Article

Bioenergetic functions of mitochondria in liver, pancreatic acinar cells, and sperm cells of rats fed short-term high-fat or high-fat high-sugar diets

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

An unhealthy diet often is a cause of obesity, chronic inflammation, and metabolic disruption in multiple organs. However, the direct influence of elevated lipid or sugar consumption on liver, pancreatic, and sperm mitochondria is not well understood. The aim of the study was to investigate the functional activity of mitochondria of liver, pancreatic acinar cells, and sperm cells in rats on a short-term (7 weeks) diet with high fat or high fat and high sugar content. Male Wistar rats were on a basic, high-fat or high-fat high-sugar diet for 7 weeks. At the end of the experiment, visceral fat mass, blood glucose and lipids were measured. Mitochondrial functional activity was evaluated with oxygen consumption assay. In isolated pancreatic acinar cells, NAD(P)H autofluorescence and mitochondrial membrane potential were also studied. No difference in body mass was observed between the 3 groups at the end of the experiment. Visceral fat mass was slightly but significantly elevated in rats on a high-fat high-sugar diet. Both diets did not affect plasma glucose or triglyceride levels but caused a modest elevation of total plasma cholesterol. Respiration and oxidative phosphorylation of isolated liver mitochondria were not affected by any experimental diet. In pancreatic acinar cells, a high-fat diet caused a significant decrease of basal respiration by ~15%, but no effects were observed on the maximal rate of uncoupled respiration, mitochondrial membrane potential, or NAD(P)H autofluorescence. In these cells, a ketone body 3-hydroxybutyrate caused elevation of uncoupled respiration and NAD(P)H level irrespectively of the diet. Diets did not cause any change in sperm concentration, viability or motility. Surprisingly, in animals on a high-fat high-sugar diet, a significant increase in both basal and maximal respiration of sperm cells was observed. Collectively, these data show that while the elevated fat and sugar content in the diet does not cause significant obesity, no detrimental effects on mitochondria of the liver, pancreas, and sperm cells are observed. Keywords: diet, liver, mitochondria, pancreatic acinar cells, sperm

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The important aspect of this study was that rats were on a high-fat diet to model the natural synthesis of FAEEs, which are detrimental to mitochondria in vitro [14]. We have recently found that a 7-week high-fat diet (without ethanol) causes only a minor decrease in basal but not maximal respiration of pancreatic acinar cells [25]. While we did not evaluate lipid metabolism in rats on a high-fat diet in present study, a 7-week high-fat diet did not cause significant changes in lipid plasma profile [25]. ...
... We have recently found that a 7-week high-fat diet (without ethanol) causes only a minor decrease in basal but not maximal respiration of pancreatic acinar cells [25]. While we did not evaluate lipid metabolism in rats on a high-fat diet in present study, a 7-week high-fat diet did not cause significant changes in lipid plasma profile [25]. Therefore, further studies are required to evaluate if FAEEs are indeed accumulated in the pancreas under such experimental conditions. ...
