ArticleLiterature Review

Advances in translational research of the rare cancer type adrenocortical carcinoma

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... When an adrenal tumor is detected, assessing the risk of malignancy and determining whether it is hormone excessive are recommended to guide optimal management [2]. Adrenocortical carcinoma accounts for less than 2% of all cases, with an annual worldwide incidence of 1-2 cases per 1 million [3,4]. For adrenal tumors with clinically significant hormone excess, laparoscopic adrenalectomy is recommended as the standard treatment [2]. ...
... In cases in which significant bleeding from the adrenal wound or blood supply to the remaining adrenal tissue is compromised, total adrenalectomy should be considered. Briefly, patients were included in this analysis according to the following inclusion criteria: [1] non-contrast CT was consistent with a benign adrenal tumor; [2] the diagnosis of hypertension was clear on admission; [3] laboratory tests suggested nonfunctional adrenal tumors; and [4] histological examination (if adrenalectomy was performed) revealed benign adrenal tumor. Patients with incomplete clinical data or loss of follow-up were excluded from the final analysis. ...
Article
Full-text available
Objective To investigate the impact of adrenalectomy on hypertension in patients with nonfunctional adrenal tumors. Subjects and methods Between January 2020 and October 2022, patients with adrenal lesions were retrospectively screened for nonfunctional adrenal tumors at the Zhongnan Hospital of Wuhan University. All patients underwent detailed endocrinological examination and computed tomography to characterize the lesions. One year after discharge, follow-up blood pressure (BP) was assessed and compared to the blood pressure on admission. Univariate analysis and multivariate regression analysis were performed to determine factors predicting favorable hypertension outcomes after adrenalectomy. Results A total of 309 patients were found to be eligible, including 123 who underwent adrenalectomy. Patients who underwent adrenalectomy were stratified into two groups: (Bancos I (2022) Adrenal Incidentalomas: Insights Into Prevalence. Ann Intern Med 175:1481–1482. https://doi.org/10.7326/M22-2600) those with improved hypertension (n = 71), and (Fassnacht M, Tsagarakis S, Terzolo M, Tabarin A, Sahdev A, Newell-Price J et al. (2023) European Society of Endocrinology clinical practice guidelines on the management of adrenal incidentalomas, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 189:G1–42. https://doi.org/10.1093/ejendo/lvad066) those without improved hypertension (n = 52). In contrast, the blood pressure levels of conservatively treated patients remained relatively stable 1 year after discharge. Univariate analysis and multivariate regression analysis showed that body mass index (BMI) and duration of hypertension were significantly different between the hypertension improvement group and the non-improvement group (p < 0.05). Conclusion Adrenalectomy has been shown to be effective in improving hypertension in certain patients with nonfunctional adrenal tumors. BMI and duration of hypertension were independent factors associated with favorable hypertension outcomes after adrenalectomy.
... Many efforts have been made to discover the driving force of ACC metastasis and explore new therapeutic targets. 29,31,32 Inactivation of p53 and activation of βcatenin induces metastatic ACC. [33][34][35] β-catenin activation is significantly associated with more frequent mitoses and a higher Weiss score. ...
Article
Full-text available
Background Distant metastasis occurs in the majority of adrenocortical carcinoma (ACC), leading to an extremely poor prognosis. However, the key genes driving ACC metastasis remain unclear. Methods Weighted gene co‐expression network analysis (WGCNA) and functional enrichment analysis were conducted to identify ACC metastasis‐related genes. Data from RNA‐seq and microarray were analyzed to reveal correlations of the CENPM gene with cancer, metastasis, and survival in ACC. Immunohistochemistry was used to assess CENPM protein expression. The impact of CENPM on metastasis behaviour was verified in ACC (H295R and SW‐13) cells and xenograft NPG mice. DIA quantitative proteomics analysis, western blot, immunofluorescence, and co‐immunoprecipitation assay were performed to identify the downstream target of CENPM. Results Among the 12 035 analyzed genes, 363 genes were related to ACC metastasis and CENPM was identified as the hub gene. CENPM was upregulated in ACC samples and associated with metastasis and poor prognosis. Knockdown of CENPM inhibited proliferation, invasion, and migration of ACC cells and suppressed liver metastasis in xenograft NPG mice. Collagen‐containing extracellular matrix signalling was primarily downregulated when CENPM was knocked down. FGL1, important components of ECM signalling and immune checkpoint ligand of LAG3, were downregulated following CENPM silence, overexpressed in human advanced ACC samples, and colocalized with CENPM. Physical interaction between CENPM and FGL1 was identified. Overexpression of FGL1 rescued migration and invasion of CENPM knockdown ACC cells. Conclusions CENPM is a key gene in driving ACC metastasis. CENPM promotes ACC metastasis through physical interaction with the immune checkpoint ligand FGL1. CENPM can be used as a new prognostic biomarker and therapeutic target for metastatic ACC. Highlights CENPM is the key gene that drives ACC metastasis, and a robust biomarker for ACC prognosis. Silencing CENPM impedes ACC metastasis in vitro and in vivo by physical interaction with immune checkpoint ligand FGL1. FGL1 is overexpressed in ACC and promotes ACC metastasis.
... In our Pan-Cancer study, we found that high levels of SURF2 are associated with poor overall survival in a specific cancer, adrenocortical carcinoma, a rare endocrine tumor (Fig. 3a, b, d, e, and Supplementary Table S5). Although this specific relation is yet to be understood, it is interesting to notice that among the top pathways deregulated upon SURF2 depletion, we found hormonal pathways that play a major role in this cancer etiology (Table S8) 60 . In this cancer, SURF2 expression can be used as an independent prognostic marker, positioning SURF2 both as a good prognostic marker and anti-cancer therapeutic target and a prognostic marker. ...
Article
Full-text available
Cancer cells rely on high ribosome production to sustain their proliferation rate. Many chemotherapies impede ribosome production which is perceived by cells as “nucleolar stress” (NS), triggering p53-dependent and independent pathways leading to cell cycle arrest and/or apoptosis. The 5S ribonucleoprotein (RNP) particle, a sub-ribosomal particle, is instrumental to NS response. Upon ribosome assembly defects, the 5S RNP accumulates as free form. This free form is able to sequester and inhibit MDM2, thus promoting p53 stabilization. To investigate how cancer cells can resist to NS, here we purify free 5S RNP and uncover an interaction partner, SURF2. Functional characterization of SURF2 shows that its depletion increases cellular sensitivity to NS, while its overexpression promotes their resistance to it. Consistently, SURF2 is overexpressed in many cancers and its expression level is an independent marker of prognosis for adrenocortical cancer. Our data demonstrate that SURF2 buffers free 5S RNP particles, and can modulate their activity, paving the way for the research of new molecules that can finely tune the response to nucleolar stress in the framework of cancer therapies.
... It is characterized by its strong invasiveness, high recurrence rate, and propensity for metastasis (1). The rarity of ACC, coupled with its variable and complex clinical presentations, makes early diagnosis challenging (5,44). ...
Article
Full-text available
Background Adrenocortical carcinoma (ACC) is a rare and highly aggressive malignant tumor. Currently, there is a lack of reliable prognostic markers in clinical practice. Extensive research has shown that long non-coding RNA (lncRNA) are critical factors in the initiation and progression of cancer, closely associated with early diagnosis and prognosis. Previous studies have identified that ZFHX4 antisense RNA 1 (ZFHX4-AS1) is aberrantly expressed in various cancers and is associated with poor outcomes. This study investigates whether ZFHX4-AS1 affects the prognosis of ACC patients and, if so, the potential mechanisms involved. Methods In this study, utilizing four multi-center cohorts from The Cancer Genome Atlas (TCGA) program and Gene Expression Omnibus (GEO), we validated the prognostic capability of ZFHX4-AS1 in ACC patients through Kaplan-Meier survival analysis, cox regression models, and nomograms. Then, we explored the biological functions of ZFHX4-AS1 using gene set enrichment analysis (GSEA), competing endogenous RNA (ceRNA) networks, and analyses of somatic mutations and copy number variation (CNV). Finally, in vitro experiments were conducted to further validate the impact of ZFHX4-AS1 on proliferation and migration capabilities of ACC cell lines. Results Survival analysis indicated that patients in the high ZFHX4-AS1 expression group of ACC had worse prognosis. Cox regression analyses suggested that ZFHX4-AS1 levels were independent risk factors for prognosis. Subsequently, we constructed nomograms based on clinical features and ZFHX4-AS1 levels, demonstrating good predictive performance under the time-dependent receiver operating characteristic (ROC) curve. Analysis based on somatic mutations and CNV revealed that CTNNB1 and 9p21.3-Del drove the expression of ZFHX4-AS1. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays confirmed that knockdown of ZFHX4-AS1 inhibited proliferation and migration of ACC cells. Conclusions This study demonstrates that ZFHX4-AS1 has a reliable predictive value for the prognosis of ACC patients and is a promising biomarker.
