ArticlePDF Available

Abstract

This review article examines artificial intelligence (AI)'s role in strategic marketing decision-making. The researchers interviewed experts with experience in decision-making and used Carrefour Iraq as a case study to identify themes on how humans use AI for better strategic marketing decision-making. The key themes in this review were factors such as big data, efficiency, quality, trust, and limitations for prediction. The study has also looked into the marketing aspect of these themes within the scope of this research. The findings indicate that AI is recognized as a tool that may support humans in making strategic decisions in marketing. However, AI can technically make such decisions without human intervention; people do not want to give AI-complete autonomy in decision-making. Furthermore, the result implies that rather than making decisions independently, AI is more frequently applied to enhance strategic decision-making. It suggests that Al aims to improve decision-making rather than supplant people in daily life. In addition, the study makes the case that Al can assist humans in making better decisions by forecasting future scenarios that consider a particular action consequence.
34 Cihan University-Erbil Journal of Humanities and Social Sciences
10.24086/cuejhss.vol8n1y2024.pp34-39





Abstract––This review article examines articial intelligence (AI)’s role in strategic marketing decision-making. The researchers
interviewed experts with experience in decision-making and used Carrefour Iraq as a case study to identify themes on how humans use AI
for better strategic marketing decision-making. The key themes in this review were factors such as big data, eciency, quality, trust, and
limitations for prediction. The study has also looked into the marketing aspect of these themes within the scope of this research. The ndings
indicate that AI is recognized as a tool that may support humans in making strategic decisions in marketing. However, AI can technically
make such decisions without human intervention; people do not want to give AI-complete autonomy in decision-making. Furthermore,
the result implies that rather than making decisions independently, AI is more frequently applied to enhance strategic decision-making.
It suggests that Al aims to improve decision-making rather than supplant people in daily life. In addition, the study makes the case that
Al can assist humans in making better decisions by forecasting future scenarios that consider a particular action consequence.
Keywords—Articial intelligence, Big data, Marketing decision, Marketing, Strategic decision-making.


       
refers to a machine’s capacity to mimic the abilities of
       
     
     
        
         
       
       
       
       
     
        
         
      
         
         
      
         
         
       
         
        
 
      
       
       
      
          
         
     
the abundance of consumer data at businesses’ disposal have
 
      
       
    
       
        
         
         
    


The sole aim of the study is to understand the concept and
    
  







 
10.24086/cuejhss.vol8n1y2024.pp34-39

        
      
         
         
      
       
        

        
        
          
      
        
        
         

  
          
        
        
         
        
         
business has shifted from an operational perspective to a
        
          
          
from historical data to automate the corporate process to
 

        
      
        

        
         
  
The Al platform incorporates state-of-the-art neural and
       
        
          
        
        
     

        
        

       
people tend to form opinions about one another based on
  
       
        
 
        
  

        
        
    

         
        
          
           
        
      
      
           

       
 
  
       
  
      
      

A. Conceptual Framework
         
       
     

          
       
   . 1 depicts the Colson model that
  
  

        
        
human accepts the machine’s potential actions and evaluates
  
        
       
        
         
        
  
       
       
uses human support to create a business decision instead of
          
          
       
         
 

       
  
36 Cihan University-Erbil Journal of Humanities and Social Sciences
10.24086/cuejhss.vol8n1y2024.pp34-39
       
        

        
       
        
 
        
         
study’s data and dependability can support and corroborate
       
         
     
       
        
       
        
      
       

       
 

A. AI and Big Data Analysis in Decision-making
       
         
        

        
         


businesses to predict brand perform better and understand
          
 
         

        
  

      
         
 
 
          
   
  

       
        
   
       

         

       
         
 
B. AI and Eciency in Decision-making
       
      
      
          

        
      
     
        
       
          
        

         
         
      
      
 
        
  
        
 
        
       
       
        
        
       
         
       

 
10.24086/cuejhss.vol8n1y2024.pp34-39
         
          
       
       
       
       
        
   
       
       

C. AI and the Quality of the Decision-making
       
       
         
        
     
      
         


        
         
        
        
        
        
       
      
      
      
       
that they only use their ads to reach potential clients.
  


