ArticlePDF Available

Abstract and Figures

Water availability significantly influences bird and mammal ecology in terrestrial ecosystems. However, our understanding of the role of water as a limiting resource for birds and mammals remains partial because most of the studies have focused on surface water bodies in desert and semi-desert ecosystems. This study assessed the use of two types of surface water bodies (waterholes and epikarst rock pools) and one arboreal (water-filled tree holes) by birds and mammals in the seasonally dry tropical forests of the Calakmul Biosphere Reserve in southern Mexico. We deployed camera traps in 23 waterholes, 22 rock pools, and 19 water-filled tree holes in this karstic region to record visits by small, medium, and large-bodied birds and mammals during the dry and rainy seasons. These cameras were set up for recording videos documenting when animals were making use of water for drinking, bathing, or both. We compared the species diversity and composition of bird and mammal assemblages using the different types of water bodies by calculating Hill numbers and conducting nonmetric multidimensional scaling (NMDS), indicator species, and contingency table analyses. There was a greater species richness of birds and mammals using surface water bodies than tree holes during both seasons. There were significant differences in species composition among bird assemblages using the different water bodies, but dominant species and diversity remained the same. Terrestrial and larger mammalian species preferentially used surface water bodies, whereas arboreal and scansorial small and medium mammals were more common in arboreal water bodies. These findings suggest that differences in water body characteristics might favor segregation in mammal activity. The different water bodies may act as alternative water sources for birds and complementary sources for mammals, potentially favoring species coexistence and increasing community resilience to environmental variation (e.g., fluctuations in water availability). Understanding how differences in water bodies favor species coexistence and community resilience is of great relevance from a basic ecological perspective but is also crucial for anticipating the effects that the increased demand for water by humans and climate change can have on wildlife viability.
Content may be subject to copyright.
Ecology and Evolution. 2023;13:e10781. 
|
1 of 14
https://doi.org/10.1002/ece3.10781
www.ecolevol.org
Received:26August2023 
|
Revised:26October2023 
|
Accepted:15November2023
DOI:10.1002/ece3.10781
RESEARCH ARTICLE
Differential utilization of surface and arboreal water bodies by
birds and mammals in a seasonally dry Neotropical forest in
southern Mexico
Carlos M. Delgado-Martínez1,2,3 | Melanie Kolb2| Fermín Pascual-Ramírez4|
Eduardo Mendoza3
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
providedtheoriginalworkisproperlycited.
© 2023 The Au thors . Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.
1Posgrad o en Cien cias Biológica s,
UniversidadNacionalAutónomade
México,UnidaddePosgrado,EdificioD,
1erPiso,CiudaddeMéxico,Coyoacán,
Mexico
2InstitutodeGeografía,Universidad
NacionalAutónomadeMéxico,Circuito
exterior s/n, Ciud ad Unive rsita ria, Ciudad
deMéxico,Coyoacán,Mexico
3InstitutodeInvestigacionessobre
losRecursosNaturales,Universidad
MichoacanadeSanNicolásdeHidalgo,
Morelia,Michoacán,Mexico
4InstitutodeInvestigacionesen
EcosistemasySustentabilidad,
UniversidadNacionalAutónomade
México,Morelia,Michoacán,Mexico
Correspondence
CarlosM.Delgado-Martínez,Posgrado
en Ciencias Biológicas , Univer sidad
NacionalAutónomadeMéxico,Unidadde
Posgrado,EdificioD,1erPiso,Circuitode
Posgrados, Ciu dad Universit aria, Ciudad
deMéxico,Coyoacán,04510,Mexico.
Email:pistache06@ciencias.unam.mx
EduardoMendoza,Institutode
InvestigacionessobrelosRecursos
Naturales,UniversidadMichoacanade
SanNicolásdeHidalgo,Av.SanJuanito
Itzícuaros/n,Col.NuevaEsperanza,
Morelia,Michoacán,58337,Mexico.
Email:eduardo.mendoza@umich.mx
Funding information
AmericanSocietyofMammalogists,
Grant/AwardNumber:LatinAmerican
StudentFieldResearchAward2022;
AssociationforTropicalBiologyand
Conservation,Grant/AwardNumber:Seed
ResearchGrant2022;RuffordFoundation,
Grant/AwardNumber:34365-2
Abstract
Water availabilit y significantly influ ences bird and mammal ecol ogy in terrestria l
ecosystems.However,ourunderstandingoftheroleofwaterasalimitingresource
forbirds andmammalsremains partialbecause mostofthe studies havefocused
onsurfacewaterbodiesindesertandsemi-desertecosystems.Thisstudyassessed
theuseoftwotypesofsurfacewaterbodies(waterholesandepikarstrockpools)
andone arboreal (water-filledtree holes)by birdsand mammalsin theseasonally
drytropicalforestsoftheCalakmulBiosphereReserveinsouthernMexico.Wede-
ployedcameratrapsin23waterholes,22rockpools,and19water-filledtreeholes
inthiskarstic regiontorecordvisitsbysmall,medium,andlarge-bodiedbirdsand
mammalsduringthedryandrainyseasons.Thesecamerasweresetupforrecording
videosdocumentingwhenanimalsweremakinguseofwaterfordrinking,bathing,
orboth.Wecomparedthespeciesdiversityandcompositionofbirdandmammalas-
semblagesusingthedifferenttypesofwaterbodiesbycalculatingHillnumbersand
conductingnonmetricmultidimensionalscaling(NMDS),indicatorspecies,andcon-
tingencytableanalyses.Therewasagreaterspeciesrichnessofbirdsandmammals
usingsurfacewaterbodiesthantreeholesduringbothseasons.Thereweresignifi-
cantdifferencesinspeciescompositionamongbirdassemblagesusingthedifferent
water bodies , but dominant specie s and diversity rem ained the same. Terrestr ial
and larger ma mmalian species prefe rentially used sur face water bodies, w hereas
arborealandscansorialsmallandmediummammalsweremorecommoninarboreal
waterbodies.Thesefindingssuggestthatdifferencesinwaterbodycharacteristics
mightfavorsegregationinmammalactivity.Thedifferentwaterbodiesmayactas
alternative watersourcesforbirds andcomplementary sourcesfor mammals, po-
tentially favoring species coexistence and increasingcommunity resilienceto en-
vironmentalvariation(e.g.,fluctuations in wateravailability).Understanding how
differencesinwaterbodiesfavorspeciescoexistenceandcommunityresilienceisof
greatrelevancefromabasicecologicalperspectivebutisalsocrucialforanticipating
2 of 14 
|
   DELGADO-MARTÍNEZ et al.
1 | INTRODUC TION
The supply of essential resources strongly affects the distribu-
tion and abundance of animal species (Hamilton & Murphy,2018;
Messier, 1991). These effects can escalate to affect the structure
anddynamicsofanimalcommunities.Examplesoflimitingresources
affecting bird and mammal communities include shared prey (Gilg
et al., 2003), nect ar-producing flower s (Guevara et a l., 2023), and
cavitiesfornestingbirds(Jiménez-Francoetal.,2018).
Wateravailability isa clearexample of a limiting factor having
asignificant impact onthe ecology ofbirds and mammals in most
terrestrialecosystems.Animalsdependonwatersourcesfordrink-
ing, bathing, cooling, and preying, among other things (Clayton
et al., 2010; Go ssner et al., 2020; Hafe z, 1964; Lee et al., 2017).
Variation in w ater availabilit y is linked to fluctu ations in mammal
populations(Gandiwaetal.,2016),movementpatterns(Chamaillé-
Jammesetal.,2016),andhabitatconnectivity(O'Farrilletal.,20 14).
Severalstudieshaveincorporatedwaterbodyfeaturesascovariates
toanalyzeecologicalparameterssuchasmammaloccupancy (e.g.,
Di Bitetti et al., 2020),butlessresearchhasfocuseddirectlyonana-
lyzingthecharacteristicsoftheuseofwaterbodiesbyvertebrates.
Furthermore,mostofthesestudiesareconcentratedinaridregions
(e.g.,Amorosoetal.,2020; Edwards et al., 2016;Harrisetal.,2015),
limitingourunderstandingoftheroleofwaterasalimitingfactorfor
vertebratesinotherecosystems.
Resource partitioning has been proposed as a mechanism for
animal species to reduce antagonistic interactions (e.g., competi-
tion and predation) occurring when exploiting limited resources
(Schoener,1974;Walter,1991).Thi sada ptiveme chan ism allowsi nte r-
actingspeciestocoexistbyspecializingindifferentresourcesources
orbyutilizingthematdifferenttimesorplaces(Learetal.,2021).
Tropicalbirdsandmammalshaveevolveddifferentstrategiesto
exploit watersources. Theycanusewaterinriversandpools(e.g.,
Stommel et al.,2 016)or tankepiphytesandwater-filled treeholes
inthecanopy(e.g.,Sharmaetal.,2016).Somespecies,suchasscan-
sorialmammalsandbirds,likelyhavemoreflexibilitytousesurface
and canopy water sources, but for other animals, access might be
more limited. Theinterplaybetween thevariation in water source
characteristics and typesofanimal locomotionopens thepossibil-
ityforresourcepartitioningtooccur.Previousstudieshavefocused
on analy zing the tempora l partitionin g of water use by mammals
(Adams&Thibault,2006; Edwards et al., 2017; Valeix et al., 2007),
butuntilnow,thedynamicsoftheuseofsurfaceandarborealwater
bodies at t he community l evel are unknown . A better know ledge
ofthestrategiesinvolvedintheuseofwater sourcesbybirds and
mammals isessential to improve our understandingof species co-
existencemechanismsandtopredicttheimpactsofanthropogenic
disturbances such as thoseassociatedwith climatechange (Galetti
et al., 2016; Votto et al., 2020).
Seasona lly dry tropic al forests are w ater-stress ed ecosystems
richinvertebratespecies,offeringanidealopportunitytostudyre-
source par titionin g (Allen et al. , 2017; Mooney e t al., 1995; O cón
et al., 2021).Seasonalforestsgrowingonkarsticsoils,suchasthose
occurringintheCalakmulregioninsouthernMexico,undergoapar-
ticularlymarkedlimitation in wateravailability due to theabsence
ofpermanent,extensivesurfacewaterbodiescausedbyfastwater
infiltration(García-Giletal.,2002).Thereissomeevidenceshowing
thesignificant impact variationinwater availabilityhas on wildlife
distributionandsurvivalintheCalakmulregion.Forinstance,white-
lippedpeccariesconcentratetheiractivityaroundwaterholesduring
the dry season, and adocumented peak in tapir deaths coincided
withamarkeddroughtintheyear2019(Reyna-Hurtadoetal.,2012,
2019).The congregationofspeciesinwaterholes mightresult ina
greaterriskofattacks,suchassuggestedbythedocumentedkillof
anocelotbyajaguarinthenearbyGuatemalaMayaforest(Perera-
Romeroetal.,2021).InCalakmul,wildlifecanobtainwaternotonly
fromwaterholes but alsofromepikarst rockpoolsand water-filled
treeholes.Eachofthesewaterbodieshasfeaturesthatcanattract
differ ent species (see f ull description i n Section 2). Som e studies
have individually documented the extensive use of these water
sourcesbybirdsandmammals,butacomparativeapproachismiss-
ing (Delgado-Mar tínez, Alvarado, et al., 2022; Delgado-Martínez,
Cudney-Valenzuela,&Mendoza,2022;Reyna-Hurtadoetal.,2012).
TheCalakmulregionstandsoutgloballyduetoitshighbiodiver-
sity (Myers et al., 2000).However, it iscurrently facing escalating
pressureduetoanthropogenically-drivenfactorssuchasdeforesta-
tion and climate change (Mardero et al., 2020; Ramírez-Delgado
et al., 2014). Thissituationposes a significantrisktowater quality
andavailability,whichcanhavefar-reaching consequencesforver-
tebrate populations.Thisresearchevaluatesifthere exists a parti-
tioningintheuseofwaterbodiesbysmall,medium,andlarge-bodied
birdsandmammalsintheseasonallydrytropicalforestoccurringin
theCalakmulregion.Specifically,weassessedthespeciesdiversity
andcompositionofbirdandmammalassemblagesusingtwo types
ofsurfacewaterbodies(waterholesandepikarstrockpools)andone
typeofarborealwaterbody(water-filledtreeholes). Moreover,we
theeffectsthattheincreaseddemandforwaterbyhumansandclimatechangecan
haveonwildlifeviability.
KEY WORDS
Calakmul,dendrotelmata,resourcepartitioning,SelvaMaya
TAXONOMY CLASSIFICATION
Communityecology
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
3 of 14
DELGADO-MARTÍNEZ et al.
analyze d how differen ces in water sourc e use between b irds and
mammals arerelated to contrastsinfunctional traitssuchas loco-
motion an d body size. We hypothe size that there will b e distinct
patternsofwatersource usebetweenbirdsandmammalsandthat
differ ences among sp ecies within th ese groups will b e associated
with variation in their functional traits. We expect to find more
pronounced differencesinwater useamongspecieswithin animal
groupsduringtherainyseason,whenwaterismorewidelyavailable
and,therefore,animalshaveagreateropportunitytoselect.
