Content uploaded by Carlos M. Delgado-Martínez
Author content
All content in this area was uploaded by Carlos M. Delgado-Martínez on Nov 28, 2023
Content may be subject to copyright.
Ecology and Evolution. 2023;13:e10781.
|
1 of 14
https://doi.org/10.1002/ece3.10781
www.ecolevol.org
Received:26August2023
|
Revised:26October2023
|
Accepted:15November2023
DOI:10.1002/ece3.10781
RESEARCH ARTICLE
Differential utilization of surface and arboreal water bodies by
birds and mammals in a seasonally dry Neotropical forest in
southern Mexico
Carlos M. Delgado-Martínez1,2,3 | Melanie Kolb2 | Fermín Pascual-Ramírez4 |
Eduardo Mendoza3
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
providedtheoriginalworkisproperlycited.
© 2023 The Au thors . Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.
1Posgrad o en Cien cias Biológica s,
UniversidadNacionalAutónomade
México,UnidaddePosgrado,EdificioD,
1erPiso,CiudaddeMéxico,Coyoacán,
Mexico
2InstitutodeGeografía,Universidad
NacionalAutónomadeMéxico,Circuito
exterior s/n, Ciud ad Unive rsita ria, Ciudad
deMéxico,Coyoacán,Mexico
3InstitutodeInvestigacionessobre
losRecursosNaturales,Universidad
MichoacanadeSanNicolásdeHidalgo,
Morelia,Michoacán,Mexico
4InstitutodeInvestigacionesen
EcosistemasySustentabilidad,
UniversidadNacionalAutónomade
México,Morelia,Michoacán,Mexico
Correspondence
CarlosM.Delgado-Martínez,Posgrado
en Ciencias Biológicas , Univer sidad
NacionalAutónomadeMéxico,Unidadde
Posgrado,EdificioD,1erPiso,Circuitode
Posgrados, Ciu dad Universit aria, Ciudad
deMéxico,Coyoacán,04510,Mexico.
Email:pistache06@ciencias.unam.mx
EduardoMendoza,Institutode
InvestigacionessobrelosRecursos
Naturales,UniversidadMichoacanade
SanNicolásdeHidalgo,Av.SanJuanito
Itzícuaros/n,Col.NuevaEsperanza,
Morelia,Michoacán,58337,Mexico.
Email:eduardo.mendoza@umich.mx
Funding information
AmericanSocietyofMammalogists,
Grant/AwardNumber:LatinAmerican
StudentFieldResearchAward2022;
AssociationforTropicalBiologyand
Conservation,Grant/AwardNumber:Seed
ResearchGrant2022;RuffordFoundation,
Grant/AwardNumber:34365-2
Abstract
Water availabilit y significantly influ ences bird and mammal ecol ogy in terrestria l
ecosystems.However,ourunderstandingoftheroleofwaterasalimitingresource
forbirds andmammalsremains partialbecause mostofthe studies havefocused
onsurfacewaterbodiesindesertandsemi-desertecosystems.Thisstudyassessed
theuseoftwotypesofsurfacewaterbodies(waterholesandepikarstrockpools)
andone arboreal (water-filledtree holes)by birdsand mammalsin theseasonally
drytropicalforestsoftheCalakmulBiosphereReserveinsouthernMexico.Wede-
ployedcameratrapsin23waterholes,22rockpools,and19water-filledtreeholes
inthiskarstic regiontorecordvisitsbysmall,medium,andlarge-bodiedbirdsand
mammalsduringthedryandrainyseasons.Thesecamerasweresetupforrecording
videosdocumentingwhenanimalsweremakinguseofwaterfordrinking,bathing,
orboth.Wecomparedthespeciesdiversityandcompositionofbirdandmammalas-
semblagesusingthedifferenttypesofwaterbodiesbycalculatingHillnumbersand
conductingnonmetricmultidimensionalscaling(NMDS),indicatorspecies,andcon-
tingencytableanalyses.Therewasagreaterspeciesrichnessofbirdsandmammals
usingsurfacewaterbodiesthantreeholesduringbothseasons.Thereweresignifi-
cantdifferencesinspeciescompositionamongbirdassemblagesusingthedifferent
water bodies , but dominant specie s and diversity rem ained the same. Terrestr ial
and larger ma mmalian species prefe rentially used sur face water bodies, w hereas
arborealandscansorialsmallandmediummammalsweremorecommoninarboreal
waterbodies.Thesefindingssuggestthatdifferencesinwaterbodycharacteristics
mightfavorsegregationinmammalactivity.Thedifferentwaterbodiesmayactas
alternative watersourcesforbirds andcomplementary sourcesfor mammals, po-
tentially favoring species coexistence and increasingcommunity resilienceto en-
vironmentalvariation(e.g.,fluctuations in wateravailability).Understanding how
differencesinwaterbodiesfavorspeciescoexistenceandcommunityresilienceisof
greatrelevancefromabasicecologicalperspectivebutisalsocrucialforanticipating
2 of 14
|
DELGADO-MARTÍNEZ et al.
1 | INTRODUC TION
The supply of essential resources strongly affects the distribu-
tion and abundance of animal species (Hamilton & Murphy,2018;
Messier, 1991). These effects can escalate to affect the structure
anddynamicsofanimalcommunities.Examplesoflimitingresources
affecting bird and mammal communities include shared prey (Gilg
et al., 2003), nect ar-producing flower s (Guevara et a l., 2023), and
cavitiesfornestingbirds(Jiménez-Francoetal.,2018).
Wateravailability isa clearexample of a limiting factor having
asignificant impact onthe ecology ofbirds and mammals in most
terrestrialecosystems.Animalsdependonwatersourcesfordrink-
ing, bathing, cooling, and preying, among other things (Clayton
et al., 2010; Go ssner et al., 2020; Hafe z, 1964; Lee et al., 2017).
Variation in w ater availabilit y is linked to fluctu ations in mammal
populations(Gandiwaetal.,2016),movementpatterns(Chamaillé-
Jammesetal.,2016),andhabitatconnectivity(O'Farrilletal.,20 14).
Severalstudieshaveincorporatedwaterbodyfeaturesascovariates
toanalyzeecologicalparameterssuchasmammaloccupancy (e.g.,
Di Bitetti et al., 2020),butlessresearchhasfocuseddirectlyonana-
lyzingthecharacteristicsoftheuseofwaterbodiesbyvertebrates.
Furthermore,mostofthesestudiesareconcentratedinaridregions
(e.g.,Amorosoetal.,2020; Edwards et al., 2016;Harrisetal.,2015),
limitingourunderstandingoftheroleofwaterasalimitingfactorfor
vertebratesinotherecosystems.
Resource partitioning has been proposed as a mechanism for
animal species to reduce antagonistic interactions (e.g., competi-
tion and predation) occurring when exploiting limited resources
(Schoener,1974;Walter,1991).Thi sada ptiveme chan ism allowsi nte r-
actingspeciestocoexistbyspecializingindifferentresourcesources
orbyutilizingthematdifferenttimesorplaces(Learetal.,2021).
Tropicalbirdsandmammalshaveevolveddifferentstrategiesto
exploit watersources. Theycanusewaterinriversandpools(e.g.,
Stommel et al.,2 016)or tankepiphytesandwater-filled treeholes
inthecanopy(e.g.,Sharmaetal.,2016).Somespecies,suchasscan-
sorialmammalsandbirds,likelyhavemoreflexibilitytousesurface
and canopy water sources, but for other animals, access might be
more limited. Theinterplaybetween thevariation in water source
characteristics and typesofanimal locomotionopens thepossibil-
ityforresourcepartitioningtooccur.Previousstudieshavefocused
on analy zing the tempora l partitionin g of water use by mammals
(Adams&Thibault,2006; Edwards et al., 2017; Valeix et al., 2007),
butuntilnow,thedynamicsoftheuseofsurfaceandarborealwater
bodies at t he community l evel are unknown . A better know ledge
ofthestrategiesinvolvedintheuseofwater sourcesbybirds and
mammals isessential to improve our understandingof species co-
existencemechanismsandtopredicttheimpactsofanthropogenic
disturbances such as thoseassociatedwith climatechange (Galetti
et al., 2016; Votto et al., 2020).
Seasona lly dry tropic al forests are w ater-stress ed ecosystems
richinvertebratespecies,offeringanidealopportunitytostudyre-
source par titionin g (Allen et al. , 2017; Mooney e t al., 1995; O cón
et al., 2021).Seasonalforestsgrowingonkarsticsoils,suchasthose
occurringintheCalakmulregioninsouthernMexico,undergoapar-
ticularlymarkedlimitation in wateravailability due to theabsence
ofpermanent,extensivesurfacewaterbodiescausedbyfastwater
infiltration(García-Giletal.,2002).Thereissomeevidenceshowing
thesignificant impact variationinwater availabilityhas on wildlife
distributionandsurvivalintheCalakmulregion.Forinstance,white-
lippedpeccariesconcentratetheiractivityaroundwaterholesduring
the dry season, and adocumented peak in tapir deaths coincided
withamarkeddroughtintheyear2019(Reyna-Hurtadoetal.,2012,
2019).The congregationofspeciesinwaterholes mightresult ina
greaterriskofattacks,suchassuggestedbythedocumentedkillof
anocelotbyajaguarinthenearbyGuatemalaMayaforest(Perera-
Romeroetal.,2021).InCalakmul,wildlifecanobtainwaternotonly
fromwaterholes but alsofromepikarst rockpoolsand water-filled
treeholes.Eachofthesewaterbodieshasfeaturesthatcanattract
differ ent species (see f ull description i n Section 2). Som e studies
have individually documented the extensive use of these water
sourcesbybirdsandmammals,butacomparativeapproachismiss-
ing (Delgado-Mar tínez, Alvarado, et al., 2022; Delgado-Martínez,
Cudney-Valenzuela,&Mendoza,2022;Reyna-Hurtadoetal.,2012).
