Article

Advances in microfluidic-based DNA methylation analysis

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

DNA methylation has been extensively investigated in recent years, not least because of its known relationship with various diseases. Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research. Microfluidic chips are excellent carriers for molecular analysis, and their use can provide improvements from multiple aspects. On-chip molecular analysis has received extensive attention owing to its advantages of portability, high throughput, low cost, and high efficiency. In recent years, the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods. In this review, we first focus on DNA methylation and its applications. Then, we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years. Finally, we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis. This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research. For example, the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction. Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system, a novel type of electrochemiluminescent (ECL) magneto-immunosensor is developed for ultrasensitive detection of hs-cTnI. In this approach, a large amount of [Ru(bpy)3]2+ is loaded in SiO2 (silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA. Subsequently, a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement. In particular, the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification. A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml, with the limit of detection calculated as 8.720 fg/ml (S/N = 3). This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability, reproducibility, and selectivity. Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum, providing a potential analysis protocol for clinical applications.
Article
Full-text available
Although breast cancer screening assays exist, many are inaccessible and have high turnaround times, leaving a significant need for better alternatives. Hypermethylation of tumor suppressor genes is a common epigenetic marker of breast cancer. Methylation tends to occur most frequently in the promoter and first exon regions of genes. Preliminary screening tests are crucial for informing patients whether they should pursue more involved testing. We selected RASSF1, previously demonstrated to be aberrantly methylated in liquid biopsies from breast cancer patients, as our gene of interest. Using CoBRA as our method for methylation quantification, we designed unique primer sets that amplify a portion of the CpG island spanning the 5′ end of the RASSF1 first exon. We integrated the CoBRA approach with a microfluidics-based electrophoresis quantification system (LabChip) and optimized the assay such that insightful results could be obtained without post-PCR purification or concentration, two steps traditionally included in CoBRA assays. Circumventing these steps resulted in a decreased turnaround time and mitigated the laboratory machinery and reagent requirements. Our streamlined technique has an estimated limit of detection of 9.1 ng/μL of input DNA and was able to quantify methylation with an average error of 4.3%.
Article
Full-text available
Epigenetic regulation is important in human health and disease, but the exact mechanisms remain largely enigmatic. DNA methylation represents one epigenetic aspect, but is challenging to quantify. In this study, we introduce a digital approach for the quantification of the amount and density of DNA methylation. We designed an experimental setup combining efficient methylation-sensitive restriction enzymes with digital PCR, to quantify a targeted density of DNA methylation independent of bisulphite conversion. By using a stable reference and comparing experiments treated and untreated with these enzymes, copy number instability could be properly normalised. In-silico simulations demonstrated the mathematical validity of the setup and showed that the measurement precision depends on the amount of input DNA and the fraction methylated alleles. This uncertainty could be successfully estimated by the confidence intervals. Quantification of RASSF1 promotor methylation in a variety of healthy and malignant samples and in a calibration curve confirmed the high accuracy of our approach, even in minute amounts of DNA. Overall, our results indicate the possibilities of quantifying DNA methylation with digital PCR, independent of bisulphite conversion. Moreover, as the context-density of methylation can also be determined, biological mechanisms can now be quantitatively assessed. This article is protected by copyright. All rights reserved.
Article
Full-text available
Dysregulation of DNA methylation has been identified as an epigenetic biomarker for numerous cancer types. Gene-specific identification techniques relying on methylation-specific PCR (MSP) require a lengthy manual benchtop process that is susceptible to human-error and contamination. This MSP assay requires a series of discrete sample processing steps including genomic DNA extraction, bisulfite conversion and readout via PCR. In this work, we present a streamlined assay platform utilizing droplet magnetofluidic principles for integration of all sample processing steps required to obtain quantitative MSP signal from raw biological samples. We present a streamlined protocol for solid-phase extraction and bisulfite conversion of genomic DNA, which minimizes reagent use and simplifies the sample preparation protocol for implementation on a compact assay platform. Furthermore, we present a thermally robust assay chip that enables DNA extraction, bisulfite conversion and quantitative PCR from biological samples on a single device. Technical improvements to facilitate DNA extraction and PCR on a single chip in addition to chip performance characterization data are presented.
Article
Full-text available
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
Article
Full-text available
Methylomic analyses typically require substantial amounts of DNA, thus hindering studies involving scarce samples. Here, we show that microfluidic diffusion-based reduced representation bisulfite sequencing (MID-RRBS) permits high-quality methylomic profiling with nanogram-to-single-cell quantities of starting DNA. We used the microfluidic device, which allows for efficient bisulfite conversion with high DNA recovery, to analyse genome-wide DNA methylation in cell nuclei isolated from mouse brains and sorted into NeuN+ (primarily neuronal) and NeuN− (primarily glial) fractions, and to establish cell-type-specific methylomes. Genome-wide methylation and methylation in low-CpG-density promoter regions showed distinct patterns for NeuN+ and NeuN− fractions from the mouse cerebellum. The identification of substantial variations in the methylomic landscapes of the NeuN+ fraction of the frontal cortex of mice chronically treated with an atypical antipsychotic drug suggests that this technology can be broadly used for cell-type-specific drug profiling and for the study of drug–methylome interactions. A microfluidics-based sequencing method that profiles genome-wide DNA methylation using only sub-nanogram quantities of DNA finds distinct DNA methylome patterns in glial and neuronal cell nuclei from mouse brains treated with an antipsychotic drug.
