Cover PagePDF Available

Nanotechnology—The Key to Unlocking Future Healthcare Innovations

Authors:

Abstract

In the realm of science and medicine, nanotechnology emerges as a beacon of hope, promising to revolutionize healthcare with its ability to manipulate matter at the molecular level. As a passionate advocate for this field, we have witnessed firsthand the transformative potential of nanoscale innovations. The promise of nanotechnology lies not only in its current applications but also in its vast, untapped potential to address some of the most pressing medical challenges of our time. Nanotechnology is a branch of science and medicine that explores the possibilities of manipulating matter at the molecular scale. Nanotechnology has already demonstrated its usefulness in various fields and has enormous, untapped potential to address some of the most pressing medical challenges of our era. However, nanotechnology also poses some risks that need to be carefully assessed by toxicology studies on nanomedicines. Nanotechnology offers many benefits for the development of new drugs and delivery systems, but it also has some potential drawbacks that require careful evaluation by toxicological studies on nanomaterials. These studies aim to identify and quantify the possible adverse effects of nanotechnology on human health and the environment, as well as to guide the safe and ethical use of nanomedicines. Nanotechnology has the potential to improve the lives of millions of people around the world, especially in developing countries where access to health care and other resources is limited. However, to achieve this goal, we need to create a culture of collaboration and transparency among all the stakeholders involved in the development and application of nanotechnology. This includes scientists, doctors, policymakers, and the public. By sharing knowledge, data, and best practices, we can ensure that nanotechnology is used ethically, safely, and effectively for the common good. Overcoming Barriers Despite the advancements, the journey of nanotechnology from the lab bench to the bedside is fraught with barriers. Regulatory hurdles, public perception, and a lack of interdisciplinary collaboration often slow the pace of progress. It is imperative that we, as a scientific community, work together to overcome these obstacles. By fostering an environment of open communication and cooperation between researchers, clinicians, and policymakers, we can ensure that the benefits of nanotechnology reach those in need. Nanomaterials are very small particles that have unique properties and applications in medicine, engineering, and other fields. However, before they can be used safely and effectively in humans or animals, they need to undergo rigorous testing to evaluate their biocompatibility. This means that they should not interfere with the normal functions of living tissues, cells, and molecules, or cause any adverse effects or toxicity. Biocompatibility testing is essential for ensuring the safety and efficacy of nanomaterials in clinical settings, where they can be used for diagnosis, treatment, or prevention of diseases. Nanotechnology has made significant progress in various fields of medicine, such as drug delivery, imaging, diagnosis, and therapy. However, there are still many challenges and obstacles that hinder the translation of nanotechnology from the laboratory to the clinic. One of the major hurdles is the evaluation of the safety and efficacy of nanomaterials in biological systems, both in vivo and in vitro. These assessments are crucial for ensuring the biocompatibility, functionality, and performance of nanomaterials in clinical applications. These tests are essential for ensuring that nanomaterials are compatible with living tissues, cells, and molecules and that they can perform their intended functions without causing harm or side effects in clinical settings.
Opinion
Volume 1 Issue 1 - December 2023
J Recent Adv Nanomed & Nanotech

Nanotechnology—The Key to Unlocking Future
Healthcare Innovations
Deniz Eren Erişen*
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, China
Submission: December 04, 2023; Published: December 14, 2023
*Corresponding author: 

e Promise of Nanotechnology

  
          

     
         
       
        
        
       
        
        

          
     
         
        
      
      


        
        
         

       
   

    
        

Overcoming Barriers
      
          
       
       

        
     
       
       
        


   
       

       


      
  
       

            
in
vivo and in vitro    

        
   
        

J Recent Adv Nanomed & Nanotech 1(1): JRANN.MS.ID.555551 (2023) 001
Keywords: 
How to cite this article: Deniz Eren E. Nanotechnology—The Key to Unlocking Future Healthcare Innovations. J Recent Adv Nanomed & Nanotech.
2023; 1(1): 555551.
002
Journal of Recent Advances in Nanomedicine & Nanotechnology (JRANN)
     




       

  
           
       
     
    
      
     
  



       

        
          

       
        

       
   

Estimating the Toxicology of Nanomaterials


  
       
    

     

     


         
   

        
        
         
      
        

       

a)        

b) 

c) 

d)       in vitro
and in vivo    

      


a)     
      

b) 


c) 

d)    


   
      
       


Morphological Control of Particles
      
       
      
       
       
       
      
 

physical or chemical properties depending on the direction or
       

        
       
       
How to cite this article: Deniz Eren E. Nanotechnology—The Key to Unlocking Future Healthcare Innovations. J Recent Adv Nanomed & Nanotech.
2023; 1(1): 555551.
003
Journal of Recent Advances in Nanomedicine & Nanotechnology (JRANN)
   

      
anisotropy, asymmetry, or polarity, have attracted increasing
        
        
       