2 | METHODS
2.1  | Study area
Fieldworkwascarriedoutinthesouthernportionofthebufferzone
oftheCalakmul Biosphere Reserve (CBR, 89°4326–89°4923 W,
18°160118°849 N),inthestateofCampeche,southernMexico
(Figure 1). The CBR was created in 1989 and has an extent of
723,185 ha,constitutingthelargesttropicalprotectedareainMexico
(Galindo-Leal,1999;Gómez-Pompa& Dirzo,1995).Thestudy area
has an appr oximate extent of 6 3,000 h a and suppor ts continuou s
vegetation, except for anarrowroad (ca. 4 m wide) leading to the
CalakmulArcheologicalsite.Duringthisstudy,onlyecotourismand
researchwereallowedinthe studyarea,andno primary activities
haveoccurredtheresincetheestablishmentoftheCBR(INE,1999).
TheCBRiscriticallyimportantfortheconservationof biodiversity
inLatinAmericaduetothefactthatitsupportssomeofthelargest
populationsoficonicspeciesofMesoamerica,suchasTapirus bairdii
and Panthera onca(Ceballos et al., 2021;Naranjo, 2018). Together
with the M aya Biosphere Rese rve in Guatemal a, the CBR consti-
tutes the largest tract of tropical forest in Mesoamerica (Potapov
et al., 20 17). However,likemostofthetropics,thisregionisunder
increasing human pressure du e to activities such as illegal selec-
tivelogging,hunting,deforestationforfarmingandcattleranching,
and more recently, infrastructure development (Ramírez-Delgado
et al., 2014;Špirićetal.,2022).
The CBR has a tropical wet and dry climate with a dry winter
(Köppen-Geigerclassification:Aw;Becketal.,2018).Theregionhas
amarkedprecipitationseasonalitywitharainyseasonoccurringfrom
MaytoOctoberandadryseasonfromNovembertoApril(monthly
precipitation is <60 mm)(Marderoetal.,2020; Vidal-Zepeda, 2005)
with a mea n annual precipit ation of 1076 mm (CONAGUA , 2023;
Martínez & Galindo-Leal, 2002). The aver age annual temp erature
is 25.7°C, whereas the average annual minimum and maximum
temperature are18.7and 32.8°C, respectively (CONAGUA, 2023;
Figure S1).Accordingtothestandardizedprecipitationindexcalcu-
lated forthe region, the amount ofprecipitation during ourstudy
periodwaswithintherangeofnormalvariation(CONAGUA,2023).
2.1.1  |  GeologyandhydrologyintheCBR
The CBRis located on thekarstic landscape of the Petén Plateau
which is primarily composed of limestone, shaped by chemical
weathering and erosion (Ensley et al., 2021; Torrescano-Valle &
Folan,2015).Waterbodieswithinthestudysitedependonprecipi-
tation astheir main sourceofwater due to theabsenceofperen-
nial streams. The following are themost common water bodies in
the stud y site and are the fo cus of this study. Waterholes. Thes e
FIGURE 1 Studyareaanddistribution
ofsampledwaterbodiesintheCalakmul
BiosphereReserve,Campeche,Mexico.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
4 of 14 
|
   DELGADO-MARTÍNEZ et al.
water bodi es, locally k nown as aguadas, are dolines resulting from
the disso lution of limesto ne that, togethe r with clay accumul ation,
reduceswaterpercolationandpromotestheaccumulationofrainfall
(Figure 2a;Back&Lesser,1981;García-Giletal.,2002;Kranjc,2013).
Waterholeshaveanapproximatedensityof oneper10.5 km2 in the
CBRandvaryinsizefrom10to40,000 m2buttypicallytheydonot
exceed 50 00 m2 (Reyna-Hur tado et al., 2012). Usu ally, a high pro-
portionofthewaterholesdries upduringthedry season,remaining
onlythelargest.Duringextremedroughtevents,eventhelargestwa-
terholescanbegone(O’Farrilletal.,2014).
Epikarstrock pools.Thesewater bodies, locally knownassart-
enejas,areclassifiedaskamenitzasinge olo gic a ltermsan dar enatur al
depressions in landformedbythe dissolutionof exposed bedrock
(Lundberg,2013). Rockpools usuallyoccur on elevated ground or
hilltopsinthestudyarea(Figure 2b;Flores,1983).Thereisapproxi-
matelyonerockpoolper0.1 km2,usuallycoveringlessthanasquare
meter(C.M.Delgado-Martínez,unpublisheddata).Rockpools col-
lectwaterevenduringmoderateprecipitationeventsandcanstore
itforseveralweeks(C.M.Delgado-Martínez,personalobservation;
Reyna-Hurtadoetal.,2012).
Water-filledtree holes.These waterbodiesareformed in cavi-
tiesordepressionsintrees,whererainwateraccumulates(Figure 2c;
Kitching,2000).Thedensityandaveragevolumeofwater-filledtree
holesintheCalakmulregionareunknown.Asrockpools,mosttree
holes have e phemeral hydr operiods, b ut some of them c an retain
water during the whole year (C. M. Delgado-Martínez, personal
observation).
2.2  | Searching and sampling of water bodies
Wecompiledinformationonthelocationof24waterholes,37rock
pools, a nd 73 tree holes b ased on exist ing informatio n for water-
holes (García-Gil et al.,2002),previousstudies(Delgado-Martínez,
Alvarado, et al., 2022; Delgado-Martínez, Cudney-Valenzuela, &
Mendoza,2022),andfieldworkconductedforthisstudy(ca.150 km
ofsearchbyfoot).Fromthesewaterbodies,weselected23water-
holes,22rockpools,and19treeholes.Theselectionofwaterholes
wasbasedonwhethertheyhadwaterduringourinitialvisit,which
occurredin July–August 2021 (these months corresponded to the
FIGURE 2 TargetwaterbodiesintheCalakmulBiosphereReserve,Campeche,Mexico:(a)waterhole,(b)rockpool,and(c)water-filled
tree hole.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
5 of 14
DELGADO-MARTÍNEZ et al.
startoftherainyseason).Ontheotherhand,weonlyselectedrock
pools with an estimated volume >10 L. For the selection of tree
holes,weappliedthefollowingcriteria:(1)tohavetheirentranceat
least1 mabovetheground;(2)tohaveaminoraxisoftheentrance
>10 cm;and(3)tohaveadepth>20 cm.Thesecriteriawereaimedat
increasingtheprobabilityofthedifferentwaterbodiesmaintaining
waterthroughoutthestudyperiod.Topreventspatialautocorrela-
tion,weavoidedmonitoringwaterbodiesofthesametype,<500 m
apart,atthesametime.
Duetologisticlimitations,wewerenotabletosampleall the
water bodies simultaneously. Therefore, we divided them into
three groups, including 7–8 water bodies of each type. These
groupsweremonitoredsequentially,withonecameratrapaimed
ateach waterbody forat least45 days. After thecompletion of
thisperiod,cameratrapsweremovedtothenextgroupofwater
bodies . Were peated this pr ocedure to comp lete one rainy se a-
sonandonedryseasonforeachgroupofwaterbodies(fromJuly
2021 to Septem ber 2022). Came ra traps in the w aterholes and
rockpoolswereinstalledatheightsrangingfrom40to70 cmand
atdistances of 2–4 mfrom the water edges. We usedtrailcam-
era hold ers (HME-TCH-SO) to set the camer a traps focused o n
thetreeholes.Inmostcases,theseholderswerefastenedtothe
same tre e where the tree hol e was located, app roximately 2 m
fromtheentrancetothetreehole,to secureadirect view of its
entrance.When itwas not possible to fasten thecamera holder
tothesametreewherethetreeholewaslocated,wefastenedit
toanearbytree.Asinglecamerawasenoughtofullymonitorthe
entirerockp oolsa ndtre ehole s,b utnotth ewaterhole s.Toreduce
theprob abilit yofmissings omeanimalspeciesvisitingwaterhole s,
wefollowedtwo strategies: (a) we aimed the cameras preferen-
tiallyatareaswithevidence ofanimalactivity,suchasfootprints
orpeccarywallows,and(b)wemadesuretohaveaclearviewof
the areaswithin thewaterholes thatmaintain waterevenin the
dryseason.WeusedcameratrapmodelsBrowningSpecOpsElite
HP4,BrowningStrikeForceEliteBTC5HDE,andBushnellTrophy
CamHDAggressor119876Cprogrammedtotake20-s longvid-
eoseachtimetheywereactivatedandtohavea5-sdelaybefore
reactivation.
2.3  | Data processing
Wetagged videos withthe identityofthe species recorded and
madeadatabaseaddinginformationabouttheirlocomotion(i.e.,
arboreal, scansorial, and terrestrial) and body mass (González-
Salazar, 2013). We classified the species into three categories
basedontheir bodymass:small,medium,andlarge. Birdswitha
body mass lowerthan 0.5 kg were classifiedassmall, thosewith
a body mas s higher than 0. 5 kg but lower th an 2 kg as mediu m,
and birds with a body mass higher than 2 kg as large. Mammals
withabodymasslower than4 kg were classifiedassmall, those
withabodymasshigherthan4 kgbutlowerthan13 kgasmedium,
and mamma ls with a body ma ss higher than 13 k g as large. The
categoriesweredefinedtohavean approximatelyequal number
ofspeciesineachgroup.
To reduce sources of bias during the statistical analysis, we
discard ed records of aquati c birds and specie s with a body mass
<220 g(which can be missed bycameratrapsmore frequently) or
foundinlessthanfoursites.Wegroupedvideosofthesamespecies
recorde d consecutively an d with the same cam era, following th e
methodologydescribed inCamargo-SanabriaandMendoza(2016).
These grouped videoswere classified as visitations.Wecalculated
thefrequencyofvisitationforeachanimalspeciesusingthefollow-
ing equat ion: (number of visi ts/sampling ef fort) × 100 c amera tra p
days (O'Br ien et al., 2003). Th e sampling effo rt was equal to t he
totalnumber ofdaysacameratrapwasactive. Toensurerecorded
visitsusedforanalyseswereprimarilydrivenbyanimals'attraction
towater,weonlyconsideredthoseinwhichitwas cleartheywere
drinking,bathing,orboth.Duringthereviewofvideos,weidentified
somecommonbehaviors,suchasscent-markinginthecaseofcarni-
vores,diggingintotheorganicmaterialfoundinrockpoolsandtree
holes,groomingamongpeccaries,andevenfrogandturtlehunting
byocelots.
2.4  | Data analysis
2.4.1  |  Comparisonofbirdandmammalspecies
richnessanddiversityamongwaterbodies
Weuseda samplecoverage analysis(Chao &Jost,2012)to esti-
matethecompletenessofbirdandmammal surveysineachtype
of water bod y (i.e., waterho les, rock pool s, and tree hole s). For
eachtypeofwaterbody,wegeneratedsample-basedrarefaction
andext rapol at ioncurvesofHillnu mbers(q= 0,1,and2)withtheir
corresponding 95%confidence intervals (Chao et al., 2014). We
comparedthecurvesofthedifferenttypesofwatersourcesand
their corresponding 95% confidence intervals within the same
season.TheseanalyseswereperformedusingtheiNEXT R pack-
age(Hsiehetal.,2022).
2.4.2  |  Comparisonofbirdandmammalspecies
compositionamongwaterbodies
Weconductedanon-metricmultidimensionalscaling(NMDS)analy-
sis to test for differences in thespecies compositionof groups of
birdsandmammalsvisitingeachtypeofwaterbody.Wecalculated
the Bray-Curtisindex, basedon thespecies'frequenciesofvisita-
tion,touseitasameasureofdistanceintheNMDS.Totestforthe
statistical significance of species clusters indicated by the NMDS,
we analyzed similarities (ANOSIM) using 10,000 permutations.
Weusedthevegan Rpackageto conduct theseanalyses(Oksanen
et al., 2022).
Toassessif therewere animal species associated with specific
water bodies, we conducted an indicator species analysis using
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
6 of 14 
|
   DELGADO-MARTÍNEZ et al.
10,000permutations withthe R package indicspecies (De Caceres
& Legendre, 2009). By comparing observed data to randomized
permut ations, this a nalysis deter mines which spe cies have a non-
random a ssociation with a pa rticular type of water bo dy. Finally,
toassessif capture frequencies of the different locomotion types
and body mass categories differed among the species visiting the
three water bodies, weaggregated the frequenciesandconducted
acontingencytableanalysis(Frankeetal.,2012).Incaseswherethe
resulting p-valuewasbelow.05,wecalculatedtheadjustedresiduals
tomeasurethestandardizeddifferencesbetweentheobservedand
expectedfrequencies.
