PreprintPDF Available

A Systematic Series Development and Calm Water Resistance Prediction for a Fast Catamaran Ferry Utilizing Machine Learning Tools

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

The aim of article is to design a calm water resistance predictor based on Machine Learning Tools and development of a systematic series for battery-driven catamaran hull forms. Regression Trees (RT), Support Vector Machines (SVM), and Artificial Neural Network (ANN) regression models are applied for dataset training on developed systematic series of catamarans. A hullform optimization was implemented for various catamarans including dimensional and hull coefficient parameters based on resistance and structural weight reduction and battery performance improvement. This paper provides a diverse database of catamaran hullform. Hence, an automated Matlab program was coded for geometry generation and cost function evaluation. Design distribution based on Lackenby transformation fulfills all design space and sequentially a novel self-blending method reconstructs new hullforms based on two parents blending. Finally, a machine learning approach was conducted on generated data of case study. This study shows that ANN algorithm correlates well with the measured resistance. Accordingly, a general and unique tool is proposed for optimized and desired design in first design stage.
Content may be subject to copyright.
Article Not peer-reviewed version
A Systematic Series Development and
Calm Water Resistance Prediction for a
Fast Catamaran Ferry Utilizing Machine
Learning Tools
Amin Nazemian * , Evangelos Boulougouris , Myo Zin Aung
Posted Date: 1 December 2023
doi: 10.20944/preprints202312.0049.v1
Keywords: Systematic series; Machine learning; Lackenby variation method; Self-blending method; Panel
method
Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.
Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Article
ASystematicSeriesDevelopmentandCalmWater
ResistancePredictionforaFastCatamaranFerry
UtilizingMachineLearningTools
AminNazemian1,*,EvangelosBoulougouris1andMyoZinAung1
1MaritimeSafetyResearchCentre(MSRC),DepartmentofNavalArchitecture,OceanandMarine
Engineering,UniversityofStrathclyde,Glasgow,UK;evangelos.boulougouris@strath.ac.uk,
myo.aung@strath.ac.uk
*Correspondence:amin.nazemian@strath.ac.uk
Abstract:TheaimofarticleistodesignacalmwaterresistancepredictorbasedonMachine
LearningToolsanddevelopmentofasystematicseriesforbatterydrivencatamaranhullforms.
RegressionTrees(RT),SupportVectorMachines(SVM),andArtificialNeuralNetwork(ANN)
regressionmodelsareappliedfordatasettrainingondevelopedsystematicseriesofcatamarans.A
hullformoptimizationwasimplementedforvariouscatamaransincludingdimensionalandhull
coefficientparametersbasedonresistanceandstructuralweightreductionandbatteryperformance
improvement.Thispaperprovidesadiversedatabaseofcatamaranhullform.Hence,anautomated
Matlabprogramwascodedforgeometrygenerationandcostfunctionevaluation.Design
distributionbasedonLackenbytransformationfulfillsalldesignspaceandsequentiallyanovelself
blendingmethodreconstructsnewhullformsbasedontwoparentsblending.Finally,amachine
learningapproachwasconductedongenerateddataofcasestudy.ThisstudyshowsthatANN
algorithmcorrelateswellwiththemeasuredresistance.Accordingly,ageneralanduniquetoolis
proposedforoptimizedanddesireddesigninfirstdesignstage.
Keywords:systematicseries;machinelearning;Lackenbyvariationmethod;selfblendingmethod;
panelmethod
1.Introduction
TheEUfundedproject“TrAMTransport:AdvancedandModular”developsbatterydriven
zeroemissionfastpassengervesselsforcoastalareasandinlandwaterways.Modulardesignand
manufacturingmethodsarethefocusofthisprojectwiththeobjectivestominimiseenvironmental
impactandlifecyclecost[1,2].Thedevelopmentofasystematicseriesofzeroemissioncatamaran
hullformfordifferentdisplacementtonnageandshiptypescansignificantlyhelpthisprocess.
Enormouscatamaranhullformswillgenerateduringthesystematicseriesdevelopmentand
resistancecalculationtakestimeforeachdesign.Anaccurateandfastresistancepredictoryieldsto
convenienttoolforaclassofhullforms.Therefore,anewmodelforsuchdiversitywithan
appropriategeneralizationtonewpredictionsisdesiredinthisfield,thisleadsusthedatamining
approaches[3].
2.Background
Resistancecalculationsinpastdecadeshavebeenimplementedbymodeltestsorseatrial
measurements.Theclassicregressionmodelshavelimitedtoconventionalvesselswithspecified
generalparticulars.Besides,theaccuracyanditscostwerebarrierstoimplementEFDandCFD
measurementsfornewdesigns.Duringthepastdecades,somenonlineardynamicapproacheshave
beendeveloped,whichproducescomparableresultsandmoreflexibility[4,5]