  
        

       
  

        

 
 
         
psycho  
D. Al and the Trust in Decision-making
There must be transparency in the input data to understand
  
        
         


    table for their decisions depends on
        
       
       
        
        
      
         
        
      
only use the code or methods to process data. A pandemic
        
          
          
        
   
E. Al and the Limitations in Decision-making
        

only one of the situations discussed revealed problems
        
      
     
         
unpredictable     
         
  
       
        


         
          
   
        
       
     



 
       
 
 
      
       
    
       
        

         
         
         
       
38 Cihan University-Erbil Journal of Humanities and Social Sciences
10.24086/cuejhss.vol8n1y2024.pp34-39
        


        
         
       
comments and used Carrefour as a case to identify the role
        
      
        

  
  
        
       
possible action option but does not employ Al to forecast
        
      
and data process. Al’s ability to foresee future occurrences
        
      
Carrefour as a case study.

 
     
        
     
       
        
data to consider their decisions as the system can process a
        
         
   
   
        
      
        
       
       
       
       
       
       
         
  
  
     
        
also a need to prove the development and enhancement of

A. Limitations and Future Research
        
         
  
could only be relevant to this particular circumstance. The
future researcher may need to collect data from a broader
        
 
          
      
 
         
      
      
       
        

 
 
          

        
         
       
 
         
 
        
       

   
been completed in such a short time.

     
     
opportunities in Spanish coast. International Journal of Sustainable Development
and Planning

MIT Sloan Management Review
   
   Cihan University-Erbil Journal of
Humanities and Social Sciences


   International Journal of
Information Management
  

Journal of Big data

International Journal of Consumer Studies

What AI-Driven Decision Making Looks Like. Harvard


      
   Journal of the Academy of
Marketing Science
      
Cihan University-Erbil Journal of Humanities and Social Sciences 39
10.24086/cuejhss.vol8n1y2024.pp34-39

International Journal of Information Management

Review of Financial Studies
     
       
     
   
International Journal of Production Economics


 
The TQM Journal

Education Sciences



International Journal of Entrepreneurial Behavior and Research

of empirical research. Academy of Management Annals

 
Autonomous Robots
     
     International
Leadership Journal
       
 Journal of the Academy of Marketing Science

The Impact of Articial Intelligence on Marketing.
 

 The Importance of Leadership Styles in Decision Making
Process: A Research in Charity Organizations in Iraq



Business Horizons
One E-Commerce Company Used AI to Get a 3,000% Return
on ad Spend


 5 Powerful Examples of AI in Marketing 


  The Promise of Articial
Intelligence - Redening Management in the Workforce of the Future. Accenture
Institute for High Performance

   
    
implications. European Journal of Operational Research


Management Information Systems Quarterly

 Journal of Organizational
and End User Computing
    
Annals of Operations Research

       Operations
Management Researc

leadership. Journal of Management and Business Education

International Journal of Supply Chain Management

Cihan University-Erbil Journal of Humanities and Social Sciences
      
   
International Journal of Procurement Management
Rebooting AI: Building articial intelligence
we can trust

The Academy of Management Review
The State of Ai in 2021


Qualitative Research: A Guide to Design
and Implementation. 4th



Neuron
 AI for Marketing and
Product Innovation: Powerful New Tools for Predicting Trends, Connecting with
Customers, and Closing Sales
The Fourth Industrial Revolution. 1st   


    California
Management Review
Impossible Foods Leverage Real-time Data for Market
Expansion


    
 
The Bottom Line 
183-200.
  AI Decision Making: The Future of Business Intelligence.
 