3 | RESULTS
We totalized a sampling effort of 6713 camera trap days, with
2203 days in the waterholes, 2828 days in the rock pools, and
1682 days in the tree holes (Table S1).We recorded 43 species in
total(18birdsand25 mammals;Figure 3 and Table S2)visitingthe
three water sources: 15bird and20mammalspeciesinthewater-
holes, 8bird and 11mammalspeciesinthetreeholes,and13bird
and19mammalspecies in the rockpools.Crax rubrawasthemost
observedbirdspeciesthroughoutboththedryandrainyseasonsin
the three types ofwater bodies. During thedryseason, Philander
opossumwasthemostcommonmammalspeciesinthewaterholes,
while Sciurus deppeiwa s the most commo n in the tree hole s and
Pecari tajacuintherockpools.Incontrast,duringtherainyseason,
Odocoileus virginianuswasthemostcommonmammalspeciesinthe
waterholes,followedbyUrocyon cinereoargenteus in the tree holes,
and Cuniculus pacaintherockpools(Figure S2).
3.1  | Differences in animal species richness and
diversity among water bodies
The sample coverageof bird speciesin the different water bodies
was very high (above 99%)duringboth the dry andrainy seasons
(Table S3);onlythe treeholes hadaslightlylowercoverageinthe
rainy season (95.2%).Duringthe dry season, birdspecies richness
(q0) was highest in the waterholes and lowest in the tree holes
(Figure 4).Likewise,Shannondiversity (q1) was highest inthe wa-
terholes, while the tree holes androck pools had similar levels of
diversity(Figure S3).Finally,Simpsondiversity(q2)washigherinthe
waterho les than in the ro ck pools but ind istinguisha ble from tree
holes(Figure S4). In compari son, in the rai ny season, bird spe cies
richness(q0) was higher in the rockpoolsthan in the waterholes,
whereas tree holes were indistinguishable from the other water
bodies (i.e., their 95% confidence intervals overlapped). Similarly,
theconfidenceintervalsofthetreeholecurveoverlappedwiththe
curvesofotherwaterbodieswhenexaminingShannonandSimpson
diversity.
Sample coverageofmammal species was alsovery high (above
99%) durin g both seasons (Table S4). In the dry se ason, mammal
species richness(q0)andShannondiversity(q1)weresimilarinthe
waterho les and rock pools b ut lower in the tree ho les (Figure 4;
Figure S3).Simpsondiversity (q2)washigher in the rockpoolsand
lower in thewaterholes; diversityin thesetwo water sourceswas
indisti nguishable fr om that found in tr ee holes (Figure S4). In the
rainyseason,speciesrichness(q0)andShannon(q1)diversityhada
similarpattern,withwaterholesandrockpoolshavinggreaterdiver-
sityandtreeholeslower.Simpsondiversitywaslowestintreeholes
and highest in the rock pools.
3.2  | Differences in bird and mammal species
composition
During boththe dry (ANOSIM; R= .22, p< .001)and rainyseasons
(R= .28, p< .001),the birdassemblages visitingthe differentwater
sources displayed a moderate yet statistically significant dissimi-
larit y. In the dr y season, C. rubra, Coragyps atratus, and Meleagris
ocellata were associated with waterholes, while Crypturellus cin-
namomeuswasassociatedwithrockpools(Figure 5). I n the rainy
season, C. rubra and M. ocellata were associated with waterholes,
whereas Pteroglossus torquatus was associated with tree holes, and
bothC. cinnamomeus and Rupornis magnirostris were associated with
rock pools.
Weidentified asignificant association between the locomotion
categoriesofbirdsandtheiroccurrenceinthedifferentwaterbody
types (Figure S5). In the dr y season (χ2= 1113.2, d f = 4, p< .001),
terrestrial birds exhibited a higher frequency in waterholes,while
scansorial species visited them less frequently. Moreover, arbo-
real and sc ansorial birds sh owed a greater freque ncy in the tree
holes, whereas terrestrial species displayeda lower visitationrate.
Interes tingly, rock pools rece ived fewer visits f rom both arborea l
andt err estrialbi rds .Inco ntr ast ,du rin gth era inyse aso n(χ2= 2514.4,
df = 4,p< .001), scansorialbirdshadahigher frequencyof visitsto
waterholes, while arboreal species visited them less frequently.
Additionally, arboreal birds exhibited ahigher preference for tree
holes, while scansorial and terrestrial species showed lower visita-
tionrates.Therewasnotabirdgroupshowingaspecificassociation
with rock pools.
Wealsoobservedarelationshipbetweenthebodymasscatego-
riesofbirdsandtheiroccurrenceinthedifferentwaterbodytypes
(Figure S6). In the dr y season (χ2= 83 6.96, df = 4, p< .001), medi-
um-sized birdsweremore frequentlyrecordedin treeholes, while
small and large species showed lower frequencies. Rock pools re-
ceivedmorevisitsfromsmallbirdsandfewerfrommediumspecies.
Onlywaterholeswerenotvisited byanybirdgroup atafrequency
greater than expected bychance.In the rainy season (χ2= 1310.5,
df = 4,p< .001),waterholeswerefrequentedmorebylargebirdsand
lessbysmallandmedium-sizedbirds.Bothtreeholesandrockpools
werevisitedmorebysmallandmedium-sizedbirdsandlessbylarge
species.
Differences in mammal composition among the water bod-
ies were more pronounced than those observed among bird
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
7 of 14
DELGADO-MARTÍNEZ et al.
assemblages,bothduringthedryseason(ANOSIM;R= .43,p< .001)
and the rainy season (R= .50, p< .001). During the dry season,
Dasyprocta punctata, Puma concolor, and T. bairdii were associated
with waterholes, while Sciurus spp. and Eira barbara were associated
with tree holes, and P. taja cu and U. cinereoargenteus with rock pools
(Figure 5).Intherainyseason,O. virginianus, P. opossum, and T. bair-
dii were associated with waterholes; Didelphis virginiana and Sciurus
spp. with tree holes and C. paca; E. barbara, and P. tajacu with rock
pools.
Wef oun dasig nif ican tassoc iationbet weenthelo com oti onc ate -
goriesofmammalsandtheiroccurrenceinthedifferentwaterbody
types(Figure S5).Inthedryseason( χ2= 10,378,df = 4,p< .001),wa-
terholeswere more frequented byscansorial and terrestrialmam-
mals, whi le arboreal m ammals visited t hem less freq uently. In the
rainy season(χ2= 5901.7,df = 4, p< .001),waterholes wereprimar-
ily visitedby terrestrial mammals. Across bothseasons, treeholes
werepreferredbyarborealandscansorialmammals,whileterrestrial
speciesshowedlowervisitationrates.Similarly,rockpoolsattracted
moreterrestrialmammalsandwerelessfrequentlyvisitedbyarbo-
realandscansorialspecies,regardlessoftheseason.
Likewise, we f ound signific ant associations b etween the bo dy
massofmammalsandwaterbodytypes(Figure S6).Duringthedry
season (χ2= 5373.7, df = 4, p< .001), water holes had a higher f re-
quencyof visits by largemammals andalowerfrequency by small
and mediu m species. Tree holes we re more frequent ly visited by
smallandmediummammals,whilelargemammalsshowedareduced
tendencytovisitthem.Rockpoolshadhighervisitationbymedium
mammals andlowervisitationbysmallspecies.Intherainy season
(χ2= 4296.3, df = 4, p< .001), waterholes werefrequented moreby
small and l arge mammals, w hile medium sp ecies had a lower visi-
tation r ate. Tree holes were more f requently vi sited by small and
mediummammalsandlessfrequentlybylargemammals.Rockpools
FIGURE 3 AsampleofthebirdsandmammalsusingdifferentwaterbodiesintheCalakmulBiosphereReserve.(a)Crax rubraand(b)
Tapirus bairdiirecordedatwaterholes;(c)Penelope purpurascensand(d)Panthera oncarecordedatarockpool;(e)Ramphastos sulfuratusand(f)
Urocyon cinereoargenteusobservedinwater-filledtreeholes.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
8 of 14 
|
   DELGADO-MARTÍNEZ et al.
were more frequently visited by medium mammals and less fre-
quentlybysmallandlargemammals.
4 | DISCUSSION
Thisstudyshowsnovelinformationabouttheutilizationofsurface
andar bor ealwat erb odi esbyadiv erseco mmunityofbirdsa ndm am-
malsinaseasonallydrytropicalforest.Oursamplingeffortmadeit
possibletorecordadiversecommunityofbirdsandmammalsinboth
seasons,showingthatthethreetypesofwaterbodiesarecentersof
highwildlifeactivity.Notably,ourrecordsdocumentedthepresence
of elusive sp ecies of signif icant conser vation inte rest, incl uding T.
pecari and Mazama pandorainbothwaterholesandrockpools.
Ourfindings providedsupport for ourinitial hypothesis,show-
ingcontrasting responsesbetweenbirds andmammals,with more
pronounceddifferences inwater partitioningamong speciesinthe
lattergroup.Weconsistentlyobservedhigherspeciesrichnessand
diversit y of mammals in s urface wate r bodies, wit h larger speci es
con ce nt ratingtheiracti vityinthewaterholesandarb oreala ndscan-
sorialspeciesinthetreeholes;albeitinfrequently,werecordedlarge
species, such as P. onca, Leopardus pardalis, and U. cinereoargenteus,
climbing to u se tree holes. Th ese differenc es were more marked
duringtherainyseason,aswepredicted.
Inecosystemswithlimitedwater sources,speciesoftencongre-
gatearoundthefewavailablewaterbodies,particularlyduringthedry
season,leadingtopotentialnegativeinteractionswithdominantspe-
cies(Ferryetal., 2016).Nevertheless,whenmultiplewatersources
areavailableindifferentlocations withvaryingaccessibility,suchas
groundversuscanopy,resourcepartitioningcanoccur,enablingdif-
ferentialresourceuse.Resourcepartitioningiswidelyrecognizedas
akeymechanismforpromotingspeciescoexistenceandmaintaining
biodiversity by reducing interspecific competition (Chesson, 2000;
Schoener,1974 ). This mechanism has been documented in tropical
FIGURE 4 Speciesrichnessofbirdsandmammalsvisitingthewaterholes,treeholes,androckpoolsduringthe(a)dryand(b)rainy
seasonsintheCalakmulBiosphereReserve,Campeche,Mexico.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
9 of 14
DELGADO-MARTÍNEZ et al.
bi rdan dmam m alsp e cies ,incl udingver ti c alstr a tific ation (e. g .,A k k awi
et al., 2020;Ferreguettietal.,2018;Mohd-Azlanetal.,2014;Sushma
& Singh, 2006). Both water holes and rock pools exhibited similar
mammalspeciesrichnessanddiversityinboththedryandrainysea-
sons, which were greater than for the tree holes. The presence of
comparablediversityinthesesurfacewatersourceshighlightstheir
importanceinsupportingadiversemammalcommunitythroughout
the year (Delgado-Martínez,Alvarado, etal., 2022; Reyna-Hurtado
et al., 2010). Yet, ouranalyses also showed theexistence of differ-
encesinspeciescompositionoftheanimalassemblages visitingthe
three waterbody types. These findings suggest thatthe analyzed
waterbodieshaveecologicalfeaturesthatincreasetheirprobability
ofbeing visitedbyspecific mammalian species. Thus, for themam-
malcommunity,the waterbodiesmaybe acting as complementary
sources (Mallingeretal., 2016; Maurer et al., 2022).This couldpo-
tentially enable a greater number of mammal species to coexist
withinthiswater-stressedecosystem(Martinsetal.,2018;Thomsen
et al., 2022),asresourcesinacommunityareconsideredco mplemen-
tarywhendifferentspeciesusetheminawaythatavoidsdirectcom-
petition(Cleland,2011;Tilman,1982).
FIGURE 5 Speciescompositionofbirdsandmammalsthatvisitedthetargetwaterbodiesduringthe(a)dryand(b)rainyseasons.Bird
species codes: Coat, Coragyps atratus; Crru, Crax rubra; Crci, Crypturellus cinnamomeus; Meoc, Meleagris ocellata; Ptto, Pteroglossus torquatus;
and Ruma, Rupornis magnirostris.Mammalspeciescodes:Cupa, Cuniculus paca; Dapu, Dasyprocta punctata; Divi, Didelphis virginiana; Eiba,
Eira barbara; Odvi, Odocoileus virginianus; Peta, Pecari tajacu; Phop, Philander opossum; Puco, Puma concolor; Scde, Sciurus deppei; Scyu, Sciurus
yucatanensis; Taba, Tapirus bairdii; Urci, Urocyon cinereoargenteus.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
10 of 14 
|
   DELGADO-MARTÍNEZ et al.