Shipresistanceoptimizationplaysanimportantroleinthehullformdevelopment.Assessing
theshipresistanceinthefirststageofshipdesignallowsthedesignertoanalyzetheinfluenceof
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
2
differenthullformsandparameters.Accordingly,differentmethodsofgeometryoptimizationand
designstudyhavebeendevelopedduringpastdecades[6].Papanikolaouetal.[7]implementeda
globalandlocalhullformoptimizationofthefastcatamaranintwodesignstudyscenarios.Inthe
firststageofoptimization,1000hullformswereelaboratedwithsurrogatebaseddesignstudyusing
potentialtheory3Dpanelcode.Afterthat,twomostpromisingdesignshavebeenselectedasinitial
hullformoflocalmodificationfocusingonthesternregion.However,acomprehensivedesign
optimizationmightbeproposedaccordingtobalancebetweenaccuracyandtime,whichisdiscussed
indifferentpreviouspapers[8–10].Anallinclusivehullformoptimizationinthefieldofshipdesign
definesvarioushullformswithdifferentgeometricalparameters.Accordingly,marineindustry
needsanoptimizationplatformtominimizetherequiredpropulsionpoweraccordingtovarious
possibilitiesofhullform.Besides,asystematicseriesaredevelopedongeneratedgeometriesto
establisharesistancepredictor.
Lietal.[11]byusingSingleParameterLagrangianSupportVectorRegression(SPLSVR)
developedametamodelonseakeepingdata.Amultidisciplinarydesignoptimizationinconcept
designstageofshipshasbeenproposed.Recently,FahrnholzandCaprace[12]conducteda
regressionanalysisonthreesailboatsʹ systematicseries.Basedonmachinelearningtechniques,a
resistancepredictorwasdesignedonresistancedata.NazemianandGhadimi[13]byusingaD
optimalDoEstudyinvestigatedresistanceperformanceofatrimaranhullseries.Aresistanceanalysis
anditsimprovementwasencompassedtoextractoptimumvalueofhullparametersandsidehull
arrangement.
Machinelearningtechniqueshavecommencedinthelastdecadeinthefieldofshipdesignand
hydrodynamics[14,15].Theresistancepredictionhasbeendevelopedandcomparedbytraditional
approachesbyRadojicetal.[16,17].AnArtificialNeuralNetworkregressionmethodwasdesigned
forplaningboatsatdifferentseriestypes.Themachinelearningmodelscanalsoimplementonadded
resistance[18]andiceresistance[19].Differentaspectsofshipdesigntargetscanbeconsideredin
datasetanalysis.LiuandPapanikolaou[20]developedasemiempiricalformula,approximatingthe
addedresistanceofshipsinregularwavesofarbitraryheading.Developofacatamaranclass
alongsideoptimizationprocesshasbeenconsideredinthecurrentstudywithanautomaticdesign
generation.
Thepresentpaperdividesintwophases,focusingonsystematicseriesdevelopmentforafast
passengerandfreightzeroemissioncatamaranandapplyingmachinelearningongenerateddata.
Basedonsurveyedliterature,itcanbeconcludedthatahullformoptimizationprocessneedstobe
addedtoshipseries.Foreachtonnageconditionandshiptype,apredictivemachinelearningmodel
developstocalculatecalmwaterresistance.Besidesthefinaldesignwouldbethebestdesignwith
respecttothelowestresistanceatmultidesignspeeds.Anautomatedoptimizationcodeiscarried
outinMatlabsoftwaretopreparedatasetofdifferenthullform.IntheframeofTrAMproject,various
optimizeddesignoptionspreparebasedonshipdimensionandcoefficientandhullformalteration.
Accordingly,designstudystartswithnumerousshiptypesandtonnageandofferdifferent
possibilityofcatamaranhullformasflexibilityforownerʹsselection.Ownerscanchoosetheir
optimizeddesignbasedontheirrequirements.
Performingparametrictransformationsandselfblendingmethodcreatesaseriesofhullforms
withsystematicallyvaryingparameters.Parametrictransformationbymovingshipsectionsandself
blendingbymovingControlPointsimplementparametrictransformationstocreatenewhulls.A
regressionformulacalculatesstructuralweightofcatamaransforscantlinganddeckweights.The
steelweightofshellscomputesbasedonwettedsurfaceareawhendesigndraftisplacedonmain
deck.Weightofinstalledbatteryautomaticallydecreasesbyreductionoftotalresistanceand
consequentlypowerrequirement.
3.Methodology
Presentʹsoptimizationcodecapabilities,allowinganytypeofhullformtobemodeledincaseof
differentshipdesigntargets,offerscopeforthecreationofawiderangeofhullformsandprovide
anoptionalselectionforowners.Combinedwiththebuiltinresistance,structureweightandbattery
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
3
drivensystemperformancecalculations,youhavethetoolstoexperimentwithshapesandexplore
designparameters.Accordingly,anextensivefastcatamaranserieshasbeendevelopedandforeach
selection,anoptimizedhullobtains.Thecasestudyisacatamaranhull[1,2]asaninitialdesignof
databaseproduction.Thedatabaseconsistsofthreetonnages(75,80,85)tons.Two
typesofpassengerandfreightcatamaranboatsaredefinedasinitialhullform.Generalarrangement
ofunderstudiedcatamaransdepictsinFigure1.