Article
Chronic alcohol consumption may cause pancreatitis and alcohol-related liver diseases. Both adaptation and damage of liver mitochondria in animals on chronic ethanol and high-fat diets were demonstrated. It is currently not clear if ethanol or its metabolites such as fatty acid ethyl esters can cause mitochondrial damage to the pancreas. The present study aimed to evaluate the effect of chronic ethanol administration in combination with a high-fat diet on mitochondrial respiration in both pancreatic acinar cells and hepatocytes of rats. Wistar male rats on a high-fat diet (35% calories) were administered ethanol (6 g/kg body weight) by oral gavage for 14 days. Pancreatic acini cells and hepatocytes were isolated with collagenase digestion. The respiration of isolated cells was studied with a Clark electrode. Ethanol administration to rats kept on a high-fat diet was followed by a rapid loss of animal weight during the first 5 days of the experiment and diminished secretory response of pancreatic acini to acetylcholine, however, no changes in acinar cells ultrastructure, basal, oligomycin-insensitive or FCCP-uncoupled respiration were found. Meanwhile ethanol caused a significant (~40%) increase in basal and maximal FCCP-uncoupled respiration rate of isolated hepatocytes. In conclusion, chronic ethanol administration to rats on a high-fat diet does not cause mitochondrial damage in the pancreas, while mitochondria of the liver adapt to ethanol by increasing respiration rate. Keywords: ethanol, hepatocytes, high fat diet, mitochondrial respiration, pancreatic acinar cells
Article
Full-text available
NAFLD is the world's most common chronic liver disease, and its increasing prevalence parallels the global rise in diabetes and obesity. It is characterised by fat accumulation in the liver evolving to non-alcoholic steatohepatitis (NASH), an inflammatory subtype that can lead to liver fibrosis and cirrhosis. Currently, there is no effective pharmacotherapeutic treatment for NAFLD. Treatment is therefore based on lifestyle modifications including changes to diet and exercise, although it is unclear what the most effective form of intervention is. The aim of this review, then, is to discuss the role of specific nutrients and the effects of different dietary interventions on NAFLD. It is well established that an unhealthy diet rich in calories, sugars, and saturated fats and low in polyunsaturated fatty acids, fibre, and micronutrients plays a critical role in the development and progression of this disease. However, few clinical trials have evaluated the effects of nutrition interventions on NAFLD. We, therefore, summarise what is currently known about the effects of macronutrients, foods, and dietary patterns on NAFLD prevention and treatment. Most current guidelines recommend low-calorie, plant-based diets, such as the Mediterranean diet, as the most effective dietary pattern to treat NAFLD. More clinical trials are required, however, to identify the best evidence-based dietary treatment approach.
Article
Full-text available
Obesity and its associated metabolic diseases are currently a priority research area. The increase in global prevalence at different ages is having an enormous economic and health impact. Genetic and environmental factors play a crucial role in the development of obesity, and diet is one of the main factors that contributes directly to the obesogenic phenotype. Scientific evidence has shown that increased fat intake is associated with the increase in body weight that triggers obesity. Rodent animal models have been extremely useful in the study of obesity since weight gain can easily be induced with a high-fat diet. Here, we review the dietary patterns and physiological mechanisms involved in the dynamics of energy balance. We report the main dietary options for the study of obesity and the variables to consider in the use of a high-fat diet, and assess the progression of obesity and diet-induced thermogenesis.
Article
Full-text available
Background: High fat diet impact transcription of hepatic genes responsible for drug metabolism and pharmacokinetics. Until now, researches just focused on a couple specific genes without a global profile showing. Age-dependent manner was also not noted well. This study aims to investigate the high fat diet effect on transcriptome of drug metabolism and pharmacokinetic system in mouse livers and show the age-dependent evidence. Methods: C57BL/6 male mice were used in this experiment. High fat diet was used to treat mice for 16 and 38 weeks. Serum total cholesterol, low density lipoprotein cholesterol, aspartate transaminase, and alanine transaminaselevels were measured. Meanwhile, Histology, RNA-Seq, RT-PCR analysis and fourteen major hepatic bile acids quantification were performed for the liver tissues. Data was mined at levels of genes, drug metabolism and pharmacokinetic sysem, and genome wide. Results: Treatment with high fat diet for 38 weeks significantly increased levels of serum lipids as well as aspartate transaminase, and alanine transaminase. Meanwhile, lipid accumulation in livers was observed. At week 38 of the experiment, the profile of 612 genes involved in drug metabolism and pharmacokinetics was significantly changed, indicated by a heatmap visulization and a principal component analysis. In total 210 genes were significantly regulated. Cyp3a11, Cyp4a10, and Cyp4a14 were down-regulated by 10-35 folds, while these three genes also were highly expressed in the liver. High fat diet regulated 11% of genome-wide gene while 30% of genes involved in the hepatic drug metabolism and pharmacokinetic system. Genes, including Adh4, Aldh1b1, Cyp3a11, Cyp4a10, Cyp8b1, Fmo2, Gsta3, Nat8f1, Slc22a7, Slco1a4, Sult5a1, and Ugt1a9, were regulated by high fat diet as an aging-dependent manner. Bile acids homeostasis, in which many genes related to metabolism and transportation were enriched, was also changed by high fat diet with an aging-dependet manner. Expression of genes in drug metabolism and disposition system significantly correlated to serum lipid profiles, and frequently correlated with each other. Conclusions: High fat diet changed the global transcription profile of hepatic drug metabolism and pharmacokinetic system with a age-dependent manner.