AI in Decision Making
 

Using AI for Marketing: How Machines Optimize Decision-
Making

Case Study Research: Design and Methods. 6th ed. Thousand

... The advent of AI in digital marketing has revolutionized how businesses interact with consumers, particularly in the lifestyle product segment (Massoudi et al., 2024). AIdriven technologies, such as personalized recommendations, predictive analytics, chatbots, and sentiment analysis, have enabled marketers to craft tailored experiences that resonate with individual consumer preferences and behaviors. ...
Article
Full-text available
The impact of Artificial intelligence (AI)-powered digital marketing practices on consumer purchase intention toward lifestyle goods is the focus of this research and aims at analyzing the mediating role of consumer motivation (CM) in the relationship between consumer attitude (CA) and purchase behavior (PB) toward lifestyle products. The study uses descriptive research design to understand CA, motivation, and PB. The study is based on 577 responses collected from Uttar Pradesh state (India). Structural equation modeling was carried out with the help of SmartPLS. Evidence shows a robust relationship between consumers’ attitude, motivation and PB, and an optimistic outlook on AI-driven marketing campaigns is likely to inspire more action, given the robust positive correlation between customer attitude and motivation. The study also emphasizes the importance of CM as a mediator in the relationship between CA and PB. It emphasizes the strategic tools for improving PB in the dynamic digital marketing landscape, which include cultivating a positive CA. The study contributes to the theory by highlighting CM as a critical mediator linking CA s to PB for lifestyle products, advancing understanding of the attitude-behavior relationship in consumer behavior models. Managerially, it underscores the importance of designing marketing strategies that enhance CM, such as personalized engagement, value-driven messaging, and emotional appeal. By fostering motivation, brands can effectively translate positive attitudes into stronger PB, driving sales and long-term consumer loyalty in the lifestyle segment.
... During stable economic periods, large companies attract labor with higher salaries, reducing small business establishment and the role of SEP. However, recessions increase unemployment, prompting individuals to start their ventures (Kashina and Utkina, 2015;Massoudi et al., 2024). ...
Article
Full-text available
This paper examines the disparity between male and female Syrian university students in enhancing intellectual awareness and developing entrepreneurial skills in the charitable sector. It explores how these influential groups can contribute to activating the roles of institutions and individuals in serving society humanely. The study's hypotheses were based on variables such as entrepreneurial intentions, self-efficacy, perceived social support, moral obligation, and empathy. Results support the existence of gender differences among private university students. Findings reveal that many Syrians have the potential and strong desire to become social entrepreneurs despite facing significant economic and social challenges. The study also underscores the urgent need for systematic education for those addressing social issues in Syria. It recommends that Syrian educational institutions incorporate courses on social entrepreneurship, possibly through relevant elective courses.
... During stable economic periods, large companies attract labor with higher salaries, reducing small business establishment and the role of SEP. However, recessions increase unemployment, prompting individuals to start their ventures (Kashina and Utkina, 2015;Massoudi et al., 2024). ...
... AI is consistently transforming the EC sector, particularly with the rise in online shopping propelled by the COVID-19 pandemic. As consumers increasingly embrace EC solutions, their behaviors and preferences are evolving, further fueling the demand for AI technology in businesses (Massoudi et al., 2024). Piccialli et al. (2021) suggested a substantial growth trend for the retail AI market, with an annual growth rate of 35% from 2020 to 2027, likely to reach $7 billion in value. ...
Article
Full-text available
The rapid advancement of technology has significantly changed how consumers approach their purchasing habits. The global volume of online commerce has seen a significant surge, largely due to the COVID-19 pandemic, which has accelerated the growth of e-commerce. Increasingly, online merchants are incorporating cutting-edge Artificial Intelligence technology into their platforms to better grasp customer needs and enrich the shopping journey. However, there has been little research conducted on how consumers adapt to and utilize artificial intelligence powered online stores. This study seeks to examine the connection between the elements of the Technology Acceptance Model and E-commerce, with artificial intelligence serving as a mediator in this relationship. A survey was conducted with 352 Iraqi participants who participate in online shopping. Structural equation modelling was applied for data analysis. After establishing the initial theoretical model, a nested model based on TAM was formulated and examined. The finding showed that both ease of use and usefulness as a TAM component positively influences the likelihood of AI adoption and continued usage among online shoppers. Also, artificial intelligence has a positive influence on the customers' adoption of E-commerce. Finally, artificial intelligence plays a mediate role between Technology Acceptance Model and E-commerce. These results offer valuable insights for online retailers looking to improve customer adoption of AI technologies.
... It is used to make a balance between cost savings and product development. [26] Each manufacturing companies try to have a high-quality product and avoid defective products. In Soares et al., [27] a decision support model has been proposed to help decide the destination of defective products in mass production industries, aiming to reduce quality costs and improve overall quality. ...
