ArticlePDF Available

The contribution of individual characteristics of Anas and Aythya individuals to their susceptibility to low‐pathogenic avian influenza viruses in the south of Western Siberia

Authors:
  • Siberian Brunch Russian Academy of Science
  • Federal Research Center of Fundamental and Translational Medicine

Abstract

Aim. Analysis of the influence of species, sex, and age of genus Anas and Aythya individuals on their sensitivity to low pathogenic avian influenza viruses (LPAIV) in the south of Western Siberia. Material and Methods. Infestation of ducks with the influenza virus was determined by cloacal swabs obtained from 5014 individuals of ducks belonging to the genus Anas and Aythya during the autumn migration period in the south of Western Siberia. Isolation of influenza A virus isolates was carried out according to standard WHO methods. The distribution of infected individuals was estimated with ꭓ ² . Relative risk (RR) was used to estimate the risk of infection for each individual species. Results. Among the examined ducks, the distribution between species differed between infected and uninfected individuals. The common teal was under greater risk of being infected with the avian influenza virus. In this species, the sex of the individual influenced the probability of infestation both in young individuals and the whole age spectrum. Conclusions. Individual characteristics of wild dabbling and diving ducks (species, sex, age) affect their infestation with low‐pathogenic avian influenza virus during the autumn migration period in the south of Western Siberia.
ЮгРоссии:экология,развитие2023Т.18N4 Краткиесообщения
ecodag.elpub.ru/ugro/issue/current 197
Оригинальнаястатья/Originalarticle
УДК351.765.31(578.4)
DOI:10.18470/1992‐1098‐2023‐4‐197‐201
ВкладиндивидуальныхособенностейособейAnasи
Aythyaвихвосприимчивостькнизкопатогенным
вирусамптичьегогриппанаюгеЗападнойСибири
ОльгаР.Друзяка1,2,3,АлексейВ.Друзяка2,3,ИванА.Соболев1,КириллА.Шаршов1,
ДмитрийА.Штоль4,АлександрМ.Шестопалов1,5
1Научно‐исследовательскийинститутвирусологииФедеральногоисследовтельскогоцентрафундаментальной
итрансляционноймедициныМинистерстванаукиивысшегообразованияРоссийскойФедерации,Новосибирск,Россия
2ИнститутсистематикииэкологииживотныхСОРАН,Новосибирск,Россия
3Новосибирскийнациональныйисследовательскийгосударственныйуниверситет,Новосибирск,Россия
4ИнститутядернойфизикиСОРАН,Новосибирск,Россия
5Дагестанскийгосударственныйуниверситет,Махачкала,Россия
Контактноелицо
ОльгаР.Друзяка,младшийнаучныйсотрудник,
ФИЦФТМСОРАН;630060Россия,
г.Новосибирск,ул.Тимакова,2;Институт
систематикииэкологииживотных;630091
Россия,г.Новосибирск,ул.Фрунзе,11;кафедра
общейбиологиииэкологииНовосибирского
государственногоуниверситета;630090Россия,
г.Новосибирск,ул.Пирогова,2.
Тел.+79231441322
Emailabdrashitova‐olga@mail.ru
ORCIDhttps://orcid.org/0009‐0005‐8441‐6939
Форматцитирования
ДрузякаО.Р.,ДрузякаА.В.,СоболевИ.А.,
ШаршовК.А.,ШтольД.А.,ШестопаловА.М.
Вкладиндивидуальныхособенностейособей
AnasиAythyaвихвосприимчивостьк
низкопатогеннымвирусамптичьегогриппана
югеЗападнойСибири//ЮгРоссии:экология,
развитие.2023.Т.18,N4.C.197‐201.DOI:
10.18470/1992‐1098‐2023‐4‐197‐201
Получена3октября2023г.
Прошларецензирование10ноября2023г.
Принята25ноября2023г.
Резюме
Цель. Проведениеанализавлияниявидовойпринадлежности,пола,
возраста особей AnasиAythya в их восприимчивость к низкопа‐
тогеннымвирусамптичьегогриппа(LPAIV)наюгеЗападнойСибири.
Материалыиметоды.Зараженность уток вирусом гриппа
определяли по клоакальным смывам, полученным от 5014 особей
уток, принадлежащих к роду Anas и Aythya в период осенней
миграциина территории югаЗападной Сибири. Выделениеизолятов
вируса гриппа А проводилось согласно стандартной методике ВОЗ.
Распределениезараженныхособейоценивалось покритериюꭓ2. Для
оценкириска зараженности каждого отдельноговида использовался
относительныйриск(RR).
Результаты. Среди обследованных уток распределение по видовой
принадлежностиотличалосьмеждузаряженнымиинезараженными
особями. У чирка‐свистунка наблюдался больший риск заразиться
вирусомптичьегогриппа.Учирка‐свистункаполособисучетомвлиял
навероятностьзаражениявирусом,каксучетомвозраста умолодых
особей,такибезучетавозраста.
Заключение.Индивидуальныеособенностиособей(вид,пол,возраст)
диких речных и нырковых уток влияют на их зараженность низкопа‐
тогенным вирусом птичьего гриппа в период осенней миграции на
территорииюгаЗападнойСибири.
Ключевыеслова
Вирус гриппа птиц, водоплавающие птицы, пол, возраст, вид, Anas,
Aythya.
© 2023 Авторы. ЮгРоссии:экология,развитие. Это статья открытого доступа в соответствии с условиями Creative Commons
Attribution License, которая разрешает использование, распространение и воспроизведение на любом носителе при условии
правильногоцитированияоригинальнойработы.