Incontrast, inthe case of bird assemblages,we foundthat a
substantialproportion ofspeciesweresharedandtheidentityof
thedominantspecieswasmaintained,despitetherebeingsignifi-
cantdifferencesinspeciescomposition.Althoughwefoundanas-
sociationbetweenpredominantly terrestrialbird species(e.g., M.
ocellata)andsurfacewaterbodies,noneoftherecordedbirdspe-
ciesiscompletelyflightless(Greenwood,2001).The irabili tyt ou ti-
lizethecanopyprovidesthemwithgreatermobilityandpotential
accesstoalternativeresources(Partasasmitaetal.,2017;Winkler
&Preleuthner,2001).Therefore,therelativelylessmarkeddiffer-
entialwaterusebybirdscanbeattributedtotheircapacitytoex-
ploitverticalspace,reducingtheirdependenceonspecificwater
sources. Consequently, these results suggest that the different
waterbodiesmaybeacting,tosome degree,asalternativewater
sourcesforbirds(Tilman,1982),leadingtosimilaritiesinthe spe-
ciescompositionoftheassemblagesrecordedineachofthem.
Alternatively,themoderate dissimilarities inbird species com-
positionobser vedacrossdifferentwaterbodiescouldbeexplained
bythe fact thatspeciesin thisgroup mayadopt distinct temporal
pat ternsofuseofthisresourceasastr ategytominimizedirectcom-
petitionandpredationrisk(Harmangeetal.,2021;Oleaetal.,2022).
However,nostudies have focused on thetemporal partitioning of
watersourcesbybirds.Suchtemporalsegregationcouldpotentially
allowbirdstoaccesswatersourceswithoutengaginginantagonistic
interactions,butthispossibilitywarrantsfurtherresearch.
An additional factor influencing the differential use of water
sources can be the perceived predation risk associated with the
visitationtoeach type of waterbody (Periquet et al.,2010 ; Valeix
et al., 2009).Largeterrestrialpredatorspecies,suchasP. onca and
P. concolor,wereassociatedwithwaterholesduring thedryseason
and with wa terholes and r ock pools duri ng the rainy seas on. The
presence of these predators can contribute to the creation of a
landsc ape of fear due to t he potential for l ethal intera ctions wit h
preyspecies(Bleicher,2017; Laundre et al., 2010 ; Perera-Romero
et al., 2021).Tomitigatethisrisk,preyspeciesmayactivelyseekout
alternativewatersources,suchastreeholes,wheretheprobabil-
ity of encounters withpredators is lower(Doody etal., 20 07;Hall
et al., 2013).ThiscouldbethecaseforP. ta jacu and N. narica,twoof
theirmainpreyspecies(Núñezetal.,2000),whichweremorecom-
monlyrecordedinrockpoolsandtreeholes,respectively,duringthe
dry season.Thus,predatoravoidance behaviormight interact with
resourcepartitioningtocontributetotheobserveddifferentialpat-
ternofuseofwatersources.
Theabsenceofdetailedinformation regarding thepresenceor
absenceofwaterinrockpoolsandtreeholescouldpotentiallylead
toan underestimationofvisitationfrequenciesforsomespeciesin
thesewaterbodies.Forexample,insomecases,wewereunableto
confirm whether ananimal hadindeeddrunkwater or hadmerely
inspectedthe site.Nevertheless,thesecases werenot included in
theanalyses,andwethink thatthisprobability ofunderestimation
wasconsistentacrossdifferentwaterbodies.
Althoughourstudyprimarilyfocusedonthetypeofwatersource
as the main explanato ry variable, it is impor tant to acknowledge
thatseveralotherfactorscaninfluencetheselectionandutilization
ofwater sources by birds and mammals.Some potential variables,
whichwerenotincludedinourstudybut are knownto impactthe
use of waterbodies, encompass thecharacteristics ofthe vegeta-
tiongrowingwithinwaterbodiesandtheirsurroundingareas(Eakin
et al., 2018; Votto et al., 2022),waterbodyand landscape features
suchaswaterdepth,terrainslope,distancetoroads,andproximity
tootherwatersources(Najafietal.,2019; Pin et al., 2018),andfood
availabilitywithinandaroundthewaterbodies(Chavesetal.,2021;
Eakin et al., 2018). Fur thermore, in t he case of tree hol es, varia-
tions in hei ght and connec tivity of t ree holes (e.g. , through liana s
andneighboringtrees)may influencethe utilization of thesewater
sources(Cudney-Valenzuelaetal.,2021).Exploringtheroleofthese
factorswouldlikelyhelptogainamorecomprehensiveunderstand-
ingofwatersourceselectionbywildlife.
4.1  | Implications for conservation
TheCalakmul region,like otherpartsofthe world,isexperiencing
anincreaseindroughtfrequencyanddisruptionsinrainfallpatterns
due to global climate change, resulting in more uneven distribu-
tionofrainfallthroughouttheyearandmoreintenserainfallevents
(Mardero etal., 2020).These changes havethe potential to affect
water availability for wildlife byaltering the hydrological cycles of
waterbodies.Waterholesseemtobe experiencinglongerperiods
ofdrying, whichcan makethemless available aswater sources in
thefuture (Reyna-Hurtadoetal.,2019).Incontrast,treeholesand
rockpoolsseemtobeabletofillevenwithmoderaterainfalls(C.M.
Delgad o-Martínez, unpublished data). T herefore, specie s strongly
associated with waterholes, such as T. bairdii,seemtobemoreprone
tobeaffectedbychangesinrainfallpatterns.Furthermore,arecent
studyintheregionhasdocumentedthatintimesofscarcity,wildlife
seekswaterinhuman-madeplaces,suchascattletroughsandapiar-
ies,whichsometimesleadstohuman-wildlifeconflicts(Pérez-Flores
et al., 2021).Thissituationmaybecomemorecommonsoondueto
changesinwateravailabilityintheregion.
Moreover,theCalakmulregionisfacinggreaterpressuredueto
increasinginfrastructuredevelopmentandhumanactivity.Inpartic-
ular,theconstructionoftheMayaTrain,oneofthemostimportant
infrastructureprojectsofthecurrentfederaladministration,hasthe
potential toimpactregional biodiversity.Theprojectaimstoboost
transportation and tourism, potentially benefiting local communi-
tiesbutincreasingresourcedemands,particularlywater(Camargo
&Vázquez-Maguirre,2021; García et al. , 2022). Some waterho les
areacommonattractioninthe reserve;thus, anuncontrolled rise
in tourist activity at waterholes has the potential to disrupt the
behavior of sensitive species, causing their displacement to low-
er-qualitysitesandpotentiallyintensifyinginterspecificcompetition
and predation risk (Crosmary et al., 2012; Zukerman et al., 2021).
Additionally,theselectiveloggingandclear-cuttingpracticesprev-
alentinthe regioncan further reducethe availabilityoftreeholes
(Armenta-Monteroetal.,2020;Blakely&Didham,20 08),whichare
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
11 of 14
DELGADO-MARTÍNEZ et al.
essentialforarborealandscansorialspecies.Thescarcityofsuitable
treeholesmayforcethesespeciestorelyonsurfacewatersources,
consequentlyincreasingtheir vulnerabilitytoterrestrialpredators.
Therefore,ove rall,thecombinedimp act sofhumanac tivitiesandcli-
matechangeseemtohaveagreatpotentialtoaffectthespatio-tem-
poral water distribution patterns, altering the patterns of water
usebybirdsandmammals,whichinturnmightgenerateincreased
competition among species, greater predation risk, and potential
human–wildlifeconflicts.
Seasonally dry tropical forests are extensively distributed
through out the tropi cs and face sim ilar threat s to those affe cting
theCalakmulBiosphereReserve(Siyum,2020).However,significant
knowledgegapsstill existconcerningtheecologyoftheseecosys-
temsand theeffects of human activityon theirfunctioning (Allen
et al., 20 17). O ur findings help to increase o ur understanding of
the rolewater source characteristics have onwildlife ecology and
shedsomelightonthepotentialimpactsanthropogenicactivitycan
bringaboutonthefaunabythealterationsofthepatternsofwater
availability.
AUTHOR CONTRIBUTIONS
Carlos M. Delgado-Martínez: Conceptualization (lead);dat acur a-
tion (lead); formal analysis (lead); funding acquisition (lead);inves-
tigatio n( lead); methodo logy (lead); pro ject administ ration (equal);
soft ware (lead); visua lization (lead); w riting – original d raft (lead);
writing–reviewandediting(equal).Melanie Kolb:Conceptualization
(supporting); methodology (supporting); project administration
(equal);supervision(equal);validation(equal);writing–reviewand
editing (equal). Fermín Pascual-Ramírez: Conceptualization (sup-
porting); methodology(supporting); supervision (equal); validation
(equal); writing – review and editing (equal). Eduardo Mendoza:
Conceptualization (supporting); funding acquisition (supporting);
methodology(supporting);projectadministration(equal);supervi-
sion(equal);validation(equal);writing–reviewandediting(equal).
ACKNOWLEDGMENTS
This contribution constitutes a requirement for CMD-M to obtain
his Ph.D. de gree at the Posgrad o en Ciencias Biológ icas, UNAM.
ThisworkwassupportedbytheRuffordFoundation(grantnumber
34365-2); the Association for Tropical Biology and Conservation
(Seed Research Grant 2022); and the American Society of
Mammalogists(LatinAmericanStudentFieldResearchAward2022).
WearedeeplygratefultothepeopleofNuevoConhuas,especially
Andrés Barrientos' family,for theirhospitalityandinvaluableassis-
tanceduringourfieldwork.Wewouldalsoliketoextendourthanks
tothestaffoftheregionalofficeoftheCONANPfortheirsupport,
aswellastoV.Chanan dL .Carmo nafortheirassis tan ceduringf ield-
workanddataprocessing.CMD-Mwassupportedbyascholarship
fromtheConahcyt.
CONFLICT OF INTEREST STATEMENT
Theauthorsdeclarenoconflictofinterest.
DATA AVA ILAB ILITY STATE MEN T
Thedatasupportingthefindingsofthisstudy,alongwiththecode
toconduct the analyses, are openly availablein the Dryad Digital
Repository:h t t p s : / / d o i . o r g / 1 0 . 5 0 6 1 / d r y a d . 1 j w s t q k 2 2 .
ORCID
Carlos M. Delgado-Martínez https://orcid.
org/0000-0002-0913-932X
Melanie Kolb https://orcid.org/0000-0002-3329-3861
Fermín Pascual-Ramírez https://orcid.org/0000-0002-1005-9597
Eduardo Mendoza https://orcid.org/0000-0001-6292-0900
REFERENCES
Adams,R.A.,&Thibault,K.M.(2006).Temporalresourcepartitioningby
batsatwaterholes.Journal of Zoology, 270, 466–472.
Akkawi,P.,Vi ll ar,N. ,M endes,C .P.,&Gal et ti,M.(2020).Dominan cehier-
archyonpalmresourcepartitioningamongNeotropicalfrugivorous
mammals.Journal of Mammalogy, 101,697–709.
Allen, K.,Dupuy,J.M., Gei,M.G.,Hulshof, C.,Medvigy,D., Pizano,C.,
Salgado-Negret, B., Smith, C. M.,Trier weiler,A.,VanBloem, S.J.,
Waring, B . G., Xu, X., & P owers, J. S. (2017 ). Will seaso nally dry
tropicalforestsbesensitiveorresistanttofuturechangesinrainfall
regimes?Environmental Research Letters, 12, 23001.
Amoroso,C.R.,Kappeler,P.M.,Fichtel,C.,&Nunn,C.L.(2020).Temporal
patternsofwaterholeuseasapredatoravoidancestrategy.Journal
of Mammalogy, 101,574–581.
Armenta-Montero, S., Ellis, E. A ., Ellis, P. W., Manson, R. H., López-
Binnqüist, C.,&Pérez, J. A .V.(2020). Carbon emissions fromse-
lectiveloggingintheSouthernYucatanPeninsula,Mexico.Madera
y Bosques, 26, 1–1 4 .
Back, W.,& Lesser,J. M. (1981).Chemical constraints of groundwater
managementintheYucatanpeninsula,Mexico.Jo urnal of Hydrolog y,
51,119–130.
Beck,H.E.,Zimmermann,N.E.,McVicar,T.R.,Vergopolan,N.,Berg,A.,
& Wood, E. F. (2018). Pres ent and futu re köppen-G eiger climate
classificationmapsat1-kmresolution.Scientific Data, 5, 1–1 2.
Blakely,T.J., &Didham,R.K. (2008).Treeholesinamixedbroad-leaf-
podocarprainforest,NewZealand.New Zealand Journal of Ecology,
32,197–208.
Bleicher, S. S. (2017). The landscape of fear conceptual framework:
Defini tion and revi ew of current ap plicatio ns and misuse s. Pee rJ,
5, e3772.
Camargo,B.A.,&Vázquez-Maguirre,M.(2021).Humanism,dignityand
indigenousjustice:TheMayan trainmegaproject,Mexico.Journal
of Sustainable Tourism, 29,372–391.
Camar go-Sanabria , A. A. , & Mendoza, E . (2016). Interac tions bet ween
terres trial mamma ls and the fru its of two Neot ropical ra inforest
tree species. Acta Oecologica, 73,45–52.