Figure1.GeneralArrangementplanofpassengerandfreightcatamaranboat.
Threedesignstudyprocessesapplytothreehullforms(75ton,80ton,85ton).Afterthemodel
hasbeenalteredtotalresistancecalculatesviaslenderbodymethod.Structuralweightofeachdesign
isestimatedbyaregressionformulaandshellexpansionofhullsurface.Propulsionsystemofvessel
workswithelectricallypoweredbatteryspares.Performanceandbatteryweightcomputesbasedon
resistanceandconsequentlybreakpowerofthecatamaran[21–24].Outputofoptimizationprocess
isresistanceat12knotandresistanceat22knot,whichrepresentbyaweightingcostfunction:
𝐶𝑜𝑠𝑡
𝑓
𝑢𝑛𝑐𝑡𝑖𝑜𝑛󰇧󰇡




󰇢𝑊𝑡






𝑊𝑡

󰇛𝑊𝑒𝑖𝑔𝑡/𝑊𝑒𝑖𝑔ℎ𝑡0󰇜∗
𝑊𝑡

󰇜󰇨󰇡


_


󰇢
,
(1)
TheframeworkofdesignstudyandmachinelearningillustratesinFigure2.Foreachtonnage,
shipgeometryisdesignedanddistributedondesignspaceaccordingtomultilevelcombinationof
designvariables.Totalresistanceandweightestimationofstructureandbatteryweightcalculatefor
eachdesign.Preprocessingprogressisappliedtoobtaineddatatodefinedifferentregression
schemes.Herein,RegressionTree(RT),SupportVectorRegression(SVR),andArtificialNeural
Network(ANN)methodsareusedtopredictotherinterestingdesignsandfindaresistance
predictivemodel.
Thecasestudycatamaranistheprototypehullform,whichisdesignedandbuiltinframeof
Horizon2020EuropeanResearchprojectTrAM[25].Themainpurposeofthiseffortistoreplicate
thishullformbasedonsmallmodifications.Optimizationprocessconductson6designvariablesand
2constraintsthatareshowninTable1.Asaresult,thedisplacementconstraintisdefinedasfollows:

∆


0.01,(2)
Anotherconstraintofthepresentstudyistotalbeamofthecatamarantosatisfyport
requirements,therefore:
2𝐷𝑒𝑚𝑖𝑢𝑙𝑙 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑒𝑚𝑖ℎ𝑢𝑙𝑙 𝑏𝑒𝑎𝑚 9
,(3)
Demihulloffsetisthedistancebetweencenterlineofeachdemihull.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
4
Figure2.Frameworkofdesignstudyandmachinelearningmethodology.
Table1.Designparametersofthecatamarancasestudy.
OptimizationparameterSymbolspecifications
DesignVariableLwlWaterlinelength(m)
DesignVariableB DemihullBeam(m)
DesignVariableTDraft(m)
DesignVariableDTDemihulltransversedistance(m)
FreeVariableCb Blockcoefficient
DesignVariableCm Maxsectionareacoefficient
DesignVariableLCB(%ofLwl)LongitudinalCenterofBuoyancy
Constraint
𝞩
Displacement(Ton)
Constraint(DTx2)+BTotalBeam(m)
9designparametersofcatamaranshipareselectedasinputdataofregressionlearner.Total
resistancevalueisoutputparameterofthestudy,whichcalculatesthroughslenderbodymethod
[26,27].AttributeselectionisdepictedinTable2.Regressionmodelsimplementsoneachshipspeed
[12,13.25,14.5,15.75,17,18.25,19.5,20.75,22]knot.Finally,acomprehensiveregressionisappliedto
allgeneratedhullsatdifferentdraftsanddimensionstogeneralizethesystematicseries.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
5
Table2.Selectedattributesfordataminingwiththeirrespectivestatisticsvalues.
specificationsSymbolMinMaxMeanDeviation
Shipspeed[kn]V1222173.4232
Waterlinelength(m)Lwl283330.21391.2354
DemihullBeam(m)B2.09852.20652.14070.0352
Draft(m)T1.2831.3861.31520.0318
Demihulltransversedistance(m)DT3.353.4243.38890.0239
BlockcoefficientCb0.43490.50620.46630.0144
MaxsectionareacoefficientCm0.70910.76100.72930.0135
LongitudinalCenterofBuoyancy(%of
L)LCB0.53460.55490.54630.0047
Waterplanearea(m2)Aw96.235104.339100.4882.9536
Maximumsectionarea(m2)Ax3.9234.1534.0940.0582
4.Databasegenerationofcatamarancasestudy
Optimizationprocessconductsforeachdesignscenariotoobtainthebestdesignforeach
configuration.Thedevelopedgeometryreconstructionmodeloffersdesignerthepossibilityto
control/specifythemainparticularsofthedemihullalongwiththehullformdetailswithina
reasonablerangeofvariationofthedefineddesignvariables,whileatthesametime,adequatequality
offairnessandsmoothnessofthehullisensured.Thedesignerisenabledtoexplorethehugedesign
spaceofautomaticallygeneratedhullformsanddecideonthemostfavorableonesbasedonrational,
holisticcriteria.Regressionlearnersareappliedon5designconfigurationsevery1955hullforms,
whichturnsto9775designs.Thepreprocessingprocedurereformsdatabasetotheapplicationof
machinelearningtechniques.Linearnormalizationisimplementedoneachparameteraccordingto
Eq.(4):
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 .
..,(4)
Anotherstepofpreprocessingisusingaprincipalcomponentanalysistechnique(PCA)and
OutlierdetectionusingthehotellingsT2test[28].Selectingtheoutlierscanbeusefultoremovethem
fromthedatasetorfordeeperinvestigation.Dimensionalityreductionisappliedtotheinputsto
projectdataintoaspaceoflowerdimensionwhilepreservingamaximumofinformation.Number
ofdatareducesfrom9775to8745recordsaccordingtoPCAandoutlierdetectionwithconfidence
intervalof0.05[29,30].Finally,thedatabaseisrandomlysplitintoalearningsetandtestset,which
contains70%and30%oftherecords,respectively.
Regressiontrees(RT),supportvectormachines(SVM),andartificialneuralnetwork(ANN)
regressionmodelsareappliedfordatasettrainingbasedon9predictorsand1response.The
regressiontreeisasupervisedlearningalgorithmwithtreestructuredclassification.Thereisa
decisionrelatedalgorithmforeachnodebasedontheattributes.Eachstepinapredictioninvolves
checkingthevalueofonepredictorvariabletodeterminewhetheranattributeislargerthanor
smallerorequaltoavalueofthefollowingbranch.Theresponsevaluecontainsinthelastnode,
whichisknownasleafnode.SecondsupervisedregressiontoolislinearepsiloninsensitiveSVM
regression.Thismethoddisregardspredictionerrorsthatarelessthansomefixedhyperplane.Data
pointsincludeinthesupportvectorsthathaveerrorslargerthanadmissibleerrorofthemodel.The
functiontheSVMusestopredictnewvaluesdependsonlyonthesupportvectorstominimizethe
error.Boxconstraint,Epsilonvalue,andKernelscaleparameteraresettoautomaticmodethatthe
applicationusesaheuristicproceduretoselectappropriatevalue.
Theartificialneuralnetworkisinterconnectedneuronsthatorganizedinlayers.AnANN
algorithmworksbasedonhumanneuronsystem,whichconsistsofnumberoflayers,thekindof
neuralsynapsesandthelearningalgorithm[12,31].Theartificialneuralnetworkishereinappliedto
datasetusingmultilayerfeedforwardnetworks.Shiphullparametersdefineatfirstfullyconnected
layer,andeachsubsequentlayerhasaconnectionfromthepreviouslayer.Weightmatrixmultiplies
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
6
toeachfullyconnectedlayer.Weightintensityiterativelychangesaimingtodecreasethefinalerror.
ThenumberoflayersandtheirneuronsisselectedbytheBayesianoptimizablealgorithm[32].
Internalparametersofregressionmodelcanbechosenmanually,however,theoptimized
regressionmethodscanselectoptimizedinternalvaluesbyusinghyperparameteroptimization.
Someoftheseoptionscanstronglyaffectregressionmethodʹsperformance.Accordingly,
OptimizableRegressionTree,OptimizableSVM,andOptimizableANNmethodsareappliedherein
[33].Modelevaluationisimplementedbystatisticalparametersandtestdatasets.Coefficientof
modeldeterminationconsistsofRsquared(R2),meansquarederror(MSE),meanabsoluteerror
(MAE),androotmeansquareerror(RMSE):
𝑅1∑󰇛
󰇜
∑󰇛
󰇜
,(5)
𝑦
𝑦
 ,(6)
𝑀𝑆𝐸
∑󰇛
𝑦𝑥󰇜
 ,(7)
𝑀𝐴𝐸
|𝑦𝑥|
 ,(8)
𝑅𝑀𝑆𝐸
∑󰇛
𝑦𝑥󰇜
 ,(9)
Where𝑦ispredictedresistanceoftherecordi,𝑥isthecalculatedresistancefromdataset,and
nisnumberofsamples.
5.Results
Threeregressionmodelshavebeendevelopedaccordingtointernalparameterselectionto
minimizeMSEvalue.ThePCAdimensionalityreductionreducesnumberoffeaturesfrom9to6
features.Table3presentsevaluationresultsofmodelperformanceandinternalobtainedparameters
ofregressionmodels.
Table3.Internalparametersofoptimumregressionmodels.
OptimizableRegressionTreeOptimizableNeuralNetworkOptimizableSVM
RMSE:0.1043
R2:0.98
MSE:0.01088
MAE:0.057334
RMSE:0.03037
R2:1
MSE:0.000922
MAE:0.020429
RMSE:0.1168
R2:0.97
MSE:0.01365
MAE:0.06614
Minimumleafsize:3
Num.oflayers:2
Activation:Sigmoid
Lambda:1.5276e08
FirstLayersize:26
SecondLayersize:77
Boxconstraint:17.0223
Kernelscale:8.5763
Epsilon:8.17e4
Kernelfunction:Gaussian
Regressionevaluationresultsdepictthatthemodeldevelopedusingtheartificialneural
networksalgorithmhasbeenfittedmoresuitablethanotherimplementedmodels.Thismodelhas
Rsquareddeterminationequalto1,whiletheerrorsanddispersionmeasurementsareminimal.
Figure3illustrateshistoryofMSEparameterminimizationforthreeappliedmethods.Darkblue
pointcorrespondstoobservedminimumMSEandlightblueonerepresentsestimatedminimum
MSE.Numberofiterationsconsider30,whichbestpointofMSEvalueisshowninredcolor.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
7
(b)
(a)
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
8
(c)
Figure3.MSEhistoryreductionthroughoptimizableregressionprocess(a)RegressionTree(b)
RegressionSVM(c)RegressionANN.
ResponseplotpresentsinFigure4,showsthemainandpredictedresponseversustherecord
number.Besides,Predictedvs.ActualandResidualplotsareshowninFigure5foreachregression
model.Theseplotshelptounderstandhowwelltheregressionmodelmakespredictionsfordifferent
responsevalues.ItcanbeindicatedthatANNmethodcanpredictresponsesclosetoactualonesdue
towellscatteredsamplesalongthediagonalline.Additionally,residualplotdepictsdifference
betweenthepredictedandtrueresponses,whichcanbeinterpretedasacleardistributionaround
zeroforANNregressionmethod.Assessmentofresponseplotsrepresentstheappropriate
performanceofANNmethodagainstotherimplementedmethods.
(a)
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
9
(b)
(c)
Figure4.PredictionvsTruedesigncomparisonthroughoptimizableregressionprocess(a)
RegressionTree(b)RegressionSVM(c)RegressionANN.

