Conference PaperPDF Available

The influence of habitat characteristics on the temporal and spatial dynamics of invertebrate communities in caves.

Authors:

Abstract

In this study, we used a multimodal statistical approach to assess the influence of physical, trophic, and shelter components on the spatial and temporal structuring of terrestrial invertebrate communities in limestone caves located in Iuiú and Malhada, southwestern Bahia. Seven caves were sampled during two distinct events, in 2016 and 2021, both during the dry season. 1 x 1 m quadrants were used for invertebrate collection and to measure organic and inorganic substrate components. Species richness and composition remained constant between sampling events, indicating that caves may exhibit a stable ecological carrying capacity over time. The increase in species richness was influenced by the amount of boulders in both sampling events, highlighting the importance of environmental heterogeneity even in the long term. These results emphasize the importance of maintaining key elements for the conservation of these communities.
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023
O artigo a seguir é parte integrante dos Anais do 37º Congresso Brasileiro de Espeleologia, disponível
gratuitamente em www.cavernas.org.br.
Sugerimos a seguinte citação para este artigo:

substrato na dinâmica temporal e espacial de comunidades de invertebrados em cavernas. In: MISE,
K. M.; GUIMARÃES, G. B.. (orgs.) CONGRESSO BRASILEIRO DE ESPELEOLOGIA, 37, 2023.
Curitiba. Anais... Campinas: SBE, 2023. p.402-410. Disponível em: <http://www.cavernas.org.br/
anais37cbe/37cbe_402-410.pdf>. Acesso em: data do acesso.
Esta é uma publicação da Sociedade Brasileira de Espeleologia.
Consulte outras obras disponíveis em www.cavernas.org.br
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
402
A INFLUÊNCIA DE ELEMENTOS DO SUBSTRATO NA DINÂMICA
TEMPORAL E ESPACIAL DE COMUNIDADES DE
INVERTEBRADOS EM CAVERNAS
THE INFLUENCE OF HABITAT CHARACTERISTICS ON THE TEMPORAL AND SPATIAL
DYNAMICS OF INVERTEBRATE COMMUNITIES IN CAVES.
Paulo César Reis-VENÂNCIO (1,2); Rodrigo Lopes FERREIRA (1), Marconi SOUZA-SILVA (1)
(1) Centro de Estudos em Biologia Subterrânea (CEBS), Departamento de Ecologia e Conservação, Insti-

Minas Gerais, Brasil.
(2) Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação (DEC),
Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.
Contatos: paulocv55@hotmail.com; ; .
Resumo
-


dois eventos distintos, em 2016 e 2021, ambos durante o período de seca do ano. Quadrantes de 1 x 1 m foram
usados para coleta de invertebrados e medir os componentes de substrato orgânicos e inorgânicos. A riqueza
de espécies e composição permaneceram constantes entre os eventos amostrais, indicando que as cavernas


da heterogeneidade ambiental, mesmo a longo prazo. Esses resultados enfatizam a importância da manutenção
de elementos-chave para a conservação dessas comunidades.
Palavras-Chave: Escala temporal; Heterogeneidade ambiental; Conservação; Riqueza de espécies.
Abstract
In this study, we used a multimodal statistical approach to assess the inuence of physical, trophic, and shelter
components on the spatial and temporal structuring of terrestrial invertebrate communities in limestone caves
located in Iuiú and Malhada, southwestern Bahia. Seven caves were sampled during two distinct events, in
2016 and 2021, both during the dry season. 1 x 1 m quadrants were used for invertebrate collection and to me-
asure organic and inorganic substrate components. Species richness and composition remained constant be-
tween sampling events, indicating that caves may exhibit a stable ecological carrying capacity over time. The
increase in species richness was inuenced by the amount of boulders in both sampling events, highlighting
the importance of environmental heterogeneity even in the long term. These results emphasize the importance
of maintaining key elements for the conservation of these communities.
Keywords: Temporal scale; Environmental heterogeneity; Conservation; Species richness.
1. INTRODUÇÃO
      

desmatamento, a perda de habitat, a exploração mi-
neral e a alteração do uso do solo, entre outras (VAN
BEYNEN; TOWSEND 2005; CARDOSO et al.,
2021, 2022). Essas atividades podem afetar de ma-
neira direta e indireta todo o ecossistema subterrâneo,
-
posicionais, levando à perda de habitats, alterando
a disponibilidade e qualidade de recursos orgânicos
     
epígeas consideradas potenciais colonizadores des-
    
estrutural de ambientes subterrâneos (FURTADO-O-
LIVEIRA et al., 2022; RABELO et al., 2021; SOU-
ZA-SILVA et al., 2021; CARDOSO et al., 2022;
SOUZA-SILVA; FERREIRA, 2022). Entender como
  -
ção espacial e temporal de comunidades animais sub-
terrâneas se torna essencial. Esse conhecimento pode
gerar subsídios para elaboração e aperfeiçoamento de
-
mento sobre os processos ecológicos predominantes
nos ecossistemas subterrâneos.
Cavernas são consideradas semi-isoladas da
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
403
superfície, permitindo seu uso como “laboratórios
naturais”, facilitando o estudo de processos ecológi-
-
-
    
externos que podem prejudicar e enviesar os estudos
acabam sendo amenizados no interior das cavernas.
     