... miRNAs are a class of RNA oligomers approximately 20-22 bases long that are singlestranded, non-coding RNAs that act as post-transcriptional regulators of gene expression by binding to complementary mRNAs on specific sequences, e.g., the 3′-UTR of target mRNAs, inducing cleavage or translational barriers to regulate target gene expression [73]. Approximately 60% of protein-coding in humans is regulated by miR-NAs, and their expression changes can lead to various pathological developments [74][75][76], which is considered a candidate drug strategy for the diagnosis and treatment of various diseases [77][78][79]. miRNAs and gastrointestinal diseases, including IBS, exhibit considerable association. In addition, the identification of IBS in other diseases is an important topic. ...
Article
Full-text available
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People’s Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.
... Adrenocortical carcinoma (ACC) is a rare but aggressive endocrine tumour, which leads to relevant hormone excess in 50-60% of patients [1][2][3][4]. The majority of patients presenting with a hormonal excess suffer from cortisol or androgen hypersecretion alone or in combination [5,6]. ...
Article
Full-text available
Serum liquid chromatography–tandem mass spectrometry (LC–MS/MS) steroid profiling is used for the diagnosis of adrenocortical carcinoma (ACC). Guidelines recommend endocrine work-up in addition to radiological imaging for follow-up in ACC, but data on this topic are scarce. Patients were included in this retrospective study if pre-therapeutic hormone values, regular tumour evaluation by imaging, steroid measurements by LC–MS/MS, and details on therapies were available. The utility of steroid profiles in detecting recurrence or disease progression was assessed, whereby “endocrine progress” was defined by an elevation of at least 3 of 13 analysed hormones. Cohort A included 47 patients after R0 resection, of whom 15 experienced recurrence and 32 did not. In cohort B, 52 patients with advanced disease (including 7 patients of cohort A with recurrence) could be evaluated on 74 visits when progressive disease was documented. In 20 of 89 cases with documented disease progression, “endocrine progress” was detectable prior to radiological progress. In these cases, recurrence/progression was detected at a median of 32 days earlier by steroid measurement than by imaging, with 11-deoxycortisol and testosterone being the most sensitive markers. Notably, these patients had significantly larger tumour burden. In conclusion, steroid profiling by LC–MS/MS is of value in detecting recurrent/progressive disease in ACC.
Article
Full-text available
Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.
Article
Full-text available
Female bias is highly prevalent among adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this article, we show that overexpression of the secreted WNT agonist R-spondin 1 leads to ectopic activation of WNT/β-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. While female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/β-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.
Article
Full-text available
Background: Adrenocortical cancer (ACC) is a rare malignancy with a dismal prognosis. The treatment includes mitotane and EDP chemotherapy (etoposide, doxorubicin, and cisplatin). However, new therapeutic approaches for advanced ACC are needed, particularly targeting the metastatic process. Here, we deepen the role of progesterone as a new potential drug for ACC, in line with its antitumoral effect in other cancers. Methods: NCI-H295R, MUC-1, and TVBF-7 cell lines were used and xenografted in zebrafish embryos. Migration and invasion were studied using transwell assays, and MMP2 activity was studied using zymography. Apoptosis and cell cycle were analyzed by flow cytometry. Results: Progesterone significantly reduced xenograft tumor area and metastases formation in embryos injected with metastatic lines, MUC-1 and TVBF-7. These results were confirmed in vitro, where the reduction of invasion was mediated, at least in part, by the decrease in MMP2 levels. Progesterone exerted a long-lasting effect in metastatic cells. Progesterone caused apoptosis in NCI-H295R and MUC-1, inducing changes in the cell-cycle distribution, while autophagy was predominantly activated in TVBF-7 cells. Conclusion: Our results give support to the role of progesterone in ACC. The involvement of its analog (megestrol acetate) in reducing ACC progression in ACC patients undergoing EDP-M therapy is now under investigation in the PESETA phase II clinical study.
Article
Full-text available
Objective This study aimed to summarize and analyze the clinical and pathological features and prognostic risk factors of adrenocortical carcinoma (ACC). Methods We retrospectively analyzed clinical and pathological data and the prognoses of 39 adult ACC patients confirmed by pathologic diagnosis at the Affiliated Hospital of Qingdao University between August 2009 and October 2021. Kaplan–Meier curves and univariate and multivariate Cox regression models were used to analyze correlations between clinical and pathological parameters and prognosis. A nomogram prediction model was constructed for overall survival (OS) based on the independent prognostic factors and externally validated it with The Cancer Genome Atlas (TCGA) dataset. Results The mean age of the patient cohort was 53.87 ± 11.1 years (range: 29–80 years), which included 17 men and 22 women. The 1-, 2-, and 5-year OS rates were 83.7%, 64.4%, and 59.8%, respectively; the recurrence-free survival (RFS) rates at the same time points were 76.1%, 45.8%, and 23.5%, respectively. Kaplan–Meier curves showed that patients with poor OS were associated with M1 stage (P = 0.008), late ENSAT stage (P = 0.017), presence of venous tumor thrombus (P = 0.015), Ki67 >20% (P = 0.006), R1/R2 status (P = 0.018), and poorly differentiated tumors (P = 0.047). Patients with late ENSAT stage (P = 0.017), combined with venous tumor thrombus (P = 0.008), Ki67 >20% (P = 0.022) were more likely to have tumor recurrence. However, age, gender, BMI, tumor diameter, clinical symptoms and postoperative treatment were not correlated with OS or RFS (P > 0.05). Univariate and multivariate COX analyses showed that Ki67 >20% (P = 0.013) and R1/2 status (P = 0.040) were independent risk factors for OS, while only Ki67 >20% (P = 0.032) was an independent risk factor for RFS. A nomogram for predicting OS was constructed based on the above factors, and the area under the receiver characteristic curve (ROC)-1, 3, and 5-year survival were 0.8, 0.825 and 0.902, respectively. The C-index of the predicted nomogram was 0.813 and a high C-index value of 0.846 could still be achieved in the external validation of TCGA. Conclusion ACC is a rare and deadly endocrine malignancy with a high rate of recurrence. High Ki67 index (>20%) and R1/R2 resection status were independent risk factors for poor prognosis in ACC patients. A novel nomogram with a relatively good accuracy was established to assist clinicians in assessing the risk of OS in patients with ACC.
Article
Full-text available
Unlike most cancers, adrenocortical carcinomas (ACCs) are more frequent in women than in men, but the underlying mechanisms of this sexual dimorphism remain elusive. Here, we show that inactivation of Znrf3 in the mouse adrenal cortex, recapitulating the most frequent alteration in ACC patients, is associated with sexually dimorphic tumor progression. Although female knockouts develop metastatic carcinomas at 18 months, adrenal hyperplasia regresses in male knockouts. This male-specific phenotype is associated with androgen-dependent induction of senescence, recruitment, and differentiation of highly phagocytic macrophages that clear out senescent cells. In contrast, in females, macrophage recruitment is delayed and dampened, which allows for aggressive tumor progression. Consistently, analysis of TCGA-ACC data shows that phagocytic macrophages are more prominent in men and are associated with better prognosis. Together, these data show that phagocytic macrophages are key players in the sexual dimorphism of ACC that could be previously unidentified allies in the fight against this devastating cancer.