Article
Full-text available
DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N⁶-methyl-adenine (m6A), N⁴-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.
Article
Full-text available
We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ∼30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ∼3 Mb). We developed a protocol to generate ultra-long reads (N50 > 100 kb, read lengths up to 882 kb). Incorporating an additional 5× coverage of these ultra-long reads more than doubled the assembly contiguity (NG50 ∼6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.
Article
Full-text available
Sequencing the RNA in a biological sample can unlock a wealth of information, including the identity of bacteria and viruses, the nuances of alternative splicing or the transcriptional state of organisms. However, current methods have limitations due to short read lengths and reverse transcription or amplification biases. Here we demonstrate nanopore direct RNA-seq, a highly parallel, real-time, single-molecule method that circumvents reverse transcription or amplification steps. This method yields full-length, strand-specific RNA sequences and enables the direct detection of nucleotide analogs in RNA.
Article
Full-text available
Telomeres at the ends of eukaryotic chromosomes play a critical role in tumorgenesis. Using microfluidic PCR and next-generation bisulfite sequencing technology, we investigated the promoter methylation of 29 telomere related genes in paired tumor and normal tissues from 184 breast cancer patients. The expression of significantly differentially methylated genes was quantified using qPCR method. We observed that the average methylation level of the 29 telomere related genes was significant higher in tumor than that in normal tissues (P = 4.30E-21). A total of 4 genes (RAD50, RTEL, TERC and TRF1) showed significant hyper-methylation in breast tumor tissues. RAD51D showed significant methylation difference among the four breast cancer subtypes. The methylation of TERC showed significant association with ER status of breast cancer. The expression profiles of the 4 hyper-methylated genes showed significantly reduced expression in tumor tissues. The integration analysis of methylation and expression of these 4 genes showed a good performance in breast cancer prediction (AUC = 0.947). Our results revealed the methylation pattern of telomere related genes in breast cancer and suggested a novel 4-gene panel might be a valuable biomarker for breast cancer diagnosis.
Article
Full-text available
In the field of genetics, epigenetics is the study of changes in gene expression without any change in DNA sequences. Chemical base modification in DNA by DNA methyltransferase, and specifically methylation, has been well studied as the main mechanism of epigenetics. Therefore, the determination of DNA methylation of, for example, 5'-methylcytosine in the CpG sequence in mammals has attracted attention because it should prove valuable in a wide range of research fields including diagnosis, drug discovery, and therapy. Methylated DNA bases and DNA methyltransferase activity are analyzed using conventional methods; however, these methods are time-consuming and require complex multiple operations. Therefore, new methods and devices for DNA methylation analysis are now being actively developed. Furthermore, microfluidic technology has also been applied to DNA methylation analysis because the microfluidic platform offers the promising advantage of making it possible to perform thousands of DNA methylation reactions in small reaction volumes, resulting in a high-throughput analysis with high sensitivity. This review discusses epigenetics and the microfluidic platforms developed for DNA methylation analysis.
Article
Full-text available
DNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.
Article
Full-text available
Aberrant methylation of DNA has been identified as an epigenetic biomarker for numerous cancer types. The vast majority of techniques aimed at detecting methylation require bisulfite conversion of the DNA sample prior to analysis, which until now has been a benchtop process. Although microfluidics has potential benefits of simplified operation, sample and reagent economy, and scalability, bisulfite conversion has yet to be implemented in this format. Here, we present a novel droplet microfluidic design that facilitates rapid bisulfite conversion by reducing the necessary processing steps while retaining comparable performance to existing methods. This new format has a reduced overall processing time and is readily scalable for use in high throughput DNA methylation analysis.
