Conference Paper

Language in the Brain

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

On a daily basis, a human being relies on the ability to perceive, recognize, interpret and reproduce a stream of speech. The language is biologically encoded in our brain since the day we are born. Described briefly as the exchange of thoughts, ideas and knowledge, language was difficult to be precisely localized within the brain for many years. The most important areas of the brain involved in the speech and language systems in the brain have been researched and discussed starting with patients whose brain was damaged and the main effects were speech problems in talking or in comprehension of the speech. Definitions of language, descriptions of functionality and as accurate as can be spoken organization of the main systems within the human brain have been tried to be let in the research field. Looking back in the literature, we can see that the most important role in this field is taken by the latest neuroimaging methods developed over the years and which helped researchers in exploring and mapping the brain.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Humans are biologically endowed with the faculty of language. However, the way neonates can crack this complex communicative code is yet not totally understood. While phonetic discrimination has been widely investigated in neonates, less is known about the role of supra-segments patterns in the recognition of native language. Therefore, the aim of this study was to evaluate accent discrimination abilities in newborns in a sentential prosody paradigm. We used near-infared spectroscopy to investigate accent discrimination in 21 full-term born infants within the first days of life. Sentential prosody was used to investigate: (a) native accent, (b) foreign accent, and (c) flattened accent. Neonates revealed a significantly smaller hemodynamic response to native accent compared to flattened accent and foreign accent, respectively. Cluster-based permutation analysis revealed two clusters with a significant difference between the two conditions native accent and foreign accent. The first cluster covered the middle and superior frontal, middle and superior temporal, central, and parietal areas within the left hemisphere. The second cluster, located in the right hemisphere, covered inferior, middle, and superior frontal, central, middle and superior temporal areas. We therefore conclude that neonates can differentiate prosodic features like accents within the same language a few days after birth.
Article
Full-text available
Much of Noam Chomsky's revolution in linguistics—including its account of the way we learn languages—is being overturned
Article
Full-text available
Human speech requires complex planning and coordination of mouth and tongue movements. Certain types of brain injury can lead to a condition known as apraxia of speech, in which patients are impaired in their ability to coordinate speech movements but their ability to perceive speech sounds, including their own errors, is unaffected. The brain regions involved in coordinating speech, however, remain largely unknown. In this study, brain lesions of 25 stroke patients with a disorder in the motor planning of articulatory movements were compared with lesions of 19 patients without such deficits. A robust double dissociation was found between these two groups. All patients with articulatory planning deficits had lesions that included a discrete region of the left precentral gyrus of the insula, a cortical area beneath the frontal and temporal lobes. This area was completely spared in all patients without these articulation deficits. Thus this area seems to be specialized for the motor planning of speech.
Article
Full-text available
Earlier formulations of the relation of language and the brain provided oversimplified accounts of the nature of language disorders, classifying patients into syndromes characterized by the disruption of sensory or motor word representations or by the disruption of syntax or semantics. More recent neuropsychological findings, drawn mainly from case studies, provide evidence regarding the various levels of representations and processes involved in single-word and sentence processing. Lesion data and neuroimaging findings are converging to some extent in providing localization of these components of language processing, particularly at the single-word level. Much work remains to be done in developing precise theoretical accounts of sentence processing that can accommodate the observed patterns of breakdown. Such theoretical developments may provide a means of accommodating the seemingly contradictory findings regarding the neural organization of sentence processing.
Article
Full-text available
In 1861, the French surgeon, Pierre Paul Broca, described two patients who had lost the ability to speak after injury to the posterior inferior frontal gyrus of the brain. Since that time, an infinite number of clinical and functional imaging studies have relied on this brain-behaviour relationship as their anchor for the localization of speech functions. Clinical studies of Broca's aphasia often assume that the deficits in these patients are due entirely to dysfunction in Broca's area, thereby attributing all aspects of the disorder to this one brain region. Moreover, functional imaging studies often rely on activation in Broca's area as verification that tasks have successfully tapped speech centres. Despite these strong assumptions, the range of locations ascribed to Broca's area varies broadly across studies. In addition, recent findings with language-impaired patients have suggested that other regions also play a role in speech production, some of which are medial to the area originally described by Broca on the lateral surface of the brain. Given the historical significance of Broca's original patients and the increasing reliance on Broca's area as a major speech centre, we thought it important to re-inspect these brains to determine the precise location of their lesions as well as other possible areas of damage. Here we describe the results of high resolution magnetic resonance imaging of the preserved brains of Broca's two historic patients. We found that both patients' lesions extended significantly into medial regions of the brain, in addition to the surface lesions observed by Broca. Results also indicate inconsistencies between the area originally identified by Broca and what is now called Broca's area, a finding with significant ramifications for both lesion and functional neuroimaging studies of this well-known brain area.