Article
Full-text available
Context Adrenocortical carcinoma (ACC) is a rare aggressive disease with heterogeneous prognosis. Previous studies identified hypermethylation in the promoter region of specific genes to be associated with poor clinical outcome. Objective Comparative analysis of promising hypermethylated genes as prognostic markers and evaluation of their added value to established clinical prognostic tools. Design We included 237 patients with ACCs. Tumor DNA was isolated from formalin-fixed paraffin-embedded (FFPE) samples. Targeted pyrosequencing was used to detect promoter region methylation in 5 preselected genes (PAX5, GSTP1, PYCARD, PAX6, G0S2). The prognostic role of hypermethylation pattern was compared to S-GRAS score. Primary endpoints were progression-free (PFS) and overall survival (OS), with disease-free (DFS) as secondary endpoint. Results 27.9%, 13.9%, 49%, 49% and 25.3% of cases showed hypermethylation in PAX5, GSTP1, PYCARD, PAX6, and G0S2, respectively. Hypermethylation in all individual genes – except GSTP1 – was significantly associated with both PFS and OS - with Hazard Ratios (HR) between 1.4 and 2.3. However, only hypermethylation of PAX5 remained significantly associated with OS (p=0.013; HR=1.95, 95%CI 1.2-3.3) in multivariable analysis. A model for risk stratification was developed, combining PAX5 methylation status and S-GRAS groups, showing improved prognostic performance compared to S-GRAS alone (Harrell’s C index: OS=0.751, PFS=0.711, DFS=0.688). Conclusions This study demonstrated that hypermethylation in PAX5 is associated with worst clinical outcome in ACC, even after accounting for S-GRAS score. Assessing methylation in FFPE material is straightforward in the clinical setting and could be used to improve accuracy of prognostic classification, enabling the direction of personalized management.
Article
Full-text available
Background: Adrenocortical carcinoma (ACC) is an orphan tumor which has poor prognoses. Therefore, it is of urgent need for us to find candidate prognostic biomarkers and provide clinicians with an accurate method for survival prediction of ACC via bioinformatics and machine learning methods. Methods: Eight different methods including differentially expressed gene (DEG) analysis, weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network construction, survival analysis, expression level comparison, receiver operating characteristic (ROC) analysis, and decision curve analysis (DCA) were used to identify potential prognostic biomarkers for ACC via seven independent datasets. Linear discriminant analysis (LDA), K-nearest neighbor (KNN), support vector machine (SVM), and time-dependent ROC were performed to further identify meaningful prognostic biomarkers (MPBs). Cox regression analyses were performed to screen factors for nomogram construction. Results: We identified nine hub genes correlated to prognosis of patients with ACC. Furthermore, four MPBs (ASPM, BIRC5, CCNB2, and CDK1) with high accuracy of survival prediction were screened out, which were enriched in the cell cycle. We also found that mutations and copy number variants of these MPBs were associated with overall survival (OS) of ACC patients. Moreover, MPB expressions were associated with immune infiltration level. Two nomograms [OS-nomogram and disease-free survival (DFS)-nomogram] were established, which could provide clinicians with an accurate, quick, and visualized method for survival prediction. Conclusion: Four novel MPBs were identified and two nomograms were constructed, which might constitute a breakthrough in treatment and prognosis prediction of patients with ACC.
Article
Full-text available
FGF/FGFR signaling regulates embryogenesis, angiogenesis, tissue homeostasis and wound repair by modulating proliferation, differentiation, survival, migration and metabolism of target cells. Understandably, compelling evidence for deregulated FGF signaling in the development and progression of different types of tumors continue to emerge and FGFR inhibitors arise as potential targeted therapeutic agents, particularly in tumors harboring aberrant FGFR signaling. There is first evidence of a dual role of the FGF/FGFR system in both organogenesis and tumorigenesis, of which this review aims to provide an overview. FGF-1 and FGF-2 are expressed in the adrenal cortex and are the most powerful mitogens for adrenocortical cells. Physiologically, they are involved in development and maintenance of the adrenal gland and bind to a family of four tyrosine kinase receptors, among which FGFR1 and FGFR4 are the most strongly expressed in the adrenal cortex. The repeatedly proven overexpression of these two FGFRs also in adrenocortical cancer is thus likely a sign of their participation in proliferation and vascularization, though the exact downstream mechanisms are not yet elucidated. Thus, FGFRs potentially offer novel therapeutic targets also for adrenocortical carcinoma, a type of cancer resistant to conventional antimitotic agents.
Article
Full-text available
Adrenocortical cancer (ACC) is a rare cancer of the adrenal gland. Several driver mutations have been identified in both primary and metastatic ACCs, but the therapeutic options are still limited. We performed whole-genome and transcriptome sequencing on seven patients with metastatic ACC. Integrative analysis of mutations, RNA expression changes, mutation signature, and homologous recombination deficiency (HRD) analysis was performed. Mutations affecting CTNNB1 and TP53 and frequent loss of heterozygosity (LOH) events were observed in our cohort. Alterations affecting genes involved in cell cycle (RB1, CDKN2A, CDKN2B), DNA repair pathways (MUTYH, BRCA2, ATM, RAD52, MLH1, MSH6), and telomere maintenance (TERF2 and TERT) consisting of somatic and germline mutations, structural variants, and expression outliers were also observed. HRDetect, which aggregates six HRD-associated mutation signatures, identified a subset of cases as HRD. Genomic alterations affecting genes involved in epigenetic regulation were also identified, including structural variants (SWI/SNF genes and histone methyltransferases), and copy gains and concurrent high expression of KDM5A, which may contribute to epigenomic deregulation. Findings from this study highlight HRD and epigenomic pathways as potential therapeutic targets and suggest a subgroup of patients may benefit from a diverse array of molecularly targeted therapies in ACC, a rare disease in urgent need of therapeutic strategies.
Article
Full-text available
Adrenocortical carcinoma is a heterogeneous and aggressive cancer that originates from steroidogenic cells within the adrenal cortex. In this study, we have assessed for the preclinical gold standard NCI-H295 in direct comparison with the more recently established MUC-1 and a here newly reported ACC cell line (TVBF-7) the mutational status of important driver genes (TP53, MEN1, PRKAR1A, CTNNB1, APC, ZNRF-3, IGF-2, EGFR, RB1, BRCA1, BRCA2, RET, GNAS and PTEN), Wnt-signaling specificities (CTNNB1 mutation vs. APC mutation vs. wildtype), steroidogenic-(CYP11A1, CYP17A1, HSD3B2, HSD17B4, CYP21A2, CYP11B1, CYP11B2, MC2R, AT1R) and nuclear-receptor-signaling (AR, ER, GCR), varying electrophysiological potentials as well as highly individual hormone secretion profiles (Cortisol, Aldosterone, DHEA, DHEAS, Testosterone, 17-OH Progesterone, among others) which were investigated under basal and stimulated conditions (ACTH, AngII, FSK). Our findings reveal important genetic and pathophysiological characteristics for these three cell lines and reveal the importance of such cell-line panels reflecting differential endocrine functionalities to thereby better reflect clinically well-known ACC patient heterogeneities in preclinical studies.