Article
Full-text available
Aberrant DNA methylation is a common epigenetic alteration found in colorectal adenomas and cancers and plays a role in cancer initiation and progression. Aberrantly methylated DNA loci can also be found infrequently present in normal colon tissue, where they seem to have potential to be used as colorectal cancer (CRC) risk biomarkers. However, detection and precise quantification of the infrequent methylation events seen in normal colon is likely beyond the capability of commonly used PCR technologies. To determine the potential for methylated DNA loci as CRC risk biomarkers, we developed MethyLight droplet digital PCR (ddPCR) assays and compared their performance to the widely used conventional MethyLight PCR. Our analyses demonstrated the capacity of MethyLight ddPCR to detect a single methylated NTRK3 allele from among more than 3125 unmethylated alleles, 25-fold more sensitive than conventional MethyLight PCR. The MethyLight ddPCR assay detected as little as 18.9 and 37.9 haploid genome equivalents of methylated EVL and methylated NTRK3, respectively, which far exceeded conventional MethyLight PCR (378.8 haploid genome equivalents for both genes). When assessing methylated EVL levels in CRC tissue samples, MethyLight ddPCR reduced coefficients of variation (CV) to 6-65% of CVs seen with conventional MethyLight PCR. Importantly, we showed the ability of MethyLight ddPCR to detect infrequently methylated EVL alleles in normal colon mucosa samples that could not be detected by conventional MethyLight PCR. This study suggests that the sensitivity and precision of methylation detection by MethyLight ddPCR enhances the potential of methylated alleles for use as CRC risk biomarkers.
Article
Full-text available
Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.
Article
Full-text available
Background DNA methylation has essential roles in transcriptional regulation, imprinting, X chromosome inactivation and other cellular processes, and aberrant CpG methylation is directly involved in the pathogenesis of human imprinting disorders and many cancers. To address the need for a quantitative and highly multiplexed bisulfite sequencing method with long read lengths for targeted CpG methylation analysis, we developed single-molecule real-time bisulfite sequencing (SMRT-BS). Results Optimized bisulfite conversion and PCR conditions enabled the amplification of DNA fragments up to ~1.5 kb, and subjecting overlapping 625–1491 bp amplicons to SMRT-BS indicated high reproducibility across all amplicon lengths (r = 0.972) and low standard deviations (≤0.10) between individual CpG sites sequenced in triplicate. Higher variability in CpG methylation quantitation was correlated with reduced sequencing depth, particularly for intermediately methylated regions. SMRT-BS was validated by orthogonal bisulfite-based microarray (r = 0.906; 42 CpG sites) and second generation sequencing (r = 0.933; 174 CpG sites); however, longer SMRT-BS amplicons (>1.0 kb) had reduced, but very acceptable, correlation with both orthogonal methods (r = 0.836-0.897 and r = 0.892-0.927, respectively) compared to amplicons less than ~1.0 kb (r = 0.940-0.951 and r = 0.948-0.963, respectively). Multiplexing utility was assessed by simultaneously subjecting four distinct CpG island amplicons (702–866 bp; 325 CpGs) and 30 hematological malignancy cell lines to SMRT-BS (average depth of 110X), which identified a spectrum of highly quantitative methylation levels across all interrogated CpG sites and cell lines. Conclusions SMRT-BS is a novel, accurate and cost-effective targeted CpG methylation method that is amenable to a high degree of multiplexing with minimal clonal PCR artifacts. Increased sequencing depth is necessary when interrogating longer amplicons (>1.0 kb) and the previously reported bisulfite sequencing PCR bias towards unmethylated DNA should be considered when measuring intermediately methylated regions. Coupled with an optimized bisulfite PCR protocol, SMRT-BS is capable of interrogating ~1.5 kb amplicons, which theoretically can cover ~91% of CpG islands in the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1572-7) contains supplementary material, which is available to authorized users.
Article
Full-text available
Genetic sequence and hyper-methylation profile information from the promoter regions of tumor suppressor genes are important for cancer disease investigation. Since hyper-methylated DNA (hm-DNA) is typically present in ultra-low concentrations in biological samples, such as stool, urine, and saliva, sample enrichment and amplification is typically required before detection. We present a rapid microfluidic solid phase extraction (μSPE) system for the capture and elution of low concentrations of hm-DNA (≤1 ng ml(-1)), based on a protein-DNA capture surface, into small volumes using a passive microfluidic lab-on-a-chip platform. All assay steps have been qualitatively characterized using a real-time surface plasmon resonance (SPR) biosensor, and quantitatively characterized using fluorescence spectroscopy. The hm-DNA capture/elution process requires less than 5 min with an efficiency of 71% using a 25 μl elution volume and 92% efficiency using a 100 μl elution volume.
Article
Full-text available
Hypermethylation of CpG islands in gene promoter regions has been shown to be a predictive biomarker for certain diseases. Most current methods for methylation profiling are not well-suited for clinical analysis. Here, we report the development of an inexpensive device and an epigenotyping assay with a format conducive to multiplexed analysis.
Article
Changes in the DNA methylation landscape are associated with many diseases like cancer. Therefore, DNA methylation analysis is of great interest for molecular diagnostics and can be applied, e.g., for minimally invasive diagnostics in liquid biopsy samples like blood plasma. Sensitive detection of local de novo methylation, which occurs in various cancer types, can be achieved with quantitative HeavyMethyl-PCR using oligonucleotides that block the amplification of unmethylated DNA. A transfer of these quantitative PCRs (qPCRs) into point-of-care (PoC) devices like microfluidic Lab-on-Chip (LoC) cartridges can be challenging as LoC systems show significantly different thermal properties than qPCR cyclers. We demonstrate how an adequate thermal model of the specific LoC system can help us to identify a suitable thermal profile, even for complex HeavyMethyl qPCRs, with reduced experimental effort. Using a simulation-based approach, we demonstrate a proof-of-principle for the successful LoC transfer of colorectal SEPT9/ ACTB-qPCR from Epi Procolon® colorectal carcinoma test, by avoidance of oligonucleotide interactions.