(a)
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
10

(b)

(c)
Figure5.Residualplotcomparisonthroughoptimizableregressionprocess(a)Regression
Tree(b)RegressionSVM(c)RegressionANN.
5.1.Regressionmodelevaluation
5.1.1.Datasettestcases
AcomparisonconductsbetweenRT,SVM,andANNmethodsforevaluatingresistance
predictors.Twodesignsofdatasethavebeenselectedrandomlyforevaluationinthissubsection.
Figure6(a)showstheresultsforarandomhullinhullformseries.Inaddition,Figure6(b)depicts
theresultsforarandomcatamaranhullformfor85Dseries.
Theproposedmodelsfitwelltheobserveddatafortestcasesamongdataset.However,itcanbe
indicatedasmallunderestimatevaluesatspeeds15to18knot.RsquareandRMSEvaluesforFigure
6(randomdesigntestmodel1&2)arepresentedinTable4.Theartificialneuralnetworksalgorithm
fitsobserveddataeffectivelyaccordingtolowervaluesofpredictionparameters.
Table4.Predictionparametersofmodeltestfordatasetdesigns.
Testmodel1Testmodel2
RTRMSE:0.6051
R2:0.9991
RMSE:1.4895
R2:0.9934
SVMRMSE:0.3185
R2:0.9996
RMSE:1.1625
R2:0.9971
ANNRMSE:0.8083RMSE:0.3606
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
11
R2:0.9997R2:0.9994
(a)
(b)
Figure6.ModelcomparisonbetweenRT,SVM,andANNmethodsfor(a)randomdesignTestmodel
1and(b)randomdesignTestmodel2.
5.1.2.Interpolationtestcases
Inthissection,twointerpolateddesignsbasedonshiptonnagehavebeenimportedtoregression
models.Catamaranhullformsof77.5tonand82.5tonaredesignedforregressionmodelevaluation.
Threeimplementedregressionmodelsareadjustedon77.5tonhullform(Figure7(a))and82.5ton
hullform(Figure7(b)).RegressiondataiswelladjustedusingANNmethodforbothdesigns
accordingtopredictorparameterspresentedinTable5.However,aslightdifferencecanbeobserved
athigherspeedsofcase82.5ton,whichisslightlysuperior.
Table5.Predictionparametersofmodeltestforinterpolationdesigns.
77.5ton82.5ton
RTRMSE:0.7597
R2:0.9965
RMSE:1.4029
R2:0.9911
SVMRMSE:1.0426RMSE:1.4938
10
15
20
25
30
35
40
45
50
55
11 12 13 14 15 16 17 18 19 20 21 22 23
Resistance[KN]
Speed[kn]
SBMresults
RegressionTree
SVM
ANN
10
15
20
25
30
35
40
45
50
55
60
11 12 13 14 15 16 17 18 19 20 21 22 23
Resistance[KN]
Speed[kn]
SBMResults
RegressionTree
SVM
ANN
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
12
R2:0.9976R2:0.9906
ANNRMSE:0.4677
R2:0.9988
RMSE:0.8633
R2:0.9977
(a)
(b)
Figure7.ModelcomparisonbetweenRT,SVM,andANNmethodsfor(a)interpolationdesign77.5
tonand(b)interpolationdesign82.5ton.
5.1.3.Extrapolationtestcases
Extrapolationdesignsdefinehullformsoutofdisplacementboundofdataset.Considering
displacementofalldesignsfromdatasetaredesignedbetween75to85tones.TwoCatamaran
hullformsof71.5tonand88.5tonareconsideredforregressionmodelevaluation.Thepurposeof
extrapolationtestisassessmentofregressionmodelsforoutboundariescatamarans.Figure8(a)and
Figure8(b)showresistancevaluesagainstspeedforSlenderBodyMethodresultsandfitted
regressionsfor71.5tondesignand88.5tondesignrespectively.InFigure8(a),allregressionmodels
estimateresistancehigherthanactualvalues.Oncontrary,theproposedmodelsareinferiortoSBM
resultsinFigure8(b).Inthetransitiontohighspeeds,themodelsgetlessaccurate.Inaddition,Table
6presentspredictionvaluesoffittingquality,whichdepictsregressionsaremorepreciseinlower
displacementdesignthaninhigherone.
10
15
20
25
30
35
40
45
50
55
11 12 13 14 15 16 17 18 19 20 21 22 23
Resistance[KN]
Speed[kn]
SBMresults
RegressionTree
SVM
ANN
10
15
20
25
30
35
40
45
50
55
11 12 13 14 15 16 17 18 19 20 21 22 23
Resistance[KN]
Speed[kn]
SBMresults
RegressionTree
SVM
ANN
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
13
Table6.Predictionparametersofmodeltestforextrapolationdesigns.
71.5ton88.5ton
RTRMSE:1.8147
R2:0.9964
RMSE:2.4631
R2:0.9975
SVMRMSE:1.6215
R2:0.9965
RMSE:2.7815
R2:0.9975
ANNRMSE:1.3860
R2:0.9968
RMSE:2.2180
R2:0.9983
(a)
(b)
Figure8.ModelcomparisonbetweenRT,SVM,andANNmethodsfor(a)extrapolationdesign71.5
tonand(b)extrapolationdesign88.5ton.
6.Conclusions
Asystematicseriesofnovelcatamaranshipshasbeendevelopedfortwotypesofpassengerand
freightboats.Threedifferentshiptonnages75,80,and85tonesareconsideredtoproducenew
designs.Ashifttransformationandselfblendingmethodaresequentiallyappliedtogenerate
differenthullforms.Threedifferentsupervisedmachinelearningmethodshavebeenappliedto
10
15
20
25
30
35
40
45
50
55
11 12 13 14 15 16 17 18 19 20 21 22 23
Resistance[KN]
Speed[kn]
SBMresults
RegressionTree
SVM
ANN
10
15
20
25
30
35
40
45
50
55
60
11 12 13 14 15 16 17 18 19 20 21 22 23
Resistance[KN]
Speed[kn]
SBMresults
RegressionTree
SVR
ANN
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
14
generateddatasetofcatamaranstopredictresistanceatdifferentshipspeeds.Generatedhullforms
havebeensortedbasedonacostfunctionofresistancetoobtaintheoptimumdesignforeach
displacementseries.Accordingly,9775catamaranhullformshavebeenproducedtomakeavast
optionalconditionforshipowners.Usingmachinelearningalgorithms,itisworthdevelopinga
continuoustotalresistancepredictorwellfittedtodatabaseofshipseries.Threeregression
algorithmsRegressionTree,SupportVectorMachine,andArtificialNeuralNetworkapproachesare
appliedtodataset.RegressionestimationhasgoodcompliancewithresultsofSBMmethodatwide
rangeofspeeds.However,RTandSVMmethodshavesomedifferencesinhigherspeed.TheANN
approachdepictswelladjustedregressiononthedata.Thevalidationoffittingmethodsevaluates
bycasetestofdataset,interpolation,andextrapolationcatamarans.Accordingly,ageneraland
uniquetoolisproposedtopredictresistanceoftheseriesatdifferentdisplacementsandhullforms.
Theproposedmodelisavaluabletooltoassesstheresistanceofcatamaranhullsduringtheearly
designstages.Finally,asophisticatedANNmodelisproposedbyexploringdifferentfeaturesand
training/optimizationalgorithms.Resistancecalculationsbymoreprecisemethodsincludingtrim
andsinkageeffectcanbecarriedoutforfutureworks.
AuthorContributions:Conceptualization,A.N.andM.Z.A.;methodology,A.N.;software,A.N.andM.Z.A.;
validation,A.N.;formalanalysis,A.N.;investigation,A.N.andM.Z.A.;writing—originaldraftpreparation,
A.N.andM.Z.A.andE.B.;supervision,E.B.Allauthorshavereadandagreedtothepublishedversionofthe
manuscript.
Funding:TheTrAMprojecthasreceivedfundingfromtheEuropeanUnion’sHorizon2020researchand
innovationprogramundergrantagreementNo769303.https://tramproject.eu/.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
Acknowledgments:MaritimeSafetyResearchCentre(MSRC)atStrathclydeUniversityisanindustry
UniversitypartnershipinvolvingStrathclydeʹsDepartmentofNavalArchitecture,Ocean&MarineEngineering,
andsponsorsofRoyalCaribbeanGroupandDNVClassificationSociety.Theopinionsexpressedhereinare