Ceball os, G., Zar za, H., Gonz ález-Maya, J. F., de la Torre, J. A ., Arias-
Alzate, A ., Alcerreca, C., Barcenas, H. V., Carreón-Arroyo, G.,
Chávez, C ., Cruz, C.,Medellín, D.,García, A.,Antonio-García, M.,
Lazca no-Barrero, M . A., Mede llín, R. A. , Moctezuma- Orozco, O.,
Ruiz,F.,Rubio,Y.,Luja,V.H.,&Torres-Romero,E.J.(2021).Beyond
words: From jaguar population trends to conservation and public
policyinMexico.PLoS One, 16, 1–22 .
Chamaillé-Jammes,S.,Charbonnel,A.,Dray,S.,Madzikanda,H.,&Fritz,
H. (2016). Spat ial distrib ution of a large h erbivore com munity at
waterho les: An asses sment of its s tability ov er years in Hwan ge
NationalPark,Zimbabwe.PLoS One, 11,e0153639.
Chao, A.,Gotelli, N. J., Hsieh,T.C.,Sander,E.L., Ma,K.H.,Colwell,R.
K.,&Ellison, A. M. (2014).Rarefactionand extrapolation with Hill
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
12 of 14 
|
   DELGADO-MARTÍNEZ et al.
numbers:Aframework for sampling andestimation in species di-
versitystudies.Ecological Monographs, 84,45–67.
Chao, A ., & Jost, L. (2 012). Coverage-bas ed rarefact ion and extra po-
lation: Standardizing samples by completeness rather than size.
Ecology, 93,2533–2547.
Chaves, O. M., Fortes, V.B., Hass, G. P.,Azevedo, R. B., Stoner, K. E.,
&Bicca-Marques, J.C.(2021).Flowerconsumption, ambienttem-
pe rat ure and rai nfa llm odu lat ed r ink ingbeh avi orinafo livoro us-fr u-
givorousarborealmammal.PLoS One, 16,e0236974.
Chesso n, P. (2000 ). Mechanisms of mai ntenance of specie s diversity.
Annual Review of Ecology and Systematics, 31, 34 3–366.
Clayton,D. H., Koop,J. A. H.,Harbison,C.W., Moyer,B.R.,&Bush,S.
E.(2010).Howbirds combatectoparasites.The Open Ornithology
Journal, 3, 41–71.
Cleland, E. E. (2011). Biodiversity and ecosystem stability. Nature
Education Knowledge, 3, 14.
CONAGUA(ComisiónNacionaldelAgua).(2023).Información Estadística
Climatológica. h t t p s : / /s m n . c o n a g u a . g o b . m x / e s / c l i m a t o l o g i a / i n f o r
m a c i o n - c l i m a t o l o g i c a / i n f o r m a c i o n - e s t a d i s t i c a - c l i m a t o l o g i c a
Crosmar y, W.-G., Valeix , M., Fritz, H., Ma dzikanda, H., & C ôté, S. D.
(2012). African ungulates and their drinking problems: Hunting
and predation risks constrain access to water. Animal Behaviour, 83,
145–153.
Cudney-Valenz uela, S. J., Arr oyo-Rodríguez, V., An dresen, E., Toledo-
Aceves, T., Mor a-Ardila, F., Andra de-Ponce, G ., & Mandujano, S .
(2021).Does patchquality drivearborealmammal assemblagesin
fragme nted rainfores ts? Perspectives in Ecology and Conservation,
19, 61– 68.
De Cace res, M., & Lege ndre, P.( 2009). Asso ciations bet ween speci es
and groups of sites: Indicesand statisticalinference. Ecology, 90,
3566–3574.
Delgado-Martínez,C.M.,Alvarado, F.,Kolb,M.,&Mendoza,E.(2022).
Monitoringofsmallrockpoolsrevealsdifferentialeffectsofchronic
anthropogenicdisturbanceonbirdsandmammalsintheCalakmul
region, southern Mexico. Journal of Tropical Ecology, 38,79–88.
Delgado-Martínez, C. M., Cudney-Valenzuela, S. J., & Mendoza, E.
(2022). C amera trappi ng reveals multisp ecies use of water-fille d
treeholesbybirdsandmammalsinaNeotropicalforest.Biotropica,
54, 262–267.
DiBitetti,M. S., Iezzi,M.E.,Cruz,P.,Varela, D.,&De Angelo,C.(2020).
Effect sofc attleonhabita tusean ddielactivityoflargenativeherbi-
voresinaSouthAmericanrangeland.Journal for Nature Conservation,
58,125900.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . j n c . 2 0 2 0 . 1 2 5 9 0 0
Doody,J.S.,Sims,R.A.,&Letnic,M.(2007).Environmentalmanipulation
toavoid a unique predator: Drinkinghole excavation in the agile
wallaby,Macropus agilis. Ethology, 113, 128–136.
Eakin,C.J., Hunter,M. L., &Calhoun,A. J.K.(2018).Birdandmammal
use of verna l pools alon g an urban deve lopment gr adient. Urban
Ecosystem, 21,1029–1041.
Edwards,S., AlAwaji,M.,Eid,E.,&Attum,O.(2017).Mammalianactiv-
ityatartificialwatersourcesinDanaBiosphereReserve,southern
Jordan.Journal of Arid Environments, 141,52–55.
Edwards,S.,Gange,A.C.,&Wiesel,I.(2016).Anoasisinthedesert:The
potentialofwatersourcesascameratrapsitesinaridenvironments
for surveying acarnivore guild. Journal of Arid Environments, 124,
304–309.
Ensley,R.,Hansen,R.D.,Morales-Aguilar,C.,&Thompson, J.(2021).
Geomorphology of the Mirador-Calakmul Karst Basin: A GIS-
based approach to hydrogeologic mapping. PLoS One, 16,
e0255496.
Ferreguetti,A .C., Davis,C. L.,Tomas,W.M.,&Bergallo,H. G. (2018).
Using ac tivity an d occupanc y to evaluate n iche part itioning : The
case of two peccary species in the Atlantic Rainforest, Brazil.
Hystrix, Italian Journal of Mammalogy, 29, 168–174.
Ferry, N., Dray, S., Fritz, H., & Valeix,M. (2016).Interspecific inter fer-
encecompetitionattheresourcepatchscale: Dolargeherbivores
spatially avoid elephants while accessing water? The Journal of
Animal Ecology, 85,1574–1585.
Flores,J.S.(1983).Significadodeloshaltunes (sartenejas)en lacultura
maya.Biotica, 8, 259–279.
Franke,T.M.,Ho,T.,&Christie,C.A .(2012).Thechi-squaretest:Often
usedandmoreoftenmisinterpreted.American Journal of Evaluation,
33,448–458.
Galetti, M.,Rodar te, R. R.,Neves,C. L ., Moreira,M., & Costa-Pereira,
R. (2016). Trophic niche differentiation inrodentsand marsupials
revealedbystableisotopes.PLoS One, 11,1–15.
Galindo-Leal,C.(1999).La Gran Regi ón de Calakmu l, Campeche: P rioridades
biológicas de conservación y propuesta de modificación de la Reserva
de la Biosfera.ReportefinalaWorldWildlifeFund.
Gandiwa,E.,Heittkönig,I.M.A.,Eilers,P.H.C.,&Prins,H.H.T.(2016).
Rainfallvariabilityanditsimpactonlargemammalpopulationsin
a complex of s emi-arid Afr ican savan na protecte d areas. Tropical
Ecology, 57, 1 6 3 –18 0 .
García, A., pez, M. F., Espadas-Manrique, C., Cach-Pérez, M. J.,
Caballero, J.A., Hernández,C., & Reyes-García,C .(2022). Impact
ofthe TrenMaya megaproject onthe biocultural heritage of the
MayanareainMexico'sbestconservedtropicalforest.International
Journal o f Environmental Sci ences & Natural Reso urces, 31(3),556317.
García-Gil, G., Palacio-Prieto, J. L., & Ortiz-Pérez, M. A. (2002).
Reconoc imiento geomor fológico e hi drográfico de l a Reserva de
laBiosferaCalakmul,México.Investigaciones Geográficas, 48, 7–23.
Gilg,O.,Hanski,I.,&Sittler,B.(2003).Cyclicdynamicsinasimpleverte-
bratepredator-preycommunity.Science, 302, 866–868.
Gómez-Pompa, A., & Dirzo, R. (Eds.) (1995). Reserva de la biosfera
Calakmul. In Reservas de La Biosfera y Otras Áreas Naturales
Protegidas de México (pp. 7174). Instituto N acional de Ecología,
SEMARNAP y Comisión Nacional para el Conocimiento y Usode
la Biodiversidad.
Gonzál ez-Salazar, C. (2013). Base de datos de características ecológicas
para aves y mamíferos presentes en México.ProyectoLE004,finan-
ciadoporCONABIO.
Gossne r, M. M., Gaz zea, E., Diedus , V., Jonker, M., & Yaremc huk, M.
(2020). Using sentinel prey toassesspredationpressurefromter-
restrial predators in water-filled tree holes. European Journal of
Entomology, 117, 22 6–23 4 .
Greenwood,J.J.D.(2001).S.Levin(Ed.),Birds, biodiversity of encyclope-
dia of biodiversity(pp.600–625).AcademicPress.
Guevar a, E. A., B ello, C., Pove da, C., McFadd en, I. R., S chleuning , M.,
Pellissier, L., & Graham, C. H. (2023). Hummingbird community
structureandnectarresourcesmodulatetheresponseofinterspe-
cificcompetitiontoforestconversion.Oecologia, 201, 761–7 7 0 .
Hafez,E.S.E.(1964).Behavioralthermoregulationinmammalsandbirds–
A review. International Journal of Biometeorology, 7, 231–2 40.
Hall, L. K.,Larsen,R.T.,Knight, R. N.,Bunnell,K.D.,& McMillan, B.R.
(2013). Water developments and c anids in two north American
deserts:Atestoftheindirecteffectofwaterhypothesis.PLoS One,
8, e67800.
Hamilton, S. A., & Murphy, D. D. (2018). Analysis of limiting factors
across the life cycle of Delta smelt (Hypomesus transpacificus).
Environmental Management, 62,365–382.
Harmange,C.,Bretagnolle,V.,Chabaud,N.,Sarasa,M.,&Pays,O.(2021).
Diel cyc le in a farmland b ird is shaped by con trasting pr edation
andhumanpressures.Biological Journal of the Linnean Society, 134,
68–84.
Harris,G.,Sanderson,J.G.,Erz, J.,Lehnen,S.E.,& Butler,M. J.(2015).
WeatherandpreypredictMammals'visitationtowater.PLoS One,
10,e0141355.
Hsieh, T. C., Ma, K. H., & Chao, A. (2022). iNEXT: iNterpolation and
EXTrapolation for species diversity. R package version 3.0.0. ht tp ://
c h a o . s t a t . n t h u . e d u . t w / w o r d p r e s s / s o f t w a r e - d o w n l o a d /
INE(InstitutoNacionaldeEcología).(1999).Programa de manejo Reserva
de la Biosfera Calakmul.InstitutoNacionaldeEcología.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
13 of 14
DELGADO-MARTÍNEZ et al.
Jiménez-Franco,M.V.,Martínez-Fernández,J.,Martínez,J.E.,Pagán,I.,
Calvo, J. F., & Est eve, M. A. (2 018). Nest sites a s a key resource
forpopulationpersistence:Acasestudymodellingnestoccupancy
underforestrypractices.PLoS One, 13,e0205404.
Kitching,R.L.(Ed.). (2000). Thecontainerfauna. InFood webs and con-
tainer habitats: The natural history and ecology of Phytotelmata(pp.
43–56).CambridgeUniversityPress.
Kranj c, A. (2013). Classification of closed depressions in carbonate karst,
treatise on geomorphology(Vol.1–14 ).ElsevierLtd.
Laundre,J.W.,Hernandez,L., & Ripple, W.J.(2010).Thelandscape of
fear:Ecologicalimplicationsofbeingafraid.Open J ournal of Ecology,
3, 1–7.
Lear,K.O.,Whitney,N.M.,Morris,J.J.,&Gleiss,A.C.(2021).Temporal
niche partitioningas a novel mechanismpromoting co-existence
ofsympatricpredatorsinmarinesystems.Proceedings of the Royal
Society of London, Series B: Biological Sciences, 288, 20210816.
Lee,A.T.K.,Wright,D.,&Barnard,P.(2017).Hotbirddrinkingpatterns:
Drivers of water visitation in a fynbos bird communit y. African
Journal of Ecology, 55,541–553.
Lundberg, J. (2013). Microsculpturing of solutional rocky landforms.
Treatise on Geomorphology, 1–14, 1 21–138 .
Mallinger,R.E.,Gibbs,J.,&Gratton,C.(2016).Diverselandscapeshave
ahi gherabund anceandspecie sr ic hnessofspringwildbe esby pr o-
vidingcomplementaryfloralresourcesoverbees'foragingperiods.
Landscape Ecology, 31,1523–1535.