Article
Lung cancer (LC) is a major cause of mortality. Late diagnosis, associated with limitations in tissue biopsies for adequate tumor characterization contribute to limited survival of lung cancer patients. Liquid biopsies have been introduced to improve tumor characetrization through the analysis of biomarkers, including circulating tumour cells (CTCs) and cell-free DNA (cfDNA). Considering their availability in blood, several enrichment strategies have been developed to augment circulating biomarkers for improving diagnostic, prognostic and treament efficacy assessment; often, however, only one biomarker is tested. In this work we developed and implemented a microfluidic chip for label-free enrichment of CTCs with a methodology for subsequent cfDNA analysis from the same cryopreserved sample. CTCs were successfully isolated in 38 of 42 LC patients with the microfluidic chip. CTCs frequency was significantly higher in LC patients with advanced disease. A cut-off of 1 CTC per mL was established for diagnosis (sensitivity = 76.19%, specificity = 100%) and in patients with late stage lung cancer, the presence of ≥5 CTCs per mL was significantly associated with shorter overall survival. MIR129-2me and ADCY4me panel of cfDNA methylation performed well for LC detection, whereas MIR129-2me combined with HOXA11me allowed for patient risk stratification. Analysis of combinations of biomarkers enabled the definition of panels for LC diagnosis and prognosis. Overall, this study demonstrates that multimodal analysis of tumour biomarkers via microfluidic devices may significantly improve LC characterization in cryopreserved samples, constituting a reliable source for continuous disease monitoring.
Chapter
Early cancer detection requires identification of cellular changes resulting from oncogenesis. Abnormal DNA methylation patterns occurring early in tumor development have been widely identified as early biomarkers for multiple types of cancer tumors. Methylation-Specific PCR (MSP) has permitted highly sensitive detection of these methylation changes at known biomarker locations. MSP requires multiple sample preparation steps including protein digestion, DNA isolation, and bisulfite conversion prior to detection. In this work, we present a streamlined assay platform and instrumentation for integration of all sample processing steps required to obtain quantitative MSP signal from raw biological samples through the use of droplet magnetofluidic principles. In conjunction with this platform, we present a streamlined protocol for solid-phase DNA extraction from cells and bisulfite conversion of genomic DNA, minimizing the processing steps and reagent volume for implementation on a compact assay platform.
Article
Epigenetics has enriched human disease studies by adding new interpretations to disease features that cannot be explained by genetic and environmental factors. However, identifying causal mechanisms of epigenetic origin has been challenging. New opportunities have risen from recent findings in intra-individual and cyclical epigenetic variation, which includes circadian epigenetic oscillations. Cytosine modifications display deterministic temporal rhythms, which may drive ageing and complex disease. Temporality in the epigenome, or the 'chrono' dimension, may help the integration of epigenetic, environmental and genetic disease studies, and reconcile several disparities stemming from the arbitrarily delimited research fields. The ultimate goal of chrono-epigenetics is to predict disease risk, age of onset and disease dynamics from within individual-specific temporal dynamics of epigenomes.
Article
Biomarkers based on DNA methylation have attracted wide attention in biomedical research due to their potential clinical value. Therefore, a sensitive and accurate method for DNA methylation detection is highly desirable for the discovery and diagnostics of human diseases, especially cancers. Here, an integrated, low-cost, and portable point-of-care (POC) device is presented to analyze DNA methylation, which integrates the process of pyrosequencing in a digital microfluidic chip. Without additional equipment and complicated operation, droplets are manipulated by patterned electrodes with individually programmed control. The system exhibited an excellent sensitivity with a limit of detection (LOD) of 10 pg and a comparable checkout down to 5% methylation level within 30 min, which offered a potential substitute for the detection of DNA methylation. With the advantages of portability, ease of use, high accuracy, and low cost, the POC platform shows great potential for the analysis of tumor-specific circulating DNA.