BriefreportsSouthofRussia:ecology,development2023Vol.18no.4
198 ecodag.elpub.ru/ugro/issue/current
ThecontributionofindividualcharacteristicsofAnasand
Aythyaindividualstotheirsusceptibilitytolow‐pathogenic
avianinfluenzavirusesinthesouthofWesternSiberia
OlgaR.Druzyaka1,2,3,AlexeyV.Druzyaka2,3,IvanA.Sobolev1,KirillA.Sharshov1,
DmitryA.Shtol4andAlexanderM.Shestopalov1,5
1ResearchInstituteofVirology,FederalResearchCenterofFundamentalandTranslationalMedicine
(FRCFTM),SiberianBranch,RussianAcademyofSciences,Novosibirsk,Russia
2InstituteofSystematicsandEcologyofAnimals,SiberianBranch,RussianAcademyofSciences,Novosibirsk,Russia
3NovosibirskNationalResearchStateUniversity,Novosibirsk,Russia
4InstituteofNuclearPhysicsSBRAS,Novosibirsk,Russia
5DagestanStateUniversity,Makhachkala,Russia
Principalcontact
OlgaR.Druzyaka,JuniorResearcher,Research
InstituteofVirology,FederalResearchCenterof
FundamentalandTranslationalMedicine(FRCFTM),
SiberianBranch,RussianAcademyofSciences;
2TimakovaSt,Novosibirsk,Russia630060;Institute
ofSystematicsandEcologyofAnimals,11FrunzeSt,
Novosibirsk,Russia630091;DepartmentofGeneral
BiologyandEcology,NovosibirskStateUniversity;
2PirogovaSt,Novosibirsk,Russia630090
Tel.+79231441322
Emailabdrashitova‐olga@mail.ru
ORCIDhttps://orcid.org/0009‐0005‐8441‐6939
Howtocitethisarticle
DruzyakaO.R.,DruzyakaA.V.,SobolevI.A.,Sharshov
K.A.,ShtolD.A.,ShestopalovA.M.Thecontribution
ofindividualcharacteristicsofAnasandAythya
individualstotheirsusceptibilitytolow‐pathogenic
avianinfluenzavirusesinthesouthofWestern
Siberia.SouthofRussia:ecology,development.
2023,vol.18,no.4,pp.197‐201.(InRussian)DOI:
10.18470/1992‐1098‐2023‐4‐197‐201
Received3October2023
Revised10November2023
Accepted25November2023
Abstract
Aim.Analysisoftheinfluenceofspecies,sex,andageofgenusAnasand
Aythya individualsontheirsensitivitytolowpathogenicavianinfluenza
viruses(LPAIV)inthesouthofWesternSiberia.
Materialand Methods.Infestationofduckswiththe influenza virus was
determined by cloacal swabs obtained from 5014 individuals of ducks
belonging to the genus Anas and Aythya during the autumn migration
period in the south of Western Siberia. Isolation of influenza A virus
isolateswascarriedoutaccordingtostandardWHOmethods.The
distribution of infected individuals was estimated with ꭓ2. Relative risk
(RR)wasusedtoestimatetheriskofinfectionforeachindividualspecies.
Results. Among the examined ducks, the distribution between species
differedbetween infected anduninfected individuals. The common teal
wasundergreaterriskofbeinginfectedwiththeavianinfluenzavirus.In
this species, the sex of the individual influenced the probability of
infestationbothinyoungindividualsandthewholeagespectrum.
Conclusions.Individual characteristics ofwild dabbling and diving ducks
(species, sex, age) affect their infestation with low‐pathogenic avian
influenza virus during the autumn migration period in the southof
WesternSiberia.
KeyWords
Avianinfluenzavirus,waterfowl,sex,age,species,Anas,Aythya.
© 2023 The authors. South of Russia: ecology, development. This is an open access article under the terms of t he Creative Commons
AttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.
ЮгРоссии:экология,развитие2023Т.18N4 О.Р.Друзякаидр.
ecodag.elpub.ru/ugro/issue/current 199
ВВЕДЕНИЕ
Водоплавающие птицы являются основным
естественным резервуаром как для низкопатогенных
штаммов вируса птичьего гриппа, так и для
высокопатогенных штаммов. Большинство предста‐
вителей этой группы птиц, ежедневно совершают
перелеты на многие километры, в поисках пищи,
иногда в поисках партнера для размножения, а также
каждыйгодсовершаютсезонныемиграции.Вовремя
миграции дикие птицы могут переносить патогенные
микроорганизмы, особенно те, которые не оказывают
существенного влияния на здоровье птицы и, следова‐
тельно,немешаютихмиграции[1].
На основных пролетных путях миграция
связывает множество популяций птиц во времени и
пространстве. В результате, зараженные птицы имеют
возможность действовать как переносчики LPAI на
короткие расстояния и передают возбудитель по
пролетному пути между особями другим популяциям,
которые могут принести вирусы в новые районы.
Отдельные особи не переносят вирус на дальние
расстояния. Совершая частые остановки во время
миграции и тратя больше времени на кормление и
подготовкукмиграции,чемнасовершениеперелетов
[2]. Важно понимать, что передача вирусов и их
географическое распространение зависит от экологии
мигрирующиххозяев.