Article
Full-text available
Despite decades of research, the functional neuroanatomy of speech processing has been difficult to characterize. A major impediment to progress may have been the failure to consider task effects when mapping speech-related processing systems. We outline a dual-stream model of speech processing that remedies this situation. In this model, a ventral stream processes speech signals for comprehension, and a dorsal stream maps acoustic speech signals to frontal lobe articulatory networks. The model assumes that the ventral stream is largely bilaterally organized--although there are important computational differences between the left- and right-hemisphere systems--and that the dorsal stream is strongly left-hemisphere dominant.
Article
The localization of articulate language (speech) to the posterior third of the third left frontal convolution-Broca's area-did not occur to Broca as he reported the case of his first aphasic patient in 1861. Initially Broca localized articulate language to both frontal lobes, a position that he maintained for 4 years after publishing his first case. In the interval, the Academy of Medicine in Paris had received a copy of a paper authored in 1836 by Marc Dax, in which Dax claimed that the ability to speak resides within the left hemisphere alone. The Academy of Medicine convened in the spring of 1865 to adjudicate the issue. All of the distinguished speakers argued against Dax's contention by citing the prevailing paradigm, that bilaterally symmetrical organs, such as the eyes and ears, and the hemispheres of the brain, must perform the same function. The lone dissenting voice was that of Jules Baillarger, the discoverer of the laminar organization of the cerebral cortex, whose argument in favor of what he called "Dax's law" was so lucid that it carried the day. During his address to the Academy, Baillarger not only supported left-hemisphere dominance for speech, but for the first time described two forms of aphasia, fluent and nonfluent, now referred to as Wernicke's and Broca's aphasias, respectively, as well as the ability of aphasics to speak during emotional outbursts, to which we now refer as Baillarger-Jackson aphasia. It was 9 days after Baillarger's address that Broca, for the first time, unequivocally localized speech to the left frontal lobe.This paper is based on the author's reading of Dax's and Broca's original texts and of the texts read before the Academy of Medicine meeting held at the National Library of France between April 4, 1865, and June 13, 1865. From these primary sources it is concluded that the Academy of Medicine's debate was the last serious challenge to left-hemisphere dominance for speech and to the localization of articulate language to the left frontal lobe-and that Jules Baillarger played a pivotal role in what was a defining moment in neurobiology.
Chapter
Cerebral oximetry is a noninvasive monitoring modality based on several physical principles that basically acts as an indirect indicator of perfusion adequacy. Therefore, it allows continuous information on oxygen supply-versus-demand balance. It has numerous applications in the clinical field but also in research. This monitor is now being evaluated in a variety of different clinical areas, mostly adult1 and pediatric cardiac surgery,2,3 as well as in neurology,4 neurosurgery, 5 trauma,6 vascular surgery,7 during cardiac arrest,8,9 and in cardiology procedures.10 Despite various uses in many clinical settings and numerous physiological applications, near-infrared spectroscopy (NIRS) has been used mainly to detect and correct intraoperative cerebral desaturations in cardiac surgery. The prognostic value of these desaturations, the specific thresholds requiring intervention, and the clinical impact of this type of monitoring are still under current investigation.1,11 In this chapter, we will review the underlying physical principles on which cerebral oximetry is based. The indications, current applications, and limitations of this monitoring modality will be reviewed. There is an abundant literature on NIRS with more than 17,323 articles on PubMed. We will not be able to review the entire literature on cerebral oximetry; however, we will report systematic reviews when available. In addition, we will share our experience using this monitoring modality at the Montreal Heart Institute since 2002.