TheCalakmulregionstandsoutgloballyduetoitshighbiodiver-
sity (Myers et al., 2000).However, it iscurrently facing escalating
pressureduetoanthropogenically-drivenfactorssuchasdeforesta-
tion and climate change (Mardero et al., 2020; Ramírez-Delgado
et al., 2014). Thissituationposes a significantrisktowater quality
andavailability,whichcanhavefar-reaching consequencesforver-
tebrate populations.Thisresearchevaluatesifthere exists a parti-
tioningintheuseofwaterbodiesbysmall,medium,andlarge-bodied
birdsandmammalsintheseasonallydrytropicalforestoccurringin
theCalakmulregion.Specifically,weassessedthespeciesdiversity
andcompositionofbirdandmammalassemblagesusingtwo types
ofsurfacewaterbodies(waterholesandepikarstrockpools)andone
typeofarborealwaterbody(water-filledtreeholes). Moreover,we
theeffectsthattheincreaseddemandforwaterbyhumansandclimatechangecan
haveonwildlifeviability.
KEY WORDS
Calakmul,dendrotelmata,resourcepartitioning,SelvaMaya
TAXONOMY CLASSIFICATION
Communityecology
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
3 of 14
DELGADO-MARTÍNEZ et al.
analyze d how differen ces in water sourc e use between b irds and
mammals arerelated to contrastsinfunctional traitssuchas loco-
motion an d body size. We hypothe size that there will b e distinct
patternsofwatersource usebetweenbirdsandmammalsandthat
differ ences among sp ecies within th ese groups will b e associated
with variation in their functional traits. We expect to find more
pronounced differencesinwater useamongspecieswithin animal
groupsduringtherainyseason,whenwaterismorewidelyavailable
and,therefore,animalshaveagreateropportunitytoselect.
2 | METHODS
2.1 | Study area
Fieldworkwascarriedoutinthesouthernportionofthebufferzone
oftheCalakmul Biosphere Reserve (CBR, 89°43′26″–89°49′23″ W,
18°16′01″–18°8′49″ N),inthestateofCampeche,southernMexico
(Figure 1). The CBR was created in 1989 and has an extent of
723,185 ha,constitutingthelargesttropicalprotectedareainMexico
(Galindo-Leal,1999;Gómez-Pompa& Dirzo,1995).Thestudy area
has an appr oximate extent of 6 3,000 h a and suppor ts continuou s
vegetation, except for anarrowroad (ca. 4 m wide) leading to the
CalakmulArcheologicalsite.Duringthisstudy,onlyecotourismand
researchwereallowedinthe studyarea,andno primary activities
haveoccurredtheresincetheestablishmentoftheCBR(INE,1999).
TheCBRiscriticallyimportantfortheconservationof biodiversity
inLatinAmericaduetothefactthatitsupportssomeofthelargest
populationsoficonicspeciesofMesoamerica,suchasTapirus bairdii
and Panthera onca(Ceballos et al., 2021;Naranjo, 2018). Together
with the M aya Biosphere Rese rve in Guatemal a, the CBR consti-
tutes the largest tract of tropical forest in Mesoamerica (Potapov
et al., 20 17). However,likemostofthetropics,thisregionisunder
increasing human pressure du e to activities such as illegal selec-
tivelogging,hunting,deforestationforfarmingandcattleranching,
and more recently, infrastructure development (Ramírez-Delgado
et al., 2014;Špirićetal.,2022).
The CBR has a tropical wet and dry climate with a dry winter
(Köppen-Geigerclassification:Aw;Becketal.,2018).Theregionhas
amarkedprecipitationseasonalitywitharainyseasonoccurringfrom
MaytoOctoberandadryseasonfromNovembertoApril(monthly
precipitation is <60 mm)(Marderoetal.,2020; Vidal-Zepeda, 2005)
with a mea n annual precipit ation of 1076 mm (CONAGUA , 2023;
Martínez & Galindo-Leal, 2002). The aver age annual temp erature
is 25.7°C, whereas the average annual minimum and maximum
temperature are18.7and 32.8°C, respectively (CONAGUA, 2023;
Figure S1).Accordingtothestandardizedprecipitationindexcalcu-
lated forthe region, the amount ofprecipitation during ourstudy
periodwaswithintherangeofnormalvariation(CONAGUA,2023).
2.1.1 | GeologyandhydrologyintheCBR
The CBRis located on thekarstic landscape of the Petén Plateau
which is primarily composed of limestone, shaped by chemical
weathering and erosion (Ensley et al., 2021; Torrescano-Valle &
Folan,2015).Waterbodieswithinthestudysitedependonprecipi-
tation astheir main sourceofwater due to theabsenceofperen-
nial streams. The following are themost common water bodies in
the stud y site and are the fo cus of this study. Waterholes. Thes e
FIGURE 1 Studyareaanddistribution
ofsampledwaterbodiesintheCalakmul
BiosphereReserve,Campeche,Mexico.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
4 of 14
|
DELGADO-MARTÍNEZ et al.
water bodi es, locally k nown as aguadas, are dolines resulting from
the disso lution of limesto ne that, togethe r with clay accumul ation,
reduceswaterpercolationandpromotestheaccumulationofrainfall
(Figure 2a;Back&Lesser,1981;García-Giletal.,2002;Kranjc,2013).
Waterholeshaveanapproximatedensityof oneper10.5 km2 in the
CBRandvaryinsizefrom10to40,000 m2buttypicallytheydonot
exceed 50 00 m2 (Reyna-Hur tado et al., 2012). Usu ally, a high pro-
portionofthewaterholesdries upduringthedry season,remaining
onlythelargest.Duringextremedroughtevents,eventhelargestwa-
terholescanbegone(O’Farrilletal.,2014).
Epikarstrock pools.Thesewater bodies, locally knownassart-
enejas,areclassifiedaskamenitzasinge olo gic a ltermsan dar enatur al
depressions in landformedbythe dissolutionof exposed bedrock
(Lundberg,2013). Rockpools usuallyoccur on elevated ground or
hilltopsinthestudyarea(Figure 2b;Flores,1983).Thereisapproxi-
matelyonerockpoolper0.1 km2,usuallycoveringlessthanasquare
meter(C.M.Delgado-Martínez,unpublisheddata).Rockpools col-
lectwaterevenduringmoderateprecipitationeventsandcanstore
itforseveralweeks(C.M.Delgado-Martínez,personalobservation;
Reyna-Hurtadoetal.,2012).
Water-filledtree holes.These waterbodiesareformed in cavi-
tiesordepressionsintrees,whererainwateraccumulates(Figure 2c;
Kitching,2000).Thedensityandaveragevolumeofwater-filledtree
holesintheCalakmulregionareunknown.Asrockpools,mosttree
holes have e phemeral hydr operiods, b ut some of them c an retain
water during the whole year (C. M. Delgado-Martínez, personal
observation).
2.2 | Searching and sampling of water bodies
Wecompiledinformationonthelocationof24waterholes,37rock
pools, a nd 73 tree holes b ased on exist ing informatio n for water-
holes (García-Gil et al.,2002),previousstudies(Delgado-Martínez,
Alvarado, et al., 2022; Delgado-Martínez, Cudney-Valenzuela, &
Mendoza,2022),andfieldworkconductedforthisstudy(ca.150 km
ofsearchbyfoot).Fromthesewaterbodies,weselected23water-
holes,22rockpools,and19treeholes.Theselectionofwaterholes
wasbasedonwhethertheyhadwaterduringourinitialvisit,which
occurredin July–August 2021 (these months corresponded to the
FIGURE 2 TargetwaterbodiesintheCalakmulBiosphereReserve,Campeche,Mexico:(a)waterhole,(b)rockpool,and(c)water-filled
tree hole.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
5 of 14
DELGADO-MARTÍNEZ et al.
startoftherainyseason).Ontheotherhand,weonlyselectedrock
pools with an estimated volume >10 L. For the selection of tree
holes,weappliedthefollowingcriteria:(1)tohavetheirentranceat
least1 mabovetheground;(2)tohaveaminoraxisoftheentrance
>10 cm;and(3)tohaveadepth>20 cm.Thesecriteriawereaimedat
increasingtheprobabilityofthedifferentwaterbodiesmaintaining
waterthroughoutthestudyperiod.Topreventspatialautocorrela-
tion,weavoidedmonitoringwaterbodiesofthesametype,<500 m
apart,atthesametime.