thoseoftheauthorsanddonotreflecttheviewsofDNVandRCG.
ConflictsofInterest:Theauthorsdeclarethattheyhavenoknowncompetingfinancialinterestsorpersonal
relationshipsthatcouldhaveappearedtoinfluencetheworkreportedinthispaper.
References
1. XingKaeding,Y.;Papanikolaou,A.OptimizationofthePropulsiveEfficiencyofaFastCatamaran.JMar
SciEng2021,9,doi:10.3390/jmse9050492.
2. Wang,H.;Boulougouris,E.;Theotokatos,G.;Zhou,P.;Priftis,A.;Shi,G.LifeCycleAnalysisandCost
AssessmentofaBatteryPoweredFerry.OceanEngineering2021,241,110029,
doi:10.1016/j.oceaneng.2021.110029.
3. Sun,Q.;Zhang,M.;Zhou,L.;Garme,K.;Burman,M.AMachineLearningBasedMethodforPredictionof
ShipPerformanceinIce:PartI.IceResistance.MarineStructures2022,83,103181,
doi:10.1016/j.marstruc.2022.103181.
4. Grabowska,K.;Szczuko,P.ShipResistancePredictionwithArtificialNeuralNetworks.InProceedingsof
theSignalProcessing‐Algorithms,Architectures,Arrangements,andApplicationsConference
Proceedings,SPA;IEEE,September12015;Vol.2015Decem,pp.168–173.
5. Cui,H.;Turan,O.;Sayer,P.LearningBasedShipDesignOptimizationApproach.CADComputerAided
Design2012,44,186–195,doi:10.1016/j.cad.2011.06.011.
6. Nazemian,A.;Ghadimi,P.SimulationBasedMultiObjectiveOptimizationofSideHullArrangement
AppliedtoanInvertedBowTrimaranShipatCruiseandSprintSpeeds.EngineeringOptimization2023,55,
214–235,doi:10.1080/0305215X.2021.1993843.
7. Papanikolaou,A.;XingKaeding,Y.;Strobel,J.;Kanellopoulou,A.;Zaraphonitis,G.;Tolo,E.Numerical
andExperimentalOptimizationStudyonaFast,ZeroEmissionCatamaran.JMarSciEng2020,8.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
15
8. Nazemian,A.;Ghadimi,P.ShapeOptimisationofTrimaranShipHullUsingCFDBasedSimulationand
AdjointSolver.ShipsandOffshoreStructures2022,17,359–373,doi:10.1080/17445302.2020.1827807.
9. Nazemian,A.;Ghadimi,P.CFDBasedOptimizationofaDisplacementTrimaranHullforImprovingIts
CalmWaterandWavyConditionResistance.AppliedOceanResearch2021,113,102729,
doi:10.1016/j.apor.2021.102729.
10. Papanikolaou,A.;Zaraphonitis,G.;Boulougouris,E.;Langbecker,U.;Matho,S.;Sames,P.MultiObjective
OptimizationofOilTankerDesign.JMarSciTechnol2010,15,359–373,doi:10.1007/s0077301000977.
11. Li,D.;Guan,Y.;Wang,Q.;Chen,Z.SupportVectorRegressionBasedMultidisciplinaryDesign
OptimizationforShipDesign.InProceedingsoftheProceedingsoftheInternationalConferenceon
OffshoreMechanicsandArcticEngineering‐OMAE;AmericanSocietyofMechanicalEngineers,July1
2012;Vol.1,pp.77–84.
12. Fahrnholz,S.F.;Caprace,J.D.AMachineLearningApproachtoImproveSailboatResistancePrediction.
OceanEngineering2022,257,111642,doi:10.1016/j.oceaneng.2022.111642.
13. Nazemian,A.;Ghadimi,P.GlobalOptimizationofTrimaranHullFormtoGetMinimumResistanceby
SlenderBodyMethod.JournaloftheBrazilianSocietyofMechanicalSciencesandEngineering2021,43,67,
doi:10.1007/s40430020027918.
14. Margari,V.;Kanellopoulou,A.;Zaraphonitis,G.OntheUseofArtificialNeuralNetworksfortheCalm
WaterResistancePredictionofMARADSystematicSeries’Hullforms.OceanEngineering2018,165,528–
537,doi:10.1016/j.oceaneng.2018.07.035.
15. Yao,J.;Han,D.RBFNeuralNetworkEvaluationModelforMDODesignofShip.;2012;Vol.47,pp.309–
312.
16. Radojcic,D.V.;Morabito,M.G.;Simic,A.P.;Zgradic,A.B.ModelingwithRegressionAnalysisandArtificial
NeuralNetworkstheResistanceandTrimofSeries50ExperimentswithVBottomMotorBoats.Journalof
ShipProductionandDesign2014,30,153–174,doi:10.5957/jspd.2014.30.4.153.
17. Radojčić,D.V.;Kalajdžić,M.D.;Zgradić,A.B.;Simić,A.P.ResistanceandTrimModelingofaSystematic
PlaningHullSeries62(with12.5°,25°,and30°DeadriseAngles)UsingArtificialNeuralNetworks,Part2:
MathematicalModels.JournalofShipProductionandDesign2017,33,257–275,doi:10.5957/JSPD.160016.
18. Cepowski,T.ThePredictionofShipAddedResistanceatthePreliminaryDesignStagebytheUseofan
ArtificialNeuralNetwork.OceanEngineering2020,195,106657,doi:10.1016/j.oceaneng.2019.106657.
19. Kim,J.H.;Kim,Y.;Lu,W.PredictionofIceResistanceforIceGoingShipsinLevelIceUsingArtificial
NeuralNetworkTechnique.OceanEngineering2020,217,108031,doi:10.1016/j.oceaneng.2020.108031.
20. Liu,S.;Papanikolaou,A.RegressionAnalysisofExperimentalDataforAddedResistanceinWavesof
ArbitraryHeadingandDevelopmentofaSemiEmpiricalFormula.OceanEngineering2020,206,107357,
doi:10.1016/j.oceaneng.2020.107357.
21. Priftis,A.;Boulougouris,E.;Turan,O.;Atzampos,G.MultiObjectiveRobustEarlyStageShipDesign
OptimisationunderUncertaintyUtilisingSurrogateModels.OceanEngineering2020,197,106850,
doi:10.1016/j.oceaneng.2019.106850.
22. Shi,G.;Priftis,A.;XingKaeding,Y.;Boulougouris,E.;Papanikolaou,A.D.;Wang,H.;Symonds,G.
NumericalInvestigationoftheResistanceofaZeroEmissionFullScaleFastCatamaraninShallowWater.
JMarSciEng2021,9,563,doi:10.3390/jmse9060563.
23. Nikolopoulos,L.;Boulougouris,E.ApplicationofHolisticShipOptimizationinBulkcarrierDesignand
Operation.InComputationalMethodsinAppliedSciences;2019;Vol.48,pp.229–252.
24. Duman,S.;Boulougouris,E.;Aung,M.Z.;Xu,X.;Nazemian,A.NumericalEvaluationoftheWaveMaking
ResistanceofaZeroEmissionFastPassengerFerryOperatinginShallowWaterbyUsingtheDoubleBody
Approach.JMarSciEng2023,11.
25. Boulougouris,E.;Priftis,A.;Dahle,M.;Tolo,E.;Papanikolaou,A.;XingKaeding,Y.;Jürgenhake,C.;
Svendsen,T.;Bjelland,M.;Kanellopoulou,A.;etal.TrAMTransport:AdvancedandModular.Proceedings
of8thTransportResearchArenaTRA20202020,1–10.
26. Couser,P.R.;Wellicome,J.F.;Molland,A.F.AnImprovedMethodfortheTheoreticalPredictionofthe
WaveResistanceofTransomSternHullsUsingaSlenderBodyApproach.InternationalShipbuilding
Progress1999,45,331–349.
27. MaxsurfModeler,MaxsurfResistance,andAutomation,UserGuide.
28. Hotelling,H.AnalysisofaComplexofStatisticalVariablesintoPrincipalComponents.JEducPsychol1933,
24,417–441,doi:10.1037/h0071325.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
16
29. Tukey,J.W.(JohnW.ExploratoryDataAnalysis/JohnW.Tukey;AddisonWesleyseriesinbehavioralscience;
AddisonWesleyPub.Co.:Reading,Mass.,1977;ISBN0201076160.
30. Zaki,M.J.;Meira,Jr,W.DataMiningandMachineLearning;CambridgeUniversityPress,2020;ISBN
9781108564175.
31. Aggarwal,C.C.;othersDataMining:TheTextbook;Springer,2015;Vol.1;.
32. Riedmiller,M.;Braun,H.ADirectAdaptiveMethodforFasterBackpropagationLearning:TheRPROP
Algorithm.InProceedingsoftheIEEEInternationalConferenceonNeuralNetworks;IEEE,1993;pp.586–
591.
33. TheMathworksInc.StatisticsandMachineLearningToolboxDocumentation,2022,Availableonline:
https://www.mathworks.com/help/stats/index.html.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythose
oftheindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)
disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideas,methods,instructionsor