Article
Full-text available
The new WHO classification of adrenal cortical proliferations reflects translational advances in the fields of endocrine pathology, oncology and molecular biology. By adopting a question–answer framework, this review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the adrenal cortex pathologies that are now reflected in the 2022 WHO classification. The pathological correlates of adrenal cortical proliferations include diffuse adrenal cortical hyperplasia, adrenal cortical nodular disease, adrenal cortical adenomas and adrenal cortical carcinomas. Understanding germline susceptibility and the clonal-neoplastic nature of individual adrenal cortical nodules in primary bilateral macronodular adrenal cortical disease, and recognition of the clonal-neoplastic nature of incidentally discovered non-functional subcentimeter benign adrenal cortical nodules has led to redefining the spectrum of adrenal cortical nodular disease. As a consequence, the most significant nomenclature change in the field of adrenal cortical pathology involves the refined classification of adrenal cortical nodular disease which now includes (a) sporadic nodular adrenocortical disease, (b) bilateral micronodular adrenal cortical disease, and (c) bilateral macronodular adrenal cortical disease (formerly known primary bilateral macronodular adrenal cortical hyperplasia). This group of clinicopathological entities are reflected in functional adrenal cortical pathologies. Aldosterone producing cortical lesions can be unifocal or multifocal, and may be bilateral with no imaging-detected nodule(s). Furthermore, not all grossly or radiologically identified adrenal cortical lesions may be the source of aldosterone excess. For this reason, the new WHO classification endorses the nomenclature of the HISTALDO classification which uses CYP11B2 immunohistochemistry to identify functional sites of aldosterone production to help predict the risk of bilateral disease in primary aldosteronism. Adrenal cortical carcinomas are subtyped based on their morphological features to include conventional, oncocytic, myxoid, and sarcomatoid subtypes. Although the classic histopathologic criteria for diagnosing adrenal cortical carcinomas have not changed, the 2022 WHO classification underscores the diagnostic and prognostic impact of angioinvasion (vascular invasion) in these tumors. Microscopic angioinvasion is defined as tumor cells invading through a vessel wall and forming a thrombus/fibrin-tumor complex or intravascular tumor cells admixed with platelet thrombus/fibrin. In addition to well-established Weiss and modified Weiss scoring systems, the new WHO classification also expands on the use of other multiparameter diagnostic algorithms (reticulin algorithm, Lin–Weiss–Bisceglia system, and Helsinki scoring system) to assist the workup of adrenal cortical neoplasms in adults. Accordingly, conventional carcinomas can be assessed using all multiparameter diagnostic schemes, whereas oncocytic neoplasms can be assessed using the Lin–Weiss–Bisceglia system, reticulin algorithm and Helsinki scoring system. Pediatric adrenal cortical neoplasms are assessed using the Wieneke system. Most adult adrenal cortical carcinomas show > 5 mitoses per 10 mm² and > 5% Ki67. The 2022 WHO classification places an emphasis on an accurate assessment of tumor proliferation rate using both the mitotic count (mitoses per 10 mm²) and Ki67 labeling index which play an essential role in the dynamic risk stratification of affected patients. Low grade carcinomas have mitotic rate of ≤ 20 mitoses per 10 mm², whereas high-grade carcinomas show > 20 mitoses per 10 mm². Ki67-based tumor grading has not been endorsed in the new WHO classification, since the proliferation indices are continuous variables rather than being static thresholds in tumor biology. This new WHO classification emphasizes the role of diagnostic and predictive biomarkers in the workup of adrenal cortical neoplasms. Confirmation of the adrenal cortical origin of a tumor remains a critical requirement when dealing with non-functional lesions in the adrenal gland which may be mistaken for a primary adrenal cortical neoplasm. While SF1 is the most reliable biomarker in the confirmation of adrenal cortical origin, paranuclear IGF2 expression is a useful biomarker in the distinction of malignancy in adrenal cortical neoplasms. In addition to adrenal myelolipoma, the new classification of adrenal cortical tumors has introduced new sections including adrenal ectopia, based on the potential role of such ectopic tissue as a possible source of neoplastic proliferations as well as a potential mimicker of metastatic disease. Adrenal cysts are also discussed in the new classification as they may simulate primary cystic adrenal neoplasms or even adrenal cortical carcinomas in the setting of an adrenal pseudocyst.
Article
Full-text available
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with frequent metastatic spread and poor prognosis. The disease can occur at any age with unexpected biological behavior. Recent genome-wide studies of ACC have contributed to our understanding of the disease, but diagnosis of ACC remains a challenge, even for multidisciplinary expert teams. Patients with ACC are frequently diagnosed in advanced stages and have limited therapeutic options. Therefore, for earlier diagnosis and better clinical management of adrenocortical carcinoma, specific, sensitive, and minimal invasive markers are urgently needed. Over several decades, great efforts have been made in discovering novel and reliable diagnostic and prognostic biomarkers including microRNAs, steroid profilings, circulating tumor cells, circulating tumor DNAs and radiomics. In this review, we will summarize these novel noninvasive biomarkers and analyze their values for diagnosis, predicting prognosis, and disease monitoring. Current problems and possible future application of these non-invasive biomarkers will also be discussed.
Article
Full-text available
Epithelial‑mesenchymal transition (EMT) is a key step in cancer metastasis. B7‑H3, a co‑signaling molecule associated with poor prognosis of non‑small cell lung cancer (NSCLC), promotes the metastasis of NSCLC by activating the EMT process. However, its underlying mechanism remains poorly understood. In the present study, it was shown that CRISPR/Cas9‑mediated B7‑H3 deletion downregulated the expression of the class III histone deacetylase, sirtuin‑1 (SIRT1), in NSCLC A549 cells. Accordingly, SIRT1 silencing resulted in markedly decreased migration and invasion of A549 cells. Both B7‑H3 gene‑edited and SIRT1‑silenced cells were typically characterized by an increased expression of the epithelial marker E‑cadherin, and downregulation of the mesenchymal markers N‑cadherin and vimentin, as compared with mock‑edited and scrambled negative small interfering RNA control, respectively. It was further demonstrated that B7‑H3 ablation significantly downregulated phosphorylated AKT/protein kinase B expression, and SIRT1 expression was substantially suppressed by the PI3K‑specific inhibitor, LY294002. Taken together, the findings of the present study revealed that B7‑H3‑induced signaling upregulates SIRT1 expression via the PI3K/AKT pathway to promote EMT activation that is associated with metastasis in NSCLC.
Article
Full-text available
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy and treatment of advanced disease is challenging. Clinical trials with multi-tyrosine kinase inhibitors in the past have yielded disappointing results. Here, we investigated fibroblast growth factor (FGF) receptors and their pathways in adrenocortical tumors as potential treatment targets. We performed real-time RT-PCR of 93 FGF pathway related genes in a cohort of 39 fresh frozen benign and malignant adrenocortical, 9 non-adrenal tissues and 4 cell lines. The expression of FGF receptors was validated in 166 formalin-fixed paraffin embedded (FFPE) tissues using RNA in situ hybridization (RNAscope) and correlated with clinical data. In malignant compared to benign adrenal tumors, we found significant differences in the expression of 16/94 FGF receptor pathway related genes. Genes involved in tissue differentiation and metastatic spread through epithelial to mesechymal transition were most strongly altered. The therapeutically targetable FGF receptors 1 and 4 were upregulated 4.6- and 6-fold, respectively, in malignant compared to benign adrenocortical tumors, which was confirmed by RNAscope in FFPE samples. High expression of FGFR1 and 4 was significantly associated with worse patient prognosis in univariate analysis. After multivariate adjustment for the known prognostic factors Ki-67 and ENSAT tumor stage, FGFR1 remained significantly associated with recurrence-free survival (HR=6.10, 95%CI: 1.78 – 20.86, p=0.004) and FGFR4 with overall survival (HR=3.23, 95%CI: 1.52 – 6.88, p=0.002). Collectively, our study supports a role of FGF pathways in malignant adrenocortical tumors. Quantification of FGF receptors may enable a stratification of ACC for the use of FGFR inhibitors in future clinical trials.
Article
Full-text available
Objective: Adrenocortical carcinoma (ACC) has an aggressive but variable clinical course. Prognostic stratification based on ENSAT tumour stage and Ki67 index is limited. We aimed to demonstrate the prognostic role of a points-based score (S-GRAS) in a large cohort of patients with ACC. Design: Multicentre retrospective study on ACC patients who underwent adrenalectomy. Methods: The S-GRAS score was calculated as a sum of the following points: tumour Stage (1-2=0; 3=1; 4=2), Grade (Ki67 index 0-9%=0; 10-19%=1; ≥20%=2 points), Resection (R)-status (R0=0; RX=1; R1=2; R2=3), Age (<50yr=0; ≥50yr=1), Symptoms (no=0; yes=1), and categorised, generating four groups (0-1, 2-3, 4-5, and 6-9). Endpoints were progression-free survival (PFS) and disease-specific survival (DSS). The discriminative performance of S-GRAS and its components was tested by Harrell’s C-index and Royston-Sauerbrei’s R2D statistic. Results: We included 942 ACC patients. The S-GRAS score showed superior prognostic performance for both PFS and DSS, with best discrimination obtained using the individual scores (0-9) (C-index=0.73, R2D=0.30, and C-index=0.79, R2D=0.45, respectively, all P<0.01 vs each component). The superiority of S-GRAS score remained when comparing patients treated or not with adjuvant mitotane (n=481 vs 314). In particular, the risk of recurrence was significantly reduced as a result of adjuvant mitotane only in patients with S-GRAS 4-5. Conclusion: The prognostic performance of S-GRAS is superior to tumour stage and Ki67 in operated ACC patients, independently from adjuvant mitotane. S-GRAS score provides a new important guide for personalised management of ACC (i.e. radiological surveillance and adjuvant treatment).
Article
Full-text available
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a dismal prognosis and a high rate of recurrence and mortality. Therapeutic options are limited. In some cases, the distinction of ACCs from benign adrenal neoplasms with the existing widely available pathological and histopathological tools is difficult. Thus, new biomarkers have been tested. We conducted a review of the recent literature on the advances of the diagnostic, prognostic and therapeutic role of miRNAs on ACC patients. More than 10 miRNAs validated by multiple studies were found to present a diagnostic and prognostic role for ACC patients, from which miR-483-5p and miR-195 were the most frequently met biomarkers. In particular, upregulation of miR-483-5p and downregulation of miR-195 were the most commonly validated molecular alterations. Unfortunately, data on the therapeutic role of miRNA are still scarce and limited mainly at the experimental level. Thus, the role of miRNA regulation in ACC remains an area of active research.