Duetologisticlimitations,wewerenotabletosampleall the
water bodies simultaneously. Therefore, we divided them into
three groups, including 7–8 water bodies of each type. These
groupsweremonitoredsequentially,withonecameratrapaimed
ateach waterbody forat least45 days. After thecompletion of
thisperiod,cameratrapsweremovedtothenextgroupofwater
bodies . Were peated this pr ocedure to comp lete one rainy se a-
sonandonedryseasonforeachgroupofwaterbodies(fromJuly
2021 to Septem ber 2022). Came ra traps in the w aterholes and
rockpoolswereinstalledatheightsrangingfrom40to70 cmand
atdistances of 2–4 mfrom the water edges. We usedtrailcam-
era hold ers (HME-TCH-SO) to set the camer a traps focused o n
thetreeholes.Inmostcases,theseholderswerefastenedtothe
same tre e where the tree hol e was located, app roximately 2 m
fromtheentrancetothetreehole,to secureadirect view of its
entrance.When itwas not possible to fasten thecamera holder
tothesametreewherethetreeholewaslocated,wefastenedit
toanearbytree.Asinglecamerawasenoughtofullymonitorthe
entirerockp oolsa ndtre ehole s,b utnotth ewaterhole s.Toreduce
theprob abilit yofmissings omeanimalspeciesvisitingwaterhole s,
wefollowedtwo strategies: (a) we aimed the cameras preferen-
tiallyatareaswithevidence ofanimalactivity,suchasfootprints
orpeccarywallows,and(b)wemadesuretohaveaclearviewof
the areaswithin thewaterholes thatmaintain waterevenin the
dryseason.WeusedcameratrapmodelsBrowningSpecOpsElite
HP4,BrowningStrikeForceEliteBTC5HDE,andBushnellTrophy
CamHDAggressor119876Cprogrammedtotake20-s longvid-
eoseachtimetheywereactivatedandtohavea5-sdelaybefore
reactivation.
2.3 | Data processing
Wetagged videos withthe identityofthe species recorded and
madeadatabaseaddinginformationabouttheirlocomotion(i.e.,
arboreal, scansorial, and terrestrial) and body mass (González-
Salazar, 2013). We classified the species into three categories
basedontheir bodymass:small,medium,andlarge. Birdswitha
body mass lowerthan 0.5 kg were classifiedassmall, thosewith
a body mas s higher than 0. 5 kg but lower th an 2 kg as mediu m,
and birds with a body mass higher than 2 kg as large. Mammals
withabodymasslower than4 kg were classifiedassmall, those
withabodymasshigherthan4 kgbutlowerthan13 kgasmedium,
and mamma ls with a body ma ss higher than 13 k g as large. The
categoriesweredefinedtohavean approximatelyequal number
ofspeciesineachgroup.
To reduce sources of bias during the statistical analysis, we
discard ed records of aquati c birds and specie s with a body mass
<220 g(which can be missed bycameratrapsmore frequently) or
foundinlessthanfoursites.Wegroupedvideosofthesamespecies
recorde d consecutively an d with the same cam era, following th e
methodologydescribed inCamargo-SanabriaandMendoza(2016).
These grouped videoswere classified as visitations.Wecalculated
thefrequencyofvisitationforeachanimalspeciesusingthefollow-
ing equat ion: (number of visi ts/sampling ef fort) × 100 c amera tra p
days (O'Br ien et al., 2003). Th e sampling effo rt was equal to t he
totalnumber ofdaysacameratrapwasactive. Toensurerecorded
visitsusedforanalyseswereprimarilydrivenbyanimals'attraction
towater,weonlyconsideredthoseinwhichitwas cleartheywere
drinking,bathing,orboth.Duringthereviewofvideos,weidentified
somecommonbehaviors,suchasscent-markinginthecaseofcarni-
vores,diggingintotheorganicmaterialfoundinrockpoolsandtree
holes,groomingamongpeccaries,andevenfrogandturtlehunting
byocelots.
2.4 | Data analysis
2.4.1 | Comparisonofbirdandmammalspecies
richnessanddiversityamongwaterbodies
Weuseda samplecoverage analysis(Chao &Jost,2012)to esti-
matethecompletenessofbirdandmammal surveysineachtype
of water bod y (i.e., waterho les, rock pool s, and tree hole s). For
eachtypeofwaterbody,wegeneratedsample-basedrarefaction
andext rapol at ioncurvesofHillnu mbers(q = 0,1,and2)withtheir
corresponding 95%confidence intervals (Chao et al., 2014). We
comparedthecurvesofthedifferenttypesofwatersourcesand
their corresponding 95% confidence intervals within the same
season.TheseanalyseswereperformedusingtheiNEXT R pack-
age(Hsiehetal.,2022).
2.4.2 | Comparisonofbirdandmammalspecies
compositionamongwaterbodies
Weconductedanon-metricmultidimensionalscaling(NMDS)analy-
sis to test for differences in thespecies compositionof groups of
birdsandmammalsvisitingeachtypeofwaterbody.Wecalculated
the Bray-Curtisindex, basedon thespecies'frequenciesofvisita-
tion,touseitasameasureofdistanceintheNMDS.Totestforthe
statistical significance of species clusters indicated by the NMDS,
we analyzed similarities (ANOSIM) using 10,000 permutations.
Weusedthevegan Rpackageto conduct theseanalyses(Oksanen
et al., 2022).
Toassessif therewere animal species associated with specific
water bodies, we conducted an indicator species analysis using
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
6 of 14
|
DELGADO-MARTÍNEZ et al.
10,000permutations withthe R package indicspecies (De Caceres
& Legendre, 2009). By comparing observed data to randomized
permut ations, this a nalysis deter mines which spe cies have a non-
random a ssociation with a pa rticular type of water bo dy. Finally,
toassessif capture frequencies of the different locomotion types
and body mass categories differed among the species visiting the
three water bodies, weaggregated the frequenciesandconducted
acontingencytableanalysis(Frankeetal.,2012).Incaseswherethe
resulting p-valuewasbelow.05,wecalculatedtheadjustedresiduals
tomeasurethestandardizeddifferencesbetweentheobservedand
expectedfrequencies.
3 | RESULTS
We totalized a sampling effort of 6713 camera trap days, with
2203 days in the waterholes, 2828 days in the rock pools, and
1682 days in the tree holes (Table S1).We recorded 43 species in
total(18birdsand25 mammals;Figure 3 and Table S2)visitingthe
three water sources: 15bird and20mammalspeciesinthewater-
holes, 8bird and 11mammalspeciesinthetreeholes,and13bird
and19mammalspecies in the rockpools.Crax rubrawasthemost
observedbirdspeciesthroughoutboththedryandrainyseasonsin
the three types ofwater bodies. During thedryseason, Philander
opossumwasthemostcommonmammalspeciesinthewaterholes,
while Sciurus deppeiwa s the most commo n in the tree hole s and
Pecari tajacuintherockpools.Incontrast,duringtherainyseason,
Odocoileus virginianuswasthemostcommonmammalspeciesinthe
waterholes,followedbyUrocyon cinereoargenteus in the tree holes,
and Cuniculus pacaintherockpools(Figure S2).
3.1 | Differences in animal species richness and
diversity among water bodies
The sample coverageof bird speciesin the different water bodies
was very high (above 99%)duringboth the dry andrainy seasons
(Table S3);onlythe treeholes hadaslightlylowercoverageinthe
rainy season (95.2%).Duringthe dry season, birdspecies richness
(q0) was highest in the waterholes and lowest in the tree holes
(Figure 4).Likewise,Shannondiversity (q1) was highest inthe wa-
terholes, while the tree holes androck pools had similar levels of
diversity(Figure S3).Finally,Simpsondiversity(q2)washigherinthe
waterho les than in the ro ck pools but ind istinguisha ble from tree
holes(Figure S4). In compari son, in the rai ny season, bird spe cies
richness(q0) was higher in the rockpoolsthan in the waterholes,
whereas tree holes were indistinguishable from the other water
bodies (i.e., their 95% confidence intervals overlapped). Similarly,
theconfidenceintervalsofthetreeholecurveoverlappedwiththe
curvesofotherwaterbodieswhenexaminingShannonandSimpson
diversity.
Sample coverageofmammal species was alsovery high (above
99%) durin g both seasons (Table S4). In the dry se ason, mammal
species richness(q0)andShannondiversity(q1)weresimilarinthe
waterho les and rock pools b ut lower in the tree ho les (Figure 4;
Figure S3).Simpsondiversity (q2)washigher in the rockpoolsand
lower in thewaterholes; diversityin thesetwo water sourceswas
indisti nguishable fr om that found in tr ee holes (Figure S4). In the
rainyseason,speciesrichness(q0)andShannon(q1)diversityhada
similarpattern,withwaterholesandrockpoolshavinggreaterdiver-
sityandtreeholeslower.Simpsondiversitywaslowestintreeholes
and highest in the rock pools.
3.2 | Differences in bird and mammal species
composition
During boththe dry (ANOSIM; R = .22, p < .001)and rainyseasons
(R = .28, p < .001),the birdassemblages visitingthe differentwater
sources displayed a moderate yet statistically significant dissimi-
larit y. In the dr y season, C. rubra, Coragyps atratus, and Meleagris
ocellata were associated with waterholes, while Crypturellus cin-
namomeuswasassociatedwithrockpools(Figure 5). I n the rainy
season, C. rubra and M. ocellata were associated with waterholes,
whereas Pteroglossus torquatus was associated with tree holes, and
bothC. cinnamomeus and Rupornis magnirostris were associated with
rock pools.
Weidentified asignificant association between the locomotion
categoriesofbirdsandtheiroccurrenceinthedifferentwaterbody
types (Figure S5). In the dr y season (χ2 = 1113.2, d f = 4, p < .001),
terrestrial birds exhibited a higher frequency in waterholes,while
scansorial species visited them less frequently. Moreover, arbo-
real and sc ansorial birds sh owed a greater freque ncy in the tree
holes, whereas terrestrial species displayeda lower visitationrate.
Interes tingly, rock pools rece ived fewer visits f rom both arborea l
andt err estrialbi rds .Inco ntr ast ,du rin gth era inyse aso n(χ2 = 2514.4,
df = 4,p < .001), scansorialbirdshadahigher frequencyof visitsto
waterholes, while arboreal species visited them less frequently.
