastersandecological
degradation.Consequently,itisimperativethatnationalfocusisdirectedtowardthecon-
servation,restoration,andreconstructionofwetlandecosystems[20–22].Sincethe18th
NationalCongress,Chinahasimplementedits13thFive-YearImplementationPlanfor
Citation:Cao,R.;Wang,J.;Tian,X.;
Zou,Y.;Jiang,M.;Yu,H.;Zhao,C.;
Zhou,X.Post-RestorationMonitoring
ofWet landRestoredfromFarmland
IndicatedthatitsEffectivenessBarely
Measuredup.Wate r2024,16,410.
https://doi.org/10.3390/w16030410
AcademicEditor:RichardSmardon
Received:21December2023
Revised:24January2024
Accepted:24January2024
Published:26January2024
Copyright:©2024bytheauthor.
LicenseeMDPI,Basel,Swierland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Aribution(CCBY)license
(hps://creativecommons.org/license
s/by/4.0/).
Water2024,16,4102of16
NationalWetlandProtection,introducedtheWetl an dProtectionLawofthePeople’sRe-
publicofChina,andissuedtheNationalWetl andProtectionPlan(2022–2030)tocarryout
comprehensiveprotectionandrestorationmeasuresforwetlands[23].
Wetla ndecosystemhealthischaracterizedbythefollowingpoints:(1)thepreserva-
tionofunimpairedmaterialcirculationandenergyflowwithinthesystem;(2)thatkey
ecologicalcomponentsandorganictissuesaremaintainedinanintactstatewithoutdis-
eases,exhibitingresilienceandstabilityinthefaceofbothprolongedandabruptnatural
oranthropogenicdisturbances;and(3)theoverallfunctionalityoftheecosystemmani-
festsasdiversifiedecologicalprocesses,speciesdiversity,andheightenedbiological
productivity[24,25].On1June2022,theWetl an dProtectionLawofthePeople’sRepublic
ofChinacameintoforce,whichclearlystipulatestheprinciplesofprioritizingprotection,
systematicgovernance,scientificrestoration,andtherationalutilizationofwetlandsin
China.Traditionally,anecosystem’shealthassessmentisconductedusingfieldobserva-
tiondataormodels.Commonlyusedmethodsincludeindicesofbiologicalintegrity(IBI)
[26],theHydrogeomorphicMethod(HGM)[27],pressure–state–response(PSR)modeling
methods[28],andtheevaluationofLDI(landscapedevelopmentintensity)[29].Mostre-
searchershavecombinedthesemethodswiththeanalytichierarchyprocess(AHP)and
FuzzyComprehensiveEvaluation(FCE)tosystematicallyandcomprehensivelyassessthe
healthstatusofanentirewetlandecosystem[30–37].Inaddition,themonitoringofwet-
landsinChinashouldbemorescientificallystandardizedandcontinuouslyoptimizedin
termsoftheselectionofacombinedindicatorsystem,fieldmonitoringandcollection
methods,anddataanalysisandmanagement[38–40].
TheSanjiangPlain,situatedinthenortheasternpartofHeilongjiangProvince,China,
isthelargestmarshwetlandareawithinthecountry’sterritory.Atthebeginningofthe
19thcentury,thewetlandareainthisregionwas534.5×104ha,accountingfor49.08%of
thetotalareaoftheSanjiangPlain[41–43].Inresponsetoescalatingnationalrequirements
forgrainproductionandpopulationexpansion,theSanjiangPlainhasundergonefour
stagesoflarge-scaleagriculturaldevelopment(1949–1954,1956–1958,1969–1973,1975–
1983),leadingtothesubstantialconversionoflargeareasofnaturalwetlandsintoarable
land[44,45].Between2000and2015,thetotalwetlandareaintheSanjiangPlaindecreased
by250,856ha,andthewetlandvegetationcoveragedeclinedfrom91.8%to74.0%[46].
Thisstudyselectedatypicalconverted-farmlandwetlandintheFujinNationalWet-
landPark(FNWP)inthehinterlandoftheSanjiangPlain.Theaimistoevaluatetheeco-
systemhealthoftherestoredwetlandandanalyzethefactorsaffectingtheecological
healthofthewetlandthroughthesystematicmonitoringofvariousindicatorsofhydrol-
ogy,waterquality,birds,soilcharacteristics,andthelandscapepaernoftherestored
wetland.Wealsoaimtoconstructarestoredwetlandecosystemhealthevaluationsystem
andusetheanalytichierarchyprocesstocalculatetheecosystemhealthindexofthewet-
landtoevaluatethecurrenthealthstatusoftherestoredwetland.
2.MaterialsandMethods
2.1.StudyArea
TheFNWPislocatedinnortheasternHeilongjiangProvince(46°55′52.72″ N,
131°44′51.33″E),onthesouthbankofthedownstreamoftheSonghuaRiver.Notably,the
FNWPoccupiesapivotalpositionwithinthecoreareaoftheSanjiangPlain(Figure1).
TheFNWPcoversanareaof2200ha,andisatypicalareaforrestoringfarmlandtowet-
land.Ourmainstudyareaislocatedinthe1152haofrestoredandreconstructedwetland,
accountingfor52.36%ofthetotalparkarea.FNWPbelongstothemiddletemperatecon-
tinentalsemi-humidmonsoonclimatezone,characterizedbymarkedseasonaltempera-
turevariations.Theaveragemulti-yeartemperatureis2.5°C,andtheaveragemulti-year
precipitationis512mm,withconcurrenthotconditionsandconcentratedprecipitationin
Water2024,16,4103of16
summer[47].Thewetlandsarerechargedbytwomainwatersources:naturalprecipita-
tion,includingsurfacerunofffromthesurroundingfarmlandcatchment,andrecharge
fromthecanalssouthofthepark[48].
Figure1.LocationofsamplingsitesinFNWP.
FNWPwasapprovedasanational(pilot)wetlandparkin2009,andhasexperienced
severalimportantstagesfrom“primitivenaturalmarshwetland—wetlandreclamationand
wetlanddegradation—returningfarmlandtowet/degradedwetlandrestoration”.We tland
restorationwascarriedout,throughscientificplanning,in2011,andthewetlandprotection
andrestorationandcapacitybuildingprojectwasofficiallylaunchedwithaloanfromthe
Germangovernmentin2013,includingtheconstructionofsluicegatesandembankments,
wetlandrestorationfromfarmland,andecologicalislands’construction,etc.Theprojectpe-
riodwasfromJuly2013toJune2018,andrestorationstartedinearly2014.
2.2.DataSourcesandProcessing
Theevaluationofwetlandecologicalhealthprimarilyreliesonlong-termmonitoring
datafromrestoredwetlandsandfieldsurveys.Vari ous datacollectionmethods,suchas
experimentalanalysis,fieldmonitoringsurveys,questionnaires,andliteraturereviews,
areemployedtoensurethecomprehensivenessandreliabilityofthedata.Differenttypes
ofdatarequiredifferentcollectionmethods,ensuringarobustevaluationprocess.
2.2.1.ExperimentalAnalysisData
Thedatausedinthisstudyincluderemotesensingdataandexperimentaldataob-
tainedthroughfieldsurveys,experimentaltreatments,andquestionnaires.