das características do habitat sobre a estruturação
-
monstrado a relação da disponibilidade e diversidade
de micro-habitats e recursos orgânicos, extensão da
 et al.,
2015, 2022; PACHECO et al., 2020; SOUZA-SILVA
et al., 2021; CARDOSO et al., 2022; FURTADO-
-OLIVEIRA et al., 2022; REIS-VENÂNCIO et al.,
2022). A partir disso, a heterogeneidade ambiental,
entendido como um dos direcionadores globais da
biodiversidade (TEWS et al., 2004; TONETTI et al.,
2023), exerce um papel fundamental na estruturação
de comunidades subterrâneas, e recentemente vem
      -
CHECO et al., 2020; SOUZA-SILVA et al., 2021;
CARDOSO et al., 2022; FURTADO-OLIVEIRA et
al., 2022; REIS-VENÂNCIO et al., 2022).
    

na estruturação das comunidades, ou seja, como essas
comunidades se comportam com o passar do tempo.

 
que entendemos a ecologia dos ecossistemas subter-
râneos.
Nesse contexto, o presente trabalho objeti-
vou-se em avaliar como a composição e diversidade
     -
-temporal de comunidades de invertebrados subterrâ-
neos entre distintos eventos de amostragem. Para tan-



      
comunidades de invertebrados e, iii) as respostas das
comunidades quanto à estruturação do habitat perma-
necerão similares entre os eventos de amostragem.
2. METODOLOGIA
Área de estudo
O presente estudo foi realizado em sete caver-

  
(Figura 1). A formação faz parte do grupo geológico Bam-


Figura 1:
das cavernas amostradas.
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
404
A região encontra-se no domínio de Caatinga,
com vegetação local predominantemente composta por
et al., 2014), apresen-
-
cação de Köppen-Geiger (ALVARES et al., 2013).
Coleta de dados abióticos e bióticos
Utilizamos quadrantes de 1 x 1 m para a men-
suração da estruturação de habitat, assim como para a
amostragem de invertebrados terrestres. Dois eventos de
amostragem foram feitos nas mesmas cavernas, o primeiro
no período seco de 2016, outro realizado no período seco
de 2021 (Tabela 1).
Dados de riqueza e os componentes de substrato,
foram tomadas na porção interna de cada quadrante. Em
-
tes foi utilizado em cada caverna. Os dados de 2016 foram
-
ção de Cardoso (2017).
Todos os quadrantes foram posicionados no nível
do solo, uniformemente ao longo de toda a extensão aces-
sível da caverna, partindo da região de entrada até as mais
profundas, de maneira aleatória.
Medição dos componentes de substrato
Todos os componentes inorgânicos e orgânicos
      
-
gem dos invertebrados (PACHECO et al., 2020; SOUZA-
-SILVA et al., 2021; FURTADO-OLIVEIRA et al., 2022;
REIS-VENÂNCIO et al., 2022).
 -
camos os tipos de substratos e calculamos suas respectivas

-
ra, determinamos a porcentagem de cada componente do
substrato em seu interior. As classes de substratos obtidas
foram: sedimento (areia (0.06-2 mm) e hardpan (consoli-
dado)), silte (silte e argila), cascalho (2-64 mm), greta de
retração, matacão (65-1000 mm), matéria orgânica (fezes
de Kerodon rupestris, serrapilheira, detritos vegetais e ga-

(SOUZA-SILVA et al., 2021).
Calculamos diversidade de substratos por meio
da aplicação do índice de diversidade de Shannon, consi-
derando todas as classes de substratos obtidas, para cada
quadrante (CARDOSO et al., 2022; PELLEGRINI et al.,
2016; SOUZA-SILVA et al., 2021; FURTADO-OLIVEI-
RA et al., 2022). Também calculamos as diversidades de
abrigo (cascalho, greta de retração e matacão) e de re-
K. rupestris,
serrapilheira, detritos vegetais e galho - raízes e guano de
morcegos) por meio da aplicação do índice de Shannon.
Amostragem e identicação dos invertebrados
Os invertebrados foram coletados manualmente
no interior de cada quadrante, utilizando a metodologia de
Busca Direta Intuitiva (BDI) (WYNNE et al.

     -
dos até o nível taxonômico possível e, então, agrupados em

especialistas em determinados grupos foram consultados


os indivíduos coletados foram depositados na Coleção de
Invertebrados Subterrâneos de Lavras (ISLA), associado
ao Centro de Estudos em Biologia Subterrânea.
Análises estatísticas
   
riqueza média dos quadrantes e cavernas entre os eventos
   
dados por meio do teste de normalidade de Shapiro-Wilk.
Como os dados não atingiram a normalidade, aplicamos o
teste não-paramétrico de Mann-Whitney.
Para entender a similaridade dos taxa entre os
     
