Conference Paper

Classification of Dementia EEG Signals by Using Time-Frequency Images for Deep Learning

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Chapter
Full-text available
As the world is experiencing population growth, the portion of the older people, aged 65 and above, is also growing at a faster rate. As a result, the dementia with Alzheimer’s disease is expected to increase rapidly in the next few years. Currently, healthcare systems require an accurate detection of the disease for its treatment and prevention. Therefore, it has become essential to develop a framework for early detection of Alzheimer’s disease to avoid complications. To this end, a novel framework, based on machine-learning (ML) and deep-learning (DL) methods, is proposed to detect Alzheimer’s disease. In particular, the performance of different ML and DL algorithms has been evaluated against their detection accuracy. The experimental results state that bidirectional long short-term memory (BiLSTM) outperforms the ML methods with a detection accuracy of 91.28%. Furthermore, the comparison with the state-of-the-art indicates the superiority of the our framework over the other proposed approaches in the literature.KeywordsMachine learningDeep learningDetecting Alzheimer
Article
Full-text available
Using strategies that obtain biomarkers where early symptoms coincide, the early detection of Alzheimer's disease and its complications is essential. Electroencephalogram is a technology that allows thousands of neurons with equal spatial orientation of the duration of cerebral cortex electrical activity to be registered by postsynaptic potential. Therefore, in this paper, the time-dependent power spectrum descriptors are used to diagnose the electroencephalogram signal function from three groups: mild cognitive impairment, Alzheimer's disease, and healthy control test samples. The final feature used in three modes of traditional classification methods is recorded: k-nearest neighbors, support vector machine, linear discriminant analysis approaches, and documented results. Finally, for Alzheimer's disease patient classification, the convolutional neural network architecture is presented. The results are indicated using output assessment. For the convolutional neural network approach, the accurate meaning of accuracy is 82.3%. 85% of mild cognitive impairment cases are accurately detected in-depth, but 89.1% of the Alzheimer's disease and 75% of the healthy population are correctly diagnosed. The presented convolutional neural network outperforms other approaches because performance and the k-nearest neighbors' approach is the next target. The linear discriminant analysis and support vector machine were at the low area under the curve values.
Article
Full-text available
Multiscale entropy (MSE) was used to analyze electroencephalography (EEG) signals to differentiate patients with Alzheimer’s disease (AD) from healthy subjects. It was found that the MSE values of the EEG signals from the heathy subjects are higher than those of the AD ones at small time scale factors in the MSE algorithm, while lower than those of the AD patients at large time scale factors. Based on the finding, we applied the linear discriminant analysis (LDA) to optimize the differentiating performance by comparing the resulting weighted sum of the MSE values under some specific time scales of each subject. The EEG data from 15 healthy subjects, 69 patients with mild AD, and 15 patients with moderate to severe AD were recorded. As a result, the weighted sum values are significantly higher for the healthy than the patients with moderate to severe AD groups. The optimal testing accuracy under five specific scales is 100% based on the EEG signals acquired from the T4 electrode. The resulting weighted sum value for the mild AD group is in the middle of those for the healthy and the moderate to severe AD groups. Therefore, the MSE-based weighted sum value can potentially be an index of severity of Alzheimer’s disease.
Article
Full-text available
In the last two decades, both Empirical Mode Decomposition (EMD) and Intrinsic Time-Scale Decomposition (ITD) algorithms deserved a variety of applications in various fields of science and engineering due to their obvious advantages compared to conventional (e.g. correlation-or spectral-based analysis) approaches like the ability of their direct application to non-stationary signal analysis. However, high computational complexity remains a common drawback of these otherwise universal and powerful algorithms. Here we compare similarly designed signal analysis algorithms utilizing either EMD or ITD as their core functions. Based on extensive computer simulations, we show explicitly that the replacement of EMD by ITD in several otherwise similar signal analysis scenarios leads to the increased noise robustness with simultaneous considerable reduction of the processing time. We also demonstrate that the proposed algorithms modifications could be successfully utilized in a series of emerging applications for processing of non-stationary signals.
Article
Full-text available
• A fused CNN architecture achieving classification accuracy rate of 87.62%.