Article
Full-text available
The global rise in obesity and steady decline in sperm quality are two alarming trends that have emerged during recent decades. In parallel, evidence from model organisms shows that paternal diet can affect offspring metabolic health in a process involving sperm tRNA-derived small RNA (tsRNA). Here, we report that human sperm are acutely sensitive to nutrient flux, both in terms of sperm motility and changes in sperm tsRNA. Over the course of a 2-week diet intervention, in which we first introduced a healthy diet followed by a diet rich in sugar, sperm motility increased and stabilized at high levels. Small RNA-seq on repeatedly sampled sperm from the same individuals revealed that tsRNAs were up-regulated by eating a high-sugar diet for just 1 week. Unsupervised clustering identified two independent pathways for the biogenesis of these tsRNAs: one involving a novel class of fragments with specific cleavage in the T-loop of mature nuclear tRNAs and the other exclusively involving mitochondrial tsRNAs. Mitochondrial involvement was further supported by a similar up-regulation of mitochondrial rRNA-derived small RNA (rsRNA). Notably, the changes in sugar-sensitive tsRNA were positively associated with simultaneous changes in sperm motility and negatively associated with obesity in an independent clinical cohort. This rapid response to a dietary intervention on tsRNA in human sperm is attuned with the paternal intergenerational metabolic responses found in model organisms. More importantly, our findings suggest shared diet-sensitive mechanisms between sperm motility and the biogenesis of tsRNA, which provide novel insights about the interplay between nutrition and male reproductive health.
Article
Full-text available
The dependence of uncoupled respiratory capacity of intact pancreatic acini on oxidative substrate supply and functional cell state has not yet been studied in detail. In this study, the respiratory responses of isolated pancreatic acini to FCCP were measured with Clark electrode and mitochondrial membrane potential was assessed with rhodamine123 fluorescence. The response of acini to FCCP was characteri­zed with maximal uncoupled respiration rate, optimal FCCP concentration, respiration acceleration and decele­ration. Maximal uncoupled respiration rate substantially increased upon the oxidation of glucose + glutamine (3.03 ± 0.54 r.u.), glucose + glutamine + pyruvate (2.82 ± 0.51 r.u.), glucose + isocitrate (2.71 ± 0.33 r.u.), glucose + malate (2.75 ± 0.38 r.u.), glucose + monomethyl-succinate (2.64 ± 0.42 r.u.) or glucose + dimethyl-α-ketoglutarate (2.36 ± 0.33 r.u.) comparing to glucose alone (1.73–2.02 r.u.) or no substrate (1.76 ± 0.33 r.u.). The optimal FCCP concentration was the highest (1.75 μM) upon glucose + glutamine + pyruvate combination and the lowest (0.5 μM) upon glutamate, combinations of glucose with isocitrate, malate, succinate or α-ketoglutarate. Respiration acceleration after FCCP application was the highest with dimethyl-α-ketoglutarate. Following the peak respiration, time-dependent deceleration was observed. It increased with FCCP concentration and depended on oxidative substrate type. Deceleration was the highest upon malate or isocitrate oxidation but was not observed in case of glutamine or dimethyl-α-ketoglutarate oxidation. Pyruvate alone or in combination with glutamine and glucose significantly decreased the depolarizing effect of FCCP on mitochondrial membrane potential and increased respiration elasticity coefficient with respect to the membrane potential change. Thus, in pancreatic acinar cells, the combination of pyruvate, glutamine and glucose enables the optimal adaptive respiratory response to membrane depolarization.