Article
Background: More than 95% of right-handed individuals, as well as almost 80% of left-handed individuals, have left hemisphere dominance for language. The perisylvian networks of the dominant hemisphere tend to be the most important language systems in human brains, usually connected by bidirectional fibres originated from the superior longitudinal fascicle/arcuate fascicle system and potentially modifiable by learning. Neuroplasticity mechanisms take place to preserve neural functions after brain injuries. Language is dependent on a hierarchical interlinkage of serial and parallel processing areas in distinct brain regions considered to be elementary processing units. Whereas aphasic syndromes typically result from injuries to the dominant hemisphere, the extent of the distribution of language functions seems to be variable for each individual. Method: Review of the literature Results: Several theories try to explain the organization of language networks in the human brain from a point of view that involves either modular or distributed processing or sometimes both. The most important evidence for each approach is discussed under the light of modern theories of organization of neural networks. Conclusions: Understanding the connectivity patterns of language networks may provide deeper insights into language functions, supporting evidence-based rehabilitation strategies that focus on the enhancement of language organization for patients with aphasic syndromes.
Article
Classic models of language organization posited that separate motor and sensory language foci existed in the inferior frontal gyrus (Broca's area) and superior temporal gyrus (Wernicke's area), respectively, and that connections between these sites (arcuate fasciculus) allowed for auditory-motor interaction. These theories have predominated for more than a century, but advances in neuroimaging and stimulation mapping have provided a more detailed description of the functional neuroanatomy of language. New insights have shaped modern network-based models of speech processing composed of parallel and interconnected streams involving both cortical and subcortical areas. Recent models emphasize processing in "dorsal" and "ventral" pathways, mediating phonological and semantic processing, respectively. Phonological processing occurs along a dorsal pathway, from the posterosuperior temporal to the inferior frontal cortices. On the other hand, semantic information is carried in a ventral pathway that runs from the temporal pole to the basal occipitotemporal cortex, with anterior connections. Functional MRI has poor positive predictive value in determining critical language sites and should only be used as an adjunct for preoperative planning. Cortical and subcortical mapping should be used to define functional resection boundaries in eloquent areas and remains the clinical gold standard. In tracing the historical advancements in our understanding of speech processing, the authors hope to not only provide practicing neurosurgeons with additional information that will aid in surgical planning and prevent postoperative morbidity, but also underscore the fact that neurosurgeons are in a unique position to further advance our understanding of the anatomy and functional organization of language.
Article
In humans, brain connectivity implements a system for language and communication that spans from basic pre-linguistic social abilities shared with non-human primates to syntactic and pragmatic functions particular to our species. The arcuate fasciculus is a central connection in this architecture, linking regions devoted to formal aspects of language with regions involved in intentional and social communication. Here, we outline a new anatomical model of communication that incorporates previous neurofunctional accounts of language with recent advances in tractography and neuropragmatics. The model consists of five levels, from the representation of informative actions and communicative intentions, to lexical/semantic processing, syntactic analysis, and pragmatic integration. The structure of the model is hierarchical in relation to developmental and evolutionary trajectories and it may help interpreting clinico-anatomical correlation in communication disorders.
Article
Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.
Article
In order to understand the basis of language in the brain, we must be able to describe the neurological systems that are used in language comprehension and production. In this paper, one technique for functional neuroimaging is discussed: measurement of blood flow change using positron emission tomography (PET). Two experiments were carried out investigating the usefulness of this method. One experiment examined the intrinsic time limitations of blood flow change as a measure of cognitive activity. A second issue considered is the replicability of the results obtained using this method. A comparison of two experiments containing the same conditions suggests that the results are replicable, when the experiments and method are similar. One case is discussed where the experiments differ; it is suggested that this is due to a difference in the materials used in the experiments, and that the difference has a principled basis.