productsreferredtointhecontent.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The consideration of shallow water effects has gained in importance regarding inland operations. The interaction between the keel and the riverbed affects the hydrodynamic characteristics of marine vessels. The highly complex nature of the interference phenomenon in catamarans makes the shallow water problem more complicated as compared to monohulls. Hence, catamarans are very sensitive to speed changes, as well as to other parameters, such as the shallow water effects. This makes the design of catamarans more challenging than their monohull equivalents. At lower Froude numbers, the higher importance of the frictional resistance makes the greater wetted surface of the catamaran a disadvantage. However, at higher speeds, there is the potential to turn their twin hulls into an advantage. This study aims to investigate the wave-making resistance of a zero-carbon fast passenger ferry operating in shallow water. The URANS (unsteady Reynolds-averaged Navier-Stokes) method was employed for resistance simulations. Then, the double-body approach was followed to decompose the residual resistance into viscous pressure and wave-making resistance with the help of the form factors of the vessel calculated at each speed. The characteristics of the separated wave-making resistance components were obtained, covering low, medium, and high speeds. Significant findings have been reported that contribute to the field by providing insight into the resistance components of a fast catamaran operating in shallow waters.
Preprint
Full-text available
This article focuses on design of an Artificial Neural Network (ANN) model to estimate ship resistance in ice-covered water by using suitable ship and ice parameters. In order to develop a reliable model, as much ice resistance test data as from the ship sea trials and model test measurements are collected to train the neural network. Different features (ship design parameters and ice mechanic properties) are explored to find a suitable combination of input features. Several algorithms are tested and compared to select a good model for resistance prediction. It turns out that seven features and the Radial Basis Function - Particle Swarm Optimization algorithm (RBF-PSO) can provide a reasonable generalization model. This study shows that the ice resistance predicted by the ANN correlates well with the measured data. The model developed herein can be used as an ice resistance prediction tool with high accuracy compared to the conventional semi-empirical formulae used in polar ship design.
Article
Full-text available
This paper numerically investigates the resistance at full-scale of a zero-emission, high-speed catamaran in both deep and shallow water, with the Froude number ranging from 0.2 to 0.8. The numerical methods are validated by two means: (a) Comparison with available model tests; (b) a blind validation using two different flow solvers. The resistance, sinkage, and trim of the catamaran, as well as the wave pattern, longitudinal wave cuts and crossflow fields, are examined. The total resistance curve in deep water shows a continuous increase with the Froude number, while in shallow water, a hump is witnessed near the critical speed. This difference is mainly caused by the pressure component of total resistance, which is significantly affected by the interaction between the wave systems created by the demihulls. The pressure resistance in deep water is maximised at a Froude number around 0.58, whereas the peak in shallow water is achieved near the critical speed (Froude number ≈ 0.3). Insight into the underlying physics is obtained by analysing the wave creation between the demihulls. Profoundly different wave patterns within the inner region are observed in deep and shallow water. Specifically, in deep water, both crests and troughs are generated and moved astern as the increase of the Froude number. The maximum pressure resistance is accomplished when the secondary trough is created at the stern, leading to the largest trim angle. In contrast, the catamaran generates a critical wave normal to the advance direction in shallow water, which significantly elevates the bow and creates the highest trim angle, as well as pressure resistance. Moreover, significant wave elevations are observed between the demihulls at supercritical speeds in shallow water, which may affect the decision for the location of the wet deck.
Article
Full-text available
The present study deals with the local optimization of the stern area and of the propulsive efficiency of a battery-driven, fast catamaran vessel. The adopted approach considers a parametric model for the catamaran's innovative transom stern and a QCM (Quasi-Continuous Method) body-force model for the effect of the fitted propellers. Hydrodynamic calculations were performed by the CFD code FreSCO + , which also enabled a deep analysis of the incurring unique propulsive phenomena. Numerical results of achieved high propulsive efficiency were verified by model experiments at the Hamburgische Schiffbau Versuchsanstalt (HSVA), proving the feasibility of the concept .
Article
In order to estimate the installed propulsion power aboard a boat, naval and ocean engineers make use of tools to assess the hull resistance through the water. It allows the designer to investigate the effect of changes on the hull parameters during the project's first steps when there is still freedom for modifications. The available models to predict the resistance of sailboats estimate the residual resistance, while the frictional component is calculated based on ITTC-57. This approach leads to difficulties at low speeds since the calculated frictional resistance is larger than the total resistance obtained from the experiment. Therefore, its application is restricted above a minimum speed. Moreover, the available models consist of several sub-models, one for each Froude number. The present work proposes a unique model to predict the total resistance of bare-hull sailboats based on machine learning. Three systematic series were used as input. The best machine learning model could predict the total resistance efficiently even for small Froude numbers. With the presented model, the designer will have a unique tool capable of quickly predicting the total resistance of bare-hull sailboats including at low speeds. Both the input data and the predictive model are shared in complementary digital material.