Article
Full-text available
Recent evidences have linked abdominal obesity, insulin resistance, and dyslipidemia to male infertility. Since a defective energy metabolism may play an important role in the impairment of sperm quality, the aim of this study is to investigate the sperm energetic metabolism in rats fed with a high-fat diet, an animal model associated with metabolic syndrome development. Sexually mature male Sprague-Dawley rats were divided into two groups and fed for 4 weeks a standard diet (control group) or a diet enriched in 35% of fat (high fat group). Liver and adipose tissue weight, plasma glucose, insulin, and lipid concentrations were determined. Activities of enzymes involved in sperm energetic metabolism were evaluated by spectrophotometric assays. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption. The administration of a high-fat diet caused a significant increase in body weight of rats and provoked hyperglycemia, hyperinsulinemia, and dyslipidemia. In these animals, we also observed a reduction in sperm concentration and motility. The investigation of sperm energetic metabolism in animals fed a high-fat diet revealed an impairment in the activity of pyruvate and lactate dehydrogenase, citrate synthase, and respiratory chain complexes. A parallel reduction in the cellular levels of adenosine triphosphate (ATP) and an increase in oxidative damage were also observed. A defective energy metabolism may play an important role in the impairment of sperm quality in the high-fat diet fed rats.
Article
Full-text available
Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis.
Article
Full-text available
The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially. http://creativecommons.org/licenses/by-nc-nd/3.0.
Article
Full-text available
Insulin resistance plays a major role in the development of type 2 diabetes (T2D) and obesity and affects a number of biological processes such as mitochondrial biogenesis. Though mitochondrial dysfunction has been linked to the development of insulin resistance and pathogenesis of T2D,, the precise mechanism linking the two is not well understood. We used high fat diet (HFD)-induced obesity dependent diabetes mouse models to gain insight into the potential pathways altered with metabolic disease, and carried out quantitative proteomic analysis of liver mitochondria. As previously reported, proteins involved in fatty acid oxidation, branched chain amino acid degradation, tricarboxylic acid cycle, and oxidative phosphorylation were uniformly up-regulated in HFD fed mice compared to that of normal diet (ND).. Further, our studies revealed that retinol metabolism is distinctly down-regulated and the mitochondrial structural proteins -components of mitochondrial inter-membrane space bridging (MIB) complex (Mitofilin, Sam50 and ChChd3), and Tim proteins- essential for protein import, are significantly up-regulated in HFD fed mice. Structural and functional studies on HFD- and ND liver mitochondria revealed remodeling of HFD mitochondria to a more condensed form with increased respiratory capacity and higher ATP levels compared to ND mitochondria. Thus, it is likely that the structural remodeling is essential to accommodate the increased protein content in presence of HFD: the mechanism could be through the MIB-complex promoting contact site and crista junction formation and in turn facilitating the lipid and protein uptake.
Article
Full-text available
Obesity and obesity-related metabolic diseases represent a growing socioeconomic problem throughout the world. Great emphasis has been put on establishing treatments for this condition, including pharmacological intervention. However, there are many obstacles and pitfalls in the development process from pre-clinical research to the pharmacy counter, and there is no certainty that what has been observed pre-clinically will translate into an improvement in human health. Hence, it is important to test potential new drugs in a valid translational model early in their development. In the current mini-review, a number of monogenetic and polygenic models of obesity will be discussed in view of their translational character.
Article
Full-text available
We proposed that inhibition of mitochondrial adenine nucleotide translocator (ANT) by long chain acyl-CoA (LCAC) underlies the mechanism associating obesity and type 2 diabetes. Here we test that after long-term exposure to a high-fat diet (HFD): (i) there is no adaptation of the mitochondrial compartment that would hinder such ANT inhibition, and (ii) ANT has significant control of the relevant aspects of oxidative phosphorylation. After 7 weeks, HFD induced a 24+/-6% increase in hepatic LCAC concentration and accumulation of the oxidative stress marker N(epsilon)-(carboxymethyl)lysine. HFD did not significantly affect mitochondrial copy number, oxygen uptake, membrane potential (Deltapsi), ADP/O ratio, and the content of coenzyme Q(9), cytochromes b and a+a(3). Modular kinetic analysis showed that the kinetics of substrate oxidation, phosphorylation, proton leak, ATP-production and ATP-consumption were not influenced significantly. After HFD-feeding ANT exerted considerable control over oxygen uptake (control coefficient C=0.14) and phosphorylation fluxes (C=0.15), extra- (C=0.23) and intramitochondrial (C=-0.56) ATP/ADP ratios, and Deltapsi (C=-0.11). We conclude that although HFD induces accumulation of LCAC and N(epsilon)-(carboxymethyl)lysine, oxidative phosphorylation does not adapt to these metabolic challenges. Furthermore, ANT retains control of fluxes and intermediates, making inhibition of this enzyme a more probable link between obesity and type 2 diabetes.