Article
Full-text available
The oldest-old are the fastest growing segment of the Western population. Over half of the oldest-old will have dementia, but the etiology is yet unknown. Age is the only risk factor consistently associated with dementia in the oldest-old. Many of the risk and protective factors for dementia in the young elderly, such as ApoE genotype, physical activity, and healthy lifestyle, are not relevant for the oldest-old. Neuropathology is abundant in the oldest-old brains, but specific pathologies of Alzheimer's disease (AD) or vascular dementia are not necessarily correlated with cognition, as in younger persons. It has been suggested that accumulation of both AD-like and vascular pathologies, loss of synaptic proteins, and neuronal loss contribute to the cognitive decline observed in the oldest-old. Several characteristics of the oldest-old may confound the diagnosis of dementia in this age group. A gradual age-related cognitive decline, particularly in executive function and mental speed, is evident even in non-demented oldest-old. Hearing and vision losses, which are also prevalent in the oldest-old and found in some cases to precede/predict cognitive decline, may mechanically interfere in neuropsychological evaluations. Difficulties in carrying out everyday activities, observed in the majority of the oldest-old, may be the result of motor or physical dysfunction and of neurodegenerative processes. The oldest-old appear to be a select population, who escapes major illnesses or delays their onset and duration toward the end of life. Dementia in the oldest-old may be manifested when a substantial amount of pathology is accumulated, or with a composition of a variety of pathologies. Investigating the clinical and pathological features of dementia in the oldest-old is of great importance in order to develop therapeutic strategies and to provide the most elderly of our population with good quality of life.
Article
Full-text available
We introduce a new algorithm, the intrinsic time-scale decomposition (ITD), for efficient and precise time–frequency–energy (TFE) analysis of signals. The ITD method overcomes many of the limitations of both classical (e.g. Fourier transform or wavelet transform based) and more recent (empirical mode decomposition based) approaches to TFE analysis of signals that are nonlinear and/or non-stationary in nature. The ITD method decomposes a signal into (i) a sum of proper rotation components, for which instantaneous frequency and amplitude are well defined, and (ii) a monotonic trend. The decomposition preserves precise temporal information regarding signal critical points and riding waves, with a temporal resolution equal to the time-scale of extrema occurrence in the input signal. We also demonstrate how the ITD enables application of single-wave analysis and how this, in turn, leads to a powerful new class of real-time signal filters, which extract and utilize the inherent instantaneous amplitude and frequency/phase information in combination with other relevant morphological features.
Article
Dementia is one of the most common neurological disorders causing defection of cognitive functions, and seriously affects the quality of life. In this study, various methods have been proposed for the detection and follow-up of Alzheimer's dementia (AD) with advanced signal processing methods by using electroencephalography (EEG) signals. Signal decomposition-based approaches such as empirical mode decomposition (EMD), ensemble EMD (EEMD), and discrete wavelet transform (DWT) are presented to classify EEG segments of control subjects (CSs) and AD patients. Intrinsic mode functions (IMFs) are obtained from the signals using the EMD and EEMD methods, and the IMFs showing the most significant differences between the two groups are selected by applying previously suggested selection procedures. Five-time-domain and 5-spectral-domain features are calculated using selected IMFs, and five detail and approximation coefficients of DWT. Signal decomposition processes are conducted for both 1 min and 5 s EEG segment durations. For the 1 min segment duration, all the proposed approaches yield prominent classification performances. While the highest classification accuracies are obtained using EMD (91.8%) and EEMD (94.1%) approaches from the temporal/right brain cluster, the highest classification accuracy for the DWT (95.2%) approach is obtained from the temporal/left brain cluster for 1 min segment duration.