2.2.2.RemoteSensingImageProcessingData
RemotesensingdatacomefromtheGaofen-2satellitedataofChina,whichare0.8m
four-bandbundledata.WeobtainedRSimagesofFNWPfor31August2022,thedata
wereacquiredwithdataprocessinglevel1A,andthereisnocloudcoverage;thedata
qualityisgood.Toimprovethevisualizationofremotesensingimages,wepre-processed
withatmosphericcorrection,topographiccorrection,colorleveling,fusion,andcropping.
Additionally,weusedImageEnhancementProcessingtomakethelandscapeofthestudy
Water2024,16,4104of16
areamorevisibleinthepicture,aidinginidentifyingandfurtherclassifyingthestudy
area,andremovingunimportantorirrelevantimageinformationtohighlightthekeycon-
tentsofthestudyarea[49].
2.3.Methods
2.3.1.SoilPhysicalandChemicalParameters
Sixquadrantswereselectedindifferentwetlandtypes,andatotalof18soilsamples
werecollectedtomeasurethephysicalandchemicalpropertyindicesofthesoil(Figure1),
includingpH,organicmattercontent,totalnitrogen(TN),andtotalphosphorus(TP).
2.3.2.Wat erQuality
Wesetup20monitoringsites(Figure1)includingfarmlandditches,naturalwetland
locations,andentranceandexitgates.pH,SecchiDepth(SD),dissolvedoxygen(DO),and
Chlorophyll-a(Chl-a)weremeasuredinsituwithYSI6920equipment(YSI,Yell ow
Spings,OH,USA).
LaboratorymeasurementsincludedTN,TP,biochemicaloxygendemand(BOD5),and
chemicaloxygendemand(CODMn),andweredeterminedaccordingtotheChinesenational
standard“EnvironmentalQualityStandardforSurfaceWater”(GB3838-2002)[50].Further-
more,surfacewaterqualitywasclassifiedintofivelevels:I,II,III,IVandV[50].
Inordertotransformtheeutrophicationevaluationstandardvalueintoanevaluation
resultthatiseasyforthepublictounderstand,thecomprehensivetrophiclevelindexTLI
(∑)[51–53]wasusedtoestimatethedefinitewatertrophicstate.
TLI∑W
TLI𝑗
whereTLI(j)isthetrophiclevelindexofjandWjisthecorrelativeweightforthetrophic
levelindexofj.
2.3.3.WetlandWaterfo wl
FNWPplaysasignificantroleasakeystopoverpointalongtheEastAsian–Austral-
asianbirdmigrationroute.Asitservesasacriticalbreedingandmigratoryhabitatfor
numerousprotectedavianspecies,thejudiciousselectionofbirdindicatorsbecomesim-
perative.BirdmonitoringwasconductedfromMarchtoSeptember2022,coveringas
muchofthesurroundingagriculturallandaspossible(Figure1)[54,55].Withthehelpof
binocularsandmonocularsinopenhabitats,wedirectlyrecordedthebirds’species,num-
ber,location,anddistribution.TheShannon–Weinerdiversityindex(H’),Margalefspe-
ciesrichnessindex(D),andPielou(J)evennessindexwereusedtoassessthespeciesdi-
versityofbirdcommunitiesinFNWP.
2.3.4.WetlandAreaandLandUse
Thechangesofthewetlandareawereobtainedbytheinterpretationofremotesens-
ingimagesfrom2017to2022.Basedontheresultsofremotesensingimpactclassification
derivedfromArcGIS10.8,theratioofnon-wetlandarea(farmland,buildinglandand
shelterbelt)tothetotalareawascalculatedasthelanduseintensityofFNWPwetlands.
2.3.5.LandscapeIndices
Inthisstudy,patchdensity(PD)andShannon’sdiversityindex(SHDI)wereusedto
indicatethedegreeoftheecologicalfragmentationofwetlandsandthedegreeofthehet-
erogeneityofwetlandlandscapes,respectively[56,57].Thesetwoindiceswereselected
basedontheclassificationresultsofArcGIS10.8,convertedtorasterdataandthenim-
portedintoFragstats4.2softwareforcalculation.
Water2024,16,4105of16
Patchdensitycanshowtheoveralldegreeofpatchdifferentiationandfragmentation
ofawetlandlandscape,whichiscalculatedasfollows:
𝑃𝐷𝑁𝐴
Here,PDindicatesthepatchdensity,whichistheratioofthetotalnumberofwetland
landscapepatchestothetotalwetlandarea.
Shannon’sdiversityindexreflectsthediversityofwetlandlandscape,whichiscalcu-
latedasfollows:
𝑆𝐻𝐷𝐼𝑃ln 𝑃
Here,SHDIindicatesShannon’sdiversityindexandPiistheratiooftheareaoccupiedby
landusetypeitothetotallandscapearea.
2.3.6.IndicatorSystemEstablishment
Basedonthelong-termmonitoringofwetlandecologicalcharacteristicsandusing
previousresearchasareference,18indicatorsincludingwetlandsoil,waterquality,bird
diversity,landscapestructure,andsocialvaluewereselectedtoconstructtheFNWPwet-
landecosystemhealthevaluationsystem.ThespecificindicatorsareshowninTable 1.
Tab le1.Hierarchicalchartofwetlandecosystemhealthassessmentindicators.
Level-1IndicatorLevel-2IndicatorDataSourceFrequency
Soil
SoilpH
Experimentalanalysis1timeperyear
Organicmattercontent
TP
TN
Hg
Water
WaterpH
Experimentalanalysis3times(spring,summer,
andautumn)
DO
BOD5
CODMn
Thecomprehensivenutritiveindex
WetlandwaterfowlWaterfowlspeciesandpopulationsSamplingthelinetransector
samplingsites’datastatistics1timeperyear
Landscapeindices
Changerateofwetlandarea
Remotesensingimage
processing1timeperyear
Land-useintensity
Largestpatchindex
Patchdensity
Shannon’sdiversityindex
SocietyTourismvalueQuestionnaire1timeperyear
Scientificresearchvalue
2.3.7.Questionnaire
Wecollecteddatabyrandomlydistributingsurveyquestionnairesaroundthestudy
area.Atotalof50questionnairesweredistributed,and48validquestionnaireswerecol-
lected.Thequestionnaireadopteda5-pointscale,whichconsistsof5integersranging
from1to5.Thehigherscore,thestrongerpeople’swillingnesstoplayarole,andthe
higherthevalueofsciencepopularizationandeducationintheresearcharea.
2.3.8.Indices’WeightandAssessmentMethods
Water2024,16,4106of16
Theevaluationprocessconsistsofseveralkeysteps:(1)Utilizinglong-termmonitor-
ingdata,alongwithreferenceliterature[50,58–60]andexpertguidance,eachindexwithin
theindexlayerwasassignedascore,andtheseindiceeswerethencategorizedintofive
levelsandassignedstandardizedscoresof5,4,3,2,and1(Table2).(2)Therelativeim-
portanceoftheevaluationindicesateachlevelwasassessedusingtheexpertscoring
method,resultinginarelativeimportancematrix.Theweightofeachindexwasdeter-
minedusingthehierarchicalanalysismethod.(3)Theecosystemhealthindex(EHI)was
selectedtocalculatethewetlandecologicalhealthindexscoreforFNWP,enablingthe
assessmentofthelevelofthewetland’secologicalhealth(Table3).