Article
Full-text available
Adrenocortical carcinoma (ACC) is a rare disease, associated with poor survival. Several “multiple-omics” studies characterizing ACC on a molecular level identified two different clusters correlating with patient survival (C1A and C1B). We here used the publicly available transcriptome data from the TCGA-ACC dataset (n = 79), applying machine learning (ML) methods to classify the ACC based on expression pattern in an unbiased manner. UMAP (uniform manifold approximation and projection)-based clustering resulted in two distinct groups, ACC-UMAP1 and ACC-UMAP2, that largely overlap with clusters C1B and C1A, respectively. However, subsequent use of random-forest-based learning revealed a set of new possible marker genes showing significant differential expression in the described clusters (e.g., SOAT1, EIF2A1). For validation purposes, we used a secondary dataset based on a previous study from our group, consisting of 4 normal adrenal glands and 52 benign and 7 malignant tumor samples. The results largely confirmed those obtained for the TCGA-ACC cohort. In addition, the ENSAT dataset showed a correlation between benign adrenocortical tumors and the good prognosis ACC cluster ACC-UMAP1/C1B. In conclusion, the use of ML approaches re-identified and redefined known prognostic ACC subgroups. On the other hand, the subsequent use of random-forest-based learning identified new possible prognostic marker genes for ACC.
Article
Full-text available
Background: The ESE-ENSAT guidelines on the management of adrenocortical carcinoma (ACC) suggest adjuvant mitotane for patients at high risk of recurrence following radical surgery. This indication has a limited evidence base, lacking results from randomized controlled trials. No suggestion for or against adjuvant mitotane in low-risk patients was given, since studies did not stratify patients for prognosis. The randomized controlled study ADIUVO compared the efficacy of adjuvant mitotane treatment vs. observation in prolonging recurrence-free survival (RFS) in ACC patients at low-intermediate risk of recurrence. Methods: The main inclusion criteria were: stage I-III ACC, R0 surgery, and Ki-67 ≤10%. Patients were randomly assigned 1:1 to adjuvant mitotane (MIT) or observation (OBS). The primary endpoint of the study was RFS. Patients who refused randomization were offered inclusion in the ADIUVO OBSERVATIONAL study. In this prospective, observational study, patients were managed as in the ADIUVO study. A total of 91 patients were enrolled in ADIUVO, 45 in the MIT and 46 in the OBS arm. Baseline characteristics of patients were perfectly matched between the 2 arms: median age, 51 vs. 50.5 years; female, 73% vs. 67%; stage I, 20% vs. 26%; stage II, 67% vs. 63%, stage III, 13% vs. 11%; ACC secretion 44% vs. 36%; Weiss 5 vs. 5; respectively. In ADIUVO OBSERVATIONAL, 42 patients were treated with mitotane and 53 were untreated. Baseline characteristics of patients were matched between the 2 groups and with MIT and OBS groups in ADIUVO. Thus, the ADIUVO OBSERVATIONAL cohorts could be analyzed in parallel to those of ADIUVO. Results: In the ADIUVO study, recurrences were 8 in the MIT and 11 in the OBS arm, while deaths were 2 and 5, respectively. RFS and overall survival (OS) did not significantly differ between the 2 arms. Tumor size was a predictor of RFS in multivariable analysis. In the OBS arm, the HR for recurrence was 1.321 (95%CI, 0.55–3.32, p=0.54) and HR for death 2.171 (95%CI, 0.52–12.12, p=0.29). The survival analysis in the ADIUVO OBSERVATIONAL study confirmed the findings of ADIUVO. Given the outcome of both studies, the NNT is 55. Conclusions: ACC patients at low-intermediate risk of recurrence after surgery are a minority; however, they show a far better prognosis than expected (5-year RFS is about 75%) and do not benefit significantly from adjuvant mitotane. The results of the ADIUVO study do not support routine use of adjuvant mitotane in this subset of patients, who may thus avoid a potentially toxic treatment. This is an important step toward personalization of ACC care.
Article
Full-text available
Purpose The subclassification of adrenal cancers according to the WHO classification in ordinary, myxoid, oncocytic, and sarcomatoid as well as pediatric types is well established, but the criteria for each subtype are not sufficiently determined and the relative frequency of the different types of adrenal cancers has not been studied in large cohorts. Therefore, our large collection of surgically removed adrenal cancers should be reviewed o establish the criteria for the subtypes and to find out the frequency of the various types. Methods In our series of 521 adrenal cancers the scoring systems of Weiss et al., Hough et al., van Slooten et al. and the new Helsinki score system were used for the ordinary type of cancer (97% of our series) and the myxoid type (0.8%). For oncocytic carcinomas (2%), the scoring system of Bisceglia et al. was applied. Results Discrepancies between benign and malignant diagnoses from the first thee classical scoring systems are not rare (22% in our series) and could be resolved by the Helsinki score especially by Ki-67 index (more than 8% unequivocally malignant). Since all our cancer cases are positive in the Helsinki score, this system can replace the three elder systems. For identification of sarcomatoid cancer as rarest type in our series (0.2%), the scoring systems are not practical but additional immunostainings used for soft tissue tumors and in special cases molecular pathology are necessary to differentiate these cancers from adrenal sarcomas. According to the relative frequencies of the different subtypes of adrenal cancers the main type is the far most frequent (97%) followed by the oncocytic type (2%), the myxoid type (0.8%) and the very rare sarcomatoid type (0.2%). Conclusions The Helsinki score is the best for differentiating adrenal carcinomas of the main, the oncocytic, and the myxoid type in routine work. Additional scoring systems for these carcinomas are generally not any longer necessary. Signs of proliferation (mitoses and Ki-67 index) and necroses are the most important criteria for diagnosis of malignancy.
Article
Full-text available
Approximately one-tenth of the general population exhibit adrenal cortical nodules, and the incidence has increased. Afflicted patients display a multifaceted symptomatology—sometimes with rather spectacular features. Given the general infrequency as well as the specific clinical, histological, and molecular considerations characterizing these lesions, adrenal cortical tumors should be investigated by endocrine pathologists in high-volume tertiary centers. Even so, to distinguish specific forms of benign adrenal cortical lesions as well as to pinpoint malignant cases with the highest risk of poor outcome is often challenging using conventional histology alone, and molecular genetics and translational biomarkers are therefore gaining increased attention as a possible discriminator in this context. In general, our understanding of adrenal cortical tumorigenesis has increased tremendously the last decade, not least due to the development of next-generation sequencing techniques. Comprehensive analyses have helped establish the link between benign aldosterone-producing adrenal cortical proliferations and ion channel mutations, as well as mutations in the protein kinase A (PKA) signaling pathway coupled to cortisol-producing adrenal cortical lesions. Moreover, molecular classifications of adrenal cortical tumors have facilitated the distinction of benign from malignant forms, as well as the prognostication of the individual patients with verified adrenal cortical carcinoma, enabling high-resolution diagnostics that is not entirely possible by histology alone. Therefore, combinations of histology, immunohistochemistry, and next-generation multi-omic analyses are all needed in an integrated fashion to properly distinguish malignancy in some cases. Despite significant progress made in the field, current clinical and pathological challenges include the preoperative distinction of non-metastatic low-grade adrenal cortical carcinoma confined to the adrenal gland, adoption of individualized therapeutic algorithms aligned with molecular and histopathologic risk stratification tools, and histological confirmation of functional adrenal cortical disease in the context of multifocal adrenal cortical proliferations. We herein review the histological, genetic, and epigenetic landscapes of benign and malignant adrenal cortical neoplasia from a modern surgical endocrine pathology perspective and highlight key mechanisms of value for diagnostic and prognostic purposes.