Мониторинг птичьего гриппа в некоторых
регионах проводился и продолжает проводиться
достаточно регулярно, среди обследуемых регионов –
СевернаяАмерика,ЕвропаиЮго‐ВосточнаяАзия,втом
числеи на территорииРоссийской Федерации [3]. Тем
не менее, роль Сибири в циркуляции птичьего гриппа
трудно переоценить, так как это регион, где летом
обитают перелетные водоплавающие птицы из Юго‐
Восточной Азии и Африки – Сибирь располагается на
пересечении пролетных путей [4]. Высокая концент‐
рация птиц на путях миграции, в местах остановок во
времямиграцией,впромежуточныхрайонахвнесезона
размножения может привести к межвидовому и
межпопуляционному обмену вирусами гриппа, их
реассортаации,появлениюновыхштаммовиих
дальнейшемураспространению[5].
Экспериментально показаны различия в
восприимчивости, смертности и других воздействиях
высокопатогенного штамма H5N1 на представителей
разных групп птиц (утки, гуси, лебеди, чайки) [6]. Нет
оснований полагать, что воздействие низкопатогенных
штаммов будет столь же видоспецифичным. Однако
сравнительный анализ встречаемости вирусов LPAI
среди уток, мигрирующих через территорию Швеции,
показал, что Anas platyrhynchosиAnas carolinensis
имелиболеевысокуюраспространенность вируса, чем
Anas clypeata, Anas strepera, Anas acuta [7].
Возможность заражения различается среди разных
полов диких уток. Исследования показали, что утки,
пойманныевКанадеинаАляске,имелиболеевысокую
долюзараженныхсамцов, чем самок[8].Эти различия
можно объяснить физиологическими особенностями
самцов и самок, а также пространственной структурой
популяциив периодразмножения[9].Молодыеособи,
какправило,имеютбольшийрискинфицирования,чем
взрослые, вероятно, из‐за того, что иммунологически
наивны и, поэтому более восприимчивы к вирусу
птичьего гриппа А. Тогда как, взрослые особи обычно
болееустойчивыкLPAI,особенноктемштаммам,с
которымионивзаимодействовалиранее.
Не смотря на значительное количество
публикаций, посвященных механизмам циркуляции
вирусагриппа у птиц,современные знания овидовых,
возрастныхиполовыхразличияхпереносчиковLPAI,не
позволяютоднозначносудитьопутяхисроках.Более
детальное исследование вклада индивидуальных
особенностей особей, таких как вид, пол и возраст
диких уток, в восприимчивость к низкопатогенным
штаммамвируса птичьего гриппавусловияхпостоянно
существующего очага циркуляции LPAI в Западной
Сибиридляпониманияпутейгеографического
распространенияиэволюцииразнообразияштаммов в
целом в Евразии и Африке. Подобные исследования
могутпомочь,болееточноопределятьфакторырискас
учетомбиологии видов, ив дальнейшем осуществлять
эффективный мониторинг, предотвращая распрост‐
ранениявирусаисниженияуровнязараженности.
МАТЕРИАЛИМЕТОДЫИССЛЕДОВАНИЯ.
1.Сборобразцов
Биологическийматериалбылсобранвпериодс2007по
2022 год на территории юга Западной Сибири
(Новосибирская область). Зараженность уток вирусом
гриппа определяли по клоакальным смывам,
полученным от 5014 особей уток, принадлежащих к
родуAnasиAythya.
2.Сборклоакальныхсмывовотдикихптиц
Для получения образцов клоакальных смывов,
производился сбор материала от диких птиц,
отловленных в период с августа по октябрь, а также
добытых во время осенней охоты охотниками‐
любителями. Для этого использовались стерильные
сухие тампоны, которые после отбора клоакальных
смывов помещали в стерильные пронумерованные
пластиковыепробиркисосредой для транспортировки
(фосфатныйбуфериглицеролом,всоотношении1:1).
Для транспортировки собранного материала в
лабораторию,пробиркипомещаливжидкийазот.
3.ВыделениеизолятоввирусагриппаА.
Выделение изолятов вируса гриппа А из клоакальных
смывов птиц проводилось на развивающихся куриных
эмбрионах, путем проведения трех последовательных
пассажей согласно методике ВОЗ. Собранную
аллантоисную жидкость тестировали в реакции
гемагглютинации(РГА).
Определение видовой принадлежности, пола и
возраста птиц производили по определителю птиц
СССР, guide to the sex and age of European ducks,
определителю птиц Урала, Приуралья и Западной
Сибири.
ПОЛУЧЕННЫЕРЕЗУЛЬТАТЫИИХОБСУЖДЕНИЕ.
Биологический материал был собран от птиц,
принадлежащихкроду Anas и Aythya,впериод с 2009
по 2022 год, во время осенней миграции, от птиц
9видов.Всегобылоотобрано4808проб(табл.1).
Средивсех обследованных птицвирус птичьего
гриппабылобнаружену 422особей.процент вирусных
носителейварьировалвзависимостиотвида(табл.2).
O.R.Druzyakaetal. SouthofRussia:ecology,development2023Vol.18no.4
200 ecodag.elpub.ru/ugro/issue/current
Таблица1.Видыиколичествообследованныхдикихводоплавающихптиц(Новосибирскаяобласть,2009–2022гг.)
Table1.Typesandnumberofsampledwildwaterfowl(Novosibirskregion,2009–2022)
Видыптиц/Birdspecies Количество
обследованныхособей
Numberofsampledbirds
Латинскоеназвание
Latinname
Русскоеназвание
Russianname
Английскоеназвание
Englishname
Anascrecca Чирок‐свистунок Commonteal 1064
AnasPlatyrhynchos Крякваобыкновенная Mallard 897
AnasStrepera Сераяутка Gadwall 841
Aythyaferina Ныроккрасноголовый Commonpochard 686
Anasquerquedula Чирок‐трескунок Garganey 575
Anasclypeata Широконоска Northernshoveler 457
Aythyafuligula Чернетьхохлатая TuftedDuck 121
Nettarufina Ныроккрасноносый Red‐crestedpochard 96
Anaspenelope Свиязь Wigeon 71
Итого/Total 4808
Таблица2.Видыидолязараженныхособейуобследованныхдикихводоплавающихптиц
(Новосибирскаяобласть,2009–2022гг.)