Article
Models of speech perception are in general agreement with respect to the major cortical regions involved, but lack precision with regard to localization and lateralization of processing units. To refine these models we conducted two Activation Likelihood Estimation (ALE) meta-analyses of the neuroimaging literature on sublexical speech perception. Based on foci reported in 23 fMRI experiments, we identified significant activation likelihoods in left and right superior temporal cortex and the left posterior middle frontal gyrus. Sub-analyses examining phonetic and phonological processes revealed only left mid-posterior superior temporal sulcus activation likelihood. A lateralization analysis demonstrated temporal lobe left lateralization in terms of magnitude, extent, and consistency of activity. Experiments requiring explicit attention to phonology drove this lateralization. An ALE analysis of eight fMRI studies on categorical phoneme perception revealed significant activation likelihood in the left supramarginal gyrus and angular gyrus. These results are consistent with a speech processing network in which the bilateral superior temporal cortices perform acoustic analysis of speech and non-speech auditory stimuli, the left mid-posterior superior temporal sulcus performs phonetic and phonological analysis, and the left inferior parietal lobule is involved in detection of differences between phoneme categories. These results modify current speech perception models in three ways: (1) specifying the most likely locations of dorsal stream processing units, (2) clarifying that phonetic and phonological superior temporal sulcus processing is left lateralized and localized to the mid-posterior portion, and (3) suggesting that both the supramarginal gyrus and angular gyrus may be involved in phoneme discrimination.
Article
Previous neuroimaging research has identified a number of brain regions sensitive to different aspects of linguistic processing, but precise functional characterization of these regions has proven challenging. We hypothesize that clearer functional specificity may emerge if candidate language-sensitive regions are identified functionally within each subject individually, a method that has revealed striking functional specificity in visual cortex but that has rarely been applied to neuroimaging studies of language. This method enables pooling of data from corresponding functional regions across subjects rather than from corresponding locations in stereotaxic space (which may differ functionally because of the anatomical variability across subjects). However, it is far from obvious a priori that this method will work as it requires that multiple stringent conditions be met. Specifically, candidate language-sensitive brain regions must be identifiable functionally within individual subjects in a short scan, must be replicable within subjects and have clear correspondence across subjects, and must manifest key signatures of language processing (e.g., a higher response to sentences than nonword strings, whether visual or auditory). We show here that this method does indeed work: we identify 13 candidate language-sensitive regions that meet these criteria, each present in >or=80% of subjects individually. The selectivity of these regions is stronger using our method than when standard group analyses are conducted on the same data, suggesting that the future application of this method may reveal clearer functional specificity than has been evident in prior neuroimaging research on language.
Article
In contrast with disorders of comprehension and spontaneous expression, conduction aphasia is characterized by poor repetition, which is a hallmark of the syndrome. There are many theories on the repetition impairment of conduction aphasia. The disconnection theory suggests that a damaged in the arcuate fasciculus, which connects Broca's and Wernicke's area, is the cause of conduction aphasia. In this study, we examined the disconnection theory. We enrolled ten individuals with conduction aphasia and ten volunteers, and analysed their arcuate fasciculus using diffusion tensor imaging (DTI) and obtained fractional anisotropy (FA) values. Then, the results of the left hemisphere were compared with those of the right hemisphere, and the results of the conduction aphasia cases were compared with those of the volunteers. There were significant differences in the FA values between the left and right hemispheres of volunteers and conduction cases. In volunteers, there was an increase in fiber in the left hemisphere compared with the right hemisphere, whereas there was an increase in fiber in the right hemisphere compared with the left hemisphere in conduction aphasia patients. The results of diffusion tensor tractography suggested that the configuration of the arcuate fasciculus was different between conduction aphasia patients and volunteers, suggesting that there was damage to the arcuate fasciculus of conduction aphasia cases. The damage seen in the arcuate fasciculus of conduction aphasia cases in this study supports the Wernicke-Geschwind disconnection theory. A disconnection between Broca's area and Wernicke's area is likely to be one mechanism of conduction aphasia repetition impairment.
Article
In their commentary on Romanski et al.'s findings of (at least) two streams of auditory projections to the prefrontal cortex1, Kaas and Hackett have suggested that this anatomical segregation reflects, as in visual cortex, a functional segregation of the object-related and space-related aspects of auditory processing ('What' and 'Where,' respectively)2, 3. This model derives from the increasingly accepted notion that the cortical systems for different sensory modalities may share principles of functional organization3, 4. However, the 'What/Where' model of auditory functional specialization remains conjectural. In particular, there is little evidence that circumscribed areas of the auditory cortex are specialized to process spatial information5 or that topographic spatial maps exist in auditory cortex, although such maps do exist in the colliculi6. Results suggest that auditory spatial location is represented in the auditory cortex as a distributed code based on spike timing7.