Plymouth
routine in Multivariate ecological research – (http://www.
primer-e.com) utilizando 128 morfótipos dentre os 171
 
nível de família. Os níveis taxonômicos Filo (peso 100),
Classe (Peso 83,3), Ordem (peso 66,67), Família (peso 50)
e Morfótipo/espécie (peso 33,33) foram utilizados como
-
     et
al., 2008; SOUZA-SILVA et al., 2020). Posteriormente,
avaliamos se as médias de distinção taxonômica entre os
eventos amostrais diferem.
-

independentemente, um Modelo Linear Generalizado Mis-
to (GLMM), para cada evento. Em ambos os casos, consi-
Caverna
Quad.
D.L.(m)
Urubu-Jatobá
30
18
34
4600
Toca Fria
20
25
22
2500
Sepultamento
10
18
24
400
Toca Valada
5
8
8
700
Tapera D’água
5
22
4
150
Toca Baixão
5
6
8
150
Lapa do Honorato
5
10
23
30
Tabela 1:

uma vez no ano de 2016, e uma segunda amostragem

amostrados durante as amostragens; (S) riqueza total
de invertebrados amostrados durante a primeira coleta,
em 2016; (S) riqueza total de invertebrados amostra-
dos durante a segunda coleta; (D.L.) desenvolvimento
linear da caverna estimado, em metros.
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
405
deramos os quadrantes como efeito aleatório. A família de
distribuição de erros de Poisson apresentou o melhor ajus-
te em ambos os modelos construídos (ZUUR et al.

de preditoras, utilizamos o comando ‘dredge’ do pacote
MuMIn  
valores de Critério de informação de Akaike de segun-
da ordem (AICc). Feito isso, utilizamos uma abordagem
       
de explicação e, então, calculamos os parâmetros médios
-
DERSON, 2002; CARRARA et al., 2015; SOLAR et al.,
2016; COELHO et al., 2020).
Previamente a construção dos modelos, a multi-
colinearidade (PETER; CARL, 2020; SCHOBER et al.,
  -
liadas (ZUUR et al.
realizadas no software R (R CORE TEAM 2022).
3. RESULTADOS
Riqueza de invertebrados
A amostragem realizada nas sete cavernas
ao longo do período de 2016 revelou 77 morfótipos,
distribuídos em 18 ordens. Por outro lado, a amos-
tragem ocorrida no período de 2021 foi capaz de nos
       
invertebrados, totalizando 171 morfótipos coletados
nos dois eventos amostrais.
-
quezas de invertebrados coletados entre os dois even-
tos amostrais, nem quando comparada a riqueza entre
cavernas (W= 21,5; p= 0,748), nem para a riqueza

Os valores médios de distinção taxonômica
    

dos pontos (quadrantes amostrados) estão inclusos no

Relação entre estruturação de habitat e riqueza
de invertebrados
Para o primeiro evento amostral, o melhor

 
positiva entre a riqueza invertebrados e a porcenta-
gem de matacão, ao passo que, essa riqueza diminui
-
gundo modelo selecionado, o qual analisou os dados
    
(cR² = 0,42; AIC = 315,6) da variação, incluindo as
-

na riqueza de espécies.

-
mente a riqueza de espécies amostradas no primeiro
-
-
neira positiva a riqueza de invertebrados no segundo
evento (Figura 3-b).
Figura 2: Valores obtidos de distinção taxonômica

riqueza de espécies. As distintas cores representam os
eventos amostrais.
Preditora
Est.
Z
P
a) Primeiro evento amostral (AIC=304,5; cR²:0,494)
Guano
Matacão
Rocha
3,8795
1,1374
-2,9132
0,4066
1,3782
1,711
2,798
-2,114
0,09
0,005
0,03
b) Segundo evento am ostral (AIC=315,6; cR²= 0,42)
Matacão
Mat. Org.
1,0279
1,891
1,1448
2,123
1,581
0,03
0,11
Tabela 2: Resultado dos modelos lineares genera-
lizados mistos selecionados a partir do menor valor
de AIC. (A) modelo selecionado para os dados
obtidos durante a primeira amostragem (2016); (B)
modelo selecionado para os dados obtidos durante a
segunda amostragem (2021), com os respectivos va-
lores de AIC e R² condicional mostrados na frente.

(Er.Pad.) erro padrão, (Mat. Org.) matéria orgânica.
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
406
4. DISCUSSÃO
Com base nos resultados obtidos, foi visto
que a riqueza de invertebrados coletados não variou
     
ao avaliarmos a riqueza total por caverna, nem a ri-

espécies é consistente com estudos indicando que

de espécies, apresentando, assim, uma capacidade de
et al., 2022).
A disponibilidade de recursos e de micro-
     
os principais fatores regulatórios da capacidade de
suporte de um dado ambiente (CHESSON, 2000; SI-
et al., 2022). Esses mecanismos regulatórios
      
em um dado habitat, especialmente de espécies que
    -
pécies presente em habitats subterrâneos se mostra
intimamente ligado à capacidade de carga do sistema
(MAMMOLA; ISAIA, 2018).
Em ecossistemas subterrâneos, uma maior
riqueza de espécies é esperada durante o período chu-
voso, em virtude de fatores limitantes, como condi-

-
so (SOUZA-SILVA et al., 2011, 2013; BENTO et al.,
et al., 2022; SOUZA-SILVA; FER-
REIRA, 2022). O presente estudo foi inteiramente
realizado durante o período seco, quando a disponi-
bilidade de recursos para a fauna tende à escassez,