Table2.Typesandpercentageofinfectedindividualsinsampledwildwaterfowl(Novosibirskregion,2009–2022)
Видыптиц/Birdspecies Долязараженных
обследованныхособей
Proportionofinfected
sampledbirds,%
Латинскоеназвание
Latinname
Русскоеназвание
Russianname
Английскоеназвание
Englishname
Anascrecca Чирок‐свистунок Commonteal 12,8
AnasPlatyrhynchos Крякваобыкновенная Mallard 11,3
AnasStrepera Сераяутка Gadwall 5,3
Aythyaferina Ныроккрасноголовый Commonpochard 3,8
Anasquerquedula Чирок‐трескунок Garganey 11,9
Anasclypeata Широконоска Northernshoveler 13,7
Aythyafuligula Чернетьхохлатая Tuftedduck 2,5
Nettarufina Ныроккрасноносый Red‐crestedpochard 5,5
Anaspenelope Свиязь Wigeon 6,0
Итого/Total 9,6
Среди обследованных уток распределение по видовой
принадлежности отличалось между заряженными и не
зараженными особями (ꭓ2 = 78,160; df = 8; p<0,01) т.е.
возможностьзаразитьсявирусомдостоверноотличалась
для разных видов. У чирка‐свистунка наблюдался
больший риск заразиться вирусом птичьего гриппа по
сравнению с другими исследуемыми видами RR=1,427
(Cl:1.093‐1,863), р<0,05. Так же относи тельный риск был
выше у широконоски RR=1.573 (Cl:1,156‐2,140), при
р<0.05,посравнению с другими исследуемымивидами.
Обратнаязависимостьприсутствовалаусеройутки
RR=0.521(Cl:0,382‐0,711),красноголовогоныркаRR=0.378
(Cl:0,255‐0,562),прир<0,05.
Среди Anas и Aythya разные авторы отмечают
различныевидысмаксимальнойвстречаемостьюLPAI
[10], чирок‐свистунок не отмечен ни в одной работе в
качестве наиболее зараженного. Возможно, наши
результаты обусловлены видовыми особенностями
послебрачныхкочевок,линькиимиграциивидав
Западной Сибири. Конкретный механизм циркуляции
LPAIучиркасвистункануждаетсявдальнейшем
исследовании.
Достоверныеразличиямеждусамкамии
самцами,безучетавозраста,наблюдалисьуодноговида
– чирка‐свистунка. Распространенность LPAI составила
12,1 % для самок n=351, и 21,1 % для самцов n=276.
Следовательно,усамцовв1,526разбольшешансовбыть
положительными на LPAI, чем у самок. Наблюдаемые
различия были достоверны (RR: 1,526 95% Cl: 1,034 до
2,251). У этого же вида, достоверные различия между
молодымисамцамиимолодымисамками(RR:2,09195%
Cl:1,116до3,917).
Среди самцов наиболее зараженного вида, по
нашим данным, чирка‐свистунка, положительных проб
оказалось больше, чем среди самок этого вида. Для
речныхутоквозможнывсетрислучая(большедля
самцов, для самок или же равновероятно для обоих
полов). Полуденные результаты можно объяснить
различной физиологией самцов и самок, а также
различиями пространственной структурой популяции
[11].
ЗАКЛЮЧЕНИЕ
Таким образом, проведенное нами исследование
подтверждаютключевуюрольречных инырковыхутокв
поддержании циркулирования LPAI на территории
Западной Сибири и подчеркивают необходимость
учитывать индивидуальные особенности особей, при
оценке зараженности LPAI птиц в мониторинговых
исследованиях.
БЛАГОДАРНОСТЬ
РаботаподдержанапроектомРНФ23‐64‐00005
«Геномикаиэволюциявирусныхпатогенов,вызывающих
наиболеераспространённыереспираторные
заболевания».
ACKNOWLEDGMENT
ThisstudywassupportedbytheRussianScientific
Foundationproject23‐64‐00005“Genomicsandevolutionof
viralpathogensthatcausethemostcommonrespiratory
diseases”.
ЮгРоссии:экология,развитие2023Т.18N4 О.Р.Друзякаидр.
ecodag.elpub.ru/ugro/issue/current 201
БИБЛИОГРАФИЧЕСКИЙСПИСОК
1. KalondaA.etal.Avianinfluenzavirusesdetectedinbirdsin
sub‐SaharanAfrica:asystematicreview//Viruses.2020.V.12.
N9.P.993.https://doi.org/10.3390/v12090993
2. SchmaljohannH.,EikenaarC.,SapirN.Understandingthe
ecologicalandevolutionaryfunctionofstopoverinmigrating
birds//BiologicalReviews.2022.V.97.N4.P.1231–1252.
https://doi.org/10.1111/brv.12839
3. LycettS.J.etal.Genesisandspreadofmultiplereassortants
duringthe2016/2017H5avianinfluenzaepidemicinEurasia//
ProceedingsoftheNationalAcademyofSciences.2020.V.117.
N34.P.20814–20825.
https://doi.org/10.1073/pnas.2001813117
4. BlagodatskiA.etal.Avianinfluenzainwildbirdsandpoultry:
disseminationpathways,monitoringmethods,andvirusecology
//Pathogens.2021.V.10.N5.P.630.
https://doi.org/10.3390/pathogens10050630
5. WilleM.,HolmesE.C.Theecologyandevolutionofinfluenza
viruses//ColdSpringHarborperspectivesinmedicine.2020.V.