Article
The classical brain-language model derived from the work of Broca, Wernicke, Lichtheim, Geschwind, and others has been useful as a heuristic model that stimulates research and as a clinical model that guides diagnosis. However, it is now uncontroversial that the classical model is (i) empirically wrong in that it cannot account for the range of aphasic syndromes, (ii) linguistically underspecified to an extent that prohibits contact with the language sciences, and (iii) anatomically underspecified. We briefly summarize some of the central issues that motivate why a new functional anatomy of language is necessary, in the context of introducing a collection of articles that describe systematic new attempts at specifying the new functional anatomy. The major convergent observations are highlighted and the emergent conceptual and empirical trends are identified.
Article
We tracked the evolvement of naming-related cortical dynamics with magnetoencephalography when five normal adults successfully learned names and/or meanings of unfamiliar objects. In all subjects, the learning of new names was associated with pronounced cortical effects. The learning effect was of long latency and emerged as a change of activation in the same cortical network that was active during naming of familiar items. In four out of five subjects, the cortical learning effect occurred in the inferior parietal lobe. In three of these subjects, the cortical effect was left-sided. These results suggest that the inferior parietal lobe plays an important role in the acquisition of novel words, presumably as a part of working memory systems.
Article
Infants learn language with remarkable speed, but how they do it remains a mystery. New data show that infants use computational strategies to detect the statistical and prosodic patterns in language input, and that this leads to the discovery of phonemes and words. Social interaction with another human being affects speech learning in a way that resembles communicative learning in songbirds. The brain's commitment to the statistical and prosodic patterns that are experienced early in life might help to explain the long-standing puzzle of why infants are better language learners than adults. Successful learning by infants, as well as constraints on that learning, are changing theories of language acquisition.
Article
Patients with conduction aphasia have been characterized as having a short-term memory deficit that leads to relative difficulty on span and repetition tasks. It has also been observed that these same patients often get the gist of what is said to them, even if they are unable to repeat the information verbatim. To study this phenomenon experimentally, patients with conduction aphasia and left hemisphere-injured controls were tested on a repetition recognition task that required them to listen to a sentence and immediately point to one of three sentences that matched it. On some trials, the distractor sentences contained substituted words that were semantically-related to the target, and on other trials, the distractor sentences contained semantically-distinct words. Patients with conduction aphasia and controls performed well on the latter condition, when distractors were semantically-distinct. However, when the distractor sentences were semantically-related, the patients with conduction aphasia were impaired at identifying the target sentence, suggesting that these patients could not rely on the verbatim trace. To further understand these results, we also tested elderly controls on the same task, except that a delay was introduced between study and test. Like the patients with conduction aphasia, the elderly controls were worse at identifying target sentences when there were semantically-related distractors. Taken together, these results suggest that patients with conduction aphasia rely on non-phonologic cues, such as lexical-semantics, to support their short-term memory, just as normal participants must do in long-term memory tasks when the phonological trace is no longer present.
Article
Disturbance of neurologic function in disorders of the central nervous system is expressed as an altered activation pattern in functional networks employed by specific tasks and can be studied by functional imaging modalities, e.g., positron emission tomography. Language, a complex brain function, is based on the interplay of a distributed network in which partial functions are executed in various centers, the primary language areas. These areas are hierarchically organized and activated according to the complexity of the specific language task. The specialization of different centers and the lateralization of integrative functions into the dominant (usually left) hemisphere are achieved by collateral and transcallosal inhibition of secondary language areas which normally are not employed for performance of a specific language task.
Recherches cliniques propres à démontrer que la perte de la parole correspond à la lésion des lobules antérieures du cerveau, et à confirmer l’opinion de M. Gall sur le siège de l’organe du language articulé
  • J B Bouillaud
Eickhoff: Deeper insights into the role of Broca’s region in language processing by connectivity analysis
  • S Heim
nz - self-made - reproduction of combined images Surfacegyri.JPG by Reid Offringa and Ventral-dorsal streams
  • By James
  • Mcd
Studying language with Functional Magnetic Resonance Imaging (fMRI). The Oxford Handbook of Neurolinguistics
  • S Heim
  • K Specht