Additionally, arboreal birds exhibited ahigher preference for tree
holes, while scansorial and terrestrial species showed lower visita-
tionrates.Therewasnotabirdgroupshowingaspecificassociation
with rock pools.
Wealsoobservedarelationshipbetweenthebodymasscatego-
riesofbirdsandtheiroccurrenceinthedifferentwaterbodytypes
(Figure S6). In the dr y season (χ2 = 83 6.96, df = 4, p < .001), medi-
um-sized birdsweremore frequentlyrecordedin treeholes, while
small and large species showed lower frequencies. Rock pools re-
ceivedmorevisitsfromsmallbirdsandfewerfrommediumspecies.
Onlywaterholeswerenotvisited byanybirdgroup atafrequency
greater than expected bychance.In the rainy season (χ2 = 1310.5,
df = 4,p < .001),waterholeswerefrequentedmorebylargebirdsand
lessbysmallandmedium-sizedbirds.Bothtreeholesandrockpools
werevisitedmorebysmallandmedium-sizedbirdsandlessbylarge
species.
Differences in mammal composition among the water bod-
ies were more pronounced than those observed among bird
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
7 of 14
DELGADO-MARTÍNEZ et al.
assemblages,bothduringthedryseason(ANOSIM;R = .43,p < .001)
and the rainy season (R = .50, p < .001). During the dry season,
Dasyprocta punctata, Puma concolor, and T. bairdii were associated
with waterholes, while Sciurus spp. and Eira barbara were associated
with tree holes, and P. taja cu and U. cinereoargenteus with rock pools
(Figure 5).Intherainyseason,O. virginianus, P. opossum, and T. bair-
dii were associated with waterholes; Didelphis virginiana and Sciurus
spp. with tree holes and C. paca; E. barbara, and P. tajacu with rock
pools.
Wef oun dasig nif ican tassoc iationbet weenthelo com oti onc ate -
goriesofmammalsandtheiroccurrenceinthedifferentwaterbody
types(Figure S5).Inthedryseason( χ2 = 10,378,df = 4,p < .001),wa-
terholeswere more frequented byscansorial and terrestrialmam-
mals, whi le arboreal m ammals visited t hem less freq uently. In the
rainy season(χ2 = 5901.7,df = 4, p < .001),waterholes wereprimar-
ily visitedby terrestrial mammals. Across bothseasons, treeholes
werepreferredbyarborealandscansorialmammals,whileterrestrial
speciesshowedlowervisitationrates.Similarly,rockpoolsattracted
moreterrestrialmammalsandwerelessfrequentlyvisitedbyarbo-
realandscansorialspecies,regardlessoftheseason.
Likewise, we f ound signific ant associations b etween the bo dy
massofmammalsandwaterbodytypes(Figure S6).Duringthedry
season (χ2 = 5373.7, df = 4, p < .001), water holes had a higher f re-
quencyof visits by largemammals andalowerfrequency by small
and mediu m species. Tree holes we re more frequent ly visited by
smallandmediummammals,whilelargemammalsshowedareduced
tendencytovisitthem.Rockpoolshadhighervisitationbymedium
mammals andlowervisitationbysmallspecies.Intherainy season
(χ2 = 4296.3, df = 4, p < .001), waterholes werefrequented moreby
small and l arge mammals, w hile medium sp ecies had a lower visi-
tation r ate. Tree holes were more f requently vi sited by small and
mediummammalsandlessfrequentlybylargemammals.Rockpools
FIGURE 3 AsampleofthebirdsandmammalsusingdifferentwaterbodiesintheCalakmulBiosphereReserve.(a)Crax rubraand(b)
Tapirus bairdiirecordedatwaterholes;(c)Penelope purpurascensand(d)Panthera oncarecordedatarockpool;(e)Ramphastos sulfuratusand(f)
Urocyon cinereoargenteusobservedinwater-filledtreeholes.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
8 of 14
|
DELGADO-MARTÍNEZ et al.
were more frequently visited by medium mammals and less fre-
quentlybysmallandlargemammals.
4 | DISCUSSION
Thisstudyshowsnovelinformationabouttheutilizationofsurface
andar bor ealwat erb odi esbyadiv erseco mmunityofbirdsa ndm am-
malsinaseasonallydrytropicalforest.Oursamplingeffortmadeit
possibletorecordadiversecommunityofbirdsandmammalsinboth
seasons,showingthatthethreetypesofwaterbodiesarecentersof
highwildlifeactivity.Notably,ourrecordsdocumentedthepresence
of elusive sp ecies of signif icant conser vation inte rest, incl uding T.
pecari and Mazama pandorainbothwaterholesandrockpools.
Ourfindings providedsupport for ourinitial hypothesis,show-
ingcontrasting responsesbetweenbirds andmammals,with more
pronounceddifferences inwater partitioningamong speciesinthe
lattergroup.Weconsistentlyobservedhigherspeciesrichnessand
diversit y of mammals in s urface wate r bodies, wit h larger speci es
con ce nt ratingtheiracti vityinthewaterholesandarb oreala ndscan-
sorialspeciesinthetreeholes;albeitinfrequently,werecordedlarge
species, such as P. onca, Leopardus pardalis, and U. cinereoargenteus,
climbing to u se tree holes. Th ese differenc es were more marked
duringtherainyseason,aswepredicted.
Inecosystemswithlimitedwater sources,speciesoftencongre-
gatearoundthefewavailablewaterbodies,particularlyduringthedry
season,leadingtopotentialnegativeinteractionswithdominantspe-
cies(Ferryetal., 2016).Nevertheless,whenmultiplewatersources
areavailableindifferentlocations withvaryingaccessibility,suchas
groundversuscanopy,resourcepartitioningcanoccur,enablingdif-
ferentialresourceuse.Resourcepartitioningiswidelyrecognizedas
akeymechanismforpromotingspeciescoexistenceandmaintaining
biodiversity by reducing interspecific competition (Chesson, 2000;
Schoener,1974 ). This mechanism has been documented in tropical
FIGURE 4 Speciesrichnessofbirdsandmammalsvisitingthewaterholes,treeholes,androckpoolsduringthe(a)dryand(b)rainy
seasonsintheCalakmulBiosphereReserve,Campeche,Mexico.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
9 of 14
DELGADO-MARTÍNEZ et al.
bi rdan dmam m alsp e cies ,incl udingver ti c alstr a tific ation (e. g .,A k k awi
et al., 2020;Ferreguettietal.,2018;Mohd-Azlanetal.,2014;Sushma
& Singh, 2006). Both water holes and rock pools exhibited similar
mammalspeciesrichnessanddiversityinboththedryandrainysea-
sons, which were greater than for the tree holes. The presence of
comparablediversityinthesesurfacewatersourceshighlightstheir
importanceinsupportingadiversemammalcommunitythroughout
the year (Delgado-Martínez,Alvarado, etal., 2022; Reyna-Hurtado
et al., 2010). Yet, ouranalyses also showed theexistence of differ-
encesinspeciescompositionoftheanimalassemblages visitingthe
three waterbody types. These findings suggest thatthe analyzed
waterbodieshaveecologicalfeaturesthatincreasetheirprobability
ofbeing visitedbyspecific mammalian species. Thus, for themam-
malcommunity,the waterbodiesmaybe acting as complementary
sources (Mallingeretal., 2016; Maurer et al., 2022).This couldpo-
tentially enable a greater number of mammal species to coexist
withinthiswater-stressedecosystem(Martinsetal.,2018;Thomsen
et al., 2022),asresourcesinacommunityareconsideredco mplemen-
tarywhendifferentspeciesusetheminawaythatavoidsdirectcom-
petition(Cleland,2011;Tilman,1982).
FIGURE 5 Speciescompositionofbirdsandmammalsthatvisitedthetargetwaterbodiesduringthe(a)dryand(b)rainyseasons.Bird
species codes: Coat, Coragyps atratus; Crru, Crax rubra; Crci, Crypturellus cinnamomeus; Meoc, Meleagris ocellata; Ptto, Pteroglossus torquatus;
and Ruma, Rupornis magnirostris.Mammalspeciescodes:Cupa, Cuniculus paca; Dapu, Dasyprocta punctata; Divi, Didelphis virginiana; Eiba,
Eira barbara; Odvi, Odocoileus virginianus; Peta, Pecari tajacu; Phop, Philander opossum; Puco, Puma concolor; Scde, Sciurus deppei; Scyu, Sciurus
yucatanensis; Taba, Tapirus bairdii; Urci, Urocyon cinereoargenteus.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
10 of 14
|
DELGADO-MARTÍNEZ et al.
Incontrast, inthe case of bird assemblages,we foundthat a
substantialproportion ofspeciesweresharedandtheidentityof
thedominantspecieswasmaintained,despitetherebeingsignifi-
cantdifferencesinspeciescomposition.Althoughwefoundanas-
sociationbetweenpredominantly terrestrialbird species(e.g., M.
ocellata)andsurfacewaterbodies,noneoftherecordedbirdspe-
ciesiscompletelyflightless(Greenwood,2001).The irabili tyt ou ti-
lizethecanopyprovidesthemwithgreatermobilityandpotential
accesstoalternativeresources(Partasasmitaetal.,2017;Winkler
&Preleuthner,2001).Therefore,therelativelylessmarkeddiffer-
entialwaterusebybirdscanbeattributedtotheircapacitytoex-
ploitverticalspace,reducingtheirdependenceonspecificwater
sources. Consequently, these results suggest that the different
waterbodiesmaybeacting,tosome degree,asalternativewater
sourcesforbirds(Tilman,1982),leadingtosimilaritiesinthe spe-
ciescompositionoftheassemblagesrecordedineachofthem.