Tab le2.Indicatorsofwetlandecologicalhealthassessmentsystemandclassificationstandards.
OverallNormalizedScore54321
SoilpH7–86–7,8–95–6,9–103–5,10–120–3,12–14
Organicmattercontent(%)>43-42-31-2<1
TP(g/kg)>1.00.7–1.00.4–0.70.2–0.4<0.2
TN(g/kg)>2.01.5–2.01.0–1.50.5–1.0<0.5
Hg(mg/kg)<0.050.05–0.10.1–0.150.15–0.2>0.2
WaterpH6–95–6,9–103–5,10–122–3,12–130–2,13–14
DO(mg/L)≥7.5≥6≥5≥3≥2
BOD5(mg/L)≤3≤3≤4≤6≤10
CODMn(mg/L)≤15≤15≤20≤30≤40
Thecomprehensivenutritiveindex(TLI)0–3030–5050–6060–70>70
Waterfowlspeciesandpopulations>43–42–31–2<1
ChangerateofwetlandareaFirstSecondThirdForthFifth
Land-useintensity<0.20.2–0.40.4–0.60.6–0.8>0.8
Largestpatchindex(LPI)80–10060–8040–6020–400–20
Shannon’sdiversityindex(SHDI)>0.80.6–0.80.4–0.60.2–0.4<0.2
Patchdensity(PD)<22–1010–2020–40>40
Tourismvalue4–53–42–31–20–1
Scientificresearchvalue4–53–42–31–20–1
Tab le3.Classificationstandardofwetlandecosystemhealth[61].
LevelExcellentGoodFairPoorVeryPoor
EHI4~53~42~31~20~1
Weusedtheanalytichierarchyprocess(AHP)methodtoanalyzeandcalculatethe
appropriateweightofeachfactor.TheAHPisamature,multi-objectiveanalysismethod
introducedanddevelopedbySaaty[62].Itviewsacomplexproblemwithmultipleobjec-
tivefactorsasanintegratedsystem.Itinvolvesbreakingdowntheoverarchingobjective
intomultipleindices,subsequentlyestablishingorganizedandinterconnectedhierar-
chies.Thismethodnotonlyformulatesinherentlyintricateproblemsintoahierarchical
structurebutalsoallowsfortheconsiderationofdiversequalitativeandquantitativecri-
teriawithintheproblem-solvingframework[63–66].TheAHPiscurrentlywidelyusedto
solvethedifficultyindirectlyandaccuratelyquantifyingdecisionresults,takingad-
vantageofitsstrongsystematicity,easyuse,andsmallerquantitativedatarequirement
[65].Atthesametime,thismethodhasthedisadvantagesofbeinghighlysubjective,hav-
ingtoomanyfactors,andahighnumberofpairwisecomparisonsrequired[67,68].
Theelementsoftheupperlevelareusedascriteriaandhaveadominantrelationship
withtheelementsofthenextlevel.Theimportanceoftherelevantcomponentsonthis
levelandtheupperleveliscomparedinpairs,andthecomparisonresultsareexpressed
quantitativelyfrom1to9(Table4).Afterconstructingthejudgmentmatrix,themaximum
eigenvalueλmaxofthematrixiscalculatedandtheeigenvectorobtained.Theeigenvector
Water2024,16,4107of16
isusedastheweightvectorW,andthenaconsistencytestisperformed.Theconsistency
indexisdefinedbytheequationCI=
,CR=CI/RI,whereλmaxisthelargesteigen-
valueofapreferencematrixandnisthenumberofparameters[69–71].WhentheCRis
lessthan0.10,itmeansthatthematrixhaspassedtheconsistencycheck,otherwisethe
matrixneedstobereconstructed.
Tab le4.ThefundamentalscaleofabsolutenumbersinAHP[71,72].
Intensityof
ImportanceDefinitionExplanation
1EqualimportanceTwocriteria/sub-criteriaareequallyim-
portant
2Weak
3ModerateimportanceOnecriterion/sub-criterionisslightlyfa-
voredoveranother
4Moderateplus
5StrongimportanceOnecriterion/sub-criterionisstronglyfa-
voredoveranother
6Strongplus
7Ver ystrongOnecriterion/sub-criterionisvery
stronglyfavoredoveranother
8Ver y, verystrong
9Extremeimportance
Evidencefavoringonecriterion/sub-cri-
terionovertheotheristhehighestpossi-
b
leorderofaffirmation
Reciprocalsof
theabove
Ifactivityiisthejudgement
valuewheniiscomparedwith
activityj,thenjhasareciprocal
valuewhencomparedwithi
Areasonableassumption
Theecosystemhealthindex(EHI)isaneffectiveshort-termmonitoringindex.Ahigher
EHIindicatesamorefunctionalecosystem,whereaslowervaluesindicatethattheecosys-
temisapoorlyfunctioninglandscape[73].Itscalculatedusingthefollowingformula[74]:
𝐸𝐻𝐼𝐸𝑊
whereEHIrepresentstheecosystemhealthindex,nrepresentsthenumberofevaluation
indicators,Eirepresentsthestandardizedvalueofthei-thevaluationindicator,andWi
representstheweightofthei-thevaluationindicator.
Thederivedwetlandecologicalhealthindexwasalsovalidatedbythemulti-objective
linearweightingfunctionmethod[75],withthevalidationequation[60]
𝐸𝐻𝐼𝐸𝑊
𝑊
whereEHIrepresentstheecosystemhealthindex,Eirepresentsthegradedevaluation
valueofthei-thevaluationindicator,Wbirepresentstheweightofthei-thindicatorrelative
tothecriterionlayerBinasingleranking,Wirepresentsthetotalrankingweightofthei-
thindicator,andnrepresentsthenumberofevaluationindicators.
3.Results
Water2024,16,4108of16
3.1.RestorationofWetlan dEcologicalHealthIndicatorCharacteristics
3.1.1.SoilPhysicalandChemicalParameters
ThemainphysicochemicalpropertiesoftherestoredwetlandsoilsintheFNWPwere
determinedthroughthelaboratorytestingof18soilsamples(Figure2).In2022,theaver-
agepHofthewetlandsoilswas8.01,indicatingaslightalkalinecondition.Theorganic
carbon(TOC)contentrangedfrom1.31%to2.88%,thetotalnitrogen(TN)contentranged
from671.03mg/kgto1769.98mg/kg,thetotalphosphorus(TP)contentrangedfrom
394.68mg/kgto659.40mg/kg,themercury(Hg)contentrangedfrom0.037mg/kgto0.104
mg/kg,andtheiron(Fe)contentrangedfrom26,794mg/kgto34,688mg/kg.Thesevalues
donotmeetthestandardsfortypicalwetlands[60,76],indicatingthatthebasicstructure
andinternalcomponentsofthesoilwerestillinastateofgradualrecovery.
(a)
(b)(c)
Figure2.SoilphysicochemicalcharacteristicsinFNWP.((a)SoilpH,TOCandSOM,(b)TNand
TP,(c)FeandHg)
3.1.2.Wetla nd WaterQuality
Byconductingexperimentalanalysesonsamplescollectedfrom20watermonitoring
pointsintheFNWP,wefoundthattheaveragewaterpHvalueoftherestoredwetlandin
2022was6.45,indicatinganeutralcondition(Figure3).TheaverageTLIwas56.34,indi-
catingamildeutrophicstate.