Article
Full-text available
Industrial Wireless Sensor Networks are increased in recent years due to provide real-time monitoring, decision-making and controlling. Industrial Wireless Sensor Networks used in many factories such as: food production, aircraft factory and pharmaceutical factory. The aim of this research is to focus on the Industrial Wireless Sensor Networks in smart factory and the challenges that need to be considered in use such as: its location, energy consumptions and security. The research discuss different issues are highlighted the importance of using real-time decision-making to improve the performance of the process and provide service monitoring for industrial process improvement.
... AI is any human-like intelligence displayed by a computer, robot, or other machine. [1] AI is interested in building machines or developing software that can perform tasks that normally require human intelligence. AI allows machines to learn from experience, adapt to new inputs, and perform human-like tasks. ...
Article
Full-text available
The impact of artificial intelligence (AI) is clear and highly influential in many areas of sports, helping to improve team and player results. Not only that, but AI has been introduced into the areas of training and analysis of data and results, emulating and presenting potential hypothetical scenarios through the capabilities employed in AI to enable accurate and effective training in emergency and critical situations. Another major benefit of using AI in sports is to analyze data and game stats to improve team performance in future games. Improved good decision-making capability has made using AI applications gain huge popularity and attention in both academia and industry, especially in the sports industry. The main problem associated with using AI applications in sports is that the usefulness of AI for many sports viewers, experts, coaches, team managers, and policymakers is not clear, especially when they are not particularly familiar or experts in the field of AI. Similarly, for many, the reasons for employing AI and machine learning models for mathematical analysis in areas such as sports remain lackluster or unclear. In this research paper, the authors present a review of the importance of using AI applications in sports for the people involved in the sports industry in general and especially for the Iraqi academic staff and those working in the sports field. The stakeholders and the parties involved need to learn how to use the principles of AI knowledge and conduct research to improve the performance of Iraqi teams and players.
Article
Full-text available
The integration of artificial intelligence (AI) into social media platforms has revolutionized how individuals and organizations interact, communicate, and consume information. This literature review explores the multifaceted opportunities and challenges presented by AI in social media. It examines AI-driven technologies such as natural language processing, computer vision, and machine learning in the context of content moderation, personalized recommendations, sentiment analysis, and user engagement. In addition, the review discusses ethical concerns, including data privacy, algorithmic bias, and the potential for misinformation dissemination. By analyzing existing research and real-world applications, this paper highlights the transformative potential of AI in enhancing social media experiences while emphasizing the need for responsible and transparent AI development. The review concludes with perspectives on future trends, such as the rise of generative AI and its implications for content creation and authenticity.
Article
Full-text available
Artificial intelligence and its practical applications have become one of the topics that have taken up a wide scope in modern studies, and the scope of its study has expanded to include fields that were not known a decade ago, especially after its practical applications entered various aspects of the country, from military plans and mechanisms, advanced automation of the economic system, international trade applications, and the introduction of artificial intelligence. In improving and evaluating institutional performance in the country, accordingly, the research comes as an attempt to determine the strategy for applying artificial intelligence in government institutions to reach an institutional performance evaluation process based on impartiality and objectivity.
Article
Full-text available
Based on the current laws in Iraq's criminal legislative system, this research addresses the issue of identifying a legal framework for characterising digital drugs and thereby establishing criminal culpability. On the one hand, and on the other hand, we have tried to urge the Iraqi federal and Kurdistan regional legislators to synchronise the repercussions of the emerging cybercrime and predicate the future consequences of such crimes, based on the principle of protecting the security, stability, and safety of society by enacting modern laws to confront cybercrime, and not impunity for the perpetrators. Therefore, in order to understand the topics of the research, we divided the research into two sections: in the first topic, we studied what digital drugs are (the definition) by defining the mechanism of action of these drugs, while in the second topic, we studied the legal mechanism for characterising digital drugs through two approaches: in the first of them, we tried to characterise digital drugs as conventional drugs, while in the second approach, we tried to characterise this drug as a digital fraud.
Article
Full-text available