Article
Full-text available
Adrenocortical carcinoma is one of the aggressive malignancies and it originates from the cortex of adrenal gland. Dysregulation of long non-coding RNA plays important roles in the development of adrenocortical carcinoma. Here, we found that lncRNA ASB16-AS1 was down-regulated in adrenocortical carcinoma and ASB16-AS1 functions as tumor suppressor in vitro and in vivo. We then found that IGF1R and CDK6 are regulated by ASB16-AS1 in adrenocortical carcinoma cells by transcriptome RNA sequencing. ASB16-AS1 associates with RNA-binding protein HuR (ELAVL1) as revealed by RNA pull-down following mass spectrometry. Also, ASB16-AS1 inhibits HuR expression post-translationally by promoting its ubiquitination. ASB16-AS1 regulates IGF1R and CDK6 mRNA expression through RNA-binding protein HuR. We then found that inhibition of ASB16-AS1 attenuates the binding of ubiquitin E3 ligase BTRC to HuR and subsequently inhibits HuR protein unbiquitination and degradation. BTRC knock-down could reverse the effect of AB16-AS1 on HuR, CDK6, and IGF1R levels. Collectively, these results demonstrate that ASB16-AS1 regulates adrenocortical carcinoma cell proliferation and tackling the level of ASB16-AS1 may be developed to treat adrenocortical carcinoma.
Article
Full-text available
Background In this multicenter, single‐arm, multicohort, phase 2 trial, the efficacy of nivolumab and ipilimumab was evaluated in patients with advanced rare genitourinary cancers, including bladder and upper tract carcinoma of variant histology (BUTCVH), adrenal tumors, platinum‐refractory germ cell tumors, penile carcinoma, and prostate cancer of variant histology (NCT03333616). Methods Patients with rare genitourinary malignancies and no prior immune checkpoint inhibitor exposure were enrolled. Patients received nivolumab at 3 mg/kg and ipilimumab at 1 mg/kg intravenously every 3 weeks for 4 doses, and this was followed by 480 mg of nivolumab intravenously every 4 weeks. The primary endpoint was the objective response rate (ORR) by the Response Evaluation Criteria in Solid Tumors (version 1.1). Results Fifty‐five patients were enrolled at 6 institutions between April 2018 and July 2019 in 3 cohorts: BUTCVH (n = 19), adrenal tumors (n = 18), and other tumors (n = 18). The median follow‐up was 9.9 months (range, 1 to 21 months). Twenty‐eight patients (51%) received 4 doses of nivolumab and ipilimumab; 25 patients received nivolumab maintenance for a median of 4 cycles (range, 1‐18 cycles). The ORR for the entire study was 16% (80% confidence interval, 10%‐25%); the ORR in the BUTCVH cohort, including 2 complete responses, was 37%, and it was 6% in the other 2 cohorts. Twenty‐two patients (40%) developed treatment‐related grade 3 or higher toxicities; 24% (n = 13) required high‐dose steroids (≥40 mg of prednisone or the equivalent). Grade 5 events occurred in 3 patients; 1 death was treatment related. Conclusions Nivolumab and ipilimumab resulted in objective responses in a subset of patients with rare genitourinary malignancies, especially those with BUTCVH. An additional cohort exploring their activity in genitourinary tumors with neuroendocrine differentiation is ongoing. Lay Summary Patients with rare cancers are often excluded from studies and have limited treatment options. Fifty‐five patients with rare tumors of the genitourinary system were enrolled from multiple sites and were treated with nivolumab and ipilimumab, a regimen used for kidney cancer. The regimen showed activity in some patients, particularly those with bladder or upper tract cancers of unusual or variant histology; 37% of those patients responded to therapy. Additional studies are ongoing to better determine who benefits the most from this combination.
Article
Full-text available
Adrenocortical carcinoma (ACC), a rare and aggressive neoplasia, presents poor prognosis when metastatic at diagnosis and limited therapies are available. Specific and sensitive markers for early diagnosis and a monitoring system of therapy and tumor evolution are urgently needed. The liquid biopsy represents a source of tumor material within a minimally invasive blood draw that allows the recovery of circulating tumor cells (CTCs). CTCs have been recently shown to be detectable in ACC. In the present paper, we evaluated the prognostic value of CTCs obtained by size-filtration in a small pilot cohort of 19 ACC patients. We found CTCs in 68% of pre-surgery and in 38% of post-surgery blood samples. In addition, CTC clusters (CTMs) and cancer associated macrophages (CAMLs) were detectable in some ACC patients. The median number of CTCs significantly decreased after the mass removal. Finally, stratifying patients in high and low pre-surgery CTC number groups, assuming the 75th percentile CTC value as cut-off, CTCs significantly predicted patients’ overall survival (log rank = 0.005), also in a multivariate analysis adjusted for age and tumor stage. In conclusion, though preliminary and performed in a small cohort of patients, our study suggests that CTC number may represent a promising marker for prognosis and disease monitoring in ACC.
Article
Full-text available
Background Approximately 60% of adrenocortical carcinomas (ACC) are functional, and Cushing’s syndrome is the most frequent diagnosis that has been revealed to have a particularly poor prognosis. Since 30% of ACC present steroid hormone-producing disorganization, measurement of steroid metabolites in suspected ACC is recommended. Previous reports demonstrated that steroid hormone precursors or their urine metabolites, which can be assessed using liquid chromatography tandem mass spectrometry (LC-MS/MS) or gas chromatography mass spectrometry (GC-MS) respectively, are useful for distinguishing ACC from cortisol-producing adenomas (CPA); however, despite high precision, LC-MS/MS and GC-MS require a highly trained team, are expensive and have limited capacity. Methods Here, we examined 12 serum steroid metabolites using an immunoassay, which is a more rapid and less costly method than LC-MS/MS, in cortisol-producing ACC and CPA. Further, the correlation of each steroid metabolite to the classification stage and pathological status in ACC was analyzed. Results Reflecting disorganized steroidogenesis, the immunoassay revealed that all basal levels of steroid precursors were significantly increased in cortisol-producing ACC compared to CPA; in particular, 17-hydroxypregnenolone (glucocorticoid and androgen precursor) and 11-deoxycorticosterone (mineralocorticoid precursor) showed a large area under the ROC curve with high sensitivity and specificity when setting the cut-off at 1.78 ng/ml and 0.4 mg/ml, respectively. Additionally, a combination of androstenedione and DHEAS also showed high specificity with high accuracy. In cortisol-producing ACC, 11-deoxycortisol (glucocorticoid precursor) showed significant positive correlations with predictive prognostic factors used in ENSAT classification, while testosterone showed significant positive correlations to the Ki67-index in both men and women. Conclusion Less expensive and more widely available RIA and ECLIA may also biochemically distinguish ACC from CPA and may predict the clinicopathological features of ACC.
Article
Full-text available
Adrenocortical Carcinoma (ACC) is a rare but aggressive malignancy with poor prognosis and limited response to available systemic therapies. Although complete surgical resection gives the best chance for long-term survival, ACC has a two-year recurrence rate of 50%, which poses a therapeutic challenge. High throughput analyses focused on characterizing the molecular signature of ACC have revealed specific micro-RNAs (miRNAs) that are associated with aggressive tumor phenotypes. MiRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation or degrading mRNA transcripts and have been generally implicated in carcinogenesis. This review summarizes the current insights into dysregulated miRNAs in ACC tumorigenesis, their known functions, and specific targetomes. In addition, we explore the possibility of particular miRNAs to be exploited as clinical biomarkers in ACC and as potential therapeutics.
Article
Full-text available
Background There is no effective systemic therapy for metastatic adrenal cortical carcinoma (ACC) after failure of platinum-based chemotherapy. The efficacies of single-agent oral multikinase inhibitors (MKIs) or salvage immune checkpoint inhibitors (CPIs) have been very limited. It is unknown whether combining CPIs, such as pembrolizumab (PEM), with other therapies, such as MKIs, could yield higher response rates in ACC, yet this combination has shown promise in other cancers. Herein, we describe the first case series using PEM in combination with the MKI lenvatinib (LEN) in patients with progressive, metastatic ACC. Methods A retrospective case series describing the use of LEN/PEM as salvage therapy in patients with progressive/metastatic ACC. Results Eight patients were treated with the LEN/PEM combination therapy. Half were female, and the median age at time of diagnosis was 38 years (range 21–49). Three (37.5%) patients had hormonally active ACC. The median number of prior lines of systemic therapy was 4 (range 2–9). Six (75%) patients had had disease progression on prior CPIs and five (62.5%) patients had progressed on prior MKI therapy. The median progression-free survival was 5.5 months (95% CI 1.8–not reached) and median duration of therapy was 8.5 months (range 2–22). Two (25%) patients had a partial response, one (12.5%) patient had stable disease, and five (62.5%) patients had progressive disease. None of the eight patients stopped therapy because of adverse events. Conclusions In our small cohort of heavily pretreated patients with ACC, the combination of LEN/PEM was associated with objective responses in a subset of patients without significant toxicity. This combination should be formally investigated in phase II clinical trial with robust correlative studies to identify predictors for response.