Article
Numerical optimization of an inverted-bow trimaran is carried out through three simulation-based design (SBD) frameworks. Different positions of the trimaran’s side hull are investigated based on a computational fluid dynamics solver using the non-dominated sorting genetic algorithm-III (NSGA-III), simultaneous hybrid exploration that is robust, progressive and adaptive (SHERPA) and response surface (RS) multi-objective optimization for resistance at cruise and sprint speeds. The aims are to create and develop a convenient tool for optimization and investigate the appropriate position of the side hull. An automated, low-cost optimization platform is achieved that can be implemented in other maritime projects. A 10.5% drag reduction for cruise speed and 6.6% reduction for sprint are obtained, corresponding to lower longitudinal and large transversal distances of the side hull. SHERPA and NSGA-III produce the same results, but SHERPA is 2.5 times faster than NSGA-III. RS obtains less desirable results, but in the lowest central processing unit time.
Article
Battery-powered ships constitute a solution to the pathway to zero-emission shipping. This article studies comparatively and assesses the performance of battery-powered vessels implementing the Life Cycle Analysis (LCA) and Life Cycle Cost Assessment (LCCA). A case study of a battery-powered fast catamaran ferry is employed and comparatively assessed against the respective conventional ferry revealing the advantages and drawbacks of these two alternative solutions. LCA and LCCA take into account the different ship life phases and activities to develop a life cycle emission inventory and estimate the corresponding costs. The results demonstrate that the battery-powered system exhibits life cycle GHGs reduced about 30% when grid mix electricity in 2019 is utilised and life cycle costs reduced by 15% in comparison with a conventional power system.
Article
This paper presents a multi-objective shape optimization approach for improving the bow region of a trimaran ship hull. A CFD-based design study is conducted to reduce the total resistance of trimaran ship hull in calm water and wavy condition. Accordingly, a practical multi-objective optimization platform is established and developed for ship hull modification. In addition, the hullform of a displacement trimaran ship with inverted bow is modified as a case study. Six objective functions are utilized in the present study by considering the weighted sum optimization method. Reduction of total resistance at two cruise and sprint speeds in calm water, reduction of resistance in two different wave conditions, and two cruise and sprint speeds are the six objectives of the study. Two aspects of ship hydrodynamics, resistance, and seakeeping are the disciplines that are considered through the proposed optimization process. Ship hull parametrization is performed by Arbitrary Shape Deformation (ASD) technique that defines the input variables for optimization process. The geometry reconstruction step connects to CFD solver in order to calculate the response of the optimization cycle. An innovative Simcenter SHERPA algorithm is employed to optimize the design objectives. The optimization results show a 3.14% reduction in the aggregated objective function. Generated waves around the hulls of the optimized trimaran have constructive interaction and diminish each other in calm water. A forefoot angle and sharper nose are created at bow region of the optimized hullform. Moreover, the comparison between baseline and optimized trimaran hull confirms the validity of the proposed optimization design strategy.
Article
In the current paper, different geometrical parameters of the trimaran hull ship are investigated to achieve the optimal points of geometry parameters. Considering the fixed displacement volume, the values of the longitudinal center of buoyancy, block coefficient, midsection coefficient as well as the side hull length and position are computed and using Lackenby shift transformation, the geometry is reconstructed during the optimization process. It is then necessary to compute the ship resistance of the reconstructed geometry which is hereby accomplished by slender body method. Subsequently, D-optimal method is used for finding the best parameters to achieving minimum resistance at cruise and sprint speeds. Two strategies are pursued to find optimum value of design variable: trimaran hull transformation and separated hull approach. Generally, a hull optimization process takes huge time and depending on the applied methodology, it might take somewhere between 6 months and 2 years. However, through slender body method and design of experiment study, proposed in this paper, the total time of global optimization process is only 1 week. Meanwhile, 9.1% resistance reduction at cruise speed and 2.24% resistance reduction at sprint speed is achieved. Hence, a successful ship hull optimization with suitable computational time and effort is the novelty of the current work. The conducted optimization indicates that two parameters of longitudinal center of buoyancy and block coefficient have significant effect on the total resistance. Comparison of the original and optimized hull signals the validity and superiority of the proposed optimization strategy, which can be extended to other maritime industrial projects.
Article
Mathematical representations for the resistance, trim, and wetted length of the Experimental Model Basin Series 50 have been developed using conventional regression analysis techniques as well as artificial neural networks. Series 50 is a standard series of 20 V-bottomed motor boats tested in 1941. These hulls could be representative of today's semidisplacement hulls. Recently, the series has been reanalyzed and published using contemporary planing coefficients, enabling resistance prediction in design stages. In the present study, mathematical representations are developed for the Series 50 as an alternative to using charts or data tables. Two methods are used, regression analysis and artificial neural networks. This study provides a useful resistance prediction method for designers and an opportunity to compare and contrast regression analysis and artificial neural networks applied to standard series. The main finding of the study is that both techniques were capable of developing stable and accurate models. A detailed quantification of the differences between methods is provided.