10.N7.ArticleID:a038489.DOI:10.1101/cshperspect.a038489
6. KeawcharoenJ.etal.Wildducksaslong‐distancevectorsof
highlypathogenicavianinfluenzavirus(H5N1)//Emerging
infectiousdiseases.2008.V.14.N4.P.600.DOI:
10.3201/eid1404.071016
7. PappZ.etal.Theecologyofavianinfluenzavirusesinwild
dabblingducks(Anasspp.)inCanada//PloSone.2017.V.12.N
5.ArticleID:e0176297.
https://doi.org/10.1371/journal.pone.0176297
8. HaaseE.,SharpP.J.,PaulkeE.Seasonalchangesinthe
concentrationsofplasmagonadotropinsandprolactininwild
Mallarddrakes//JournalofExperimentalZoology.1985.V.234.
N2.P.301–305.https://doi.org/10.1002/jez.1402340216
9. DevicheP.,ParrisJ.Testosteronetreatmenttofree‐ranging
maledark‐eyedjuncos(Juncohyemalis)exacerbates
hemoparasiticinfection//TheAuk.2006.V.123.N2.P.548–
562.
10. EuropeanFoodSafetyAuthorityetal.Avianinfluenza
overviewMay–September2021//EFSAJournal.2022.V.20.N
1.ArticleID:e07122.https://doi.org/10.2903/j.efsa.2022.7122
11. JaxE.etal.EvaluatingEffectsofAIVInfectionStatuson
DucksUsingaFlowCytometry‐BasedDifferentialBloodCount//
MicrobiologySpectrum.2023.ArticleID:e04351
https://doi.org/10.1128/spectrum.04351‐22
REFERENCES
1. KalondaA.etal.Avianinfluenzavirusesdetectedinbirdsin
sub‐SaharanAfrica:asystematicreview.Viruses,2020,vol.12,
no.9,p.993.https://doi.org/10.3390/v12090993
2. SchmaljohannH.,EikenaarC.,SapirN.Understandingthe
ecologicalandevolutionaryfunctionofstopoverinmigrating
birds.BiologicalReviews,2022,vol.97,no.4,pp.1231–1252.
https://doi.org/10.1111/brv.12839
3. LycettS.J.etal.Genesisandspreadofmultiplereassortants
duringthe2016/2017H5avianinfluenzaepidemicinEurasia.
ProceedingsoftheNationalAcademyofSciences,2020,vol.117,
no.34,pp.20814–20825.
https://doi.org/10.1073/pnas.2001813117
4. BlagodatskiA.etal.Avianinfluenzainwildbirdsandpoultry:
disseminationpathways,monitoringmethods,andvirus
ecology.Pathogens,2021,vol.10,no.5,p.630.
https://doi.org/10.3390/pathogens10050630
5. WilleM.,HolmesE.C.Theecologyandevolutionofinfluenza
viruses.ColdSpringHarborperspectivesinmedicine,2020,vol.
10,no.7,articleid:a038489.DOI:10.1101/cshperspect.a038489
6. KeawcharoenJ.etal.Wildducksaslong‐distancevectorsof
highlypathogenicavianinfluenzavirus(H5N1).Emerging
infectiousdiseases,2008,vol.14,no.4,p.600.DOI:
10.3201/eid1404.071016
7. PappZ.etal.Theecologyofavianinfluenzavirusesinwild
dabblingducks(Anasspp.)inCanada.PloSone,2017,vol.12,no.
5,articleid:e0176297.
https://doi.org/10.1371/journal.pone.0176297
8. HaaseE.,SharpP.J.,PaulkeE.Seasonalchangesinthe
concentrationsofplasmagonadotropinsandprolactininwild
Mallarddrakes.JournalofExperimentalZoology,1985,vol.234,
no.2,pp.301–305.https://doi.org/10.1002/jez.1402340216
9. DevicheP.,ParrisJ.Testosteronetreatmenttofree‐ranging
maledark‐eyedjuncos(Juncohyemalis)exacerbates
hemoparasiticinfection.TheAuk.2006,vol.123,no.2,pp.548–
562.
10. EuropeanFoodSafetyAuthorityetal.Avianinfluenza
overviewMay–September2021.EFSAJournal,2022,vol.20,no.
1,articleid:e07122.https://doi.org/10.2903/j.efsa.2022.7122
11. JaxE.etal.EvaluatingEffectsofAIVInfectionStatuson
DucksUsingaFlowCytometry‐BasedDifferentialBloodCount.
MicrobiologySpectrum,2023,articleid:e04351‐
https://doi.org/10.1128/spectrum.04351‐22
КРИТЕРИИАВТОРСТВАAUTHORCONTRIBUTIONS
ОльгаР.ДрузякаиАлексейВ.Друзякаосуществили
сводныйанализданныхинаписаниерукописи.ИванА.
СоболевиКириллА.Шаршовпроводилисборианализ
вирусологическихпроб.ДмитрийА.Штольосуществлял
статистическуюобработкуматериала.АлександрМ.
Шестопаловкорректировалрукописьдоподачив
редакцию.Всеавторывравнойстепенинесут
ответственностьприобнаруженииплагиата,
самоплагиатаилидругихнеэтическихпроблем.
OlgaR.DruzyakaandAlexeyV.Druzyakaconductedfinal
dataanalysisandwrotethetext.IvanA.SobolevandKirillA.