Article
Epigenetic markers attract increasing attention for the study of phenotypic variations, which has led to the investigation of cell-lineage DNA methylation patterns that correlate with human leukocyte populations for obtaining counts of white blood cell (WBC) subsets. Current methods of DNA methylation analysis involve genome sequencing or loci-specific quantitative PCR (qPCR). Herein, a multiplexed digital droplet PCR (ddPCR) workflow for determining epigenetic-based WBC differential count is described for the first time. A microfluidic emulsification device fabricated from a commercially available thermoplastic elastomer (e.g., Mediprene) promotes customizability and cost-effectiveness of the methodology, which are prerequisites for translation into clinical and point-of-care diagnostics. Bisulfite-treated DNA from peripheral blood mononuclear cells and whole blood is encapsulated in droplets with ddPCR reagents containing primers and fluorescent hydrolysis probes specific for CpG loci correlated with WBC sub-population types. The method enables multiplexed detection of various methylation sites within a single droplet. Both qPCR and immunofluorescence staining (IF) were conducted to validate the capacity of the ddPCR methodology to accurately determine WBC sub-populations using epigenetic analysis of methylation sites. ddPCR results correlated closely to cell proportions obtained using IF, whereas qPCR significantly underestimated these values for both high and low copy number gene targets.
Article
DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.
Article
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Article
Liquid biopsies contain a treasure of genetic and epigenetic biomarkers that contain information for the detection and monitoring of human disease. DNA methylation is an epigenetic modification that is critical to determining cellular phenotype and often becomes altered in many disease states. In cancer, aberrant DNA methylation contributes to carcinogenesis and can profoundly affect tumor evolution, metastatic potential, and resistance to therapeutic intervention. However, current technologies are not well-suited for quantitative assessment of DNA methylation heterogeneity, especially in challenging samples such as liquid biopsies with low DNA input and high background. We present a multilayer microfluidic device for quantitative analysis of DNA methylation by digital PCR and high resolution melt (HRM). The multilayer design facilitates high-density array digitization aimed at maximizing sample loading efficiency. The platform achieves highly parallelized digital PCR-HRM-based discrimination of rare heterogeneous DNA methylation as low as 0.0001% methylated/unmethylated molecules of a classic tumor suppressor gene, CDKN2A (p14ARF).
Article
Studies of dynamic epigenomic changes during tumorigenesis using mice often require profiling epigenomes using a tiny quantity of tissue samples. Conventional epigenomic tests do not support such analysis due to the large amount of materials required by these assays. In this study, we developed an ultrasensitive microfluidics-based methylated DNA immunoprecipitation followed by next-generation sequencing (MeDIP-seq) technology for profiling methylomes using as little as 0.5 ng DNA (or ~100 cells) with 1.5 h on-chip process for immunoprecipitation. This technology enabled us to examine genome-wide DNA methylation in a C3(1)/SV40 T-antigen transgenic mouse model during different stages of mammary cancer development. Using our data, we identified differentially methylated regions and their associated genes in different periods of cancer development. Our results showed that unique methylomic features were presented in various tumor developmental stages.
Article
Digital Polymerase Chain Reaction (dPCR) technology remains a “hot topic” in the last two decades due to its potential applications in cell biology, genetic engineering and medical diagnostics. Various advanced techniques have been reported on sample dispersion, thermal cycling and output monitoring of digital PCR. However, a fully automated, low-cost and handheld digital PCR platform has not been reported in literature. This paper attempts to critically evaluate the recent developments in techniques for sample dispersion, thermal cycling and output evaluation for dPCR. The techniques are discussed in term of hardware simplicity, portability, cost effectiveness and suitability for automation. The present paper also discusses the research gaps observed in each step of dPCR and concludes with a possible improvements toward portable, low-cost and automatic digital PCR systems.
Article
This work presents a digital microfluidic platform called HYPER-Melt (high-density profiling and enumeration by melt) for highly parallelized copy-by-copy DNA molecular profiling. HYPER-Melt provides a facile means of detecting and assessing sequence variations of thousands of individual DNA molecules through digitization in a nanowell microchip array, allowing amplification and interrogation of individual template molecules by detecting HRM fluorescence changes due to sequence-dependent denaturation. As a model application, HYPER-Melt is used here for the detection and assessment of intermolecular heterogeneity of DNA methylation within the promoters of classical tumor suppressor genes. The capabilities of this platform are validated through serial dilutions of mixed epialleles, with demonstrated detection limits as low as 1 methylated variant in 2 million unmethylated templates (0.00005%) of a classic tumor suppressor gene, CDKN2A (p14 ARF). The clinical potential of the platform is demonstrated using a digital assay for NDRG4, a tumor suppressor gene that is commonly methylated in colorectal cancer, in liquid biopsies of healthy and colorectal cancer patients. Overall, the platform provides the depth of information, simplicity of use, and single-molecule sensitivity necessary for rapid assessment of intermolecular variation contributing to genetic and epigenetic heterogeneity for challenging applications in embryogenesis, carcinogenesis, and rare biomarker detection.
Article
We use the electronic properties of 2D solid-state nanopore materials to propose a versatile and generally applicable biosensor technology by using a combination of molecular dynamics, nanoscale device simulations, and statistical signal processing algorithms. As a case study, we explore the classification of three epigenetic biomarkers, the methyl-CpG binding domain 1 (MBD-1), MeCP2, and γ-cyclodextrin, attached to double-stranded DNA to identify regions of hyper- or hypomethylations by utilizing a matched filter. We assess the sensing ability of the nanopore device to identify the biomarkers based on their characteristic electronic current signatures. Such a matched filter-based classifier enables real-time identification of the biomarkers that can be easily implemented on chip. This integration of a sensor with signal processing architectures could pave the way toward the development of a multipurpose technology for early disease detection.