Water2024,16,4109of16
(a)
(b)
(c)
Figure3.ThewaterqualityindicesoftheFNWP.((a)SD,(b)Wate rpH/COD
Mn
/BOD
5
/DO/Chl-a,
(c)TNandTP).
3.1.3.Wetla nd AreaChangeRateandLandscapeIndices
Thewetlandarea(swampandwater )wasextractedbyacquiringremotesensingim-
agesoftheFNWPfor2017,2020,and2022.Briefly,theFNWPwetlandareashowedaslow
increasingtrendcombinedwithamaximumwetlandareaof910.73hain2022(Table5).
TheFNWPwetlandlandscapepatternindexwascalculatedbasedontheclassification
results,andtheresultsareshowninTab le4.Theland-usetypesoftheFNWPwetlandsin
2022includefivecategories:swamp,water,farmland,building,andshelterbelt(Figure4).
Marshhasthelargestarea,accountingfor69%ofthetotalarea.Thenon-wetlandareawas
110.43ha,andthecalculatedland-useintensityfortheFNWPis0.096(Table5).
Water2024,16,41010of16
Figure4.Land-useclassificationmapofFNWP.
Tab le5.Statisticsofwetlandlandscapepaernindex.
Farmland(ha)Building
(ha)
Shelterbelt
(ha)Land-UseIntensityLPIPDSHDIWetlandArea
(ha)
88.2912.1959.9450.09653.4082.090.986910.73
3.1.4.BirdDiversity
Atotalof33birdspeciesbelongingto7ordersand14familieswererecordedin2022.
CommonspeciesincludedAnasformosa,Fulicaatra,Podicepscristatus,Chlidoniasleucoptera,
Anasplatyrhynchos,Larusridibundusandsoon,mostofwhicharewadingbirds.Thesea-
sonalvariationintheFNWP’sbirddiversityisshowninTabl e6.TheMeanShannon–
Winnerdiversityforbirdsin2022was1.66,thePielouevennesswas0.50,andMargalef
speciesrichnesswas2.76.
Tab le6.BiodiversityindicesofbirdsindifferentseasonsinFNWPwetlandin2022.
SpringSummerAutumn
Shannon–Winnerindex1.51.821.65
Margalefindex2.562.623.10
Pielouindex0.460.560.48
3.2.WetlandEcologicalHealthIndex
Inthisstudy,wedeterminedtheweightoftheevaluationindicatorsbasedonthe
ecologicalmonitoringresultsoftherestoredwetlandandexpertopinions,takingintoac-
countoftheactualsituationofconstructionandmanagementintheFNWP.Weightjudg-
mentmatriceswereconstructedforthecriterionlayerandindicatorlayer.TheEHIscore
forthewetlandintheFNWPisshowninTable7.TheresultsoftheEHI(3.68)indicated
thattherestoredwetland’sstateisata“good”level.Furthermore,thewetlandexhibited
apronouncedtrendinitslandscapepaernandremotesensingimagesin2022.Inthe
Water2024,16,41011of16
year2022,althoughthecomprehensivephysicalandchemicalcharacteristicsofthewet-
landsoildidnotyetmeetthestandardssetfortypicalwetlands,therestoredwetland
providedeffectivewaterqualitypurificationandbirdbiodiversitycapabilities.
Tab le7.TheAHPweightoftheevaluationindexoftheFujinwetland’secologicalhealth.
Level-1IndicatorLevel-2IndicatorWeightEHIScore
Soil(0.184)
pH0.073
3.68
Organicmattercontent0.045
TP0.031
TN0.022
Hg0.013
Water(0.382)
pH0.019
DO0.116
BOD50.057
CODMn0.037
Thecomprehensivenutritiveindex0.153
Wetlandwaterfowl(0.114)Waterfowlspeciesandpopulation0.114
Landscapeindices(0.243)
Changerateofwetlandarea0.056
Land-useintensity0.056
Largestpatchindex0.088
Patchdensity0.031
Shannon’sdiversityindex0.013
Society(0.077)Tourismvalue0.052
Scientificresearchvalue0.026
4.Discussion
4.1.WetlandLandscapePaern
Thelandscapepaernindexisanimportantindextomeasurethespatialstructure
characteristicsofalandscape.Itisamanifestationoflandscapeheterogeneityasaresult
ofvariousecologicalprocesses,includingdisturbance,actingatdifferentscales.Fromthe
perspectiveoftheentirewetlandlandscape,swampaccountsforthelargestproportion,
followedbywater.Intermsofthelandscapepaernindex,theLPIhasthelargestweight
ofthelandscapeindices,andtheSHDIhasthesmallestweight(Table5).Insimilarstudies,
Liuetal.developedalandscape-basedmulti-metricindex(LMI)toassessthecondition
ofthePoyangLakewetland;theresultsofthisstudyshowedthatahigherLPIvalueis
associatedwithabeerhealthstatusandahigherSHDIvalueisassociatedwithapoorer
healthstatus[77],whichisconsistentwiththeresultsofthisstudy.From2017to2022,the
wetlandareaofFNWPgraduallyincreased(876.72ha,910.73ha),whilethenumberof
patches(NP)andPDshowedadecreasingtrend(Table8).ThesignificantincreaseinLPI
indicatedthatthefragmentationofwetlandareahadbeendecreasingyearbyyear,and
thelandscape’sresistancetodisturbancehadincreased.SHDIreflectsthediversityand
heterogeneityofthelandscape[57,78].From2017to2022,theSHDIofthewetlands
slightlydecreased,indicatingaslightdecreaseintheheterogeneityofthewetlandland-
scape.Thefragmentedpatchesweregraduallyreplacedbywetlands,indicatingthatthe
landscapepaernofthewetlandswasgraduallyandslowlyrecovering.
Tab le8.Calculationresultsofwetlandlandscapeindicesin2017–2022.
YearNPPDLPISHDI
201744654.3837.941.16
202030302.9025.931.39
202224082.0953.410.99
Water2024,16,41012of16
4.2.EcologicalIndicators
Wetla ndwaterqualityandsoilareimportantindicatorsthatcharacterizetheeffec-
tivenessofwetlandrestorationandhaveahugeimpactonwetlandecologicalhealth.The
resultsofthisstudyindicatethat,in2022,thesoilTNandTPintheFNWPwetlandde-
creasedcomparedto2017.Themeanconcentrationofheavymetalmercury(Hg)inthe
soilsurfacewas0.06mg/kg,andtheiron(Fe)contentwas32,053mg/kg,whichweresig-
nificantlylowerthanthevaluesin2017(Hg:0.198mg/kg,Fe:35,497mg/kg)[60].These
findingssuggestedthatthewetlandsoilwashealthierandundergoingrecovery.Thismay
beduetotheincreaseinthewetlandarea,theriseofthewaterlevel,theaccelerationof
thereleaseratesofHgandFefromthesoil,andthereductioninfertilizeruseinthesur-
roundingfarmland[79,80].