Article
Background Alzheimer’s disease (AD) is one of the deadliest diseases in developed countries. Treatments following early AD detection can significantly delay institutionalisation and extend patients’ independence. There has been a growing focus on early AD detection using artificial intelligence. Convolutional neural networks (CNNs) have proven revolutionary for image-based applications and have been applied to brain scans. In recent years, studies have utilised two-dimensional (2D) CNNs on magnetic resonance imaging (MRI) scans for AD detection. To apply a 2D CNN on three-dimensional (3D) MRI volumes, each MRI scan is split into 2D image slices. A CNN is trained over the image slices by calculating a loss function between each subject’s label and each image slice’s predicted output. Although 2D CNNs can discover spatial dependencies in an image slice, they cannot understand the temporal dependencies among 2D image slices in a 3D MRI volume. This study aims to resolve this issue by modelling the sequence of MRI features produced by a CNN with deep sequence-based networks for AD detection. Method The CNN utilised in this paper was ResNet-18 pre-trained on an ImageNet dataset. The employed sequence-based models were the temporal convolutional network (TCN) and different types of recurrent neural networks. Several deep sequence-based models and configurations were implemented and compared for AD detection. Results Our proposed TCN model achieved the best classification performance with 91.78% accuracy, 91.56% sensitivity and 92% specificity. Conclusion Our results show that applying sequence-based models can improve the classification accuracy of 2D and 3D CNNs for AD detection by up to 10%.
Article
Background and objective Alzheimer’s disease (AD) is characterized by cognitive, behavioral and intellectual deficits. The term mild cognitive impairment (MCI) is used to describe individuals whose cognitive impairment departing from their expectations for the age that does not interfere with daily activities. To diagnose these disorders, a combination of time-consuming, expensive tests that has difficulties for the target population are evaluated, moreover, the evaluation may yield subjective results. In the presented study, a novel methodology is developed for the automatic detection of AD and MCI using EEG signals. Methods This study analyzed the EEGs of 35 subjects (16 MCI, 8 AD, 11 healthy control) with the developed algorithm. The algorithm consists of 3 methods for analysis, discrete wavelet transform(DWT), power spectral density (PSD) and coherence. In the first approach, DWT is applied to the signals to obtain major EEG sub-bands, afterward, PSD of each sub-band is calculated using Burg’s method. In the second approach, interhemispheric coherence values are calculated. The variance and amplitude summation of each sub-bands’ PSD and the amplitude summation of the coherence values corresponding to the major sub-bands are determined as features. Bagged Trees is selected as a classifier among the other tested classification algorithms. Data set is used to train the classifier with 5-fold cross-validation. Results As a result, accuracy, sensitivity, and specificity of 96.5%, 96.21%, 97.96% are achieved respectively. Conclusion In this study, we have investigated whether EEG can provide efficient clues about the neuropathology of Alzheimer's Disease and mild cognitive impairment for early and accurate diagnosis. Accordingly, a decision support system that produces reproducible and objective results with high accuracy is developed.
Article
Alzheimer's Disease (AD) is the most common type of dementia with world prevalence of more than 46 million people. The Mini-Mental State Examination (MMSE) score is used to categorize the severity and evaluate the disease progress. The electroencephalogram (EEG) is a cost-effective diagnostic tool and lately, new methods have developed for MMSE score correlation with EEG markers. In this paper, EEG recordings acquired from 14 patients with mild and moderate AD and 10 control subjects are analyzed in the five EEG rhythms (δ, θ, α, β, γ). Then, 38 linear and non-linear features are calculated. Multiregression linear analysis showed highly correlation of with MMSE score variation with Permutation Entropy of δ rhythm, Sample Entropy of θ rhythm and Relative θ power. Also, the best statistically significant regression models in terms of R ² are at O2 (0.542) and F4 (0.513) electrodes and at posterior (0.365) and left-temporal cluster (0.360).
Article
Intrinsic time-scale decomposition (ITD) is a new nonlinear method of time-frequency representation which can decipher the minute changes in the nonlinear EEG signals. In this work, we have automatically classified normal, interictal and ictal EEG signals using the features derived from the ITD representation. The energy, fractal dimension and sample entropy features computed on ITD representation coupled with decision tree classifier has yielded an average classification accuracy of 95.67%, sensitivity and specificity of 99% and 99.5%, respectively using 10-fold cross validation scheme. With application of the nonlinear ITD representation, along with conceptual advancement and improvement of the accuracy, the developed system is clinically ready for mass screening in resource constrained and emerging economy scenarios.
World health organization fact sheet—dementia
  • W H Organization
Adaptive signal processing algorithms based on EMD and ITD
  • A Voznesensky
  • D Kaplun
Dementia: a public health priority
  • W H Organization