In this chapter, a numerical investigation is presented in order to highlight the effects of outdoor wind on smoke movements along a corridor in a compartment. For this, the Computational Fluid Dynamics (CFD) code, fire dynamics simulator (FDS), was used to model the reactive flows in interaction with outdoor wind. The wind velocity is taken between 0 and 12.12 m/s, based on the experimental
... [Show full abstract] result data come from the work of Li et al. was performed. From numerical data, it was found that smoke stratification state in the corridor depends on Froude number (Fr) and it can be divided into three cases: stable buoyant stratification (Fr < 0.38), unstable buoyant stratification (0.38 ≤ Fr < 0.76), and failed stratification (Fr ≥ 0.76). When Fr ≥ 0.76, smoke stratification is completely disturbed and smoke occupies the entire volume of the compartment, highlighting a risk of toxicity to people. Indeed, it was observed that the velocity of the outdoor wind influences strongly the concentration of O2, CO2, CO, and visibility in the corridor and smoke exhaust. Moreover, for the input data used in the numerical modelling, the global sensitivity analysis demonstrated that the main parameters affecting the smoke temperature near the ceiling are the mass flux of fuel and the activation energy.