Dessa forma, observamos uma baixa riqueza de espé-

     
parte das espécies, levando à diminuição na riqueza
de espécies e menor variação na diversidade de in-
vertebrados.

composicionais em ambientes subterrâneos costu-
mam comparar comunidades em diferentes períodos
do ano, como o período chuvoso e o período seco
(LUNGHI et al., 2015; BENTO et al., 2016; MAM-
MOLA et al., 2020), ou são realizados em curto pe-
ríodo (TOBIN et al. 
consistentes em relação à composição faunística em
virtude da sazonalidade. Nesse sentido, nossos resul-
tados corroboram com estudos que investigaram essa
variação nas comunidades entre sucessivos períodos
de seca (DI RUSSO et al.et al.,
et al., 2022).
Com relação à estruturação de habitat, foi
     -
cão” e “rocha nua”. Como esperado, a presença de
rochas nuas tem um efeito negativo na riqueza de
espécies, resultando em uma menor diversidade de
       
predomina. Essa relação ocorre porque superfícies li-
sas, sem muitas reentrâncias e espaços estão ligadas
      
nichos e abrigos disponíveis. Isso ocasiona em eleva-
-
dação, levando à diminuição da riqueza local (TEWS
et al., 2004; PACHECO et al., 2020; BROTHERS;
BLAKESLEE, 2021; SOUZA-SILVA et al., 2021;
FURTADO-OLIVEIRA et al., 2022; REIS-VENÂN-
CIO et al., 2022).
Em contrapartida, a presença de “matacão”
atua como um fator que favorece o aumento da he-
terogeneidade ambiental, elevando a complexidade
estrutural do ambiente (LOKE et al., 2015; TOSSE-
TI et al., 2023). Os espaços criados pela presença e
a sobreposição desses clastos de distintos tamanhos,
formatos e porosidades levam a uma maior disponi-
bilidade de micro-habitats, que poderão ser utilizados
pela fauna como abrigo, local de reprodução, além de
-
veis às espécies de invertebrados (FERREIRA; SOU-
ZA-SILVA, 2001; FERREIRA et al.-
SO et al., 2022; REIS-VENÂNCIO et al., 2022).
Figura 3:

4. (A) Média do modelo para a riqueza de espécies
no primeiro evento amostral; (B) média do mode-
lo para a riqueza de espécies no segundo evento

sedimento, (silt) silte, rocha, raiz, (matorg) matéria
orgânica, (matac) matacão, (htrof) diversidade de
recursos, (habri) diversidade de abrigos, (h) diver-
sidade de substratos, (guan) guano, (greta) greta


ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
407
Essa série de benefícios gerada pela presença desses
clastos promove um aumento no estabelecimento das
espécies, resultando em ambientes mais ricos (SOU-
ZA-SILVA et al., 2021). De maneira complementar,


levar à redução na sobreposição de nichos (TEWS
et al., 2004; SOUZA-SILVA et al., 2021; REIS-VE-
NÂNCIO et al., 2022).

e riqueza de espécies perdurou ao longo do tempo,
sendo essa relação visualizada para ambos os eventos
amostrais, e de maneira complementar, a magnitude
-
lores bem similares (Tab. 2). Frente a isso, é plau-
sível considerarmos esses elementos do ecossistema
subterrâneo como um “elemento-chave”, afetando a
estruturação espaço-temporal de comunidades sub-
     
caso, como certa característica física do ambiente
-
pécies terrestres (TEWS et al., 2004). O estudo e a
-

subterrânea e a conservação efetiva dos ecossistemas.
Áreas em torno de entradas de cavernas que
apresentam elevadas taxas de desmatamento, podem
sofrer com a exposição do solo e subsequentes pro-
cessos erosivos, resultando no transporte de sedimen-
      et al., 2022).
Esse sedimento carreado pode depositar no chão em
camadas, inviabilizando possíveis habitats e tornan-
-
minuição da riqueza de espécies (CARDOSO et al.,
2022).
5. CONCLUSÕES
Foi demonstrado a importância de um am-


maior diversidade de potenciais habitats para fauna,
além de promover diminuição na sobreposição de ni-
cho.
-
vação de elementos-chave para a garantia do equilí-
brio do ecossistema, e na estruturação tanto espaço,
como temporal das comunidades subterrâneas.
6. AGRADECIMENTOS
Agradecemos a todos os membros do Centro
de Estudos em Biologia Subterrânea (CEBS - UFLA),
à CAPES por fornecer a bolsa de estudos, ao Progra-
ma de Pós-graduação em Ecologia Aplicada, ao CE-
CAV/ICMBio, ao IABS e ao CNPq. R.L.F. agradece
ao CNPq pela bolsa de pesquisa (nº 308334/ 2018-3).
REFERÊNCIAS
ALVARES, C. A. et al.Meteorologische Zeitschrift, v. 22,
n. 6, p. 711–728, 2013. Disponível em: . Acesso em: 16
abr. 2023.