Article
Full-text available
Background Cross-sectional imaging regularly results in incidental discovery of adrenal tumours, requiring exclusion of adrenocortical carcinoma (ACC). However, differentiation is hampered by poor specificity of imaging characteristics. We aimed to validate a urine steroid metabolomics approach, using steroid profiling as the diagnostic basis for ACC. Methods We did a prospective multicentre study in adult participants (age ≥18 years) with newly diagnosed adrenal masses. We assessed the accuracy of diagnostic imaging strategies based on maximum tumour diameter (≥4 cm vs <4 cm), imaging characteristics (positive vs negative), and urine steroid metabolomics (low, medium, or high risk of ACC), separately and in combination, using a reference standard of histopathology and follow-up investigations. With respect to imaging characteristics, we also assessed the diagnostic utility of increasing the unenhanced CT tumour attenuation threshold from the recommended 10 Hounsfield units (HU) to 20 HU. Findings Of 2169 participants recruited between Jan 17, 2011, and July 15, 2016, we included 2017 from 14 specialist centres in 11 countries in the final analysis. 98 (4·9%) had histopathologically or clinically and biochemically confirmed ACC. Tumours with diameters of 4 cm or larger were identified in 488 participants (24·2%), including 96 of the 98 with ACC (positive predictive value [PPV] 19·7%, 95% CI 16·2–23·5). For imaging characteristics, increasing the unenhanced CT tumour attenuation threshold to 20 HU from the recommended 10 HU increased specificity for ACC (80·0% [95% CI 77·9–82·0] vs 64·0% [61·4–66.4]) while maintaining sensitivity (99·0% [94·4–100·0] vs 100·0% [96·3–100·0]; PPV 19·7%, 16·3–23·5). A urine steroid metabolomics result indicating high risk of ACC had a PPV of 34·6% (95% CI 28·6–41·0). When the three tests were combined, in the order of tumour diameter, positive imaging characteristics, and urine steroid metabolomics, 106 (5·3%) participants had the result maximum tumour diameter of 4 cm or larger, positive imaging characteristics (with the 20 HU cutoff), and urine steroid metabolomics indicating high risk of ACC, for which the PPV was 76·4% (95% CI 67·2–84·1). 70 (3·5%) were classified as being at moderate risk of ACC and 1841 (91·3%) at low risk (negative predictive value 99·7%, 99·4–100·0). Interpretation An unenhanced CT tumour attenuation cutoff of 20 HU should replace that of 10 HU for exclusion of ACC. A triple test strategy of tumour diameter, imaging characteristics, and urine steroid metabolomics improves detection of ACC, which could shorten time to surgery for patients with ACC and help to avoid unnecessary surgery in patients with benign tumours. Funding European Commission, UK Medical Research Council, Wellcome Trust, and UK National Institute for Health Research, US National Institutes of Health, the Claire Khan Trust Fund at University Hospitals Birmingham Charities, and the Mayo Clinic Foundation for Medical Education and Research.
Article
Full-text available
Objective The purpose of this study was to explore the composition of tumor-infiltrating immune cells (TIIC) and prognostic significance of tumor-infiltrating mast cells (TIMC) in adrenocortical carcinoma (ACC). Methods The gene expression profiles of ACC were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GSE90713, GSE12368). The abundance of TIICs in ACC samples was calculated by CIBERSORT algorithm and immunohistochemistry was used to identify mast cells of 39 tumor samples from Fudan University Shanghai Cancer Center (FUSCC). Differentially expressed genes (DEGs) were analyzed by LIMMA package using R software. Survival analysis was analyzed by Kaplan-Meier method and Cox regression models. Results The abundance of mast cells (p = .008) was positively correlated with ACC patients’ outcome in TCGA cohort and was also positively correlated with both overall survival (p < .05) and progression-free survival (p < .05) in FUSCC cohort. Different TIMC infiltrations showed significant changes in signaling pathways including DNA replication, nuclear chromosome segregation, and meiotic cell cycle process of ACC. In addition, elevated expression of eight hub genes (KIF18A, CDCA8, SKA1, CEP55, BUB1, CDK1, SGOL1, SGOL2) related to the abundance of TIMC in ACC was significantly correlated with the poor prognosis of the patients. Conclusion In conclusion, higher TIMC infiltration was positively correlated with ACC patients’ outcome in both TCGA and FUSCC cohort. Lower TIMC infiltration and elevated expression of hub genes (KIF18A, CDCA8, SKA1, CEP55, BUB1, CDK1, SGOL1, SGOL2) are markedly correlated with aggressive progression and poor prognosis, which might shed lights on novel targets for treatment strategies.
Article
Full-text available
Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options. The lack of mouse models that recapitulate the genetics of ACC has hampered progress in the field. We analyzed The Cancer Genome Atlas (TCGA) dataset for ACC and found that patients harboring alterations in both p53/Rb and Wnt/β-catenin signaling pathways show a worse prognosis compared with patients that harbored alterations in only one. To model this, we utilized the Cyp11b2(AS)Cre mouse line to generate mice with adrenocortical-specific Wnt/β-catenin activation, Trp53 deletion, or the combination of both. Mice with targeted Wnt/β-catenin activation or Trp53 deletion showed no changes associated with tumor formation. In contrast, alterations in both pathways led to ACC with pulmonary metastases. Similar to ACCs in humans, these tumors produced increased levels of corticosterone and aldosterone and showed a high proliferation index. Gene expression analysis revealed that mouse tumors exhibited downregulation of Star and Cyp11b1 and upregulation of Ezh2, similar to ACC patients with a poor prognosis. Altogether, these data show that altering both Wnt/β-catenin and p53/Rb signaling is sufficient to drive ACC in mouse. This autochthonous model of ACC represents a new tool to investigate the biology of ACC and to identify new treatment strategies.
Article
Full-text available
Background Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. Tumor-related glucocorticoid excess is present in ~60% of patients and associated with particularly poor prognosis. Results of first clinical trials using immune checkpoint inhibitors were heterogeneous. Here we characterize tumor-infiltrating T lymphocytes (TILs) in ACC in association with glucocorticoids as potential explanation for resistance to immunotherapy. Methods We performed immunofluorescence analysis to visualize tumor-infiltrating T cells (CD3⁺), T helper cells (CD3⁺CD4⁺), cytotoxic T cells (CD3⁺CD8⁺) and regulatory T cells (Tregs; CD3⁺CD4⁺FoxP3⁺) in 146 ACC tissue specimens (107 primary tumors, 16 local recurrences, 23 metastases). Quantitative data of immune cell infiltration were correlated with clinical data (including glucocorticoid excess). Results 86.3% of ACC specimens showed tumor infiltrating T cells (7.7 cells/high power field (HPF)), including T helper (74.0%, 6.7 cells/HPF), cytotoxic T cells (84.3%, 5.7 cells/HPF) and Tregs (49.3%, 0.8 cells/HPF). The number of TILs was associated with better overall survival (HR for death: 0.47, 95% CI 0.25 to 0.87), which was true for CD4⁺− and CD8⁺ subpopulations as well. In localized, non-metastatic ACC, the favorable impact of TILs on overall and recurrence-free survival was manifested even independently of ENSAT (European Network for the Study of Adrenal Tumors) stage, resection status and Ki67 index. T helper cells were negatively correlated with glucocorticoid excess (Phi=−0.290, p=0.009). Patients with glucocorticoid excess and low TILs had a particularly poor overall survival (27 vs. 121 months in patients with TILs without glucocorticoid excess). Conclusion Glucocorticoid excess is associated with T cell depletion and unfavorable prognosis. To reactivate the immune system in ACC by checkpoint inhibitors, an inhibition of adrenal steroidogenesis might be pivotal and should be tested in prospective studies.