Sharshovmaintainedthecollectionandanalysisof
virologicalsamples.DmitryA.Shtolundertookthestatistical
work.AlexanderM.Shestopaloveditedthemanuscriptfor
submissiontotheEditor.Allauthorsareequallyresponsible
forplagiarism,self‐plagiarismandotherethical
transgressions.
КОНФЛИКТИНТЕРЕСОВNOCONFLICTOFINTERESTDECLARATION
Авторызаявляютоботсутствииконфликтаинтересов.
Theauthorsdeclarenoconflictofinterest.
ORCID
ОльгаР.Друзяка/OlgaR.Druzyakahttps://orcid.org/0009‐0005‐8441‐6939
АлексейВ.Друзяка/AlexeyV.Druzyakahttps://orcid.org/0000‐0002‐3597‐1283
ИванА.Соболев/IvanA.Sobolevhttps://orcid.org/0000‐0002‐4561‐6517
КириллА.Шаршов/KirillA.Sharshovhttps://orcid.org/0000‐0002‐3946‐9872
ДмитрийА.Штоль/DmitryA.Shtolhttps://orcid.org/0000‐0002‐0622‐6065
АлександрМ.Шестопалов/AlexanderM.Shestopalovhttps://orcid.org/0000‐0002‐9734‐0620
... In this work, we applied the SIA methods to feathers to clarify the current state of the migration routes of one of the most common species of waterfowl nesting and flying through the south of western Siberia-the Common Teal. The species was chosen due to its high frequency of transmission of type A influenza viruses, its vast and diverse nesting area, as well as a wide range of migratory directions [32]. Isotope analysis was used to determine the places of post-breeding and pre-breeding molting of birds that migrated in autumn 2017 and in spring 2018 through the study area, respectively. ...
Article
Full-text available
Citation: Druzyaka, A.V.; Druzyaka, O.R.; Sharshov, K.A.; Kasianov, N.; Dubovitskiy, N.; Derko, A.A.; Frolov, I.G.; Torniainen, J.; Wang, W.; Minina, M.A.; et al. Stable Isotope Analysis Reveals Common Teal (Anas crecca) Molting Sites in Western Siberia: Implications for Avian Influenza Virus Spread. Microorganisms 2024, 12, 357. Abstract: The wetlands of southwestern Siberia (SWS) are a crossroads of bird migration routes, bringing avian influenza (AIV) strains that were previously isolated in different regions of the continent to Siberia. It is known that Anseriformes that breed in SWS migrate for the winter to central Hindustan or further west, while their migration routes to southeast Asia (SEA) remain unconfirmed. Here, we mapped the molting sites of the migrating Common Teals (Anas crecca) via analyzing stable hydrogen isotope content in feathers of hunters' prey and supplemented the analysis with the genetic structure of viruses isolated from teals in the same region. Post-breeding molt of autumn teals most likely occurred within the study region, whereas probable pre-breeding molting grounds of spring teals were in the south of Hindustan. This link was supported by viral phylogenetic analysis, which showed a close relationship between SWS isolates and viruses from south and southeast Asia. Most viral segments have the highest genetic similarity and the closest phylogenetic relationships with viruses from teal wintering areas in southeast Asian countries, including India and Korea. We assume that the winter molt of SWS breeding teals on the Hindustan coast suggests contacts with the local avifauna, including species migrating along the coast to SEA. Perhaps this is one of the vectors of AIV transmission within Eurasia.
Article
Full-text available
Ducks have recently received a lot of attention from the research community due to their importance as natural reservoirs of avian influenza virus (AIV). Still, there is a lack of tools to efficiently determine the immune status of ducks. The purpose of this work was to develop an automated differential blood count for the mallard duck (Anas platyrhynchos), to assess reference values of white blood cell (WBC) counts in this species, and to apply the protocol in an AIV field study. We established a flow cytometry-based duck WBC differential based on a no-lyse no-wash single-step one-tube technique, applying a combination of newly generated monoclonal antibodies with available duck-specific as well as cross-reacting chicken markers. The blood cell count enables quantification of mallard thrombocytes, granulocytes, monocytes, B cells, CD4+ T cells (T helper) and CD8+ cytotoxic T cells. The technique is reproducible, accurate, and much faster than traditional evaluations of blood smears. Stabilization of blood samples enables analysis up to 1 week after sampling, thus allowing for evaluation of blood samples collected in the field. We used the new technique to investigate a possible influence of sex, age, and AIV infection status on WBC counts in wild mallards. We show that age has an effect on the WBC counts in mallards, as does sex in juvenile mallards. Interestingly, males naturally infected with low pathogenic AIV showed a reduction of lymphocytes (lymphocytopenia) and thrombocytes (thrombocytopenia), which are both common in influenza A infection in humans. IMPORTANCE Outbreaks of avian influenza in poultry and humans are a global public health concern. Aquatic birds are the primary natural reservoir of avian influenza viruses (AIVs), and strikingly, AIVs mainly cause asymptomatic or mild infection in these species. Hence, immunological studies in aquatic birds are important for investigating variation in disease outcome of different hosts to AIV and may aid in early recognition and a better understanding of zoonotic events. Unfortunately, immunological studies in these species were so far hampered by the lack of diagnostic tools. Here, we present a technique that enables high-throughput white blood cell (WBC) analysis in the mallard and report changes in WBC counts in wild mallards naturally infected with AIV. Our protocol permits large-scale immune status monitoring in a widespread wild and domesticated duck species and provides a tool to further investigate the immune response in an important reservoir host of zoonotic viruses.