statistical methods. Auckland: University of Auckland, 2008.
APGAUA, D. M. G. et al. Beta-diversity in seasonally dry tropical forests (SDTF) in the Caatinga Biogeogra-
phic Domain, Brazil, and its implications for conservation. Biodiversity and Conservation, v. 23, n.
1, p. 217–232, 2014. Disponível em: . Acesso em: 16 abr.
2023.
 https://CRAN.R-
-project.org/package=MuMIn. Acesso em: 16 abr. 2023.
BENTO, D. D. M. et al. Seasonal variations in cave invertebrate communities in the semiarid Caatinga, Brazil.
Journal of Cave and Karst Studies, v. 78, n. 2, p. 61-71, 2016. DOI: 10.4311/2015LSC0111.
BROTHERS, C. A.; BLAKESLEE, A. M. Alien vs predator play hide and seek: How habitat complexity alters
parasite mediated host survival. Journal of Experimental Marine Biology and Ecology, v. 535, p.
151488, 2021. Disponível em: https://doi.org/10.1016/j.jembe.2020.151488. Acesso em: 16 abr. 2023.
BURNHAM, K. P.; ANDERSON, D. R. Model selection and multimodel inference: a practical information-
-theoretic approach. Journal of Wildlife Management, v. 67, p. 677, 2002.
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
408
 


karst landscape, northeastern Brazil: a threatened spot of troglobitic species diversity. Biodiversity
and Conservation, v. 30, n. 5, p. 1433-1455, 2021.
CARDOSO, R. C.; FERREIRA, R. L.; SOUZA-SILVA, M. Multi-spatial analysis on cave ecosystems to pre-
dict the diversity of subterranean invertebrates. Basic and Applied Ecology, v. 65, p. 111-122, 2022.
Disponível em: https://doi.org/10.1016/j.baae.2022.11.007. Acesso em: 16 abr. 2023.
CARRARA, E. et al          -
list bird species in the fragmented Lacandona rainforest, Mexico. Biological Conservation, v. 184,
p. 117-126, 2015. Disponível em: https://doi.org/10.1016/j.biocon.2015.01.014. Acesso em: 16 abr.
2023.
CHESSON, P. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systemati-
cs, v. 31, n. 1, p. 343-366, 2000.
CLARKE, K. R.; WARWICK, R. M. A taxonomic distinctness index and its statistical properties. Jour-
nal of Applied Ecology          https://doi.org/10.1046/j.
. Acesso em: 16 abr. 2023.
et al
the Brazilian savanna. Biodiversity and Conservation
CULVER, D. C.; PIPAN, T. The biology of caves and other subterranean habitats. 2. ed. Oxford University

DI RUSSO, C. et al.
http://dx.doi.org/10.5038/1827-806X.26.1.7. Acesso em:
16 abr. 2023.
FERREIRA, R. L. et al.
Hypena Subterranean Biolo-
gy, v. 16, p. 47-60, 2015.
FURTADO-OLIVEIRA, L. et al. Recreational caving impacts of visitors in a high-altitude cave in Bolivian
 International Journal of Spe-
leologyhttps://doi.org/10.5038/1827-806X.51.2.2418.
Acesso em: 16 abr. 2023.
LOKE, L. H. et al. Creating complex habitats for restoration and reconciliation. Ecological Engineering, v.
77, p. 307-313, 2015. Disponível em: https://doi.org/10.1016/j.ecoleng.2015.01.037. Acesso em: 16
abr. 2023.
LUNGHI, E.; MANENTI, R.; FICETOLA, G. F. Seasonal variation in microhabitat of salamanders: environ-
mental variation or shift of habitat selection?. PeerJ, v. 3, p. e1122, 2015. Disponível em: https://doi.
org/10.7717/peerj.1122.

Ecography
MAMMOLA, S. et al. Exploring the homogeneity of terrestrial subterranean communities at a local spatial
scale. Ecological Entomology, v. 45, n. 5, p. 1053–1062, 2020. DOI: 10.1111/een.12883.

L.; HALSE, S. (Eds.). Cave Ecology; Ecological Studies 235. Cham: Springer Nature, 2018. p. 255–
267.
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br

PACHECO, G. S. M. et al. The role of microhabitats in structuring cave invertebrate communities in Gua-
temala. International Journal of Speleology      

PETERSON, B. G.; CARL, P. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis.
R package version 2.0.4. Disponível em: https://CRAN.R-project.org/package=PerformanceAnalyti-
cs. Acesso em: 16 abr. 2023.
POULSON, T. L.; WHITE, W. B. The Cave Environment: Limestone caves provide unique natural laborato-
ries for studying biological and geological processes. Science

International Journal of Speleology
PROUS, X.; FERREIRA, R. L.; MARTINS, R. P. Ecotone delimitation: Epigean–hypogean transition in cave
ecosystems. Austral Ecology
R CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for
Statistical Computing, 2022. Disponível em: https://www.R-project.org/. Acesso em: 16 abr. 2023.
RABELO, L. M.; SOUZA-SILVA, M.; FERREIRA, R. L. Priority caves for biodiversity conservation in a
key karst area of Brazil: comparing the applicability of cave conservation indices. Biodiversity and
Conservation
REIS-VENÂNCIO, P. C. et al-
tropical terrestrial cave invertebrate communities. Studies on Neotropical Fauna and Environment,

SALVIDIO, S. et al. Variability of a subterranean prey-predator community in space and time. Diversity, v.


terrestrial invertebrate communities in Neotropics. Subterranean Biology, v. 16, p. 103-121, 2015.