With new, diverse, and complicated challenges facing contemporary leaders in today’s ‎changing and distinct environment, it is essential for organizations to move away from ‎old and traditional leadership practices and embrace new ones. This study focused on ‎adopting the concept of “Chameleon Leadership”, the capacity to be able to amend ‎your tactics, much as a chameleon does to improve organizational performance. The ‎study relied on the descriptive deductive approach; this approach comprises of ‎formulating the hypotheses and tests them during the study process. The sample consists ‎of 126 randomly selected staff from various faculties at Albaath University, Syria. ‎The objective was to show if the adoption of chameleon leadership could improve ‎university performance. The result showed that there is a significant relationship between ‎‎the chameleon style of leadership ‎‎and outstanding university performance. Also, the adoption of chameleon leadership ‎characteristics can enable organizations to achieve outstanding performance in their ‎work. For success and development of chameleon operations, the ‎researcher suggested that universities must conduct extensive training about ‎chameleon leadership methods in line with the reality of the university despite the ‎existence of laws that hinder the development process.
Article
Full-text available
As an emerging online shopping method, e-commerce has been widely popular since the popularization of the Internet. Online sales and online shopping have become the trend of modern business development. However, the functionality and performance conditions of the existing platform cannot be closely integrated with the merchant's own business. The purpose of this paper is to study the enterprise e-commerce marketing system based on big data. The system design of this paper adopts SSH framework as the main technology, the database selects HBase database, and the front end combines with Web2.0 technology for the interaction of interface display and operation. The experimental results show that applying big data technology to enterprise e-commerce marketing system has extremely important practical significance. Perform a performance analysis on this system,when the amount of data reaches 4000, the speed of HBase is 10.486s, and the query time of Mysql is 50.184s. It can be seen that the Hbase database query speed is much faster than the Mysql database query speed.
Article
Full-text available
Small and medium-size enterprises (SMEs) play a significant role in Iraqi economic growth. However, according to Iraq Ministry of Trade, the numbers of SMEs in Iraq are fading every year since 2006. Therefore, this current study explores the influence of marketing innovation and service innovation on improving SMEs business performance. This study uses qualitative approach. The data were collected from a questionnaire distributed to 128 SMEs in various Iraqi cities. Pearson correlation analysis was used to test the research hypothesis. The result showed that collectively the two factors, marketing and service innovation have positive influence on SMEs business performance. The findings of this study provide insights into how managers and owners at SMEs can enhance the performance. This can be done by implementing marketing and service innovation. Also, it is importance to economic theorist and practitioners looking for ways to improve their business performance. The scope of this article is limited to only SMEs, specifically private enterprises in Iraq.
Article
Full-text available
Organizational decision-makers need to evaluate AI tools in light of increasing claims that such tools out-perform human experts. Yet, measuring the quality of knowledge work is challenging, raising the question of how to evaluate AI performance in such contexts. We investigate this question through a field study of a major U.S. hospital, observing how managers evaluated five different machine-learning (ML) based AI tools. Each tool reported high performance according to standard AI accuracy measures, which were based on ground truth labels provided by qualified experts. Trying these tools out in practice, however, revealed that none of them met expectations. Searching for explanations, managers began confronting the high uncertainty of experts’ know-what knowledge captured in ground truth labels used to train and validate ML models. In practice, experts address this uncertainty by drawing on rich know-how practices, which were not incorporated into these ML-based tools. Discovering the disconnect between AI’s know-what and experts’ know-how enabled managers to better understand the risks and benefits of each tool. This study shows dangers of treating ground truth labels used in ML models objectively when the underlying knowledge is uncertain. We outline implications of our study for developing, training, and evaluating AI for knowledge work.
Article
Full-text available
Social media is popular in our society right now. People are using social media platforms to purchase various products. We collected the data from various social media platforms. We analyzed the data for prediction of the consumer behavior on the social media platform. We considered the consumer data from Facebook, Twitter, Linked In and YouTube, Instagram, and Pinterest, etc. There are diverse and high-speed, high volume data which are coming from social media platform, so we used predictive big data analytics. In this paper, we have used the concept of big data technology to process data and analyze it to predict consumer behavior on social media. We have analyzed consumer behavior on social media platforms based on some parameters and criteria. We analyzed the consumer perception, attitude towards the social media platform. To get good quality of result, we pre-process data using various data pre-processing to detect outlier, noises, error, and duplicate record. We developed mathematical modeling using machine learning to predict consumer behavior on the social media platform. This model is a predictive model for predicting consumer behavior on the social media platform. 80% of data are used for training purposes and 20% for testing.
Article
Full-text available