Theresultsofthisstudyindicatedthat,in2022,theDOandCODMninthewaterof
theFNWPwetlandmetthenationalClassIwaterstandard(≥7.5,≤15).Theoverallcon-
centrationofBOD5waswithintheoptimalrange(3~4mg/L),suggestingthatthewater
qualityoftheFNWPwasgenerallygood[50].Wetlandshaveeffectivelyplayedtheirrole
inpurifyingthewaterquality.TheoverallwaterqualityofwetlandsintheFNWPin2022
wasmildlyeutrophic,withavalueof56.1,whichwasconsistentwithpreviousstudies
[43].Thismaybeaributedtothecontinuousaccumulationofnutrientsinfarmland
drainageditchesandtheincreaseinorganicmaercontentinthewaterbodies[53,81,82].
Asoneofthemostsensitiveindicatorspeciesofwetlands,wetlandbirdscancharac-
terizethediversityofspeciesandreflectthehealthofwetlands[83].Meretaetal.found
thatenvironmentalfactorsandanthropogenicdisturbanceswerethemaininfluencingfac-
torsonbirddiversity,whilespatialfactorsplayedanunimportantrole[84].Inthisstudy,
theShannon–WinnerdiversityandPielouevennessofbirdsin2022werefoundtobethe
highestinsummer,withvaluesof1.82and0.56(Table6),respectively,possiblyduetothe
abundanceoffoodinthemarshduringthisseason.Additionally,thelushgrowthof
plantssuchasreedsandirisesprovidebirdswithsuitablehidingconditions[54,55].
4.3.AnalysisoftheFNWPWetland’sHealthStatus
Theassessmentofecosystemhealthisaneffectivemethodforunderstandingthese-
curitystatusofecosystems,whichcanprovidebasicsupportforthehealthydevelopment
andplanningmanagementofecosystems[85].Inthisstudy,weutilizedfieldsurveys,on-
sitemonitoring,remotesensingtechnology,andlandscapepaernindicestoconstructan
ecologicalhealthevaluationsystemfortherestoredwetlandsintheFNWP.Weemployed
hierarchicalanalysistodeterminetheweightsofthevariousindicesandcalculatedthe
EHI,andthentheeffectivenessofthewetlandrestorationcouldbeinitiallyassessedbased
onitsEHIscore.Inapreviousstudy,Lietal.developedasystemtoassesstheeffective-
nessoftheFNWPwetlandrestoration,consideringfactorssuchaswatersupplyfunction,
waterquality,soilresources,speciesdiversity,landscapeadaptability,andparkconstruc-
tion,andtheresultsshowedthattheFNWPwetlandEHIscorewas3.5[60].Finally,the
FNWPwetlandwasconsideredtoberecoveringatasatisfactorylevel,whichalignswith
thefindingsofthisstudy,albeitwithaslightincrease(3.68).Accordingtothefinalassess-
mentofthewholeecosystem,theFNWPwetlandecosystemwasin“good”condition,this
resultismainlyaffectedbythewetlandwaterquality(Table6).Thisresultsuggeststhat
theecosystemmaintainsgoodnaturalconditions,itsstructureisreasonableandcomplete,
itsresilienceisstronganditsfunctionisnormal,theoutsidepressureonitissmall,its
restorationabilityisstrong,andabnormalphenomenadonotappearinsystem[61,86].
Thisstudyconstructedaswampwetlandecologicalhealthevaluationsystemforwet-
landsthatwereconvertedfromfarmlandtowetland,andappliedthissystemtothelater
healthevaluationofswampwetlands.However,duetolimitedresources,obtainingdata
forsomeindicatorsremainschallengingandthesystemisnotcomprehensiveenough.
Therefore,wewillcontinuetoconductin-depthresearchinthefuture,focusingonsup-
Water2024,16,41013of16
plementingandexpandingthesystemtoenhanceitsscientificnatureanduniversalap-
plicability.Intermsofwetlandsupervisionandmanagement,itiscrucialforrelevantgov-
ernmentdepartmentstoenhancepublicawarenessandeducation,increasepeople’s
awarenessoftheprotectionandsustainableutilizationofwetlandresources,andreduce
theuseofpesticides.Additionally,themanagementandconstructiondepartmentsre-
sponsiblefortheparkshouldprioritizethedevelopmentofecologicalandenvironmental
protectionfacilities.Duringtheconstructionprocess,carefulconsiderationshouldbe
giventowhetherthelevelofwetlandresourcesandecologicalutilizationrequirements,
aswellastheneedsofthecommunity,areultimatelyachievingaharmoniousbalance
betweenwetlandprotection,economicdevelopment,andsocialprogress[87,88].
5.Conclusions
TheecosystemhealthindexscoreoftherestoredwetlandintheFNWPis3.68,and
thewetlandecosystemisin“good”condition.Themainfactorsaffectingthehealthof
wetlandecosystemsarewetlandwaterquality,landscapestructure,andsoilproperties.
Theresultsofthisstudycanprovideascientificreferencefortheprotectionandmanage-
mentofrestoredwetlands.Inthefuture,weaimtoprocureamorecomprehensivedataset,
facilitatingthedevelopmentofascientificallyrigorousevaluationframework.
Aut ho rContributions:R.C.:conceptualization,methodology,investigation,software,formalanal-
ysis,writing—originaldraft,writing—reviewandediting.J.W.:conceptualization,methodology,
investigation,formalanalysis,writing—originaldraft,writing—reviewandediting.X.T.:supervi-
sion,conceptualization,datacuration,writing—originaldraft.Y.Z.:methodology,software,super-
vision,writing—reviewandediting.M.J.:datacuration,methodology,supervision,visualization.
H.Y.:fundingacquisition,projectadministration,visualization,resources.C.Z.:conceptualization,
fundingacquisition,supervision,resources.X.Z.:formalanalysis,investigation,software.Allau-
thorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(42001112).
DataAvailabilityStatement:Thedatapresentedinthisstudyareavailableonrequestfromthe
correspondingauthor.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Ma,Z.;Zhang,M.ProspectiveonDevelopmentTrendsofInternationalWet la nd ConservationandManagementfromthe12th
MeetingoftheConferenceofthePartiesoftheConventiononWetland s. Wetl.Sci.Manag.2015,13,523–527.
2. Moreno-Mateos,D.;Power,M.E.;Comín,F.A.;Yoc kt eng,R.Structuralandfunctionallossinrestoredwetlandecosystems.PLoS
Biol.2012,10,e1001247.
3. Wahlroos,O.M.;Valkama,P.;Mäkinen,E.;Ojala,A.;Vasa nder, H.;Väänänen,V.-M.;Halonen,A.;Linden,L.;Nummi,P.;
Ahponen,H.;etal.UrbanwetlandparksinFinland:Improvingwaterqualityandcreatingendangeredhabitats.Int.J.Biodiv.
Sci.Ecosyst.Serv.Manag.2015,11,46–60.
4. Wondie,A.EcologicalconditionsandecosystemservicesofwetlandsintheLakeTana Area,Ethiopia.Ecohydrol.Hydrobiol.
2018,18,231–244.hps://doi.org/10.1016/j.ecohyd.2018.02.002.
5. Chen,W.;Cao,C.;Liu,D.;Tian,R.;Wu,C.;Wan g, Y.; Qian,Y.; Ma,G.;Bao,D.Anevaluatingsystemforwetlandecological
health:CasestudyonnineteenmajorwetlandsinBeijing-Tianjin-Hebeiregion,China.Sci.TotalEnviron.2019,666,1080–1088.