       

   
      
      

Ethical Considerations

         
         
  
         
         
          
        


      

the environment, the social and economic implications, and the

    

         
        
        
  
      

         
         

         
 


         


      
  
     


         
       
      
        
         
 

A Call to Action
         
         
        
        
          
      
        
more innovative approach to problem solving, rather than relying
      
        
      


Conclusion
  
     
     
  
       

         


      
     
          
          



References
 
       

 
   

      


How to cite this article: Deniz Eren E. Nanotechnology—The Key to Unlocking Future Healthcare Innovations. J Recent Adv Nanomed & Nanotech.
2023; 1(1): 555551.
004
Journal of Recent Advances in Nanomedicine & Nanotechnology (JRANN)
 
        

        
     
    

           

  

 
     
       

  
  

            
 In Vitro      

   in Vitro 


           

 in Vitro and in Vivo     

     
         
 

  




        
    

         
       
        

        





         


  
      





Reprints availability






Track the below URL for one-step submission

This work is licensed under Creative
Commons Attribution 4.0 License
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Use of nanoparticles have established benefits in a wide range of applications, however, the effects of exposure to nanoparticles on health and the environmental risks associated with the production and use of nanoparticles are less well-established. The present study addresses this gap in knowledge by examining, through a scoping review of the current literature, the effects of nanoparticles on human health and the environment. We searched relevant databases including Medline, Web of Science, ScienceDirect, Scopus, CINAHL, Embase, and SAGE journals, as well as Google, Google Scholar, and grey literature from June 2021 to July 2021. After removing duplicate articles, the title and abstracts of 1495 articles were first screened followed by the full-texts of 249 studies, and this resulted in the inclusion of 117 studies in the presented review. In this contribution we conclude that while nanoparticles offer distinct benefits in a range of applications, they pose significant threats to humans and the environment. Using several biological models and biomarkers, the included studies revealed the toxic effects of nanoparticles (mainly zinc oxide, silicon dioxide, titanium dioxide, silver, and carbon nanotubes) to include cell death, production of oxidative stress, DNA damage, apoptosis, and induction of inflammatory responses. Most of the included studies (65.81%) investigated inorganic-based nanoparticles. In terms of biomarkers, most studies (76.9%) used immortalised cell lines, whiles 18.8% used primary cells as the biomarker for assessing human health effect of nanoparticles. Biomarkers that were used for assessing environmental impact of nanoparticles included soil samples and soybean seeds, zebrafish larvae, fish, and Daphnia magna neonates. From the studies included in this work the United States recorded the highest number of publications (n = 30, 25.64%), followed by China, India, and Saudi Arabia recording the same number of publications (n = 8 each), with 95.75% of the studies published from the year 2009. The majority of the included studies (93.16%) assessed impact of nanoparticles on human health, and 95.7% used experimental study design. This shows a clear gap exists in examining the impact of nanoparticles on the environment.
Article
Full-text available
Understanding the interaction between biological structures and nanoscale technologies, dubbed the nano-bio interface, is required for successful development of safe and efficient nanomedicine products. The lack of a universal reporting system and decentralized methodologies for nanomaterial characterization have resulted in a low degree of reliability and reproducibility in the nanomedicine literature. As such, there is a strong need to establish a characterization system to support the reproducibility of nanoscience data particularly for studies seeking clinical translation. Here, we discuss the existing key standards for addressing robust characterization of nanomaterials based on their intended use in medical devices or as pharmaceuticals. We also discuss the challenges surrounding implementation of such standard protocols and their implication for translation of nanotechnology into clinical practice. We, however, emphasize that practical implementation of standard protocols in experimental laboratories requires long-term planning through integration of stakeholders including institutions and funding agencies.
Article
Full-text available
Highlights • Coronavirus epidemic has drastically impacted the publishing system of the journals. • Many journals have swiftly approved articles to avoid delay in publication. • Many articles written regarding the Coronavirus situation may lead people to be less interested in the topic.
Article
Full-text available
Biosafety of AZ31B magnesium (Mg) alloy and the effect of its degradation products on tissues, organs, and whole systems are highly needed to be evaluated before clinical application. This study serves a wide variety of safety evaluations of biodegradable AZ31B alloy on nerve cells. As a result of this in vitro study, the maximum aluminum (Al) ion and Mg ion concentrations in the medium were estimated to be 22 μmol/L and 2.75 mmol/L, respectively, during degradation. In addition, the corresponding cell mortality was observed to be 36% and lower than 5% according to the resistance curves of the cell to Mg and Al ions. Furthermore, the maximum Al ion and Mg ion concentrations in serum and cerebrospinal fluid were detected to be 26.1 μmol/L and 1.2 mmol/L, respectively, for 5 months implantation. Combining the result of in vivo dialysis with the result of ion tolerance assay experiments, the actual death rate of nerve cells is estimated between 4 and 10% in vivo, which is lower than the result of in vitro cytotoxicity evaluation. Moreover, no psychomotor disability during clinical studies is observed. Consequently, stent made of AZ31B alloy with surface treatment is feasible for carotid artery stenosis, and it is safe in terms of cell viability on the nervous system.