Article
DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as the initiation and progression of various diseases like cancer. Over the past few decades, enormous research has been carried out for quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinders their application to routine clinical screening. Thus, alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost effective, portable, and simple to operate. On the other hand, biosensors with optical readout enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts to bisulfite free DNA methylation analysis is paving the way for translation of this important biomarker to standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.
Article
Epigenetics is the regulation of gene expression through alterations in DNA or associated factors (other than the DNA sequence). These factors control the diverse manifestations of diseases. Insights into epigenetic modification may lead to new therapies for common diseases.
Article
DNA methylation is considered to be a promising marker for the early diagnosis and prognosis of cancer. However, direct detection of the methylated DNAs in clinically relevant samples is still challenging because of its extremely low concentration (~fM). Here, an integrated microfluidic chip is reported, which is capable of pre-concentrating the methylated DNAs using ion concentration polarization (ICP) and electrochemically detecting the pre-concentrated DNAs on a single chip. The proposed chip is the first demonstration of an electrochemical detection of both level and concentration of the methylated DNAs by integrating a DNA pre-concentration unit without gene amplification. Using the proposed chip, 500 fM to 500 nM of methylated DNAs is pre-concentrated by almost 100-fold in 10 min, resulting in a drastic improvement of the electrochemical detection threshold down to the fM level. The proposed chip is able to measure not only the DNA concentration, but also the level of methylation using human urine sample by performing a consecutive electrochemical sensing on a chip. For clinical application, the level as well as the concentration of methylation of glutathione-S transferase-P1 (GSTP1) and EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1), which are known to be closely associated with prostate cancer diagnosis, are electrochemically detected in human urine spiked with these genes. The developed chip shows a limit of detection (LoD) of 7.9 pM for GSTP1 and 11.8 pM for EFEMP1 and is able to detect the level of methylation in a wide range from 10% to 100% with the concentration variation from 50 pM to 500 nM.
Article
DNA methylation is an epigenetic regulation of gene expression, which has drawn great attention in biomedical research due to its association with various diseases. A robust, inexpensive platform to detect and quantify the methylation status in a specific genomic region is necessary. In this study, an on-chip analytical technique of cytosine methylation with droplets in a microchannel is proposed. Genomic DNA samples are encapsulated into a series of droplets and transported through a detection region, where a stable temperature gradient is created. As the temperature is elevated from 60 °C to 85 °C, the DNA samples denature and the associated fluorescence signals decay, with the relationship being acquired as the melting curve. The droplets serve as discrete reactors for conducting DNA melting curve analysis in the liquid phase, thereby eliminating the need for immobilization of reagents. Due to a high heating rate and greater enhanced thermal stability, this microchip allows larger melting temperature differences for the samples at different percentages of methylated DNA. It has an enhanced discrimination ability and lower volume consumption, compared to the commercial qPCR machine. This chip enables quantification of the methylation levels of the pluripotent stem cell factor Oct-4 in its distal enhancer (DE) region, with a designed probe after bisulfite treatment and asymmetric PCR.
Chapter
Whole genome shotgun bisulfite sequencing is a method used to generate genome-wide methylation profiles. There are many available protocols to validate the results of this genome-wide method, but they mostly share the limitation of measuring methylation at a small number of CpG positions in small numbers of samples. We developed a multiplexed DNA methylation analysis protocol, which allows for the simultaneous quantitative measurement of cytosine methylation at single nucleotide resolution in 48 PCR amplicons and 48 samples utilizing the microfluidic system established by Fluidigm. Following bisulfite conversion of 500 ng of the target DNA, a PCR reaction is performed using a 48.48 Access Array, which allows parallel amplification of 48 samples by 48 primer pairs. The products of each reaction are labeled with individual, sample specific tags, pooled in a single library and sequenced using the Illumina MiSeq sequencer. The advantages of this system are: speed, small amount of input material, single nucleotide resolution, high coverage of each locus, low cost of simultaneously assaying multiple CpG loci in multiple DNA samples and high reproducibility.
Article
Methylation at the 5-carbon position of the cytosine nucleotide base in DNA has been shown to be a reliable diagnostic biomarker for carcinogenesis. Early detection of methylation and intervention could drastically increase the effectiveness of therapy and reduce the cancer mortality rate. Current methods for detecting methylation involve bisulfite genomic sequencing, which are cumbersome and demand a large sample size of bodily fluid to yield accurate results. Hence, more efficient and cost effective methods are desired. Building off our previous work, we present a novel nanopore-based assay using a nanopore in a MoS2 membrane, and the methyl-binding protein (MBP), MBD1x, to detect methylation on dsDNA. We show that the dsDNA translocation was effectively slowed down using an asymmetric concentration of buffer and explore the possibility of profiling the position of methylcytosines on the DNA strands as they translocate through the 2D membrane. Our findings advance us one step closer towards the possible use of nanopore sensing technology in medical applications such as cancer detection.