6. Cao,T.G.;Yi ,Y.;Liu,H.X.;Yang, Z.F.Integratedecosystemservices-basedcalculationofecologicalwaterdemandforamacro-
phyte-dominatedshallowlake.Glob.Ecol.2020,21,e00858.
7. Cai,Y.;Liang,J.;Zhang,P.;Wan g,Q.;Wu,Y.;Ding,Y.;Wang ,H.;Fu,C.;Sun,J.Reviewonstrategiesofclose-to-naturalwetland
restorationandabriefcaseplanforatypicalwetlandinnorthernChina.Chemosphere2021,285,131534.
8. Maltby,E.;Acreman,M.C.Ecosystemservicesofwetlands:Pathfinderforanewparadigm.Hydrol.Sci.J.2011,56,1341–1359.
9. Mitsch,W.J.;Bernal,B.;Hernandez,M.E.Ecosystemservicesofwetlands.Int.J.Biodiv.Sci.Ecosyst.Serv.Manag.2015,11,1–4.
10. Jiang,T.T.;Pan,J.F.;Pu,X.M.;Wa ng ,B.;Pan,J.J.CurrentstatusofcoastalwetlandsinChina:Degradation,restoration,and
futuremanagement.Estuar.Coast.ShelfSci.2015,164,265-275.
11. Xu,S.;Liu,X.;Li,X.;Tian,C.Soilorganiccarbonchangesfollowingwetlandrestoration:Aglobalmeta-Analysis.Geoderma
2019,353,89–96.
12. Ekumah,B.;Armah,F.A.;Afrifa,E.K.;Aheto,D.W.;Odoi,J.O.;Afitiri,A.-R.Geospatialassessmentofecosystemhealthofcoastal
urbanwetlandsinGhana.OceanCoast.Manag.2020,193,105226.
Water2024,16,41014of16
13. Zhang,Y.;Jeppesen,E.;Liu,X.;Qin,B.;Shi,K.;Zhou,Y.;Thomaz,S.M.;Deng,J.Globallossofaquaticvegetationinlakes.Earth
Sci.2017,173,259–265.
14. Sieben,E.J.J.;Khubeka,S.P.;Sithole,S.;Job,N.M.;Koe,D.C.Theclassificationofwetlands:Integrationoftop-downandbot-
tom-upapproachesandtheirsignificanceforecosystemservicedetermination.Wetl.Ecol.Manag.2018,26,441–458.
15. Sizo,A.;Noble,B.;Bell,S.FuturesanalysisofurbanlanduseandwetlandchangeinSaskatoon,Canada:Anapplicationin
strategicenvironmentalassessment.Sustainability2015,7,811–830.
16. Tong,Y.;Zhang,W.;Wang,X.;Couture,R.-M.;Larssen,T.;Zhao,Y.;Li,J.;Liang,H.;Liu,X.;Bu,X.;etal.DeclineinChinese
lakephosphorusconcentrationaccompaniedbyshiftinsourcessince2006.Nat.Geosci.2017,10,507–511.
17. Best,J.Anthropogenicstressesontheworld’sbigrivers.Nat.Geosci.2018,12,7–21.
18. Davidson,N.C.Howmuchwetlandhastheworldlost?Long-termandrecenttrendsinglobalwetlandarea.Mar.Freshw.Res.
2014,65,219–235.hps://doi.org/10.1016/B978-0-12-817803-4.00019-X.
19. Fluet-Chouinard,E.;Stocker,B.D.;Zhang,Z.;Malhotra,A.;Melton,J.R.;Poulter,B.;Kaplan,J.O.;Goldewijk,K.K.;Siebert,S.;
Minayeva,T.;etal.Extensiveglobalwetlandlossoverthepastthreecenturies.Nature2023,614,281–286.
20. Costanza,R.;deGroot,R.;Suon,P.;vanderPloeg,S.;Anderson,S.J.;Kubiszewski,I.;Farber,S.;Turner,R.K.Changesinthe
globalvalueofecosystemservices.Glob.Environ.Chang.2014,26,152–158.
21. Liu,W.;Guo,Z.;Jiang,B.;Lu,F.;Wang,H.;Wang,D.;Zhang,M.;Cui,L.ImprovingwetlandecosystemhealthinChina.Ecol.
Ind.2020,113,106184.hps://doi.org/10.1016/j.ecolind.2020.106184.
22. Chatanga,P.;Koe,D.C.;Okello,T.W.;Sieben,E.J.Ecosystemservicesofhigh-altitudeAfromontanepalustrinewetlandsin
Lesotho.Ecosyst.Serv.2020,45,101185.
23. Zhu,H.;Wu,H.T.;Xing,X.X.;Xie,T.;Song,C.;Wang ,G.;Jiang,M.Achievementofwetlandprotectionandrestorationand
developmentstrategiesinChina.Bull.Chin.Acad.Sci.2023,38,365–375.(InChinese)
24. Cui,B.;Ya ng ,Z.Researchadvanceofwetlandecosystemhealth.Chin.J.Ecol.2001,20,31–36.(InChinese)
25. Keiter,R.B.Ecosystemsandthelaw:Towardanintegratedapproach.Ecol.Appl.1998,8,332–341.
26. Kim,J.J.;Atique, U.;An,K.G.Long-TermEcologicalHealthAssessmentofaRestoredUrbanStreamBasedonChemicalWater
Quality,PhysicalHabitatConditionsandBiologicalIntegrity.Water2019,11,114.
27. Hruby,T.Te st in gtheBasicAssumptionoftheHydrogeomorphicApproachtoAssessingWetl an dFunctions.Environ.Manag.
2001,27,749–761.
28. Rapport,D.J.;Friend,A.M.TowardsaComprehensiveFrameworkforEnvironmentalStatistics:AStress‐ResponseApproach;Statistics
Canada:Oawa,ON,Canada,1979;Volume11,p.87.
29. Brown,M.T.;Vivas,M.B.Landscapedevelopmentintensityindex.Environ.Monit.Assess.2005,101,289–309.
30. Malekmohammadi,B.;Jahanishakib,F.Vulnerabilityassessmentofwetlandlandscapeecosystemservicesusingdriver-pres-
sure-state-impact-response(DPSIR)model.Ecol.Indic.2017,82,293–303.
31. Chen,F.;Su,S.C.;Chen,Y.;Li,N.;Wa ng ,R.;Yo u, W.B.;He,D.J.EcologicalHealthAssessmentofCoastalWetlan ds Basedon
PSRModelinEasternFujian.Wetl.Sci.Manag.2020,16,25–29.(InChinese)
32. Zhang,L.L.;Liu,J.L.;Yang ,Z.F.;Li,Y.;Ya ng, Y.Integratedecosystemhealthassessmentofamacrophyte-dominatedlake.Ecol.
Model.2013,252,141–152.
33. Mo,M.;Wang,X.;Wu,H.;Cai,S.;Zhang,X.;Wang,H.EcosystemHealthAssessmentofHonghuLakeWetl an dofChinaUsing
ArtificialNeuralNetworkApproach.Chin.Geogra.Sci.2009,19,349–356.
34. Sun,R.;Yao, P.;Wan g, W.;Yue,B.;Liu,G.AssessmentofWe tl an dEcosystemHealthintheYangeandAmazonRiverBasins.
ISPRSInt.J.Geo‐Inf.2017,6,81.