Article
Full-text available
Mitochondria participate in key metabolic reactions of the cell and regulate crucial signaling pathways including apoptosis. Although several approaches are available to study mitochondrial function in situ are available, investigating functional mitochondria that have been isolated from different tissues and from cultured cells offers still more unmatched advantages. This protocol illustrates a step-by-step procedure to obtain functional mitochondria with high yield from cells grown in culture, liver and muscle. The isolation procedures described here require 1-2 hours, depending on the source of the organelles. The polarographic analysis can be completed in 1 hour.
Article
Development of advanced modalities for detection of fat within the pancreas has transformed understanding of the role of intra-pancreatic fat deposition (IPFD) in health and disease. There is now strong evidence for the presence of minimal (but not negligible) IPFD in healthy human pancreas. Diffuse excess IPFD, or fatty pancreas disease (FPD), is more frequent than type 2 diabetes mellitus (T2DM) (the most common disease of the endocrine pancreas) and acute pancreatitis (the most common disease of the exocrine pancreas) combined. FPD is not strictly a function of high BMI; it can result from the excess deposition of fat in the islets of Langerhans, acinar cells, inter-lobular stroma, acinar-to-adipocyte trans-differentiation or replacement of apoptotic acinar cells. This process leads to a wide array of diseases characterized by excess IPFD, including but not limited to acute pancreatitis, chronic pancreatitis, pancreatic cancer, T2DM, diabetes of the exocrine pancreas. There is ample evidence for FPD being potentially reversible. Weight loss-induced decrease of intra-pancreatic fat is tightly associated with remission of T2DM and its re-deposition with recurrence of the disease. Reversing FPD will open up opportunities for preventing or intercepting progression of major diseases of the exocrine pancreas in the future.
Article
Objectives: The objective of this study was to test whether pyruvate and glutamine affect the ethanol and cholecystokinin (CCK) effects on the mitochondrial function, viability, and morphology of rat pancreatic acini. Methods: Respiration was measured with Clark oxygen electrode. Mitochondrial membrane potential, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), cell morphology, and viability were studied with fluorescence microscopy. Results: In vitro, CCK (0.1 nM) caused pyruvate-dependent stimulation of basal and uncoupled respiration, and the effects were abolished by ethanol (20 mM). The combination of ethanol with CCK (2 hours) caused necrosis of approximately 40% acinar cells in medium with glucose, but not with pyruvate and/or glutamine. Cholecystokinin (10 nM) or ethanol with 0.1 nM CCK caused plasma membrane blebbing not related to apoptosis only when both glutamine and pyruvate were present. Glutamine, but not pyruvate, decreased NAD(P)H level and prevented the effects of ethanol with CCK on mitochondrial membrane potential and NAD(P)H, but, in combination with CCK and ethanol, decreased the uncoupled respiration. In vivo, the combination of ethanol (4 g/kg) and CCK (20 pmol/kg) suppressed basal and uncoupled respiration and caused acinar cell blebbing, but not necrosis. Conclusions: The lack of sufficient substrate supply in vitro makes pancreatic acinar cells susceptible to necrosis caused by ethanol and CCK in clinically relevant concentrations.
Article
Diet is a critical element determining human health and diseases, and unbalanced food habits are major risk factors for the development of obesity and related metabolic disorders. Despite technological and pharmacological advances, as well as intensification of awareness campaigns, the prevalence of metabolic disorders worldwide is still increasing. Thus, novel therapeutic approaches with increased efficacy are urgently required, which often depends on cellular and molecular investigations using robust animal models. In the absence of perfect rodent models, those induced by excessive consumption of fat and sugars better replicate the key aspects that are the root causes of human metabolic diseases. However, the results obtained using these models cannot be directly compared, particularly because of the use of different dietary protocols, and animal species and strains, among other confounding factors. This review article revisits diet‐induced models of obesity and related metabolic disorders, namely, metabolic syndrome, prediabetes, diabetes and nonalcoholic fatty liver disease. A critical analysis focused on the main pathophysiological features of rodent models, as opposed to the criteria defined for humans, is provided as a practical guide with a translational perspective for the establishment of animal models of obesity‐related metabolic diseases.