Mardero,S.,Schmook ,B.,Christman,Z.,Metcalfe,S .E.,&DelaBarreda-
Bautista, B. (2020). Recent disruptions in the timing and inten-
sity of pr ecipitati on in Calakm ul, Mexico. Theoretical and Applied
Climatology, 140,129–144.
Martínez, E., & Galindo-Leal, C. (2002). La vegetación de Calakmul,
Campeche, México: Clasificación, descripción y distribución.
Boletín de la Sociedad Botánica de México, 71, 7– 3 2.
Marti ns, K. T., Alber t, C. H., Le chowicz, M . J., & Gonzalez , A. (2018).
Complementary crops and landscape features sustain wild bee
communities.Ecological Applications, 28,1093–1105.
Maurer, C.,Sutter,L.,Martínez-Núñez, C., Pellissier,L., & Albrecht, M.
(2022).Differenttypesofsemi-naturalhabitatarerequiredtosus-
taindiversewild bee communitiesacrossagriculturallandscapes.
Journal of Applied Ecology, 59,2604–2615.
Messier,F.(1991).Thesignificance oflimitingand regulatingfactorson
the demo graphy of moose an d white-tailed de er. The Journal of
Animal Ecology, 60, 3 77.
Mohd-Azlan,J.,Noske,R.A.,&Lawes,M.J.(2014).Resourcepartitioning
bymangrove bird communities in Nor th Australia. Biotropica, 46,
33 1–3 4 0 .
Mooney,H.A.,Bullock,S.H.,&Medina,E.(1995).Introduction.InS.H.
Bullock& H. A. Mooney (Eds.), Seasonally dry tropical forests(pp.
1–8).CambridgeUniversityPress.
Myers,N.,Mittermeier,R.A.,Mittermeier,C.G.,daFonseca,G.A.B.,&
Kent, J. (20 00). Bio diversit y hotspot s for conser vation pr iorities .
Nature, 403,853–858.
Najafi, J., Farashi, A., Zanoosi, A. P., & Yadreh, R. (2019). Water re-
sourceselectionoflarge mammals for water resources planning.
European Journal of Wildlife Research, 65(6). https:// doi. org/ 10.
1 0 0 7 / s 1 0 3 4 4 - 0 1 9 - 1 3 2 1 - 3
Naranjo,E. J. (2018). Baird's tapir ecology andconservation in Mexico
revisited. Tropical Conservation Science, 11,194008291879555.
Núñez, R ., Miller, B., & Li ndzey, F. (200 0). Food habit s of jaguars a nd
pumasinJalisco,Mexico.Journal of Zoology, 252,373–379.
O'Brien,T.G.,Kinnaird,M.F.,&Wibisono,H.T.(2003).Crouchingtigers,
hiddenprey:Sumatrantigerandpreypopulationsinatropicalfor-
est landscape. Animal Conservation, 6,131–139.
Ocón, J. P.,Ibanez,T.,Franklin,J., Pau,S., Keppel, G.,Rivas-Torres, G.,
Edward,M.,&Gillespie,T.W.(2021).Globaltropicaldryforestex-
tentandcover:Acomparativestudyofbioclimaticdefinitionsusing
twoclimaticdatasets.PLoS One, 16, 1–20 .
O'Farrill, G., Schampaert, K. G., Rayfield, B., Bodin, Ö., Calmé, S.,
Sengupta, R., & Gonzalez, A . (2014). The potential connectivity
ofwaterhole networks andthe effectivenessofaprotected area
under various drought scenarios. PLoS One, 9,e95049.
Oksanen,J.,Simpson,G.,Blanchet,F.,Kindt,R.,Legendre,P.,Minchin,P.,
O'Hara,R.,Solymos,P.,Stevens,M.,Szoecs,E.,Wagner,H.,Barbour,
M.,Bedward,M.,Bolker,B.,Borcard,D.,Carvalho,G.,Chirico, M.,
DeCaceres,M.,Durand,S.,…Weedon,J.(2022).vegan: Community
ecology package. R package ver sion 2.6-4. h t t p s : / / C R A N . R - p r o j e c t .
org/ packa ge= vegan
Ole a,P.P.,Iglesias,N.,&Mate o-Tomás,P.(2022).Tem po ra lresourcepar-
titioningmediatesver tebratecoexistenceatcarcasses:Theroleof
competitiveandfacilitativeinteractions.Basic and Applied Ecology,
60,63–75.
Partasasmita,R.,Atsaury,Z.I.A.,&Husodo,T.(2017).Theuseofforest
canopybyvariousbirdspeciesintropicalforestMontanazone,the
NatureReserveofMountTilu,WestJava,Indonesia.Biodiversitas,
18,453–457.
Perera-Romero, L ., Garcia-Anleu, R., McNab, R. B., & Thornton, D.
H. (2021). When waterholes get busy, rare interactions thrive:
Photographicevidenceofajaguar(Panthera onca)killinganocelot
(Leopardus pardalis).Biotropica, 53, 367–371.
Pérez-Flores, J., Mardero, S., López-Cen, A., & Contreras-Moreno, F.
M. (2021). Human-wildlife conflicts and drought in the greater
Calakmul region, Mexico: Implications for tapir conservation.
Neotropical Biology & Conservation, 16(4),539–563.
Periquet,S.,Valeix,M.,Loveridge,A.J.,Madzikanda, H.,Macdonald,D.
W., & Fritz, H. ( 2010). Individual v igilance of Afric an herbivore s
while drinking:The role of immediatepredation risk andcontext.
Animal Behaviour, 79,665–671.
Pin,C.,Ngoprasert,D.,Gray,T.N.E.,Savini,T.,Crouthers,R.,&Gale,G.
A.(2018).Utilizationof waterholes bygloballythreatenedspecies
indeciduousdipterocarpforestoftheEasternPlainsLandscapeof
Cambodia. Oryx, 54(4), 572–582. https: // doi. o rg / 10. 1017/ s00 30
605318000455
Potapov, P.,Hansen, M.C.,Laestadius, L.,Turubanova, S.,Yaroshenko, A .,
Thies, C.,Smith,W.,Zhuravleva, I., Komarova, A., Minnemeyer,S., &
Esipova,E.(2017).Thelastfrontiersofwilderness:Trackinglossofin-
tactforestlandscapesfrom2000to2013.Science Advances, 3, 1–14.
Ramírez-Delgado, J. P., Christman, Z., & Schmook, B. (2014).
Deforestationandfragmentationofseasonaltropicalforestsinthe
southernYucatán,Mexico(1990-2006).Geocarto International, 29,
822–8 41.
Reyna-Hurtado,R.,Chapman,C.A.,Calme,S.,&Pedersen,E. J.(2012).
Searching in heterogeneous and limiting environments: Foraging
strategies of white-lipped peccaries (Tayassu pecari). Journal of
Mammalogy, 93, 124–133.
Reyna-Hurtado,R.,O'Farrill,G.,Sima,D.,Andrade,M.,Padilla,A.,&Sosa,
L.(2010).LasaguadasdeCalakmul:Reservoriosdevidasilvestrey
delariquezanaturaldeMéxico.Biodiversitas, 93, 1–6 .
Reyna-Hurtado, R., Sima-Pantí, D., Andrade, M., Padilla, A., Retana-
Guaiscon, O., Sanchez-Pinzón, K., Martinez, W., Meyer, N.,
Moreira-Ramírez,J.F.,Carrillo-Reyna,N.,Rivero-Hernández,C.M.,
Macgregor,I. S., Calme, S., &Dominguez, N.A.(2019).Tapirpop-
ulation p atterns unde r the disappe arance of free standing wat er.
Therya, 10,353–358.
Schoener,T.W.(1974).Resoucepartitioninginecological communities:
Researc h on how similar sp ecies divid e resources he lps. Science,
185,27–39.
Sharma, N., Huffman, M. A., Gupta, S., Nautiyal, H., Mendonça, R.,
Morino, L ., & Sinha, A . (2016). Watering h oles: The us e of arbo-
real sou rces of drinkin g water by Old World m onkeys and ape s.
Behavioural Processes, 129, 18–26.
Siyum,Z.G.(2020).Tropicaldryforestdynamicsinthecontextofclimate
change:Synthesesofdrivers,gaps,andmanagementperspectives.
Ecological Processes, 9,25.
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
14 of 14 
|
   DELGADO-MARTÍNEZ et al.
Špirić,J.,Vallejo,M.,&Ramírez,M.I.(2022).Impactofproductiveactivi-
tiesonforestcoverchangeintheCalakmulbiospherereser veregion:
Evidence and research gaps. Tropical Conservation Science, 15,1–25.
Stommel,C.,Hofer,H.,Grobbel,M.,&East,M.L.(2016).Largemammals
inRuahaNationalPark,Tanzania,digforwater whenwaterstops
flowingandwaterbacterialloadincreases.Mammalian Biology, 81,
21–30.
Sushma,H.S.,&Singh,M.(2006).Resourcepartitioningandinterspecific
interactionsamongsympatricrainforestarborealmammalsofthe
WesternGhats,India.Behavioral Ecology, 17,479–490.
Thomsen, M. S., Altieri, A. H., Angelini, C., Bishop, M. J., Bulleri, F.,
Farhan, R., Frühling, V.M. M., Gribben, P.E.,Harrison, S. B.,He,
Q., Kling hardt, M., La ngeneck, J., La nham, B. S., Mo ndardini, L. ,
Mulders, Y.,Oleksyn, S.,Ramus,A. P.,Schiel,D.R., Schneider,T.,
…Zotz, G. (2022). Heterogeneity within andamong co-occurring
foundationspeciesincreasesbiodiversity.Nature Communications,
13,1–9.
Tilman,D.(1982).Whatareresources?InResource competition and com-
munity structure . (MPB-17)(Vol.17,pp.11–42).PrincetonUniversity
Press.
Torrescano-Valle, N.,& Folan, W. J. (2015). Physical settings, environ-
mentalhistor ywithanoutlookonglobalchange.InG.A.Islebe,S.
Calmé,J.L.León-Cortés,&B.Schmook(Eds.),Biodiversity and con-
servation of the Yucatán peninsula(pp.9–37).SpringerInternational
Publishing.
Valeix,M.,Chamail-Jammes,S.,&Frit z,H.(2007).Inter fe rencecompe-
titionandtemporalnicheshifts:Elephantsandherbivorecommu-
nities at waterholes. Oecologia, 153,739–748.
Valeix, M., Fritz, H., Loveridge, A. J., Davidson, Z., Hunt, J. E.,
Murindagomo,F.,&Macdonald,D.W.(2009).Doestheriskofen-
counteringlions influence African herbivorebehaviour at water-
holes?Behavioral Ecology and Sociobiology, 63,1483–1494.
Vidal-Zepeda, R. (2005). Las regiones climáticas de México. Colección de
Temas Selectos de Geografía de México (1.2. 2)(1sted.).Institutode
Geografía,UNAM.
Votto,S.E.,Dyer,F.J.,Caron,V.,&Davis,J.A.(2020).Thermally-driven
thresholdsinterrestrialavifaunawaterholevisitationindicatevul-
nerability to a warming climate. Journal of Arid Environments, 181,
10 4 21 7.
Votto, S. E.,Schlesinger, C., Dyer,F.,Caron, V., & Davis,J. (2022).The
roleoffringingvegetationin supportingavianaccessto aridzone
waterholes. Emu, 122,1–15.
Walter,G.H.(1991).Whatisresourcepartitioning?Journal of Theoretical
Biology, 150, 13 7–143.
Winkler,H.,&Preleuthner,M.(2001).Behaviourandecologyofbirdsin
tropicalrainforestcanopies.Plant Ecology, 153,193–202.
Zukerman,Y.,Sigal,Z.,&Berger-Tal,O.(2021).COVID-19restrictionsin
anaturereserverevealthecostsofhumanpresenceforthethreat-
enedNubianIbex(Capra nubiana).Frontiers in Ecology and Evolution,
9,751515.
SUPPORTING INFORMATION
Additional supporting information can be found online in the
SupportingInformationsectionattheendofthisarticle.
How to cite this article: Delgado-Martínez,C.M.,Kolb,M.,
Pascual-Ramírez,F.,&Mendoza,E.(2023).Differential
utilizationofsurfaceandarborealwaterbodiesbybirdsand
mammalsinaseasonallydryNeotropicalforestinsouthern
Mexico. Ecology and Evolution, 13, e10781. h t t p s :// do i .
org /10.10 02/ece3.10781
20457758, 2023, 11, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10781 by Cochrane Mexico, Wiley Online Library on [28/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
... Avian and mammalian predators were pervasive at riverine thermal refuges, suggesting these patches concentrate opportunities for predator-prey interactions (Sullivan, Rittenhouse, and Vokoun 2023). In southern Mexico, Delgado-Martínez et al. (2023) examined the use of ephemeral water bodies by birds and mammals in seasonally dry tropical forests. Camera traps deployed on surface pools and tree holes recorded species diversity and also behaviour. ...