Alternatively,themoderate dissimilarities inbird species com-
positionobser vedacrossdifferentwaterbodiescouldbeexplained
bythe fact thatspeciesin thisgroup mayadopt distinct temporal
pat ternsofuseofthisresourceasastr ategytominimizedirectcom-
petitionandpredationrisk(Harmangeetal.,2021;Oleaetal.,2022).
However,nostudies have focused on thetemporal partitioning of
watersourcesbybirds.Suchtemporalsegregationcouldpotentially
allowbirdstoaccesswatersourceswithoutengaginginantagonistic
interactions,butthispossibilitywarrantsfurtherresearch.
An additional factor influencing the differential use of water
sources can be the perceived predation risk associated with the
visitationtoeach type of waterbody (Periquet et al.,2010 ; Valeix
et al., 2009).Largeterrestrialpredatorspecies,suchasP. onca and
P. concolor,wereassociatedwithwaterholesduring thedryseason
and with wa terholes and r ock pools duri ng the rainy seas on. The
presence of these predators can contribute to the creation of a
landsc ape of fear due to t he potential for l ethal intera ctions wit h
preyspecies(Bleicher,2017; Laundre et al., 2010 ; Perera-Romero
et al., 2021).Tomitigatethisrisk,preyspeciesmayactivelyseekout
alternativewatersources,suchastreeholes,wheretheprobabil-
ity of encounters withpredators is lower(Doody etal., 20 07;Hall
et al., 2013).ThiscouldbethecaseforP. ta jacu and N. narica,twoof
theirmainpreyspecies(Núñezetal.,2000),whichweremorecom-
monlyrecordedinrockpoolsandtreeholes,respectively,duringthe
dry season.Thus,predatoravoidance behaviormight interact with
resourcepartitioningtocontributetotheobserveddifferentialpat-
ternofuseofwatersources.
Theabsenceofdetailedinformation regarding thepresenceor
absenceofwaterinrockpoolsandtreeholescouldpotentiallylead
toan underestimationofvisitationfrequenciesforsomespeciesin
thesewaterbodies.Forexample,insomecases,wewereunableto
confirm whether ananimal hadindeeddrunkwater or hadmerely
inspectedthe site.Nevertheless,thesecases werenot included in
theanalyses,andwethink thatthisprobability ofunderestimation
wasconsistentacrossdifferentwaterbodies.
Althoughourstudyprimarilyfocusedonthetypeofwatersource
as the main explanato ry variable, it is impor tant to acknowledge
thatseveralotherfactorscaninfluencetheselectionandutilization
ofwater sources by birds and mammals.Some potential variables,
whichwerenotincludedinourstudybut are knownto impactthe
use of waterbodies, encompass thecharacteristics ofthe vegeta-
tiongrowingwithinwaterbodiesandtheirsurroundingareas(Eakin
et al., 2018; Votto et al., 2022),waterbodyand landscape features
suchaswaterdepth,terrainslope,distancetoroads,andproximity
tootherwatersources(Najafietal.,2019; Pin et al., 2018),andfood
availabilitywithinandaroundthewaterbodies(Chavesetal.,2021;
Eakin et al., 2018). Fur thermore, in t he case of tree hol es, varia-
tions in hei ght and connec tivity of t ree holes (e.g. , through liana s
andneighboringtrees)may influencethe utilization of thesewater
sources(Cudney-Valenzuelaetal.,2021).Exploringtheroleofthese
factorswouldlikelyhelptogainamorecomprehensiveunderstand-
ingofwatersourceselectionbywildlife.
4.1 | Implications for conservation
TheCalakmul region,like otherpartsofthe world,isexperiencing
anincreaseindroughtfrequencyanddisruptionsinrainfallpatterns
due to global climate change, resulting in more uneven distribu-
tionofrainfallthroughouttheyearandmoreintenserainfallevents
(Mardero etal., 2020).These changes havethe potential to affect
water availability for wildlife byaltering the hydrological cycles of
waterbodies.Waterholesseemtobe experiencinglongerperiods
ofdrying, whichcan makethemless available aswater sources in
thefuture (Reyna-Hurtadoetal.,2019).Incontrast,treeholesand
rockpoolsseemtobeabletofillevenwithmoderaterainfalls(C.M.
Delgad o-Martínez, unpublished data). T herefore, specie s strongly
associated with waterholes, such as T. bairdii,seemtobemoreprone
tobeaffectedbychangesinrainfallpatterns.Furthermore,arecent
studyintheregionhasdocumentedthatintimesofscarcity,wildlife
seekswaterinhuman-madeplaces,suchascattletroughsandapiar-
ies,whichsometimesleadstohuman-wildlifeconflicts(Pérez-Flores
et al., 2021).Thissituationmaybecomemorecommonsoondueto
changesinwateravailabilityintheregion.
Moreover,theCalakmulregionisfacinggreaterpressuredueto
increasinginfrastructuredevelopmentandhumanactivity.Inpartic-
ular,theconstructionoftheMayaTrain,oneofthemostimportant
infrastructureprojectsofthecurrentfederaladministration,hasthe
potential toimpactregional biodiversity.Theprojectaimstoboost
transportation and tourism, potentially benefiting local communi-
tiesbutincreasingresourcedemands,particularlywater(Camargo
&Vázquez-Maguirre,2021; García et al. , 2022). Some waterho les
areacommonattractioninthe reserve;thus, anuncontrolled rise
in tourist activity at waterholes has the potential to disrupt the
behavior of sensitive species, causing their displacement to low-
er-qualitysitesandpotentiallyintensifyinginterspecificcompetition
and predation risk (Crosmary et al., 2012; Zukerman et al., 2021).
Additionally,theselectiveloggingandclear-cuttingpracticesprev-
alentinthe regioncan further reducethe availabilityoftreeholes
(Armenta-Monteroetal.,2020;Blakely&Didham,20 08),whichare
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
11 of 14
DELGADO-MARTÍNEZ et al.
essentialforarborealandscansorialspecies.Thescarcityofsuitable
treeholesmayforcethesespeciestorelyonsurfacewatersources,
consequentlyincreasingtheir vulnerabilitytoterrestrialpredators.
Therefore,ove rall,thecombinedimp act sofhumanac tivitiesandcli-
matechangeseemtohaveagreatpotentialtoaffectthespatio-tem-
poral water distribution patterns, altering the patterns of water
usebybirdsandmammals,whichinturnmightgenerateincreased
competition among species, greater predation risk, and potential
human–wildlifeconflicts.
Seasonally dry tropical forests are extensively distributed
through out the tropi cs and face sim ilar threat s to those affe cting
theCalakmulBiosphereReserve(Siyum,2020).However,significant
knowledgegapsstill existconcerningtheecologyoftheseecosys-
temsand theeffects of human activityon theirfunctioning (Allen
et al., 20 17). O ur findings help to increase o ur understanding of
the rolewater source characteristics have onwildlife ecology and
shedsomelightonthepotentialimpactsanthropogenicactivitycan
bringaboutonthefaunabythealterationsofthepatternsofwater
availability.
AUTHOR CONTRIBUTIONS
Carlos M. Delgado-Martínez: Conceptualization (lead);dat acur a-
tion (lead); formal analysis (lead); funding acquisition (lead);inves-
tigatio n( lead); methodo logy (lead); pro ject administ ration (equal);
soft ware (lead); visua lization (lead); w riting – original d raft (lead);
writing–reviewandediting(equal).Melanie Kolb:Conceptualization
(supporting); methodology (supporting); project administration
(equal);supervision(equal);validation(equal);writing–reviewand
editing (equal). Fermín Pascual-Ramírez: Conceptualization (sup-
porting); methodology(supporting); supervision (equal); validation
(equal); writing – review and editing (equal). Eduardo Mendoza:
Conceptualization (supporting); funding acquisition (supporting);
methodology(supporting);projectadministration(equal);supervi-
sion(equal);validation(equal);writing–reviewandediting(equal).
ACKNOWLEDGMENTS
This contribution constitutes a requirement for CMD-M to obtain
his Ph.D. de gree at the Posgrad o en Ciencias Biológ icas, UNAM.
ThisworkwassupportedbytheRuffordFoundation(grantnumber
34365-2); the Association for Tropical Biology and Conservation
(Seed Research Grant 2022); and the American Society of
Mammalogists(LatinAmericanStudentFieldResearchAward2022).
WearedeeplygratefultothepeopleofNuevoConhuas,especially
Andrés Barrientos' family,for theirhospitalityandinvaluableassis-
tanceduringourfieldwork.Wewouldalsoliketoextendourthanks
tothestaffoftheregionalofficeoftheCONANPfortheirsupport,
aswellastoV.Chanan dL .Carmo nafortheirassis tan ceduringf ield-
workanddataprocessing.CMD-Mwassupportedbyascholarship
fromtheConahcyt.
CONFLICT OF INTEREST STATEMENT
Theauthorsdeclarenoconflictofinterest.
DATA AVA ILAB ILITY STATE MEN T
Thedatasupportingthefindingsofthisstudy,alongwiththecode
toconduct the analyses, are openly availablein the Dryad Digital
Repository:h t t p s : / / d o i . o r g / 1 0 . 5 0 6 1 / d r y a d . 1 j w s t q k 2 2 .