Article
Obesity in men of reproductive age is increasing worldwide, impacting negatively on reproductive potential, sperm function and assisted reproduction outcomes. Changes in modern eating behaviors are needed to invert the negative correlation between lifestyle and sperm quality. It is known from the literature that fatty acids are able to modulate lipid metabolism by complex mechanisms involving a sequence of interdependent and cross-regulated molecular events. Although a great deal of data is currently available on the dietary modulation of lipid metabolism, little is known about the nutritional regulation of sperm energetic metabolism. In this review, major data from the literature about the role of some dietary fats as modulators of sperm function and quality are described. Moreover, biochemical mechanisms responsible for an impairment or improvement in sperm bioenergetics are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fats influence sperm function. The administration of a high-fat diet, low in polyunsaturated fatty acids, caused a significant increase in body weight hyperglycemia, hyperinsulinemia and dyslipidemia, along with a significant reduction in sperm quality. In contrast, unsaturated fatty acids are able to positively influence sperm quality and function. The understanding of the biochemical mechanisms underlying the development of male infertility related to obesity led us to depict a possible framework for the molecular action of fatty acids on sperm quality during dysmetabolic conditions.
Article
Obesity is a heritable disorder, with children of obese fathers at higher risk of developing obesity. Environmental factors epigenetically influence somatic tissues, but the contribution of these factors to the establishment of epigenetic patterns in human gametes is unknown. Here, we hypothesized that weight loss remodels the epigenetic signature of spermatozoa in human obesity. Comprehensive profiling of the epigenome of sperm from lean and obese men showed similar histone positioning, but small non-coding RNA expression and DNA methylation patterns were markedly different. In a separate cohort of morbidly obese men, surgery-induced weight loss was associated with a dramatic remodeling of sperm DNA methylation, notably at genetic locations implicated in the central control of appetite. Our data provide evidence that the epigenome of human spermatozoa dynamically changes under environmental pressure and offers insight into how obesity may propagate metabolic dysfunction to the next generation.
Article
Mitochondria maintain numerous energy-consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ. Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl- and sucrose-based solutions using Clark oxygen electrode. Respiration of digitonin-treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate-stimulated respiration rate did not depend on solution composition. In sucrose-based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl-based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose-based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non-mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose-based solution. Copyright © 2012 John Wiley & Sons, Ltd.
Article
Obesity, a risk factor for insulin resistance, contributes to the development of type 2 diabetes and cardiovascular diseases. The relationship between increased levels of free fatty acids in the liver mitochondria, mitochondrial function, and ROS generation in rat model of obesity induced by a high-sucrose diet was not sufficiently established. We determined how the bioenergetic functions and ROS generation of the mitochondria respond to a hyperlipidemic environment. Mitochondria from sucrose-fed rats generated H(2)O(2) at a higher rate than the control mitochondria. Adding fatty acid-free bovine serum albumin to mitochondria from sucrose-fed rats significantly reduced the rate of H(2)O(2) generation. In contrast, adding exogenous oleic or linoleic acid exacerbated the rate of H(2)O(2) generation in both sucrose-fed and control mitochondria, and the mitochondria from sucrose-fed rats were more sensitive than the control mitochondria. The increased rate of H(2)O(2) generation in sucrose-fed mitochondria corresponded to decreased levels of reduced GSH and vitamin E and increased levels of Cu/Zn-SOD in the intermembrane space. There was no difference between the levels of lipid peroxidation and protein carbonylation in the two types of mitochondria. In addition to the normal activity of Mn-SOD, GPX and catalase detected an increased activity of complex II, and upregulation of UCP2 was observed in mitochondria from sucrose-fed rats, all of which may accelerate respiration rates and reduce generation of ROS. In turn, these effects may protect the mitochondria of sucrose-fed rats from oxidative stress and preserve their function and integrity. However, in whole liver these adaptive mechanisms of the mitochondria were inefficient at counteracting redox imbalances and inhibiting oxidative stress outside of the mitochondria.