a proxy of environmental carrying capacity: A case study in a neotropical show cave. Acta Oecologi-
ca, v. 116, p. 103848, 2022. DOI: 10.1016/j
SOLAR, R. R. de C. et al. Biodiversity consequences of land-use change and forest disturbance in the Amazon:
A multi-scale assessment using ant communities. Biological Conservation

PROUS, X. (Eds.). Fauna cavernícola do Brasil. Belo Horizonte: Editora Rupestre, 2022. p. 58-81.
SOUZA-SILVA, M. et al. Habitat selection of cave-restricted fauna in a new hotspot of subterranean biodi-
versity in Neotropics. Biodiversity and Conservation, v. 30, n. 14, p. 4223–4250, 2021. https://doi.
org/10.1007/s10531-021-02302-8
SOUZA-SILVA, M.; INIESTA, L. F. M.; FERREIRA, R. L. Invertebrates diversity in mountain Neotropical
  
communities?. Subterranean Biology, v. 33, p. 23-43, 2020.
et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keys-
tone structures. Journal of Biogeography        https://doi.org/10.1046/j.

TOBIN, B. W.; HUTCHINS, B. T.; SCHWARTZ, B. F. Spatial and temporal changes in invertebrate assembla-
ge structure from the entrance to deep-cave zone of a temperate marble cave. International Journal
of Speleology, v. 42, n. 3, p. 4, 2013.
ANAIS do 37º Congresso Brasileiro de Espeleologia
Curitiba - Paraná, 26 a 29 de julho de 2023 – Sociedade Brasileira de Espeleologia
www.cavernas.org.br
410
TONETTI, V. et al. Landscape heterogeneity
Environmental Conservation, p. 1-10, 2023. 
VAN BEYNEN, P.; TOWNSEND, K. A disturbance index for karst environments. Environmental Manage-
ment, v. 36, p. 101-116, 2005. .
et al. Fifty years of cave arthropod sampling: Techniques and best practices. International
Journal of Speleologyhttps://doi.org/10.5038/1827-806X.48.1.2231
ZUUR, A. F.; IENO, E. N.; SMITH, G. M. Analyzing ecological data. Springer Science & Business Media,
2007.
ZUUR, A. F. et al. Mixed eects models and extensions in Ecology with R
p.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The intrinsic complexity, variety of concepts and numerous ways to quantify landscape hetero-geneity (LH) may hamper a better understanding of how its components relate to ecological phenomena. Our study is the first to synthesize understanding of this concept and to provide the state of the art on the subject based on a comprehensive systematic literature review of 661 articles published between 1982 and 2019. Definitions, terminologies and measurements of LH were diverse and conflicting. Most articles (534 out of 661) did not provide any definition for LH, and we found great variation among the studies that did. According to our review, only 10 studies measured the effects of different land-cover types on biotic or abiotic processes (functional LH). The remaining 651 studies measured physical attributes of the landscape without mentioning that different land-cover types may impact biotic and abiotic processes differently (structural LH). The metrics most frequently used to represent LH were the Shannon diversity index and proportion of land-cover type. Most metrics used as proxies of LH also coincided with those used to represent non-heterogeneity metrics, such as fragmentation and connectivity. We identify knowledge gaps, indicate future perspectives and propose guidelines that should be addressed when researching LH.
Article
Full-text available
Subterranean habitats around the world can shelter diversified and threatened faunal communities. However, issues related to alterations in the landscape and structure of subterranean habitats still need to be better understood. Therefore, we used a multi-spatial scale analysis of land cover, land use, and cave habitats to predict the diversity of communities of subterranean invertebrates. We hypothesized that changes in land cover promote alterations in both faunal richness and composition and microhabitat diversity and that microhabitat features determined subterranean biodiversity. Sixteen limestone caves were sampled in Brazil at micro, meso, and macro scales using quadrats (1m²), transects (100 meters) as sample units inside caves and buffers with the radius of 100 and 250 meters in the surroundings of the cave entrances. Models performed showed that land cover and land use influenced cave environments, regarding both microhabitats traits and terrestrial invertebrate richness and composition. We also observed a relationship between microhabitat structure and terrestrial invertebrate richness and composition. Our results showed that deforested areas had negative effects on species richness and changed their composition, while natural areas had positive effects on microhabitat diversity. The same effects were observed for both 100 and 250 meters buffers. Invertebrate richness was negatively predicted by deforested areas while positively predicted by natural areas. Richness was also positively predicted by the combination of all microhabitat traits, and dissimilarity of fauna was influenced by microhabitat diversity in mesoscale and microscale by all microhabitat elements. The results highlight the importance of the landscape surrounding the caves to conserve the subterranean habitats and their fauna. Due to the spatial and temporal changes in the global environmental scenario, we argue the urgency of further detailed studies in fragmented landscapes to define minimum areas of protection for cave environments.
Article
Full-text available
The theory of habitat heterogeneity, which treats one of the global drivers of biodiversity, is valid for several taxonomic groups and distinct ecosystems, including subterranean environments. However, knowledge about the factors that influence the structure of subterranean communities remains limited, especially in Neotropical regions. We sought to understand the main drivers of invertebrate species richness and composition. For that, we compared the substrate elements of twilight and deep-cave zones and their associated invertebrate communities. Variations in habitat heterogeneity were significantly related to richness in the deep cave zone, but had no effect on the fauna associated with the twilight zone. The local heterogeneity enhanced the richness in the deep cave zone due to the increase in the number of available habitats and the effect on decreasing niche overlap. For communities’ composition, the geographic distribution of caves explained the similarity between the twilight zone of different caves. Therefore, nearby caves have a more similar fauna in the entrance regions but conversely, exhibit a higher dissimilarity between communities associated with the deep-cave zone. This study highlights the influence of local habitat heterogeneity on the invertebrate communities associated with different zones of the cave.