ORCID
Carlos M. Delgado-Martínez https://orcid.
org/0000-0002-0913-932X
Melanie Kolb https://orcid.org/0000-0002-3329-3861
Fermín Pascual-Ramírez https://orcid.org/0000-0002-1005-9597
Eduardo Mendoza https://orcid.org/0000-0001-6292-0900
REFERENCES
Adams,R.A.,&Thibault,K.M.(2006).Temporalresourcepartitioningby
batsatwaterholes.Journal of Zoology, 270, 466–472.
Akkawi,P.,Vi ll ar,N. ,M endes,C .P.,&Gal et ti,M.(2020).Dominan cehier-
archyonpalmresourcepartitioningamongNeotropicalfrugivorous
mammals.Journal of Mammalogy, 101,697–709.
Allen, K.,Dupuy,J.M., Gei,M.G.,Hulshof, C.,Medvigy,D., Pizano,C.,
Salgado-Negret, B., Smith, C. M.,Trier weiler,A.,VanBloem, S.J.,
Waring, B . G., Xu, X., & P owers, J. S. (2017 ). Will seaso nally dry
tropicalforestsbesensitiveorresistanttofuturechangesinrainfall
regimes?Environmental Research Letters, 12, 23001.
Amoroso,C.R.,Kappeler,P.M.,Fichtel,C.,&Nunn,C.L.(2020).Temporal
patternsofwaterholeuseasapredatoravoidancestrategy.Journal
of Mammalogy, 101,574–581.
Armenta-Montero, S., Ellis, E. A ., Ellis, P. W., Manson, R. H., López-
Binnqüist, C.,&Pérez, J. A .V.(2020). Carbon emissions fromse-
lectiveloggingintheSouthernYucatanPeninsula,Mexico.Madera
y Bosques, 26, 1–1 4 .
Back, W.,& Lesser,J. M. (1981).Chemical constraints of groundwater
managementintheYucatanpeninsula,Mexico.Jo urnal of Hydrolog y,
51,119–130.
Beck,H.E.,Zimmermann,N.E.,McVicar,T.R.,Vergopolan,N.,Berg,A.,
& Wood, E. F. (2018). Pres ent and futu re köppen-G eiger climate
classificationmapsat1-kmresolution.Scientific Data, 5, 1–1 2.
Blakely,T.J., &Didham,R.K. (2008).Treeholesinamixedbroad-leaf-
podocarprainforest,NewZealand.New Zealand Journal of Ecology,
32,197–208.
Bleicher, S. S. (2017). The landscape of fear conceptual framework:
Defini tion and revi ew of current ap plicatio ns and misuse s. Pee rJ,
5, e3772.
Camargo,B.A.,&Vázquez-Maguirre,M.(2021).Humanism,dignityand
indigenousjustice:TheMayan trainmegaproject,Mexico.Journal
of Sustainable Tourism, 29,372–391.
Camar go-Sanabria , A. A. , & Mendoza, E . (2016). Interac tions bet ween
terres trial mamma ls and the fru its of two Neot ropical ra inforest
tree species. Acta Oecologica, 73,45–52.
Ceball os, G., Zar za, H., Gonz ález-Maya, J. F., de la Torre, J. A ., Arias-
Alzate, A ., Alcerreca, C., Barcenas, H. V., Carreón-Arroyo, G.,
Chávez, C ., Cruz, C.,Medellín, D.,García, A.,Antonio-García, M.,
Lazca no-Barrero, M . A., Mede llín, R. A. , Moctezuma- Orozco, O.,
Ruiz,F.,Rubio,Y.,Luja,V.H.,&Torres-Romero,E.J.(2021).Beyond
words: From jaguar population trends to conservation and public
policyinMexico.PLoS One, 16, 1–22 .
Chamaillé-Jammes,S.,Charbonnel,A.,Dray,S.,Madzikanda,H.,&Fritz,
H. (2016). Spat ial distrib ution of a large h erbivore com munity at
waterho les: An asses sment of its s tability ov er years in Hwan ge
NationalPark,Zimbabwe.PLoS One, 11,e0153639.
Chao, A.,Gotelli, N. J., Hsieh,T.C.,Sander,E.L., Ma,K.H.,Colwell,R.
K.,&Ellison, A. M. (2014).Rarefactionand extrapolation with Hill
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
12 of 14
|
DELGADO-MARTÍNEZ et al.
numbers:Aframework for sampling andestimation in species di-
versitystudies.Ecological Monographs, 84,45–67.
Chao, A ., & Jost, L. (2 012). Coverage-bas ed rarefact ion and extra po-
lation: Standardizing samples by completeness rather than size.
Ecology, 93,2533–2547.
Chaves, O. M., Fortes, V.B., Hass, G. P.,Azevedo, R. B., Stoner, K. E.,
&Bicca-Marques, J.C.(2021).Flowerconsumption, ambienttem-
pe rat ure and rai nfa llm odu lat ed r ink ingbeh avi orinafo livoro us-fr u-
givorousarborealmammal.PLoS One, 16,e0236974.
Chesso n, P. (2000 ). Mechanisms of mai ntenance of specie s diversity.
Annual Review of Ecology and Systematics, 31, 34 3–366.
Clayton,D. H., Koop,J. A. H.,Harbison,C.W., Moyer,B.R.,&Bush,S.
E.(2010).Howbirds combatectoparasites.The Open Ornithology
Journal, 3, 41–71.
Cleland, E. E. (2011). Biodiversity and ecosystem stability. Nature
Education Knowledge, 3, 14.
CONAGUA(ComisiónNacionaldelAgua).(2023).Información Estadística
Climatológica. h t t p s : / /s m n . c o n a g u a . g o b . m x / e s / c l i m a t o l o g i a / i n f o r
m a c i o n - c l i m a t o l o g i c a / i n f o r m a c i o n - e s t a d i s t i c a - c l i m a t o l o g i c a
Crosmar y, W.-G., Valeix , M., Fritz, H., Ma dzikanda, H., & C ôté, S. D.
(2012). African ungulates and their drinking problems: Hunting
and predation risks constrain access to water. Animal Behaviour, 83,
145–153.
Cudney-Valenz uela, S. J., Arr oyo-Rodríguez, V., An dresen, E., Toledo-
Aceves, T., Mor a-Ardila, F., Andra de-Ponce, G ., & Mandujano, S .
(2021).Does patchquality drivearborealmammal assemblagesin
fragme nted rainfores ts? Perspectives in Ecology and Conservation,
19, 61– 68.
De Cace res, M., & Lege ndre, P.( 2009). Asso ciations bet ween speci es
and groups of sites: Indicesand statisticalinference. Ecology, 90,
3566–3574.
Delgado-Martínez,C.M.,Alvarado, F.,Kolb,M.,&Mendoza,E.(2022).
Monitoringofsmallrockpoolsrevealsdifferentialeffectsofchronic
anthropogenicdisturbanceonbirdsandmammalsintheCalakmul
region, southern Mexico. Journal of Tropical Ecology, 38,79–88.
Delgado-Martínez, C. M., Cudney-Valenzuela, S. J., & Mendoza, E.
(2022). C amera trappi ng reveals multisp ecies use of water-fille d
treeholesbybirdsandmammalsinaNeotropicalforest.Biotropica,
54, 262–267.
DiBitetti,M. S., Iezzi,M.E.,Cruz,P.,Varela, D.,&De Angelo,C.(2020).
Effect sofc attleonhabita tusean ddielactivityoflargenativeherbi-
voresinaSouthAmericanrangeland.Journal for Nature Conservation,
58,125900.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . j n c . 2 0 2 0 . 1 2 5 9 0 0
Doody,J.S.,Sims,R.A.,&Letnic,M.(2007).Environmentalmanipulation
toavoid a unique predator: Drinkinghole excavation in the agile
wallaby,Macropus agilis. Ethology, 113, 128–136.
Eakin,C.J., Hunter,M. L., &Calhoun,A. J.K.(2018).Birdandmammal
use of verna l pools alon g an urban deve lopment gr adient. Urban
Ecosystem, 21,1029–1041.
Edwards,S., AlAwaji,M.,Eid,E.,&Attum,O.(2017).Mammalianactiv-
ityatartificialwatersourcesinDanaBiosphereReserve,southern
Jordan.Journal of Arid Environments, 141,52–55.
Edwards,S.,Gange,A.C.,&Wiesel,I.(2016).Anoasisinthedesert:The
potentialofwatersourcesascameratrapsitesinaridenvironments
for surveying acarnivore guild. Journal of Arid Environments, 124,
304–309.
Ensley,R.,Hansen,R.D.,Morales-Aguilar,C.,&Thompson, J.(2021).
Geomorphology of the Mirador-Calakmul Karst Basin: A GIS-
based approach to hydrogeologic mapping. PLoS One, 16,
e0255496.
Ferreguetti,A .C., Davis,C. L.,Tomas,W.M.,&Bergallo,H. G. (2018).
Using ac tivity an d occupanc y to evaluate n iche part itioning : The
case of two peccary species in the Atlantic Rainforest, Brazil.
Hystrix, Italian Journal of Mammalogy, 29, 168–174.
Ferry, N., Dray, S., Fritz, H., & Valeix,M. (2016).Interspecific inter fer-
encecompetitionattheresourcepatchscale: Dolargeherbivores
spatially avoid elephants while accessing water? The Journal of
Animal Ecology, 85,1574–1585.
Flores,J.S.(1983).Significadodeloshaltunes (sartenejas)en lacultura
maya.Biotica, 8, 259–279.