Article
We have previously demonstrated that the C57BL/6J (B/6J) mouse will develop severe obesity, hyperglycemia, and hyperinsulinemia if weaned onto a high-fat, high-sucrose (HH) diet. In the present study, we compared the effects of fat and sucrose separately and in combination on diabetes- and obesity-prone B/6J and diabetes- and obesity-resistant A/J mice. After 4 months, the feed efficiency ([FE] weight gained divided by calories consumed) did not differ across diets in A/J mice, but B/6J mice showed a significantly increased FE for fat. That is, B/6J mice gained more weight on high-fat diets without consuming more calories than A/J mice. The increase in FE was related to adipocyte hyperplasia in B/6J mice on high-fat diets. Fat-induced obesity in B/6J mice was unrelated to adrenal cortical activity. In the absence of fat, sucrose produced a decreased in FE in both strains. Animals fed a low-fat, high-sucrose (LH) diet were actually leaner than animals fed a high-complex-carbohydrate diet. Fat was also found to be the critical stimulus for hyperglycemia and hyperinsulinemia in B/6J mice. In the absence of fat, sucrose had no effect on plasma glucose or insulin. These data clearly show that across these two strains of mice, genetic differences in the metabolic response to fat are more important in the development of obesity and diabetes than the increased caloric content of a high-fat diet.
Article
To understand the molecular mechanisms underlying alterations in the pathophysiologic status of dietary obesity, we examined hepatic genes differentially expressed in a long-term high-fat intake-induced obesity mouse model. C57BL/6J male mice were fed with two kinds of diets for 12 weeks; a low-fat diet (LFD), a high-fat diet (HFD; n=8), and the expression levels of approximately 10,000 transcripts in liver tissues from the two groups were assessed using cDNA microarray analysis. Twelve-week feeding with the HFD resulted in significant increase in body weight, visceral fat accumulation and circulating cholesterol concentration, compared with the LFD group. The cDNA microarray analysis revealed marked differences in the expressions of 97 hepatic genes. These genes were categorized into seven groups:metabolism; defense, stress, and inflammation responses; signal transduction, apoptosis, and cell cycle; transcription regulation; protein synthesis and modification; transport; and cellular adhesion, cytoskeleton and trafficking. The expression of genes involved in fatty acid catabolism and ketone body synthesis, such as acyl-CoA oxidase1 (Acox1) and HMG-CoA lyase (Hmgcl), was significantly increased, and expression of genes involved in lipogenesis and cholesterol synthesis, such as acetyl-CoA synthetase2 (Acs2), fatty acid synthase (Fasn), and squalene epoxidase (Sqle), was drastically decreased in the HFD group. Interestingly, the genes implicated in defense and stress responses, such as glutathione S-transferases (GSTs) and heat shock proteins (Hsps), were also highly represented in the HFD group. Besides, a number of previously unappreciated regulatory molecules were changed by the HFD. These results revealed a transcriptional adaptation to long-term HFD and provided interesting information about the molecules involved in the development and maintenance of the obesity phenotype in vivo.
Article
The prevalence of obesity is increasing. Although the etiology of obesity is complex, dietary factors, particularly the consumption of a high-fat (HF) diet, is considered a risk factor for its development. Nonetheless, a causal role of dietary fat has never been definitively documented, in part because of inadequate animal models. We developed a rat model of diet-induced obesity that will be a powerful tool for assessment of this issue. In four experiments, Long-Evans rats ate ad libitum a synthetic semipurified diet containing 20 g (HF) or 4 g [low-fat (LF)] of fat/100 g of diet or a nonpurified diet. Other rats ate ad libitum the HF diet in amounts matched to the energy intake of the LF rats. When compared over 10 wk of free feeding, HF rats weighed 10% more (P < 0.01) than LF rats and had 50% more body fat (P < 0.01), as well as significant hyperleptinemia and insulin resistance. Compared with rats fed the nonpurified diet, the HF rats had even more marked differences in these variables. The rats fed the HF diet to match the rats fed the LF diet had similar body weights but significantly more adipose tissue than LF rats, suggesting that diet composition and/or energy density of the diet affects fat deposition. This dietary regimen has reproducible effects on body size and composition, and these are similar in male and female rats. This model of diet-induced obesity will be a useful tool for studying the mechanisms by which dietary fat influences the regulation of energy balance.