... Camera traps deployed on surface pools and tree holes recorded species diversity and also behaviour. Terrestrial and larger mammalian species preferentially used surface water bodies, whereas arboreal and scansorial small and medium mammals were more common in arboreal water bodies; the two complementary sources thus facilitate gamma diversity (Delgado-Martínez et al. 2023). ...
Article
Full-text available
Camera trap research has grown to encompass the globe, with applications in terrestrial, marine, and aquatic environments. Insights on plant, invertebrate, and vertebrate communities are rapidly expanding our knowledge of ecological systems. image
... Surface water bodies concentrate the activity of large sets of animal species. In contrast, arboreal water bodies are particularly significant for arboreal and scansorial species (Delgado-Martínez et al. 2023). Therefore, increasing the number of studies that simultaneously focus on different types of water bodies could provide valuable insights into the mechanisms that promote the coexistence of a greater diversity of animal species. ...
Article
Full-text available
Water availability strongly influences the ecology of terrestrial birds and mammals. It will likely play an increasing role as a limiting factor as climate change and human demand make water availability scarcer. However, we lack a knowledge synthesis describing our current understanding of the use of water sources, particularly for wildlife hydration. To provide a comprehensive overview of the available research regarding the utilization of water bodies as hydration sources by terrestrial birds and mammals, we conducted a mapping review based on an extensive search of papers in the Web of Science and Scopus databases published up to 2022. We compiled 181 papers that met our inclusion criteria. Earlier papers date back to 1965, but a stable publication rate was not reached until 2005, and there has been significant growth since 2015. The USA, Mexico, and Zimbabwe had the most published papers. Studies were concentrated in areas with a mean annual precipitation lower than 1000 mm, predominantly deserts and xeric shrublands, as well as tropical and subtropical grasslands, savannas, and shrublands. Studies heavily focused on mammals and less frequently included birds and mammals, with an overrepresentation of species classified as ‘Least concern' for both groups. Very few studies focused on water sources in the canopy, and even fewer compared surface versus arboreal water sources. Cameras and direct observations were the main methods used to document wildlife's water use. Attention to water use by birds and mammals shows an increasing trend; however, given the globalized reduction of water availability and quality, it is urgent to widen the scope of studies to include a greater variety of habitat types, water sources, and animal species. Such an increase in scope is necessary to unravel the magnitude of the impacts that reductions in water availability can have in the short and long term on wildlife viability.
... Regarding the habitat descriptor variables, humidity and precipitation were those that represented the strongest association in Principal Component 1, and could be explained from the context of the characteristics of the region. In Calakmul, its karst soil surface water is not very available, so there are only of three types of semi-permanent water sources for wildlife during the dry season: small ponds scattered in the jungle, known locally as "aguadas" [16]; open crevices in the rocky soil, known locally as "sartenejas" [41]; and a type of arboreal water container (alcorques filled with water; [42]). Since Calakmul is a region of extensive droughts and high temperatures, birds are more present in sites where humidity conditions are more accentuated, since a higher local humidity would indicate a greater number of aguadas and nearby water sources. ...
Article
Full-text available
The Calakmul Biosphere Reserve (CBR) is in the south of the Yucatán Peninsula and is known for its great biological diversity. However, despite the great diversity of species, they are under intense pressure from hunting activities, especially the larger ones that can be used for human food. Therefore, the objective of this study was to obtain knowledge about the hunting importance of populations of three species of birds (Crax rubra, Meleagris ocellata, and Penelope purpurascens) in the southern zone of the Calakmul Biosphere Reserve, Campeche. Sampling was conducted with transects where a total of 46 camera traps were installed from November 2021 to November 2022, distributed in two types of vegetation. Likewise, data on species presence were collected and analyzed with Principal Component Analysis and ANOSIM (ANOSIM; R = 0.10, p = 0.22) to relate abundances with vegetation types and seasons of the year. No significant differences were found between the two vegetation types. This study provides relevant information on the populations of game birds in the southern region of Calakmul, which is currently little explored, and constant monitoring of these species throughout the CBR is necessary.
... The observations suggest that saproxylic communities in shallower cavities may face higher predation pressure due to better accessibility for birds; however, this statement needs further confirmation due to the abovementioned limitations of this study. Although cavities may generally provide few resources for local fauna, their role as additional feeding sources may be important in certain periods when the main food sources are scarce, similarly to the role of watering places in seasonallydry areas (Kirsch et al. 2021;Delgado-Martínez et al. 2023) or through the provision of safer feeding opportunities for arboreal species (Sharma et al. 2016). ...
Article
Full-text available
Tree cavities offer protected shelters and resources for arboreal vertebrates worldwide. In general, cavities with larger openings are better accessible for predators and are avoided by smaller species for breeding, but can still be attractive for occasional use. The current study explores the diversity of functional use types and species interactions at the largest available tree cavities (entrance width ≥ 10 cm) in a temperate European forest with a low number of large cavity‐breeding species. Year‐round camera observations at 9 cavities (range 0.7–3.5 years) revealed 34 visiting species of birds and mammals, including non‐cavity‐breeding species. The top predator threatening other large‐cavity users was European pine marten (Martes martes), which regularly visited each cavity year‐round, on average every 0.7 months. Tawny owl (Strix aluco) was the only species successfully breeding in cavities, arguably because of its ability to defend the nests. However, other species visited cavities at an average rate of 1.5 visits per day, making predominantly short visits (less than 30 s) interpreted as exploration, searching for food, or inspecting for the presence of owls (mobbing). Making short visits and time segregation with predators was a behavioural strategy to exploit cavities for most species. These results confirm that, similarly to other keystone structures (large arboreal nests, ground burrows, etc.), large tree cavities attract a significant part of the arboreal vertebrate community and enrich their habitats. To sustain these functions in wooded ecosystems, management should provide a surplus of available cavities and diversity of their characteristics even when the apparent number of breeding species is low.
... Дискусія і висновки Головні нори у багатьох випадках є центрами активності борсуків у межах сімейних ділянок (Roper, 1992;Kowalczyk, Zalewski, & Jędrzejewska, 2004;Davison et al., 2008), хоча в окремих дослідженнях описується невиражена роль різних сховищ (Brøseth, Bevanger, & Knutsen, 1997;. За нашими спостереженнями, борсуки біля головної нори у НПП "Пирятинський" проводили багато часу, особливо в осінній період. ...
Article
Full-text available
B a c k g r o u n d . Burrows are an important resource and attract many animals. Badgers create complicated underground shelters that other species can use. The aim of our study was to estimate the activity of animals near the badger sett in the Pyriatynskyi National Nature Park. Such long-term observations near underground shelters are best carried out with the use of camera traps. M e t h o d s . The research was conducted in 2021–2023 on the territory of the Pyriatynskyi NNP (Poltava region, Lubny district). A BOLY BG310-MFP camera trap was installed near one main badger sett. Viewing, identification of animal species and classification of camera trap images was carried out using the digiKam program. R e s u l t s . The camera trap at the Pyriatynskyi NNP worked for 295 trap-days and registered 545 events. At the main badger sett 19 species of animals were recorded: 13 mammals and 6 birds. The dominant activity was in badger, fox, roe deer, red squirrel and mouse-like rodents. According to the results of observations, all registered animals were divided into two classifications: by the type of connection with sett (residents, potential residents, foragers, visitors and not interested animals) and by the frequency of visits (permanent residents, regular visitors, irregular visitors and random visitors). Foragers near the badger sett are represented by the greatest species diversity (8 species). Half of the bird species were sett random visitors, only Eurasian jay regularly visited and examined the soil mound near the entrance. C o n c l u s i o n s . The main badger sett in the Pyriatynskyi NNP is an attractive object both for animals that can directly use it as a shelter, and for those that receive additional benefits, for example, preying nearby. The frequency of occurrence may be an indicator of the importance of the sett for animals, but the large number of events with roe deers and squirrels requires a separate study of this issue.
... Our findings are also consistent with other studies that show that distance to permanent water has little effect on carnivorous and medium-sized mammals (Rich et al., 2017). Indeed, medium-sized mammals can exploit smaller and nonpermanent sources of water (Delgado-Martínez et al., 2023). Also, some medium-sized herbivores can obtain sufficient water through their diets, and thus their movements are less restrained (Kihwele et al., 2020). ...
Article
Full-text available
Understanding the effects of variation in resource availability and habitat disturbance on the ecology of mammals is vital for successful conservation management. In this study, we examined how human disturbances, resource availability and elevation gradients influence mammal assemblages in both managed coffee forest and natural forest of the Belete-Gera National Forest Priority Area, southwestern Ethiopia. We surveyed mammals using motion-detecting infrared camera traps in 90 locations for a total of 4142 camera days. We measured distance from main roads and settlements as disturbance factors, and distance from water sources, key grazing sites, and forest edges and woody plant diversity as resource variables. We assessed the mammal assemblages in coffee forest and natural forests using generalized linear models. Further, we used linear modelling to compare the relationships of mammal detection rates by feeding guilds and body size to resource variables. In total, we recorded 8815 videos identifying 23 different mammal species. The mammal assemblages in coffee forests were negatively associated with increasing distances from key grazing sites, water sources, and elevation. In contrast, the association with increasing distance from the road and woody plant diversity was positive. In addition, herbivores and large (25–200 kg) and very large (≥200 kg) mammals, were all negatively associated with increasing distance from the natural forest edges. With the conversion of natural forest to coffee forest and the intensification of coffee forest management, sustainable management of key grazing sites, water sources, and diverse woody plant species will be essential to the conservation of mammals. In addition, to ensure mammal conservation, adjacent natural forests around coffee forests should also be protected.
Article
Full-text available
The scarcity of available surface water affects ungulates inhabiting sites where the effects of climate change are more evident, especially for endangered species such as the Central American tapir (Tapirus bairdii). The objective of this study was to estimate tapir water use in artificial water troughs in the Calakmul Biosphere Reserve (CBR), Mexico. Between January 2019 and August 2021, 8 digital camera traps were placed in 8 artificial watering holes. The Photographic Index of Visits (PIV) was obtained, and occupancy (Psi), detectability (p), and activity patterns were calculated, and analyzed. A sampling effort of 4,672 nights/camera, and 289 grouped records of T. bairdii were obtained. The PIV, occupancy, and detectability obtained in the present study were similar to those reported in natural water bodies in the Maya Forest, which supports the idea that the water troughs could temporarily supply maintenance functions for tapirs during the dry season or in periods when water is scarce in the landscape, being this the only source of water available to satisfy their requirements for this resource in the CBR. Resumen La falta de agua superficial disponible afecta a los ungulados que habitan sitios en los que los efectos de cambio climático son más evidentes, sobre todo en especies en peligro de extinción como el tapir centroamericano (Tapirus bairdii). El objetivo de este estudio fue analizar el uso que el tapir hace del agua en bebederos artificiales en la Reserva de la Biosfera Calakmul (RBC), México. Entre enero de 2019 y agosto de 2021 se colocaron 8 cámaras F.M. Contreras-Moreno et al. / Revista Mexicana de Biodiversidad 96 (2025): e965483 2 https://doi.org/10.22201/ib.20078706e.2025.96.5483
Preprint
Full-text available
This study evaluated the influence of landscape elements on the community structure and habitat selection of medium- and large-sized mammals in La Frailescana Natural Resource Protection Area, Chiapas, Mexico. Specifically, we analyzed the influence of environmental variables (distance to water bodies, altitude, and vegetation types) and anthropogenic factors (distance to human settlements, roads, and agricultural areas) on the mammal community. We installed 21 camera trap stations, accumulating 1,549 camera-days of sampling effort. Diversity and relative abundance indices were calculated, and generalized linear models were applied to evaluate the relationship between landscape variables and recorded mammals. We recorded 19 species of medium- and large-sized mammals, belonging to 12 families and 7 orders. The most abundant species were Pecari tajac u and Nasua narica . Distance to water bodies had a significant negative effect on species abundance and richness, highlighting the importance of these water resources. Responses to human infrastructure revealed that P . tajacu , Urocyon cinereoargenteus , Odocoileus virginianus , and Puma concolor were more abundant away from human settlements, while rural roads generated varied responses. The results underscore the importance of considering landscape heterogeneity in conservation strategies. We recommend implementing measures that prioritize the conservation of key habitats, ensure connectivity between forest fragments, and minimize anthropogenic impacts to guarantee the persistence of biodiversity in the region.