Franke,T.M.,Ho,T.,&Christie,C.A .(2012).Thechi-squaretest:Often
usedandmoreoftenmisinterpreted.American Journal of Evaluation,
33,448–458.
Galetti, M.,Rodar te, R. R.,Neves,C. L ., Moreira,M., & Costa-Pereira,
R. (2016). Trophic niche differentiation inrodentsand marsupials
revealedbystableisotopes.PLoS One, 11,1–15.
Galindo-Leal,C.(1999).La Gran Regi ón de Calakmu l, Campeche: P rioridades
biológicas de conservación y propuesta de modificación de la Reserva
de la Biosfera.ReportefinalaWorldWildlifeFund.
Gandiwa,E.,Heittkönig,I.M.A.,Eilers,P.H.C.,&Prins,H.H.T.(2016).
Rainfallvariabilityanditsimpactonlargemammalpopulationsin
a complex of s emi-arid Afr ican savan na protecte d areas. Tropical
Ecology, 57, 1 6 3 –18 0 .
García, A., López, M. F., Espadas-Manrique, C., Cach-Pérez, M. J.,
Caballero, J.A., Hernández,C., & Reyes-García,C .(2022). Impact
ofthe TrenMaya megaproject onthe biocultural heritage of the
MayanareainMexico'sbestconservedtropicalforest.International
Journal o f Environmental Sci ences & Natural Reso urces, 31(3),556317.
García-Gil, G., Palacio-Prieto, J. L., & Ortiz-Pérez, M. A. (2002).
Reconoc imiento geomor fológico e hi drográfico de l a Reserva de
laBiosferaCalakmul,México.Investigaciones Geográficas, 48, 7–23.
Gilg,O.,Hanski,I.,&Sittler,B.(2003).Cyclicdynamicsinasimpleverte-
bratepredator-preycommunity.Science, 302, 866–868.
Gómez-Pompa, A., & Dirzo, R. (Eds.) (1995). Reserva de la biosfera
Calakmul. In Reservas de La Biosfera y Otras Áreas Naturales
Protegidas de México (pp. 71–74). Instituto N acional de Ecología,
SEMARNAP y Comisión Nacional para el Conocimiento y Usode
la Biodiversidad.
Gonzál ez-Salazar, C. (2013). Base de datos de características ecológicas
para aves y mamíferos presentes en México.ProyectoLE004,finan-
ciadoporCONABIO.
Gossne r, M. M., Gaz zea, E., Diedus , V., Jonker, M., & Yaremc huk, M.
(2020). Using sentinel prey toassesspredationpressurefromter-
restrial predators in water-filled tree holes. European Journal of
Entomology, 117, 22 6–23 4 .
Greenwood,J.J.D.(2001).S.Levin(Ed.),Birds, biodiversity of encyclope-
dia of biodiversity(pp.600–625).AcademicPress.
Guevar a, E. A., B ello, C., Pove da, C., McFadd en, I. R., S chleuning , M.,
Pellissier, L., & Graham, C. H. (2023). Hummingbird community
structureandnectarresourcesmodulatetheresponseofinterspe-
cificcompetitiontoforestconversion.Oecologia, 201, 761–7 7 0 .
Hafez,E.S.E.(1964).Behavioralthermoregulationinmammalsandbirds–
A review. International Journal of Biometeorology, 7, 231–2 40.
Hall, L. K.,Larsen,R.T.,Knight, R. N.,Bunnell,K.D.,& McMillan, B.R.
(2013). Water developments and c anids in two north American
deserts:Atestoftheindirecteffectofwaterhypothesis.PLoS One,
8, e67800.
Hamilton, S. A., & Murphy, D. D. (2018). Analysis of limiting factors
across the life cycle of Delta smelt (Hypomesus transpacificus).
Environmental Management, 62,365–382.
Harmange,C.,Bretagnolle,V.,Chabaud,N.,Sarasa,M.,&Pays,O.(2021).
Diel cyc le in a farmland b ird is shaped by con trasting pr edation
andhumanpressures.Biological Journal of the Linnean Society, 134,
68–84.
Harris,G.,Sanderson,J.G.,Erz, J.,Lehnen,S.E.,& Butler,M. J.(2015).
WeatherandpreypredictMammals'visitationtowater.PLoS One,
10,e0141355.
Hsieh, T. C., Ma, K. H., & Chao, A. (2022). iNEXT: iNterpolation and
EXTrapolation for species diversity. R package version 3.0.0. ht tp ://
c h a o . s t a t . n t h u . e d u . t w / w o r d p r e s s / s o f t w a r e - d o w n l o a d /
INE(InstitutoNacionaldeEcología).(1999).Programa de manejo Reserva
de la Biosfera Calakmul.InstitutoNacionaldeEcología.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
|
13 of 14
DELGADO-MARTÍNEZ et al.
Jiménez-Franco,M.V.,Martínez-Fernández,J.,Martínez,J.E.,Pagán,I.,
Calvo, J. F., & Est eve, M. A. (2 018). Nest sites a s a key resource
forpopulationpersistence:Acasestudymodellingnestoccupancy
underforestrypractices.PLoS One, 13,e0205404.
Kitching,R.L.(Ed.). (2000). Thecontainerfauna. InFood webs and con-
tainer habitats: The natural history and ecology of Phytotelmata(pp.
43–56).CambridgeUniversityPress.
Kranj c, A. (2013). Classification of closed depressions in carbonate karst,
treatise on geomorphology(Vol.1–14 ).ElsevierLtd.
Laundre,J.W.,Hernandez,L., & Ripple, W.J.(2010).Thelandscape of
fear:Ecologicalimplicationsofbeingafraid.Open J ournal of Ecology,
3, 1–7.
Lear,K.O.,Whitney,N.M.,Morris,J.J.,&Gleiss,A.C.(2021).Temporal
niche partitioningas a novel mechanismpromoting co-existence
ofsympatricpredatorsinmarinesystems.Proceedings of the Royal
Society of London, Series B: Biological Sciences, 288, 20210816.
Lee,A.T.K.,Wright,D.,&Barnard,P.(2017).Hotbirddrinkingpatterns:
Drivers of water visitation in a fynbos bird communit y. African
Journal of Ecology, 55,541–553.
Lundberg, J. (2013). Microsculpturing of solutional rocky landforms.
Treatise on Geomorphology, 1–14, 1 21–138 .
Mallinger,R.E.,Gibbs,J.,&Gratton,C.(2016).Diverselandscapeshave
ahi gherabund anceandspecie sr ic hnessofspringwildbe esby pr o-
vidingcomplementaryfloralresourcesoverbees'foragingperiods.
Landscape Ecology, 31,1523–1535.
Mardero,S.,Schmook ,B.,Christman,Z.,Metcalfe,S .E.,&DelaBarreda-
Bautista, B. (2020). Recent disruptions in the timing and inten-
sity of pr ecipitati on in Calakm ul, Mexico. Theoretical and Applied
Climatology, 140,129–144.
Martínez, E., & Galindo-Leal, C. (2002). La vegetación de Calakmul,
Campeche, México: Clasificación, descripción y distribución.
Boletín de la Sociedad Botánica de México, 71, 7– 3 2.
Marti ns, K. T., Alber t, C. H., Le chowicz, M . J., & Gonzalez , A. (2018).
Complementary crops and landscape features sustain wild bee
communities.Ecological Applications, 28,1093–1105.
Maurer, C.,Sutter,L.,Martínez-Núñez, C., Pellissier,L., & Albrecht, M.
(2022).Differenttypesofsemi-naturalhabitatarerequiredtosus-
taindiversewild bee communitiesacrossagriculturallandscapes.
Journal of Applied Ecology, 59,2604–2615.
Messier,F.(1991).Thesignificance oflimitingand regulatingfactorson
the demo graphy of moose an d white-tailed de er. The Journal of
Animal Ecology, 60, 3 77.
Mohd-Azlan,J.,Noske,R.A.,&Lawes,M.J.(2014).Resourcepartitioning
bymangrove bird communities in Nor th Australia. Biotropica, 46,
33 1–3 4 0 .
Mooney,H.A.,Bullock,S.H.,&Medina,E.(1995).Introduction.InS.H.
Bullock& H. A. Mooney (Eds.), Seasonally dry tropical forests(pp.
1–8).CambridgeUniversityPress.
Myers,N.,Mittermeier,R.A.,Mittermeier,C.G.,daFonseca,G.A.B.,&
Kent, J. (20 00). Bio diversit y hotspot s for conser vation pr iorities .
Nature, 403,853–858.
Najafi, J., Farashi, A., Zanoosi, A. P., & Yadreh, R. (2019). Water re-
sourceselectionoflarge mammals for water resources planning.
European Journal of Wildlife Research, 65(6). https:// doi. org/ 10.
1 0 0 7 / s 1 0 3 4 4 - 0 1 9 - 1 3 2 1 - 3
Naranjo,E. J. (2018). Baird's tapir ecology andconservation in Mexico
revisited. Tropical Conservation Science, 11,194008291879555.
Núñez, R ., Miller, B., & Li ndzey, F. (200 0). Food habit s of jaguars a nd
pumasinJalisco,Mexico.Journal of Zoology, 252,373–379.
O'Brien,T.G.,Kinnaird,M.F.,&Wibisono,H.T.(2003).Crouchingtigers,
hiddenprey:Sumatrantigerandpreypopulationsinatropicalfor-
est landscape. Animal Conservation, 6,131–139.
Ocón, J. P.,Ibanez,T.,Franklin,J., Pau,S., Keppel, G.,Rivas-Torres, G.,
Edward,M.,&Gillespie,T.W.(2021).Globaltropicaldryforestex-
tentandcover:Acomparativestudyofbioclimaticdefinitionsusing
twoclimaticdatasets.PLoS One, 16, 1–20 .