Article
Fatty acid ethyl esters are ethanol metabolites inducing sustained, toxic elevations of the acinar cytosolic free calcium ion concentration ([Ca(2+)](C)) implicated in pancreatitis. We sought to define the mechanisms of this elevation. Isolated mouse pancreatic acinar cells were loaded with fluorescent dyes for confocal microscopy to measure [Ca(2+)](C) (Fluo 4, Fura Red), endoplasmic reticulum calcium ion concentration ([Ca(2+)](ER), Mg Fluo 4), mitochondrial membrane potential (TMRM), ADP:ATP ratio (Mg Green), and NADH autofluorescence in response to palmitoleic acid ethyl ester and palmitoleic acid (10-100 micromol/L). Whole-cell patch clamp was used to measure the calcium-activated chloride current and apply ethanol metabolites and/or ATP intracellularly. Intracellular delivery of ester induced oscillatory increases of [Ca(2+)](C) and calcium-activated currents, inhibited acutely by caffeine (20 mmol/L), but not atropine, indicating involvement of inositol trisphosphate receptor channels. The stronger effect of extracellular ester or acid caused depletion of [Ca(2+)](ER), not prevented by caffeine, but associated with depleted ATP, depleted NADH autofluorescence, and depolarized mitochondria, suggesting calcium-ATPase pump failure because of lack of ATP. Intracellular ATP abolished the sustained rise in [Ca(2+)](C), although oscillatory signals persisted that were prevented by caffeine. Inhibition of ester hydrolysis markedly reduced its calcium-releasing effect and consequent toxicity. Fatty acid ethyl ester increases [Ca(2+)](C) through inositol trisphosphate receptors and, following hydrolysis, through calcium-ATPase pump failure from impaired mitochondrial ATP production. Lowering cellular fatty acid substrate concentrations may reduce cell injury in pancreatitis.
Article
Relations between hyperlipidemia and chronic pancreatitis remain unclear. Microcirculatory disturbances and oxidative stress are involved in pathogeneses of a high numbers of diseases. The objective of this study was to induce hyperlipidemia in rats by long-term high-fat diet intake, then investigate the biochemical, microcirculatory, and histological alterations in blood and pancreatic tissues of these animals, and discuss their potential significances. Pancreatic blood flow was detected by intravital microscope; malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured in pancreatic tissues for assessment of oxidative stress and alpha-smooth muscle actin (alpha-SMA) expression was determined by immunohistochemical staining and RT-PCR. The results showed that the velocity of pancreatic microvascular blood flow of rats with hyperlipidemia decreased significantly as compared to control value (p = 0.008). Pancreatic MDA content increased whereas SOD activity decreased in these rats (p = 0.022; p = 0.039, respectively). Histologically, microvesicles in acinar and islet cells, dilated rough endoplasmic reticulum, swollen mitochondrion and modified vascular endothelial cells were observed under light microscope and transmission electron microscope. In addition, alpha-SMA expression was up-regulated significantly (p < 0.05). These results suggest that long-term high-fat diet can induce chronic pancreatic injuries which could be considered as "nonalcoholic fatty pancreatic disease", and pancreatic microcirculatory disturbances and oxidative stress may play an important part in the underlying pathogenesis.
A controlled high-fat diet induces an obese syndrome in rats
  • S C Woods
  • R J Seeley
  • P A Rushing
  • D ' Alessio
  • D Tso
Woods SC, Seeley RJ, Rushing PA, D' Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. J Nutr. 2003; 133(4): 1081-1087.
Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans
  • I Donkin
  • S Versteyhe
  • L R Ingerslev
  • K Qian
  • M Mechta
  • L Nordkap
  • B Mortensen
  • Evr Appel
  • N Jørgensen
  • V B Kristiansen
  • T Hansen
  • C T Workman
  • J R Zierath
  • R Barrès
Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, Mortensen B, Appel EVR, Jørgensen N, Kristiansen VB, Hansen T, Workman CT, Zierath JR, Barrès R. Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metab. 2016; 23(2): 369-378.