Article
Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases.
Article
We investigate theoretically the ability of graphene nanopore membranes to detect methylated sites along a DNA molecule by electronic sheet current along the two-dimensional (2D) materials. Special emphasis is placed on the detection sensitivity changes due to pore size, shape, position, and the presence of defects around the nanopore in a membrane with constricted geometry. Enhanced sensitivity for detecting methylated CpG sites, labeled by methyl-CpG binding domain (MBD) proteins along a DNA molecule, is obtained for electronic transport through graphene midgap states caused by the constriction. A large square deviation from the graphene conductance with respect to the open nanopore is observed during the translocation of MBD proteins. This approach exhibits superior resolution in the detection of multiple methylated sites along the DNA compared to conventional ionic current blockade techniques.
Article
DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates. To overcome these obstacles, great efforts have been made toward the development of reliable sensor devices to solve these limitations, providing sensitive, fast and cost-effective measurements. The use of biosensors for DNA methylation biomarkers has increased in recent years, because they are portable, simple, rapid, and inexpensive which offers a straightforward way to detect methylated biomarkers. In this review, we give an overview of the conventional techniques for the detection of DNA methylation and then will focus on recent advances in biosensor based methylation detection that eliminate bisulfite conversion and PCR amplification.
Article
Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.
Article
We report on a detection method for methylated DNA on a microfluidic chip, which needs no external power for fluid pumping. The methylated DNA was sandwiched by immobilized probe DNA and an anti-methylcytosine antibody. The fluorescence signal was amplified by our original amplification technology. The detection method was first optimized using a 22-mer DNA sequence, then further validated using a 60-mer DNA sequence adapted from the SEPT9 gene. We were able to detect the methylated 60-mer DNA at 0.4 nM within 18 min.
Article
Information encoded in DNA is interpreted, modified, and propagated as chromatin. The diversity of inputs encountered by eukaryotic genomes demands a matching capacity for transcriptional outcomes provided by the combinatorial and dynamic nature of epigenetic processes. Advances in genome editing, visualization technology, and genome-wide analyses have revealed unprecedented complexity of chromatin pathways, offering explanations to long-standing questions and presenting new challenges. Here, we review recent findings, exemplified by the emerging understanding of crossregulatory interactions within chromatin, and emphasize the pathologic outcomes of epigenetic misregulation in cancer.
Article
Epigenetic studies increasingly require analysis of a small number of cells that are of one specific type and derived from patients or animals. In this report, we demonstrate a simple microfluidic device that integrates sonication and immunoprecipitation (IP) for epigenetic assays such as chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP). By incorporating an ultrasonic transducer with a microfluidic chamber, we implemented microscale sonication for both shearing chromatin/DNA and mixing/washing of IP beads. Such integration allowed highly sensitive tests starting with 100 cross-linked cells for ChIP or 500 pg genomic DNA for MeDIP (compared to 10(6)-10(7) cells for ChIP, 1-10 µg DNA for MeDIP in conventional assays). The entire on-chip process of sonication and IP took only 1 h. Our tool will be useful for highly sensitive epigenetic studies based on a small quantity of sample.
Article
This paper reports a sequence-specific immunoassay chip for DNA methylation assessment by microfluidic-based surface plasmon resonance (SPR) detection. This was achieved by utilizing an affinity measurement involving the target, (methyl-) cytosine, in a single-base bulge region and an anti-methylcytosine antibody in a microchannel, following hybridization with a biotinylated bulge-inducing DNA probe. The probe alters the target cytosine in a looped-out state because of the π-π stack-ing between flanking bases of the target. The probe design is simple and consists of the elimination of guanine paired with the target cytosine from a fragmented full match sequence. We obtained the single methylation status in 6 attomoles (48 femtograms) of synthesized oligo DNA in 45 min, which is the fastest DNA methylation assessment yet reported, without employing a conventional bisulfite reaction, PCR or sequencing. We also succeeded in the discrimination of the methylation status of single cytosine in genomic lambda DNA and HCT116 human colon cancer cells. The advantages of the proposed method are its small equipment, simple microfluidics design, ease of handling (two injections of DNA and antibody), the lack of a need for a methylation-sensitive enzyme, and a neutral buffer condition.