O'Farrill, G., Schampaert, K. G., Rayfield, B., Bodin, Ö., Calmé, S.,
Sengupta, R., & Gonzalez, A . (2014). The potential connectivity
ofwaterhole networks andthe effectivenessofaprotected area
under various drought scenarios. PLoS One, 9,e95049.
Oksanen,J.,Simpson,G.,Blanchet,F.,Kindt,R.,Legendre,P.,Minchin,P.,
O'Hara,R.,Solymos,P.,Stevens,M.,Szoecs,E.,Wagner,H.,Barbour,
M.,Bedward,M.,Bolker,B.,Borcard,D.,Carvalho,G.,Chirico, M.,
DeCaceres,M.,Durand,S.,…Weedon,J.(2022).vegan: Community
ecology package. R package ver sion 2.6-4. h t t p s : / / C R A N . R - p r o j e c t .
org/ packa ge= vegan
Ole a,P.P.,Iglesias,N.,&Mate o-Tomás,P.(2022).Tem po ra lresourcepar-
titioningmediatesver tebratecoexistenceatcarcasses:Theroleof
competitiveandfacilitativeinteractions.Basic and Applied Ecology,
60,63–75.
Partasasmita,R.,Atsaury,Z.I.A.,&Husodo,T.(2017).Theuseofforest
canopybyvariousbirdspeciesintropicalforestMontanazone,the
NatureReserveofMountTilu,WestJava,Indonesia.Biodiversitas,
18,453–457.
Perera-Romero, L ., Garcia-Anleu, R., McNab, R. B., & Thornton, D.
H. (2021). When waterholes get busy, rare interactions thrive:
Photographicevidenceofajaguar(Panthera onca)killinganocelot
(Leopardus pardalis).Biotropica, 53, 367–371.
Pérez-Flores, J., Mardero, S., López-Cen, A., & Contreras-Moreno, F.
M. (2021). Human-wildlife conflicts and drought in the greater
Calakmul region, Mexico: Implications for tapir conservation.
Neotropical Biology & Conservation, 16(4),539–563.
Periquet,S.,Valeix,M.,Loveridge,A.J.,Madzikanda, H.,Macdonald,D.
W., & Fritz, H. ( 2010). Individual v igilance of Afric an herbivore s
while drinking:The role of immediatepredation risk andcontext.
Animal Behaviour, 79,665–671.
Pin,C.,Ngoprasert,D.,Gray,T.N.E.,Savini,T.,Crouthers,R.,&Gale,G.
A.(2018).Utilizationof waterholes bygloballythreatenedspecies
indeciduousdipterocarpforestoftheEasternPlainsLandscapeof
Cambodia. Oryx, 54(4), 572–582. https: // doi. o rg / 10. 1017/ s00 30
605318000455
Potapov, P.,Hansen, M.C.,Laestadius, L.,Turubanova, S.,Yaroshenko, A .,
Thies, C.,Smith,W.,Zhuravleva, I., Komarova, A., Minnemeyer,S., &
Esipova,E.(2017).Thelastfrontiersofwilderness:Trackinglossofin-
tactforestlandscapesfrom2000to2013.Science Advances, 3, 1–14.
Ramírez-Delgado, J. P., Christman, Z., & Schmook, B. (2014).
Deforestationandfragmentationofseasonaltropicalforestsinthe
southernYucatán,Mexico(1990-2006).Geocarto International, 29,
822–8 41.
Reyna-Hurtado,R.,Chapman,C.A.,Calme,S.,&Pedersen,E. J.(2012).
Searching in heterogeneous and limiting environments: Foraging
strategies of white-lipped peccaries (Tayassu pecari). Journal of
Mammalogy, 93, 124–133.
Reyna-Hurtado,R.,O'Farrill,G.,Sima,D.,Andrade,M.,Padilla,A.,&Sosa,
L.(2010).LasaguadasdeCalakmul:Reservoriosdevidasilvestrey
delariquezanaturaldeMéxico.Biodiversitas, 93, 1–6 .
Reyna-Hurtado, R., Sima-Pantí, D., Andrade, M., Padilla, A., Retana-
Guaiscon, O., Sanchez-Pinzón, K., Martinez, W., Meyer, N.,
Moreira-Ramírez,J.F.,Carrillo-Reyna,N.,Rivero-Hernández,C.M.,
Macgregor,I. S., Calme, S., &Dominguez, N.A.(2019).Tapirpop-
ulation p atterns unde r the disappe arance of free standing wat er.
Therya, 10,353–358.
Schoener,T.W.(1974).Resoucepartitioninginecological communities:
Researc h on how similar sp ecies divid e resources he lps. Science,
185,27–39.
Sharma, N., Huffman, M. A., Gupta, S., Nautiyal, H., Mendonça, R.,
Morino, L ., & Sinha, A . (2016). Watering h oles: The us e of arbo-
real sou rces of drinkin g water by Old World m onkeys and ape s.
Behavioural Processes, 129, 18–26.
Siyum,Z.G.(2020).Tropicaldryforestdynamicsinthecontextofclimate
change:Synthesesofdrivers,gaps,andmanagementperspectives.
Ecological Processes, 9,25.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
14 of 14
|
DELGADO-MARTÍNEZ et al.
Špirić,J.,Vallejo,M.,&Ramírez,M.I.(2022).Impactofproductiveactivi-
tiesonforestcoverchangeintheCalakmulbiospherereser veregion:
Evidence and research gaps. Tropical Conservation Science, 15,1–25.
Stommel,C.,Hofer,H.,Grobbel,M.,&East,M.L.(2016).Largemammals
inRuahaNationalPark,Tanzania,digforwater whenwaterstops
flowingandwaterbacterialloadincreases.Mammalian Biology, 81,
21–30.
Sushma,H.S.,&Singh,M.(2006).Resourcepartitioningandinterspecific
interactionsamongsympatricrainforestarborealmammalsofthe
WesternGhats,India.Behavioral Ecology, 17,479–490.
Thomsen, M. S., Altieri, A. H., Angelini, C., Bishop, M. J., Bulleri, F.,
Farhan, R., Frühling, V.M. M., Gribben, P.E.,Harrison, S. B.,He,
Q., Kling hardt, M., La ngeneck, J., La nham, B. S., Mo ndardini, L. ,
Mulders, Y.,Oleksyn, S.,Ramus,A. P.,Schiel,D.R., Schneider,T.,
…Zotz, G. (2022). Heterogeneity within andamong co-occurring
foundationspeciesincreasesbiodiversity.Nature Communications,
13,1–9.
Tilman,D.(1982).Whatareresources?InResource competition and com-
munity structure . (MPB-17)(Vol.17,pp.11–42).PrincetonUniversity
Press.
Torrescano-Valle, N.,& Folan, W. J. (2015). Physical settings, environ-
mentalhistor ywithanoutlookonglobalchange.InG.A.Islebe,S.
Calmé,J.L.León-Cortés,&B.Schmook(Eds.),Biodiversity and con-
servation of the Yucatán peninsula(pp.9–37).SpringerInternational
Publishing.
Valeix,M.,Chamaillé-Jammes,S.,&Frit z,H.(2007).Inter fe rencecompe-
titionandtemporalnicheshifts:Elephantsandherbivorecommu-
nities at waterholes. Oecologia, 153,739–748.
Valeix, M., Fritz, H., Loveridge, A. J., Davidson, Z., Hunt, J. E.,
Murindagomo,F.,&Macdonald,D.W.(2009).Doestheriskofen-
counteringlions influence African herbivorebehaviour at water-
holes?Behavioral Ecology and Sociobiology, 63,1483–1494.
Vidal-Zepeda, R. (2005). Las regiones climáticas de México. Colección de
Temas Selectos de Geografía de México (1.2. 2)(1sted.).Institutode
Geografía,UNAM.
Votto,S.E.,Dyer,F.J.,Caron,V.,&Davis,J.A.(2020).Thermally-driven
thresholdsinterrestrialavifaunawaterholevisitationindicatevul-
nerability to a warming climate. Journal of Arid Environments, 181,
10 4 21 7.
Votto, S. E.,Schlesinger, C., Dyer,F.,Caron, V., & Davis,J. (2022).The
roleoffringingvegetationin supportingavianaccessto aridzone
waterholes. Emu, 122,1–15.
Walter,G.H.(1991).Whatisresourcepartitioning?Journal of Theoretical
Biology, 150, 13 7–143.
Winkler,H.,&Preleuthner,M.(2001).Behaviourandecologyofbirdsin
tropicalrainforestcanopies.Plant Ecology, 153,193–202.
Zukerman,Y.,Sigal,Z.,&Berger-Tal,O.(2021).COVID-19restrictionsin
anaturereserverevealthecostsofhumanpresenceforthethreat-
enedNubianIbex(Capra nubiana).Frontiers in Ecology and Evolution,
9,751515.
SUPPORTING INFORMATION
Additional supporting information can be found online in the
SupportingInformationsectionattheendofthisarticle.
How to cite this article: Delgado-Martínez,C.M.,Kolb,M.,
Pascual-Ramírez,F.,&Mendoza,E.(2023).Differential
utilizationofsurfaceandarborealwaterbodiesbybirdsand
mammalsinaseasonallydryNeotropicalforestinsouthern
Mexico. Ecology and Evolution, 13, e10781. h t t p s :// do i .
org /10.10 02/ece3.10781
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License