Article
Full-text available
The cave's physical environment can be affected by tourism activities but only a few studies evaluated how recreational use may affect the cave fauna, mainly in caves with a low number of visitors per year. To test the hypothesis that recreational use led to changes in habitat structure and invertebrate diversity, distinct scales along a cave were analyzed. Distinct areas with and without human visitation were analyzed and transects (10 x 3 m) and quadrats (1 x 1 m) were used to access the invertebrate communities and environmental traits. Thirty-two invertebrate species were recorded, among which six are troglobitic. The similarity of non-troglobitic species differed between the visited and non-visited areas. Substrate composition inside transects differed between the two areas and the differences were higher in the percentage of matrix rock and fine sediments. The distance from the entrance influenced the similarity of non-troglobitic species while troglobitic fauna responded to the proportion of sandy sediment. Inside quadrats, both matrix rock and fine sediments influenced the similarity of non-troglobitic species. Similarity of non-troglobitic species in the visited area was explained by the proportion of matrix rock in transects and quadrats. The proportion of cobbles influenced the similarity of non-troglobitic species in quadrats in the non-visited area. The non-troglobitic species richness inside quadrants was positively related to the amount of guano, wood, fine sediment, boulders, cobbles, matrix rock, sand sediment, and plant debris. Differentiation in habitat structure and faunal composition between the two areas seems to be an effect of distance from the entrance and spatial heterogeneity, but not recreational activities. cave management, impacts, cave conservation, Andes
Article
Full-text available
Environmental stability and oligotrophy are considered the main drivers of species distribution within caves due to physiological and nutritional requirements presented by many cave dwellers. However, such patterns are poorly evaluated in tropical caves, especially with regard to habitat selection and interspecific competition between invertebrate groups. Considering that troglobitic species are usually highly specialized, presenting specific requirements for environmental conditions, we hypothesize that troglobitic species will be preferentially associated with deeper areas inside the cave. These areas are stable and present trophic and physical constraints, which may favors the troglobites in competitive interactions with non-troglobitic species. AQ1 The study carried out in the Águas Claras Cave System revealed a new hotspot of subterranean biodiversity, represented by 30 cave-restricted species (29 invertebrates and 1 fish species), being 73.3% terrestrial, 16.7% amphibian, and 10% aquatic. The richness of troglobitic species did not respond to physical attributes or resources availability as postulated, but increased with temperature, humidity content and with non-troglobitic species richness. The similarity of the troglobitic species along the cave was determined by the moisture content. Furthermore, the richness of troglobites was higher in those areas with greatest taxonomic distinctness of non-troglobitic species and higher values of the TB/nTB species richness ratio. The habitats requirements of the troglobitic species were not coincident, thus indicating that such species avoid niche overlapping. We highlighted the studied cave system as a singular subterranean habitat that contributes to both local and regional biodiversity. Additionally, the condition of high temperature and humidity seems to be key factors that are favoring the existence of a high number of endemic species. Unfortunately, this cave system is devoid of any official protection, thus deserving urgent actions to ensure its conservation.
Article
Full-text available
The definition of priority for conservation becomes an emergency because habitat loss and degradation are among the main impacts on karst landscapes. In this sense, the present study aimed to evaluate the priorities for cave conservation through the combination of indexes that use species richness, species distribution, and proportion of the deforested area (PDA). The caves presented 287 non-troglobitic species and 37 species (11.7 %) with troglomorphic traits that are distributed in 50 % of the caves. The caves also present a high phylogenetic and functional diversity of terrestrial, aquatic, and amphibious cave-restricted species, including many predators, scavengers, and one phytophagous species, most of them presenting remarkable specialized traits and restrict distribution in a few caves and in specific biotopes. The PDA were positively related to the distance from the limestone out-crop, because of the restrictive landforms for agropastoral activities. At least two caves present extremely high priority for conservation (Baixão and Baixa da Fortuna caves), while four caves present high priority, and almost all others require at least a conservation action. Suggestively, in this specific case, a coherent strategy was shown to maintain the preserved vegetation around the caves, improving the restoration of small fragments and minimizing alterations. Despite the results of the indices, the singularity of the area regarding the taxo-nomic and functional diversity of troglobites also reinforces the urgent need for conservation actions.
Article
Full-text available