Article
Full-text available
Water availability is a critical factor influencing the abundance and distribution of species, particularly in environments where it is scarce. This study aimed to assess the visit frequency index (VFI, a proxy for abundance) and activity patterns of the collared peccary (Pecari tajacu) at various natural and artificial water sources in the Calakmul Biosphere Reserve, Campeche, Mexico. We employed camera trapping from January to December 2020, monitoring 30 water bodies: 10 artificial water troughs, 10 natural aguadas (depressions where rainwater accumulates), and 10 sartenejas (erosion-formed cavities in rocky soils that collect rainwater). Our results indicate that P. tajacu utilized sartenejas (VFI = 29.92 records/trap-days) and water troughs (VFI = 22.08 records/trap-days) more frequently than aguadas (VFI = 6.54 records/trap-days). The daily activity patterns of P. tajacu were predominantly diurnal at water troughs and aguadas, while activity at sartenejas was cathemeral. Despite being a species known for its reliance on water sources, the VFI recorded in this study was lower compared to previous studies. This decrease is likely linked to increased water availability in the region during the study period, which may have led to avoidance behavior by P. tajacu due to the presence of white-lipped peccaries (Tayassu pecari) and predators such as jaguars (Panthera onca) and pumas (Puma concolor), which were more abundant at the aguadas. Considering the rapid progression of climate change and the increasing occurrence of extreme drought and rainfall events in the region, it is crucial to deepen our understanding of the relationships between water availability and the population dynamics of wildlife species. This knowledge will be essential for developing strategies to mitigate the adverse effects of climate change on biodiversity.
Article
Full-text available
Water availability is a critical factor influencing the abundance and distribution of species, particularly in environments where it is scarce. This study aimed to assess the visit frequency index (VFI, a proxy for abundance) and activity patterns of the collared peccary (Pecari tajacu) at various natural and artificial water sources in the Calakmul Biosphere Reserve, Campeche, Mexico. We employed camera trapping from January to December 2020, monitoring 30 water bodies: 10 artificial water troughs, 10 natural aguadas (depressions where rainwater accumulates), and 10 sartenejas (erosion-formed cavities in rocky soils that collect rainwater). Our results indicate that P. tajacu utilized sartenejas (VFI = 29.92 records/trap-days) and water troughs (VFI = 22.08 records/trap-days) more frequently than aguadas (VFI = 6.54 records/trap-days). The daily activity patterns of P. tajacu were predominantly diurnal at water troughs and aguadas, while activity at sartenejas was cathemeral. Despite being a species known for its reliance on water sources, the VFI recorded in this study was lower compared to previous studies. This decrease is likely linked to increased water availability in the region during the study period, which may have led to avoidance behavior by P. tajacu due to the presence of white-lipped peccaries (Tayassu pecari) and predators such as jaguars (Panthera onca) and pumas (Puma concolor), which were more abundant at the aguadas. Considering the rapid progression of climate change and the increasing occurrence of extreme drought and rainfall events in the region, it is crucial to deepen our understanding of the relationships between water availability and the population dynamics of wildlife species. This knowledge will be essential for developing strategies to mitigate the adverse effects of climate change on biodiversity.
Article
Full-text available
On-going land-use change has profound impacts on biodiversity by filtering species that cannot survive in disturbed landscapes and potentially altering biotic interactions. In particular, how land-use change reshapes biotic interactions remains an open question. Here, we used selectivity experiments with nectar feeders in natural and converted forests to test the direct and indirect effects of land-use change on resource competition in Andean hummingbirds along an elevational gradient. Selectivity was defined as the time hummingbirds spent at high resource feeders when feeders with both low and high resource values were offered in the presence of other hummingbird species. Selectivity approximates the outcome of interspecific competition (i.e., the resource intake across competing species); in the absence of competition, birds should exhibit higher selectivity. We evaluated the indirect effect of forest conversion on selectivity, as mediated by morphological dissimilarity and flower resource abundance, using structural equation models. We found that forest conversion influenced selectivity at low and mid-elevations, but the influence of morphological dissimilarity and resource availability on selectivity varied between these elevations. At mid-elevation, selectivity was more influenced by the presence of morphologically similar competitors than by resource abundance while at low-elevation resource abundance was a more important predictor of selectivity. Our results suggest that selectivity is influenced by forest conversion, but that the drivers of these changes vary across elevation, highlighting the importance of considering context-dependent variation in the composition of resources and competitors when studying competition.
Article
Full-text available
Semi‐natural habitats provide important resources for wild bees in agricultural landscapes. Landscapes under management are dynamic and floral resources fluctuate in space and time. Thus, promoting different semi‐natural habitat types within landscapes could be key to support diverse bee meta‐communities throughout the season. Here, we integrate analyses of α‐diversity (species richness) and β‐diversity and species‐habitat networks to examine the relative contribution of all major semi‐natural habitats to wild bee meta‐communities in agricultural landscapes. We sampled extensively and conventionally managed meadows, flower strips, hedgerows and forest edges in spring, early and late summer in 25 landscapes in Switzerland. Habitat types varied in their importance for wild bees throughout the season: While extensively managed meadows supported more rare species, habitat specialists and bee species overall than the other habitat types, flower strips were most important later in the season. Each of the five investigated habitat types harboured relatively unique sets of species with different habitats generally acting as distinct modules in the overall bee‐habitat network. Not only flower richness in a habitat per se, but also flower‐habitat network properties (habitat strength and functional complementarity) were good predictors of wild bee richness. In addition to local floral richness, landscape composition and configuration interactively influenced β‐diversity patterns across habitats. Synthesis and applications. Our study highlights the value of pollinator‐habitat network analysis to inform pollinator conservation management at the landscape scale, especially when combined with information on floral resources and flower‐habitat networks. Maintaining different types of semi‐natural habitats offers diverse and complementary resources throughout the season, which are crucial to sustain diverse wild bee meta‐communities in agricultural landscapes. Particularly meadow extensification schemes can play a key role in safeguarding rare and specialist species in these landscapes. While locally a high flower richness promoted bee abundance and richness in general, our results indicate that increasing connectivity between habitat patches in landscapes dominated by arable crops appears to improve species exchange between local bee communities of different habitats, thereby possibly increasing their resilience to disturbances.
Article
Full-text available
Background and Research Aims Human activities seeking to satisfy various needs have resulted in deforestation and other forest cover change processes. The Natural Protected Areas are among the most efficient instruments to contain forest loss. The compensation from conservation is not sufficient to compete with land uses with higher economic rent, such as timber extraction and food production. This study summarizes the evidence and identifies research gaps on forest processes caused by productive activities in Mexico’s Calakmul Biosphere Reserve. Methods We systematically reviewed the scientific literature investigating forest processes caused by the productive activities in the Calakmul, including the transition zone. We calculated the frequencies of codes on forest processes and productive activities in the entire sample (53), evaluated each code’s significance in the qualitative synthesis and interpretation, and summarized the measurements of forest processes considering only the primary studies (46). Results Deforestation was the most commonly investigated process. Traditional agriculture initially caused deforestation, while livestock and conventional agriculture became more dominant recently with the agricultural intensification policies. Few articles investigated forest degradation experiencing a steady increase from fallow shortening and selective logging. Also, few studies identified forest recovery resulting from long fallows and core zone delimitation. No publications evaluated the forest cover impact of sustainable initiatives. Conclusion The tendency to quantify deforestation on a regional scale masks presence of other forest processes. The rural development programs in Calakmul did not include the environmental perspective, while participation in sustainable initiatives was low. The understanding of productive activities at the local level will allow differentiation of the long-term from temporary forest dynamic. Implications for Conservation To assure resilient and inclusive growth in Calakmul, the reduced-impact logging, sustainable agricultural intensification, improved fallows, and beekeeping should be supported with monetary resources that cover the transaction costs of unsustainable livestock breeding and industrial agriculture.
Article
Full-text available
Habitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.g. food) within and between co-occurring foundation species. We show that positive and additive effects across the three axes of heterogeneity are common, providing a compelling mechanistic insight into the universal importance of habitat heterogeneity in promoting biodiversity via cascades of facilitative interactions. Because many aspects of habitat heterogeneity can be controlled through restoration and management interventions, our findings are directly relevant to biodiversity conservation.
Article
Full-text available
Wildlife conservation efforts in the Mesoamerican Biological Corridor have focused on reducing negative interactions between humans and charismatic species. In recent years, droughts have increased in frequency and intensity in southeastern Mexico exacerbating conflicts with wildlife as they compete with humans for limited water. In the Yucatan Peninsula, Greater Calakmul Region of southeastern Mexico, Baird's tapirs (Tapirus bairdii) are increasingly encroaching into local villages (ejidos) in search of water. This behavior could increase tapir mortality from hunting by Calakmul ejidos residents. We evaluated the trends between annual precipitation and tapir sightings near or within Calak-mul ejidos from 2008 to 2019 to determine if the frequency of reported conflicts increased relative to decreased precipitation. In addition, with community participation, from 2016 to 2018 we monitored one of the ejidos where human-tapir conflicts were reported to be increasing to better describe the nature of conflicts. We did not find any relationship between the number of tapir sightings reported and annual precipitation. However, more tapirs were documented near ejidos in 2019, which is one of the years with the lowest rainfall (626.6 mm) in the last decade. Tapirs were reported as the most common wildlife species observed at waterholes (35.4%) and apiaries (32.1%). Our findings suggested that water scarcity has increased tapirs' incursions into human-populated areas and subsequently the potential for human-tapir conflicts. We recommend that managers consider developing alternative water sources that could mitigate human-tapir conflicts and contribute to the long-term viability of other wildlife species that inhabit the Greater Calakmul Region of southeastern Mexico.
Article
Access to drinking water is essential for many avian species in arid landscapes, especially in hot and dry periods when metabolic requirements for water increase. The role of fringing vegetation in facilitating surface water access by arid zone bird communities was investigated over a 14-month period during which water demand increased. Bird visitation to six long-lasting waterholes in the MacDonnell Ranges Bioregion in central Australia was recorded over two summers and one winter using camera traps. Species were assigned to functional classes based on their size and preferred foraging substrate. Generalised linear mixed models were used to test relationships between fringing vegetation variables and the independent trapping events for each functional class. Fringing vegetation was critical for small and intermediate-sized canopy foragers to access waterhole sites. Their activity declined to almost zero in areas where the nearest tree or shrub cover was greater than 10 m. The strength of this relationship was consistent as weather conditions became drier and hotter. However, activity of small and intermediate-sized canopy foragers was negatively related to the percent canopy cover of the nearest tree or shrub, potentially because sparse vegetative cover offers greater visibility when approaching the water’s edge. In contrast, ground forager and raptor activity at waterhole sites was unrelated to surrounding vegetation, and these groups frequently accessed water from open areas. Under future warming scenarios, small and intermediate canopy foragers may be vulnerable to predation if they are forced to access water at sites away from nearby fringing vegetation.
Article
Unravelling how biodiversity is maintained despite species competition for shared resources has been a central question in community ecology, and is gaining relevance amidst the current biodiversity crisis. Yet, we have still a poor understanding of the mechanisms that regulate species coexistence and shape the structure of assemblages in highly competitive environments such as carrion pulsed resources. Here, we study how large vertebrates coexist in scavenger assemblages by adapting their diel activity at large ungulate carcasses in NW Spain. We used camera traps to record vertebrate scavengers consuming 34 carcasses of livestock and hunted wild ungulates, which allowed us to assess also differences regarding carcass origin. To evaluate temporal resource partition among species, we estimated the overlap of diel activity patterns and the mean times of each scavenger at carcasses. We recorded 16 species of scavengers, 7 mammals and 9 birds, and found similar richness at both types of carcasses. Birds and mammals showed contrasting diel activity patterns, with birds using carcasses during daytime (mean= 11:38 h) and mammals mostly at night (23:09 h). The unimodal activity patterns of scavengers showed asynchronous peaks among species. Subordinate species modified their activity patterns at carcasses used by apex species to reduce temporal overlap. Also, diel activity patterns of vultures closely followed those of corvids, suggesting facilitation processes in which corvids would enhance carcass detection by vultures. Two mammal species (12.5%) increased nocturnality at carcasses of hunted ungulates, which could be a response to human disturbance. Our results suggest that both temporal segregation and coupling mediate the coexistence of large vertebrates at carcasses. These mechanisms might lead to richer scavenger assemblages and thereby more efficient ones in driving critical ecosystem functions related to carrion consumption, such as energy and nutrient recycling and biodiversity maintenance.
Article
Great attention has been drawn to the impacts of habitat deforestation and fragmentation on wildlife species richness. In contrast, much less attention has been paid to assessing the impacts of chronic anthropogenic disturbance on wildlife species composition and behaviour. We focused on natural small rock pools (sartenejas), which concentrate vertebrate activity due to habitat’s water limitation, to assess the impact of chronic anthropogenic disturbance on the species richness, diversity, composition, and behaviour of medium and large-sized birds and mammals in the highly biodiverse forests of Calakmul, southern Mexico. Camera trapping records of fauna using sartenejas within and outside the Calakmul Biosphere Reserve (CBR) showed that there were no effects on species richness, but contrasts emerged when comparing species diversity, composition, and behaviour. These effects differed between birds and mammals and between species: (1) bird diversity was greater outside the CBR, but mammal diversity was greater within and (2) the daily activity patterns of birds differed slightly within and outside the CBR but strongly contrasted in mammals. Our study highlights that even in areas supporting extensive forest cover, small-scale chronic anthropogenic disturbances can have pervasive negative effects on wildlife and that these effects contrast between animal groups.