Article
Full-text available
Avian influenza is one of the largest known threats to domestic poultry. Influenza outbreaks on poultry farms typically lead to the complete slaughter of the entire domestic bird population, causing severe economic losses worldwide. Moreover, there are highly pathogenic avian influenza (HPAI) strains that are able to infect the swine or human population in addition to their primary avian host and, as such, have the potential of being a global zoonotic and pandemic threat. Migratory birds, especially waterfowl, are a natural reservoir of the avian influenza virus; they carry and exchange different virus strains along their migration routes, leading to antigenic drift and antigenic shift, which results in the emergence of novel HPAI viruses. This requires monitoring over time and in different locations to allow for the upkeep of relevant knowledge on avian influenza virus evolution and the prevention of novel epizootic and epidemic outbreaks. In this review, we assess the role of migratory birds in the spread and introduction of influenza strains on a global level, based on recent data. Our analysis sheds light on the details of viral dissemination linked to avian migration, the viral exchange between migratory waterfowl and domestic poultry, virus ecology in general, and viral evolution as a process tightly linked to bird migration. We also provide insight into methods used to detect and quantify avian influenza in the wild. This review may be beneficial for the influenza research community and may pave the way to novel strategies of avian influenza and HPAI zoonosis outbreak monitoring and prevention.
Article
Full-text available
In the recent past, sub-Saharan Africa has not escaped the devastating effects of avian influenza virus (AIV) in poultry and wild birds. This systematic review describes the prevalence, spatiotemporal distribution, and virus subtypes detected in domestic and wild birds for the past two decades (2000-2019). We collected data from three electronic databases, PubMed, SpringerLink electronic journals and African Journals Online, using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol. A total of 1656 articles were reviewed, from which 68 were selected. An overall prevalence of 3.0% AIV in birds was observed. The prevalence varied between regions and ranged from 1.1% to 7.1%. The Kruskal-Wallis and Wilcoxon signed-rank sum test showed no significant difference in the prevalence of AIV across regions, χ 2 (3) = 5.237, p = 0.1553 and seasons, T = 820, z = −1.244, p = 0.2136. Nineteen hemagglutinin/neuraminidase subtype combinations were detected during the reviewed period, with southern Africa recording more diverse AIV subtypes than other regions. The most detected subtype was H5N1, followed by H9N2, H5N2, H5N8 and H6N2. Whilst these predominant subtypes were mostly detected in domestic poultry, H1N6, H3N6, H4N6, H4N8, H9N1 and H11N9 were exclusively detected in wild birds. Meanwhile, H5N1, H5N2 and H5N8 were detected in both wild and domestic birds suggesting circulation of these subtypes among wild and domestic birds. Our findings provide critical information on the eco-epidemiology of AIVs that can be used to improve surveillance strategies for the prevention and control of avian influenza in sub-Saharan Africa.
Article
Full-text available
Significance In 2016/2017, highly pathogenic avian influenza (HPAI) virus of the subtype H5 spilled over into wild birds and caused the largest known HPAI epidemic in Europe, affecting poultry and wild birds. During its spread, the virus frequently exchanged genetic material (reassortment) with cocirculating low-pathogenic avian influenza viruses. To determine where and when these reassortments occurred, we analyzed Eurasian avian influenza viruses and identified a large set of H5 HPAI reassortants. We found that new genetic material likely came from wild birds across their migratory range and from domestic ducks not only in China, but also in central Europe. This knowledge is important to understand how the virus could adapt to wild birds and become established in wild bird populations.
Article
Full-text available
Avian influenza virus (AIV) occurrence and transmission remain important wildlife and human health issues in much of the world, including in North America. Through Canada’s Inter-Agency Wild Bird Influenza Survey, close to 20,000 apparently healthy, wild dabbling ducks (of seven species) were tested for AIV between 2005 and 2011. We used these data to identify and evaluate ecological and demographic correlates of infection with low pathogenic AIVs in wild dabbling ducks (Anas spp.) across Canada. Generalized linear mixed effects model analyses revealed that risk of AIV infection was higher in hatch-year birds compared to adults, and was positively associated with a high proportion of hatch-year birds in the population. Males were more likely to be infected than females in British Columbia and in Eastern Provinces of Canada, but more complex relationships among age and sex cohorts were found in the Prairie Provinces. A species effect was apparent in Eastern Canada and British Columbia, where teal (A. discors and/or A. carolinensis) were less likely to be infected than mallards (A. platyrhynchos). Risk of AIV infection increased with the density of the breeding population, in both Eastern Canada and the Prairie Provinces, and lower temperatures preceding sampling were associated with a higher probability of AIV infection in Eastern Canada. Our results provide new insights into the ecological and demographic factors associated with AIV infection in waterfowl.
Article
Full-text available
Wild birds have been implicated in the expansion of highly pathogenic avian influenza virus (H5N1) outbreaks across Asia, the Middle East, Europe, and Africa (in addition to traditional transmission by infected poultry, contaminated equipment, and people). Such a role would require wild birds to excrete virus in the absence of debilitating disease. By experimentally infecting wild ducks, we found that tufted ducks, Eurasian pochards, and mallards excreted significantly more virus than common teals, Eurasian wigeons, and gadwalls; yet only tufted ducks and, to a lesser degree, pochards became ill or died. These findings suggest that some wild duck species, particularly mallards, can potentially be long-distance vectors of highly pathogenic avian influenza virus (H5N1) and that others, particularly tufted ducks, are more likely to act as sentinels.