Several studies have tried to elucidate the main environmental features driving invertebrate community structure in cave environments. They found that many factors influence the community structure, but rarely focused on how substrate types and heterogeneity might shape these communities. Therefore, the objective of this study was to assess which substrate features and whether or not substrate heterogeneity determines the invertebrate community structure (species richness and composition) in a set of limestone caves in Guatemala. We hypothesized that the troglobitic fauna responds differently to habitat structure regarding species richness and composition than non-troglobitic fauna because they are more specialized to live in subterranean habitats. Using 30 m 2 transects, the invertebrate fauna was collected and the substrate features were measured. The results showed that community responded to the presence of guano, cobbles, boulders, and substrate heterogeneity. The positive relationship between non-troglobitic species composition with the presence of guano reinforces the importance of food resources for structuring invertebrate cave communities in Guatemalan caves. Furthermore, the troglobitic species responded to different substrate features when compared to non-troglobitic species. For them, instead of the presence of organic matter, a higher variety of abiotic microhabitats seem to be the main driver for species diversity within a cave. The high specialization level of troglobitic organisms might be the reason why they respond differently to environmental conditions. The findings of this study highlight the importance of biological surveys for understanding cave biodiversity and give insights on how this biodiversity might be distributed within a cave. Conservation measures should keep in mind the target organisms and if such measures aim to protect a broad variety of organisms, then one should aim to preserve as many microhabitats and trophic resources as possible.
Article
Full-text available
Maintaining plant biodiversity and important ecosystem services depend on the species' ability to survive and disperse after anthropogenic disturbance, loss of natural habitat, and fragmentation. The Cerrado, one of the main biodiversity conservation hotspots in the world, loses natural habitat at a very high rate and suffers from disturbances generated by land use and advancement of the agricultural frontier. Given the need to generate knowledge about land use in Cerrado biome, this study aimed to evaluate if the anthropogenic disturbance alters biodiversity indexes and the capacity to store biomass of these savanna. We installed a permanent plot (20 m × 50 m) inside each study fragment and assessed the intensity of local disturbances such as cattle grazing, earthworm extraction, Caryocar fruit harvesting, and fire. To measure habitat loss and fragmentation, we used configuration and composition metrics in local and landscapes scales. Cattle grazing caused a loss of taxonomic and phylogenetic diversity, while fragment size and Cerrado cover in landscape increased phylogenetic diversity. The patch density, shape complexity and edge density in the landscapes also had a negative influence on phylogenetic diversity. Landscapes with more Eucalyptus sp. plantation area had lower phylogenetic diversity. In addition, the percentage of Cerrado in the landscape had a negative influence on biomass while the number of patches had a positive influence. Thus, we conclude that anthropogenic disturbances in the Cerrado generates loss of taxonomic, phylogenetic diversity and alters biomass stock patterns.
Article
Community stability and carrying capacity are essential core concepts in ecology because they reflect the interactions between organisms and their environment and provide clues to predictability. Since caves are considered stable habitats, we used long-term invertebrate monitoring to understand temporal and spatial carrying capacity in a neotropical cave based on species richness and beta diversity. Invertebrates were monitored from the entrance to the inner parts of the cave in plots (25m long each) in five sampling events over 10 years. Overall, 181 species were recorded. Although the turnover in species composition was considered high, the number of species remained almost constant along time, obviously considering the species oscillations between dry and rainy periods. The partitioning of beta diversity showed that in the rainy period and in the inner regions, the species replacement (turnover) was responsible for the differences in species composition over time. The richness stability and the turnover along time seem to indicate a maximum number of species that may coexist in the cave (∼64 species), probably a proxy of environmental carrying capacity. Then, despite the environmental stability of the caves, the permanent absence of light and scarcity of food resources makes these habitats restrictive to colonization, printing an intense temporal turnover in faunal composition, although with constant richness. Hence, at least for the studied cave, it seems that there is a maximum number of species it can shelter, regardless of which taxa.
Article
Parasites can greatly affect the behavior of their hosts, influencing how they respond to biotic and abiotic factors within their communities. Some parasites are particularly impactful, causing significant reproductive and behavioral changes in hosts relative to uninfected conspecifics. In eastern North America, a non-native parasitic barnacle, Loxothylacus panopaei (Gissler, 1884), has severe reproductive impacts on native panopeid mud crab hosts, resulting in castration. Moreover, the parasite has been documented to induce significant behavioral changes, such as reducing mud crab activity, influencing predator-prey relationships, and enhancing hiding behaviors in infected host crabs. Yet much remains to be understood regarding the host's ability to escape predators in heterogeneous environments. We investigated the effects of L.panopaei parasitism on mud crab (flatback mud crab, Eurypanopeus depressus (Smith, 1869)) survival in simple versus complex habitats. In lab mesocosm experiments, habitat heterogeneity was manipulated using oysters and gravel, and predatory pressures came from two common predatory crabs in southeast Atlantic estuaries: the Atlantic mud crab, Panopeus herbstii (H. Milne Edwards 1884) and the stone crab, Menippe mercenaria (Say, 1818). We found L.panopaei-infected E. depressus crabs to have the lowest survival rates in the simple gravel habitat, while the crabs with the highest survival were uninfected crabs in the complex oyster habitat. Moreover, we detected differences between uninfected and infected crabs in habitat usage (oyster versus gravel) within the complex habitat. This study demonstrates the complexity of predator-prey dynamics in the face of impactful parasitism and global change, including the introductions of species to new communities where they may have strong impacts on host populations and community interactions.