35. Wu,C.;Chen,W.;Cao,C.;Tian,R.;Liu,D.;Bao,D.DiagnosisofWe tl an dEcosystemHealthintheZoigeWetlan d, Sichuanof
China.Wetla nds2018,38,469–484.
36. Wu,C.;Chen,W.Indicatorsystemconstructionandhealthassessmentofwetlandecosystem—TakingHongzeLakeWetla nd ,
Chinaasanexample.Ecol.Indic.2020,112,106164.
37. Wang,W.;Sun,M.;Li,Y.;Zhao,S.;Zhang,Z.;Luan,X.Multi-LevelComprehensiveAssessmentofConstructedWetla nd Eco-
systemHealth:ACaseStudyofCuihuWetl an dinBeijing,China.Sustainability2022,14,13439.
hps://doi.org/10.3390/su142013439.
38. Mao,X.;Wei ,X.;Jina,X.;Ta o,Y.;Zhang,Z.;Wan g, W.MonitoringurbanwetlandsrestorationinQinghaiPlateau:Integrated
performancefromecologicalcharacters,ecologicalprocessestoecosystemservices.Ecol.Indic.2019,101,623–631.
hps://doi.org/10.1016/j.ecolind.2019.01.066.
39. Galatowitsch,S.;Bohnen,J.Predictingrestorationoutcomesbasedonorganizationalandecologicalfactors.Restor.Ecol.2020,
28,1201–1212.
40. Galatowitsch,S.;Bohnen,J.Long-TermRecoveryofaRestoredPalustrineWetland :TheRoleofMonitoringandAdaptiveMan-
agement.Wetlands2021,41,80.
41. Zhao,K.MiresinChina;SciencePress:Beijing,China,1999.(InChinese)
42. Li,X.BlackswanswerefoundinSanhuanpaoNatureReserve.Chin.Wildl.2005,3,29.hps://doi.org/10.19711/j.cnki.issn2310-
1490.2005.03.014.(InChinese)
43. Li,N.;Tian,X.;Fu,H.C.;Li,Y.;Jia,X.;Jin,G.;Jiang,M.SeasonalandSpatialVariabilityofWate rQualityandNutrientRemoval
EfficiencyofRestoredWetland :ACaseStudyinFujinNationalWet la ndPark,Chin.Chin.Geogr.Sci.2018,28,123–133.
Water2024,16,41015of16
44. Liu,X.;Ma,X.InfluenceofLarge-ScaleReclamationonNaturalEnvironmentandRegionalEnvironmentalProtectioninthe
SanjiangPlain.Sci.Geogr.Sin.2000,20,14–19.(InChinese)
45. Liu,D.W.LandUse/CoverChangeanditsEnvironmentalEffectsinSanjiangPlaininthePast50Ye ars.Master’sThesis,Jilin
University,Changchun,China,2006.
46. Yuan,Z.;Liu,X.;Du,H.;Zhang,M.Canartificialecologicalislandsalterthebiodiversityofmacroinvertebrate?Acasestudyin
FujinNationalWetlandPark,theSanjiangPlain,China.Ecol.Evol.2021,11,14988–15003.
47. Wan,H.L.;Wang,S.G.;Chen,B.;Xia,C.Y.;Su,R.Ecologicalriskassessmentandspatialthresholdanalysisofwetlandinthe
SanjiangPlain.ActaEcol.Sin.2022,42,6595–6606.
48. Sun,M.Y.;Tian,X.;Zou,Y.C.;Jiang,M.Ecologicalaestheticassessmentofarebuiltwetlandrestoredfromfarmlandandman-
agementimplicationsforNationalWetlandParks.PLoSONE2019,14,e0223661.
49. Liu,J.;Ye,J.;Yang ,W.;Guo,H.C.;Yu,S.X.AGIS-BasedLandscapePaernOptimizationApproachforLakeDianchiWater sh ed .
J.Nat.Resour.2012,5,801–808.(InChinese)
50. GB3838‐2002;EnvironmentalQualityStandardsforSurfaceWate r. ChinaEnvironmentalSciencePress:Beijing,China,2002.(In
Chinese)
51. Zhang,J.Y.;Ni,W.M.;Luo,Y.;Stevenson,R.J.;Qi,J.G.ResponseoffreshwateralgaetowaterqualityinQinshanLakewithin
Tai huWatershed,China.Phys.Chem.Earth2011,36,360–365.
52. Huo,S.;Ma,C.;Xi,B.;Su,J.;Zan,F.;Ji,D.;He,Z.Establishingeutrophicationassessmentstandardsforfourlakeregions,China.
J.Environ.Sci.2013,25,2014–2022.
53. Liu,X.;Zhang,G.;Sun,G.;Wu,Y.;Chen,Y.AssessmentofLakeWaterQualityandEutrophicationRiskinanAgricultural
IrrigationArea:ACaseStudyoftheChaganLakeinNortheastChina.Water2019,11,2380.
54. Liu,H.;Li,T.;Chen,L.;Wang,Q.SeasonalVariation ofBirdDiversityinWetlands alongRiverinFujinCity,Heilongjiang
Province.Wetl.Sci.2015,13,577–581.
55. Zhou,Y.;Sheng,C.;Yuan,Y.ChangesofBirdDiversityinFujinNationalWetlandParkinHeilongjiangProvince.We tl.Sci.
Manag.2017,13,57–60.
56. Sun,Y.EcosystemHealthEvaluationofRizhaoFutongEstuaryWetlandBasedonRSandGIS.Master’sThesis,QufuNormal
University,Jining,China,2016.
57. Zhou,Y.AssessmentoftheEcologicalHealthofWetl an dsinBaiyangdianNatureReservebyRSandGISTech ni qu es .Master’s
Thesis,HebeiUniversity,Baoding,China,2017.
58. Zhang,F.;Wang,X.;Liang,X.;Kong,X.;Zhang,Q.;Yan g,L.AnalysisofClassificationandMappingforGreatGroup,Subgroup
inSecondNationalSoilSurvey.Soils2014,46,761–765.(InChinese)
59. Ren,J.;Sun,Y.;Chen,X.;Fan,Z.AnAssessmentofEcosystemHealthinJiuduanshaWetl andbasedonPSRModel.Wetl.Sci.
Manag.2012,8,12–16.
60. Li,N.EcologicalCharacteristicsChangeandEffectEvaluationforTypicalRestoredWe tlan dsintheSanjiangPlain.Ph.D.Thesis,
NortheastForestryUniversity,Harbin,China,2019.
61. Hua,G.;Li,Y.;Huang,C.;Liang,C.;Wang ,J.StudyontheAssessIndexSystemoftheEcologicalRestorationtotheLaluWe tland
inTibet.J.SichuanUniv.(Eng.Sci.Ed.)2005,37,20–25.
62. Saaty,T.L.Ascalingmethodforprioritiesinhierarchicalstructures.Math.Psychol.1977,15,234–281.
63. Höfer,T.;Sunak,Y.;Siddique,H.;Madlener,R.WindfarmsitingusingaspatialAnalyticHierarchyProcessapproach:Acase
studyoftheStädteregionAachen.Appl.Energy2016,163,222–243.