Article
Full-text available
Receptor-targeting peptides have been extensively pursued for improving binding specificity and effective accumulation of drugs at the site of interest, and have remained challenging for extensive research efforts relating to chemotherapy in cancer treatments. By chemically linking a ligand of interest to drug-loaded nanocarriers, active targeting systems could be constructed. Peptide-functionalized nanostructures have been extensively pursued for biomedical applications, including drug delivery, biological imaging, liquid biopsy, and targeted therapies, and widely recognized as candidates of novel therapeutics due to their high specificity, well biocompatibility, and easy availability. We will endeavor to review a variety of strategies that have been demonstrated for improving receptor-specificity of the drug-loaded nanoscale structures using peptide ligands targeting tumor-related receptors. The effort could illustrate that the synergism of nano-sized structures with receptor-targeting peptides could lead to enrichment of biofunctions of nanostructures.
Article
Full-text available
Nanomaterials have emerged as an amazing class of materials that consists of a broad spectrum of examples with at least one dimension in the range of 1 to 100 nm. Exceptionally high surface areas can be achieved through the rational design of nanomaterials. Nanomaterials can be produced with outstanding magnetic, electrical, optical, mechanical, and catalytic properties that are substantially different from their bulk counterparts. The nanomaterial properties can be tuned as desired via precisely controlling the size, shape, synthesis conditions, and appropriate functionalization. This review discusses a brief history of nanomaterials and their use throughout history to trigger advances in nanotechnology development. In particular, we describe and define various terms relating to nanomaterials. Various nanomaterial synthesis methods, including top-down and bottom-up approaches, are discussed. The unique features of nanomaterials are highlighted throughout the review. This review describes advances in nanomaterials, specifically fullerenes, carbon nanotubes, graphene, carbon quantum dots, nanodiamonds, carbon nanohorns, nanoporous materials, core-shell nanoparticles, silicene, antimonene, MXenes, 2D MOF nanosheets, boron nitride nanosheets, layered double hydroxides, and metal-based nanomaterials. Finally, we conclude by discussing challenges and future perspectives relating to nanomaterials.
Article
Full-text available
Due to the increasing amount of work being put into the development of nanotechnology, the field of nanomaterials holds great promise for revolutionizing biomedicine. However, insufficient understanding of nanomaterial-biological microenvironment (nano−bio) interactions hinders the clinical translation of nanomedicine. Therefore, a systematic understanding of nano−bio interaction is needed for the intelligent design of safe and effective nanomaterials for biomedical applications. In this review, we summarize the latest experimental and theoretical developments in the fields of nano−bio interfaces and corresponding biological outcomes from the perspective of corona and redox reactions. We also show that nano–bio interaction can offer a variety of multifunctional platforms with a broad range of applications in the field of biomedicine. The potential challenges and opportunities in the study of nano–bio interfaces are also provided.
Chapter
Nanotechnology has become one of the fastest developing fields of science and engineering in the World. Nanomaterials that play a crucial role in nanotechnology are increasingly used in a broad range of areas including automotive, biomedical, cosmetics, defense, energy, and electronics. Nanomaterials are used in a wide variety of products due to their unique chemical, biological and physical properties. The increase in the production and use of nanomaterials could lead in further exposure to humans, animals, and the environment. Therefore, understanding the toxicity of nanomaterials and their potential risks is urgently needed. Nanomaterial toxicity has been evaluated in various studies, but the adverse poisoning effects on target organs are still very limited. This chapter presents an overview of the applications of nanomaterials, including both metal-based and non-metal-based. Furthermore, it provides an overview of the mechanisms of cell toxicity and genotoxicity. Finally, the potential cell toxicity and genotoxicity associated with different types of nanomaterials are presented in detail.
Chapter
Nanomaterials have been used in biology and medicine. For instance, superparamagnetic iron oxide (Fe3O4) nanoparticles (NPs) have been applied as contrast agents in magnetic resonance imaging (MRI) technology [1, 2]. Materials in range of 50–200 nm could be uptaked into various cell types [3, 4]. Nanoscale materials have been attracted due to their advantages in flexible design, large-surface areas, and easy modification via different ligands [5]. As a result, nanomaterials showed their potential in drug delivery application. When materials at nanoscale as drug carriers, drugs could be efficiently protected from its degradation and metabolism after injection to human body [2]. Nanomaterials could also effectively carry drugs through cell membrane into intracellular environment via different pathways as presented. For cancer treatment purpose, nanoscale materials could be designed for uptaking in only disease targets while avoiding accumulation by healthy cells [6].