Article
Miniaturized Lab on a Chip (LOC) systems have been developed for genetic and epigenetic analyses in clinical applications because of advantages such as reduced sample size and reagent consumption, rapid processing speed, simplicity, and enhanced sensitivity. Despite tremendous efforts made towards developing LOC systems for use in the clinical setting, the development of LOC systems to analyze DNA methylation, which is an emerging epigenetic marker causing the abnormal silencing of genes including tumor suppressor genes, is still challenging because of the gold standard methods involving a bisulfite conversion step. Existing bisulfite-conversion based techniques are not suitable for clinical use due to their long processing-time, labor-intensiveness, and the purification steps involved. Here, we present a Lab-on-a-Chip system for DNA Methylation Analysis based on Bisulfite conversion (LoMA-B), which couples a sample pre-processing module for on-chip bisulfite conversion and a label-free, real-time detection module for rapid analysis of DNA methylation status using an isothermal DNA amplification/detection technique. The methylation status of the RARβ gene in human genomic DNA extracted from MCF-7 cells was analyzed by the LoMA-B system within 80 min (except 16 h for sensor preparation) compared to conventional MS-PCR within 24 h. Furthermore, the LoMA-B system is highly sensitive and can detect as little as 1% methylated DNA in a methylated/unmethylated cell mixture. Therefore, the LoMA-B system is an efficient diagnostic tool for the simple, versatile, and quantitative evaluation of DNA methylation patterns for clinical applications.
Article
DNA methylation is an epigenetic modification of DNA in which methyl groups are added at the 5-carbon position of cytosine (5mC). Aberrant DNA methylation, which has been associated with carcinogenesis, can be assessed in various biological fluids and potentially be used as markers for detection of cancer. Analytically sensitive and specific assays for methylation targeting low-abundance and fragmented DNA are needed for optimal clinical diagnosis and prognosis. We present a nanopore-based direct methylation detection assay that circumvents bisulfite conversion and PCR amplification. Building on our prior work, we used methyl-binding proteins (MBPs), which selectively label the methylated DNA. The nanopore-based assay selectively detects methylated DNA/MBP complexes through a 19 nm nanopore with significantly deeper and prolonged nanopore ionic current blocking, while unmethylated DNA molecules were not detectable due to their smaller diameter. Discrimination of hypermethylated and unmethylated DNA on 90 bp, 60 bp, and 30 bp DNA fragments was demonstrated using sub 10 nm nanopores. Hypermethylated DNA fragments fully bound with MBP are differentiated from unmethylated DNA at 2.1-fold to 6.5-fold current blockades and 4.5-fold to 23.3-fold transport durations. Furthermore, these nanopore assays can detect CpG dyads in DNA fragments and could someday profile the position of methylated CpG sites on DNA fragments.
Article
Abnormal DNA methylation has been associated with the development and progression of several human cancers and is a potential target for treatment. Thus, myriad technologies for the analysis of DNA methylation have been developed over the last few decades. However, most of these technologies are still far from ideal because they are time-consuming, labor-intensive, complex and there is the risk of contamination of sample. Here, we present an innovative DNA methylation specific amplification/detection device for analysis of DNA methylation in cancer-related DNA biomarkers. The assay is based on a microfluidic system that couples flexible plastic based on-chip endonuclease digestion with optimized magnetic field effect and methylation specific-isothermal solid-phase amplification/detection technique to allow low-cost, simple, rapid analysis of DNA methylation status in a label-free and real-time manner. This flexible plastic/silicon based microfluidic device is relatively simple to fabricate with a flexible thin film and a magnet array by using a laser machine that can overcome the limitations of PDMS based microfluidic device. We demonstrated the ability of the methylation analysis based on the proposed flexible device to detect the methylated RARß gene, which is a common DNA methylation biomarker in several human cancers. The simple platform detected the methylated gene in genomic DNA from human cancer cell lines within 65 min, whereas other methods required at least several hours. Therefore, this simple, low-cost, rapid methylation analysis platform will be useful for the detection of DNA methylation in point-of-care applications.
Article
DNA methylation is an epigenetic modification essential for normal development and maintenance of somatic biological functions. DNA methylation provides heritable, long-term chromatin regulation and the aberrant methylation pattern is associated with complex diseases including cancer. Discovering novel therapeutic targets demands development of high-throughput, sensitive and inexpensive screening platforms for libraries of chemical or biological matter involved in DNA methylation establishment and maintenance. Here, we present a universal, high-throughput, microfluidic-based fluorometric assay for studying DNA methylation in vitro. The enzymatic activity of bacterial HPAII DNA methyltransferase and its kinetic properties are measured using the assay (K = 5.8 nM, K = 9.8 nM and Kcat = 0.04 s(-1)). Using the same platform, we then demonstrate a two-step approach for high-throughput in vitro identification and characterization of small molecule inhibitors of methylation. The approach is examined using known non-nucleoside inhibitors, SGI-1027 and RG108, for which we measured IC50 of 4.5 μM and 87.5 nM, respectively. The dual role of the microfluidic-based methylation assay both for the quantitative characterization of enzymatic activity and high-throughput screening of non-nucleoside inhibitors coupled with quantitative characterization of the inhibition potential highlights the advantages of our system for epigenetic studies.