Article
Global movement patterns of migratory birds illustrate their fascinating physical and physiological abilities to cross continents and oceans. During their voyages, most birds land multiple times to make so‐called ‘stopovers’. Our current knowledge on the functions of stopover is mainly based on the proximate study of departure decisions. However, such studies are insufficient to gauge fully the ecological and evolutionary functions of stopover. If we study how a focal trait, e.g. changes in energy stores, affects the decision to depart from a stopover without considering the trait(s) that actually caused the bird to land, e.g. unfavourable environmental conditions for flight, we misinterpret the function of the stopover. It is thus important to realise and acknowledge that stopovers have many different functions, and that not every migrant has the same (set of) reasons to stop‐over. Additionally, we may obtain contradictory results because the significance of different traits to a migrant is context dependent. For instance, late spring migrants may be more prone to risk‐taking and depart from a stopover with lower energy stores than early spring migrants. Thus, we neglect that departure decisions are subject to selection to minimise immediate (mortality risk) and/or delayed (low future reproductive output) fitness costs. To alleviate these issues, we first define stopover as an interruption of migratory endurance flight to minimise immediate and/or delayed fitness costs. Second, we review all probable functions of stopover, which include accumulating energy, various forms of physiological recovery and avoiding adverse environmental conditions for flight, and list potential other functions that are less well studied, such as minimising predation, recovery from physical exhaustion and spatiotemporal adjustments to migration. Third, derived from these aspects, we argue for a paradigm shift in stopover ecology research. This includes focusing on why an individual interrupts its migratory flight, which is more likely to identify the individual‐specific function(s) of the stopover correctly than departure‐decision studies. Moreover, we highlight that the selective forces acting on stopover decisions are context dependent and are expected to differ between, e.g. K−/r‐selected species, the sexes and migration strategies. For example, all else being equal, r‐selected species (low survival rate, high reproductive rate) should have a stronger urge to continue the migratory endurance flight or resume migration from a stopover because the potential increase in immediate fitness costs suffered from a flight is offset by the expected higher reproductive success in the subsequent breeding season. Finally, we propose to focus less on proximate mechanisms controlling landing and departure decisions, and more on ultimate mechanisms to identify the selective forces shaping stopover decisions. Our ideas are not limited to birds but can be applied to any migratory species. Our revised definition of stopover and the proposed paradigm shift has the potential to stimulate a fruitful discussion towards a better evolutionary ecological understanding of the functions of stopover. Furthermore, identifying the functions of stopover will support targeted measures to conserve and restore the functionality of stopover sites threatened by anthropogenic environmental changes. This is especially important for long‐distance migrants, which currently are in alarming decline.
Article
The patterns and processes of influenza virus evolution are of fundamental importance, underpinning such traits as the propensity to emerge in new host species and the ability to rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evolution of influenza viruses. We begin with an exploration of the origins of influenza viruses within the orthomyxoviruses, showing how our perception of the evolutionary history of these viruses has been transformed with metagenomic sequencing. We then outline the diversity of virus subtypes in different species and the processes by which these viruses have emerged in new hosts, with a particular focus on the role played by segment reassortment. We then turn our attention to documenting the spread and phylodynamics of seasonal influenza A and B viruses in human populations, including the drivers of antigenic evolution, and finish with a discussion of virus diversity and evolution at the scale of individual hosts.
Article
The “immunocompetence handicap” hypothesis predicts that reproductive hormones, in particular testosterone (T), are immunosuppressive and consequently increase susceptibility to diseases and parasite infections, but this prediction has not been evaluated in free-living birds and the factors mediating the immunosuppressive influence of T remain poorly known. To address these issues, we administered supplemental T via implants to free-ranging adult male Dark-eyed Juncos (Junco hyemalis) and characterized the effects of this treatment on infection with the two most prevalent hematozoan parasites in this species, Leucocytozoon fringillinarum and Trypanosoma avium. Males caught at the beginning of their breeding season (May) received T-filled, empty (control), or no Silastic capsules, and were recaptured five weeks later. Capsule implantation had, by itself, no effect on parasite infections, body mass, or size of an androgen-dependent secondary sexual characteristic, the cloacal protuberance. Testosterone treatment maintained physiologically high plasma levels of the steroid for the duration of the study, thus preventing the seasonal decline in these levels that occurred in control males. As predicted by the immunocompetence handicap hypothesis, the hormone treatment increased blood L. fringillinarum abundance. This increase was specific, in that implanted T did not affect (1) either the prevalence or the incidence of L. fringillinarum, (2) body mass, or (3) size of the cloacal protuberance. Trypanosoma avium prevalence was not influenced by T treatment either, but it increased between May and June, which suggests that it is regulated by factors other than the activity of the reproductive system. These findings provide the first demonstration in free-ranging birds that experimentally elevated physiological T levels increase hematozoan infection. El Tratamiento de Testosterona en Machos Silvestres de Junco hyemalis Exacerba la Infección de Hemoparásitos
Article
Seasonal changes in the concentrations of plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin were measured in serial samples taken from seven captive wild mallard drakes exposed to natural lighting and temperature in Kiel, West Germany (54 degrees N), for 20 months. The seasonal pattern of plasma LH levels was characterized by high titers during the reproductive phase in the spring, a steep decrease toward the end of this phase (May/June), low levels during the summer, and a second annual peak in the fall. Plasma FSH levels increased during February and March, the period of rapid testicular growth, and reached the highest values at the end of March/beginning of April. Later in the spring FSH levels decreased and remained low for the rest of the year. The concentrations of plasma prolactin increased progressively during April and May, reaching their highest values at the end of the breeding season, coinciding with the steep fall in the levels of plasma gonadotropins. Prolactin concentrations fell during July and August and were at their lowest level in the autumn. It is concluded that the development of photorefractoriness is associated with an increase in the concentrations of plasma prolactin.