64. Achour,Y.;Boumezbeur,A.;Hadji,R.;Chouabbi,A.;Cavaleiro,V.;Bendaoud,E.A.Landslidesusceptibilitymappingusing
analytichierarchyprocessandinformationvaluemethodsalongahighwayroadsectioninConstantine,Algeria.Arab.J.Geosci.
2017,10,194.
65. Sun,B.;Tang,J.;Yu,D.;Song,Z.PenggangWang.Ecosystemhealthassessment:APSRanalysiscombiningAHPandFCEmeth-
odsforJiaozhouBay,China.OceanCoast.Manag.2019,168,41–50.
66. Khodaparast,M.;Rajabi,A.M.;Edalat,A.MunicipalsolidwastelandfillsitingbyusingGISandanalyticalhierarchyprocess
(AHP):AcasestudyinQomcity,Iran.Environ.EarthSci.2018,77,52.
67. Thanh,L.N.;DeSmedt,F.ApplicationofananalyticalhierarchicalprocessapproachforlandslidesusceptibilitymappinginA
Luoidistrict,ThuaThienHueProvince,Vietnam.Env.EarthSci.2011,66,1739–1752.
68. Carmone,F.J.,Jr.;Kara,A.;Zanakis,S.H.AMonteCarloinvestigationofincompletepairwisecomparisonmatricesinAHP.
Eur.J.Oper.Res.1997,102,538–553.
69. Sutadian,A.D.;Muil,N.;Yilmaz,A.G.;PereraBJ,C.UsingtheAnalyticHierarchyProcesstoidentifyparameterweightsfor
developingawaterqualityindex.Ecol.Indic.2017,75,220–233.
70. Chen,Y.;Bouferguene,A.;Al-Hussein,M.Analytichierarchyprocess-simulationframeworkforlightingmaintenancedecision-
makingbasedontheclusterednetwork.J.Perform.Constr.Facil.2018,32,04017114.
71. Luu,C.;Meding,J.V.;Kanjanabootra,S.Assessingfloodhazardusingfloodmarksandanalytichierarchyprocessapproach:A
casestudyforthe2013floodeventinQuangNam,Vietnam.Nat.Hazards2018,90,1031–1050.
72. Saaty,T.L.Theanalytichierarchyandanalyticnetworkprocessesforthemeasurementofintangiblecriteriaandfordecision-
making.InMultipleCriteriaDecisionAnalysis:StateoftheArtSurveys;Figueira,J.,Greco,S.,Ehrgo,M.,Eds.;Springer:New
York,NY,USA,2005;pp.345–405.
Water2024,16,41016of16
73. Xu,S.;Rowntree,J.;Borrelli,P.;Hodbod,J.;Raven,M.R.Ecologicalhealthindex:Ashorttermmonitoringmethodforland
managerstoassessgrazinglandsecologicalhealth.Environments2019,6,67.
74. Song,C.Y.;Hu,H.X.;Huang,H.;Ren,H.X.;Huang,C.Assessingthehealthofrehabilitatedreedwetlandecosysteminthe
Yellow RiverDelta.ActaEcol.Sin.2016,36,2705–2714.hps://doi.org/10.5846/stxb201505060923.
75. Liu,J.;Guo,J.;Guo,J.;Zheng,S.;Lin,L.TheEcologicalEvaluationoftheForestEcosystemsinMangdangshanNatureReserve.
J.FujianColl.For.2003,23,106–110.
76. Li,R.;Chai,M.;Qiu,G.;Shi,F.;Sasa,K.ProfileNutrientDistributionandSedimentaryCharacteristicsinTypicalMarshesof
SanjiangPlain.Environ.Sci.2014,35,2928–2936.(InChinese)
77. Liu,D.;Liu,L.;You,Q.;Hu,Q.;Jian,M.;Liu,G.;Cong,M.;Yao, B.;Xia,Y.;Zhong,J.;etal.DevelopmentofaLandscape-Based
Multi-MetricIndextoAssessWetl andHealthofthePoyangLake.RemoteSens.2022,14,1082.hps://doi.org/10.3390/rs14051082.
78. Ma,R.StudyonLandscapeEcologicalHealthinPanjinShuangtaiziEstuarineandCoastalWetl an dBasedonRemoteSensing
Image.Master’sThesis,DalianMaritimeUniversity,Dalian,China,2015.
79. Jiao,W.;Ouyang,W.;Hao,F.;Wa ng ,F.;Liu,B.Long-termcultivationimpactontheheavymetalbehaviorinareclaimedwet-
land,NortheastChina.J.SoilsSediments2014,14,567–576.
80. Zhang,H.;Wan g,S.;Wang,J.;Wu,X.;Ma,S.;Wu,Y.;Li,J.;Xu,N.Effectsofdifferentlandusetypesonsoilphysicochemical
propertiesandaggregatecompositioninSanjiangPlainwetland.Chin.J.Ecol.2019,38,1679–1687.
81. Liu,J.T.;Fang,S.W.;Sun,J.J.NutrientzoningofPoyangLakebasedonaquaticeco-environmentindices.Environ.EarthSci.2016,
75,61.
82. Fang,N.;You ,Q.;Liu,L.;Li,J.;Lu,C.;Zhang,L.;Yang ,T.;Yu,Z.;Lü,Z.;Yang ,W.EvaluationofeutrophicationinPoyangLake
wetlandduringautumnbasedonthecloudmodel.ActaEcol.Sin.2019,39,6314–6321.
83. Xiao,K.;Zhu,Y.;Zhou,M.;Fan,R.HealthAssessmentofWetlandinSuzhouBasedonBird-basedIndexofBioticintegrity.J.
Chin.UrbanFor.2022,20,114–119.(InChinese)
84. Mereta,S.T.;Lemmens,P.;DeMeester,L.;Goethals,P.L.M.;Boets,P.TheRelativeImportanceofHumanDisturbance,Environ-
mentalandSpatialFactorsontheCommunityCompositionofWe tlandBirds.Water2021,13,3448.
85. Peng,C.;Li,B.;Nan,B.Ananalysisframeworkfortheecologicalsecurityofurbanagglomeration:AcasestudyoftheBeijing-
Tianjin-Hebeiurbanagglomeration.J.Clean.Prod.2021,315,128111.
86. Cui,B.S.;Yan g,Z.F.EstablishinganIndicatorSystemforEcosystemHealthEvaluationonWetlan ds .ATheoreticalFramework.
ActaEcol.Sin.2002,22,1005–1011.
87. Jiang,M.;Zou,Y.C.;Zhang,G.X.;Tong,S.;Wu,H.;Liu,X.;Zhang,Z.;Xue,Z.;Lü,X.Progressandprospectsofwetlandscience
inChina-Commemorationonthe60thanniversaryofthefoundingofNortheastInstituteofGeographyandAgroecology,Chi-
neseAcademyofSciences.Wetl.Sci.2018,16,279–287.(InChinese)
88. Yu,G.R.;Yang ,M.;Hao,T.X.Coordinatethefive-poolfunctionsofecosystemandbuildstrongnationalecologicalinfrastruc-
tures—Ecologicalconstructionideology,tasksandgoalsinthenewdevelopingeraofChina.Bull.Chin.Acad.Sci.2022,37,1534–
1538.(InChinese)
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualau-
thor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto
peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.