More than one type of probability must be considered when making decisions. It is as necessary to know one's chance of performing choices correctly as it is to know the chances that desired outcomes will follow choices. We refer to these two choice contingencies as internal and external probability. Neural activity across many frontal and parietal areas reflected internal and external probabilities in a similar manner during decision-making. However, neural recording and manipulation approaches suggest that one area, the anterior lateral prefrontal cortex (alPFC), is highly specialized for making prospective, metacognitive judgments on the basis of internal probability; it is essential for knowing which decisions to tackle, given its assessment of how well they will be performed. Its activity predicted prospective metacognitive judgments, and individual variation in activity predicted individual variation in metacognitive judgments. Its disruption altered metacognitive judgments, leading participants to tackle perceptual decisions they were likely to fail.
Article
Full-text available
The special education teacher is a key element in the development of the process of inclusive education. In this setting, soft skills have proven to be determinant in teachers’ educational action. However, those that best qualify their profile have not yet been identified. Therefore, this study aims to carry out a review of scientific production between the years 2010 and 2020. To this end, articles were selected using the following databases: ERIC, Scopus, Web of Science, and PsycINFO. Studies have been included in the review that point out as soft skills: resilience, reflexibility, empathy, collaborative work, self-efficacy, creativity, and effective communication. Only studies that presented such criteria were included in the analysis. After the application of the eligibility criteria, seven articles were considered. From the analysis, it emerges that effective communication, collaborative work, and reflexibility stand out. There are gaps in this area in the specialized training of these teachers. Thus, it is suggested that there should be investment in this area in the training programs of the schools that certify them; and that, at the research level, instruments should be developed to evaluate the model emerging from this review.
Article
Full-text available
The authors develop a three-stage framework for strategic marketing planning, incorporating multiple artificial intelligence (AI) benefits: mechanical AI for automating repetitive marketing functions and activities, thinking AI for processing data to arrive at decisions, and feeling AI for analyzing interactions and human emotions. This framework lays out the ways that AI can be used for marketing research, strategy (segmentation, targeting, and positioning, STP), and actions. At the marketing research stage, mechanical AI can be used for data collection, thinking AI for market analysis, and feeling AI for customer understanding. At the marketing strategy (STP) stage, mechanical AI can be used for segmentation (segment recognition), thinking AI for targeting (segment recommendation), and feeling AI for positioning (segment resonance). At the marketing action stage, mechanical AI can be used for standardization, thinking AI for personalization, and feeling AI for relationalization. We apply this framework to various areas of marketing, organized by marketing 4Ps/4Cs, to illustrate the strategic use of AI.
Article
Purpose: While the disruptive potential of artificial intelligence (AI) has been receiving growing consensus with regards to its positive influence on entrepreneurship, there is a clear lack of systematization in academic literature pertaining to this correlation. The current research seeks to explore the impact of AI on entrepreneurship as an enabler for entrepreneurs, taking into account the crucial application of AI within all Industry 4.0 technological paradigms, such as smart factory, the Internet of things (IoT), augmented reality (AR) and blockchain. Design/methodology/approach: A systematic literature review was used to analyze all relevant studies forging connections between AI and entrepreneurship. The cluster interpretation follows a structure that we called the “AI-enabled entrepreneurial process.” Findings: This study proves that AI has profound implications when it comes to entrepreneurship and, in particular, positively impacts entrepreneurs in four ways: through opportunity, decision-making, performance, and education and research. Practical implications: The framework's practical value is linked to its applications for researchers, entrepreneurs and aspiring entrepreneurs (as well as those acting entrepreneurially within established organizations) who want to unleash the power of AI in an entrepreneurial setting. Originality/value: This research offers a model through which to interpret the impact of AI on entrepreneurship, systematizing disconnected studies on the topic and arranging contributions into paradigms of entrepreneurial and managerial literature.
Article
The authors develop a three-stage framework for strategic marketing planning, incorporating multiple artificial intelligence (AI) benefits: mechanical AI for automating repetitive marketing functions and activities, thinking AI for processing data to arrive at decisions, and feeling AI for analyzing interactions and human emotions. This framework lays out the ways that AI can be used for marketing research, strategy (segmentation, targeting, and positioning, STP), and actions. At the marketing research stage, mechanical AI can be used for data collection, thinking AI for market analysis, and feeling AI for customer understanding. At the marketing strategy (STP) stage, mechanical AI can be used for segmentation (segment recognition), thinking AI for targeting (segment recommendation), and feeling AI for positioning (segment resonance). At the marketing action stage, mechanical AI can be used for standardization, thinking AI for personalization, and feeling AI for relationalization. We apply this framework to various areas of marketing, organized by marketing 4Ps/4Cs, to illustrate the strategic use of AI.