Article
Full-text available
DNA methylation profiling has been suggested a reliable technique to distinguish between benign and malignant adrenocortical tumors, a process which with current diagnostic methods remains challenging and lacks diagnostic accuracy of borderline tumors. Accurate distinction between benign and malignant adrenal tumors is of the essence, since ACC is a rare but aggressive endocrine disease with an annual incidence of about 2.0 cases per million people per year. The estimated five-year overall survival rate for ACC patients is <50%. However, available treatment regimens are limited, in which a radical surgical resection is the only curable option. Nevertheless, up to 85% of patients with radical resection show recurrence of the local disease often with concurrent metastases. Adrenolytic therapy with mitotane, administered alone or in combination with cytotoxic agents, is currently the primary (palliative) treatment for patients with advanced ACC and is increasingly used in adjuvant setting to prevent recurrence. Prognostic stratification is important in order to individualize adjuvant therapies. On April 1, 2020, there were 7404 publications on adrenocortical carcinoma (adrenocortical carcinoma) OR adrenocortical carcinoma [MeSH Terms]) OR adrenal cortex cancer[MeSH Terms]) OR adrenal cortical carcinoma [MeSH Terms]) OR adrenal cortex neoplasm [MeSH Terms]) OR adrenocortical cancer [MeSH Terms]), yet the underlying pathophysiology and characteristics of ACC is not fully understood. Knowledge on epigenetic alterations in the process of adrenal tumorigenesis is rapidly increasing and will add to a better understanding of the pathogenesis of ACC. DNA methylation profiling has been heralded as a promising method in the prognostication of ACC. This review summarizes recent findings on epigenetics of ACC and its role in diagnosis, prognosis and therapeutic strategies.
Article
Full-text available
Adrenocortical carcinomas (ACC) are aggressive tumors with a heterogeneous prognosis and limited therapeutic options for advanced stages. This study aims to identify novel drug targets for a personalized treatment in ACC. RNA was isolated from 40 formalin-fixed paraffin-embedded ACC samples. We evaluated gene expression of 84 known cancer drug targets by reverse transcriptase quantitative real time-PCR and calculated fold change using 5 normal adrenal glands as reference (overexpression by fold change >2.0). The most promising candidate cyclin-dependent kinase 4 (CDK4) was investigated at protein level in 104 ACC samples and tested by in vitro experiments in two ACC cell lines (NCI-H295R and MUC1). The most frequently overexpressed genes were TOP2A (100% of cases, median fold change = 16.5), IGF2 (95%, fold change = 52.9), CDK1 (80%, fold change = 6.7), CDK4 (62%, fold change = 2.6), PLK4 (60%, fold change = 2.8), and PLK1 (52%, fold change = 2.3). CDK4 was chosen for functional validation, as it is actionable by approved CDK4/6-inhibitors (e.g., palbociclib). Nuclear immunostaining of CDK4 significantly correlated with mRNA expression (R = 0.52, P < 0.005). We exposed both NCI-H295R and MUC1 cell lines to palbociclib and found a concentration- and time-dependent reduction of cell viability, which was more pronounced in the NCI-H295R cells in line with higher CDK4 expression. Furthermore, we tested palbociclib in combination with insulin-like growth factor 1/insulin receptor inhibitor linsitinib showing an additive effect. In conclusion, we demonstrate that RNA profiling is useful to discover potential drug targets and that CDK4/6 inhibitors are promising candidates for treatment of selected patients with ACC.
Article
Full-text available
Background: Adrenocortical carcinoma (ACC) is a rare malignant endocrine tumor with a high tumor recurrence rate and poor postoperative survival. Recent studies suggest that CD276- (B7-H3) targeted therapy represents a promising therapeutic option for solid tumors. However, little is known about the expression status of CD276 or its association with progression and prognosis of ACC. Methods: Clinical data were retrospectively analyzed from patients who underwent resection of ACC at our institution (n = 48). Archived, formalin-fixed, and paraffin-embedded samples were collected for immunohistochemical analysis, and the correlation between CD276 expression and clinicopathological parameters was evaluated. Kaplan-Meier and univariate/multivariate Cox regression methods were implemented to identify any prognostic effects. Data from The Cancer Genome Atlas (TCGA) ACC cohort (n = 48). Archived, formalin-fixed, and paraffin-embedded samples were collected for immunohistochemical analysis, and the correlation between CD276 expression and clinicopathological parameters was evaluated. Kaplan-Meier and univariate/multivariate Cox regression methods were implemented to identify any prognostic effects. Data from The Cancer Genome Atlas (TCGA) ACC cohort (. Results: Positive expression of CD276 was detected on the cell membrane and in the cytoplasm of cancer cells or tumor-associated vascular cells in 91.67% (44/48) of ACCs. Vascular expression of CD276 was associated with local aggression (higher T stage, P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (P = 0.029) and advanced ENSAT stage (. Conclusion: These findings highlight the immune checkpoint factor CD276 as an independent prognostic factor and a potential therapeutic target in ACC.
Article
Full-text available
Metabolic interplay between the tumor microenvironment and cancer cells is a potential target for novel anti-cancer approaches. Among stromal components, adipocytes and adipose precursors have been shown to actively participate in tumor progression in several solid malignancies. In adrenocortical carcinoma (ACC), a rare endocrine neoplasia with a poor prognosis, cancer cells often infiltrate the fat mass surrounding the adrenal organ, enabling possible crosstalk with the adipose cells. Here, by using an in vitro co-culture system, we show that the interaction between adipose-derived stem cells (ASCs) and the adrenocortical cancer cell line H295R leads to metabolic and functional reprogramming of both cell types: cancer cells limit differentiation and increase proliferation of ASCs, which in turn support tumor growth and invasion. This effect associates with a shift from the paracrine cancer-promoting IGF2 axis towards an ASC-associated leptin axis, along with a shift in the SDF-1 axis towards CXCR7 expression in H295R cells. In conclusion, our findings suggest that adipose precursors, as pivotal components of the ACC microenvironment, promote cancer cell reprogramming and invasion, opening new perspectives for the development of more effective therapeutic approaches.
Article
Full-text available
PURPOSE Pediatric adrenocortical carcinomas (ACCs) are aggressive; the overall survival of patients with ACCs is 40%-50%. Appropriate staging and histologic classification are crucial because children with incomplete resections, metastases, or relapsed disease have a dismal prognosis. The clinical course of pediatric adrenocortical tumors (ACTs) is difficult to predict using the current classification schemas, which rely on subjective microscopic and gross macroscopic variables. Recent advances in adult ACT studies have revealed distinct DNA methylation patterns with prognostic significance that have not been systematically interrogated in the pediatric population. PATIENTS AND METHODS We performed DNA methylation analyses on 48 newly diagnosed ACTs from the International Pediatric Adrenocortical Tumor Registry and 12 pediatric adrenal controls to evaluate for distinct methylation groups. Pediatric methylation data were also compared systematically with the adult ACC cohort from The Cancer Genome Atlas (TCGA). RESULTS Two pediatric ACT methylation groups were identified and showed differences in selected clinicopathologic and outcome characteristics. The A1 group was enriched for CTNNB1 variants and unfavorable outcome. The A2 group was enriched for TP53 germline variants, younger age at onset, and favorable outcome. Pediatric ACT methylation groups were maintained when International Pediatric Adrenocortical Tumor Registry cohort data were combined with TCGA cohort data. The CpG-island hypermethylator phenotype characterizing the TCGA cohort was not identified in the pediatric patients. When methylome findings were combined with independent histopathologic review using the Wieneke criteria, a high-risk population was identified with uniform fatal outcome. CONCLUSION Our results indicate DNA methylation analysis can enhance current diagnostic algorithms. A combination of methylation and histologic classification produced the strongest prediction model and may prove useful in future risk-adapted therapeutic trials.
Article
Full-text available
Context Urine steroid metabolomics, combining mass spectrometry-based steroid profiling and machine learning, has been described as a novel diagnostic tool for detection of adrenocortical carcinoma (ACC). Objective, Design, Setting This proof-of-concept study evaluated the performance of urine steroid metabolomics as a tool for post-operative recurrence detection after microscopically complete (R0) resection of ACC. Patients and Methods 135 patients from 14 clinical centers provided post-operative urine samples, which were analyzed by gas chromatography-mass spectrometry. We assessed the utility of these urine steroid profiles in detecting ACC recurrence, either when interpreted by expert clinicians, or when analyzed by Random Forest, a machine learning-based classifier. Radiological recurrence detection served as the reference standard. Results Imaging detected recurrent disease in 42 of 135 patients; 32 had provided pre- and post-recurrence urine samples. 39 patients remained disease-free for ≥3 years. The urine “steroid fingerprint” at recurrence resembled that observed before R0 resection in the majority of cases. Review of longitudinally collected urine steroid profiles by three blinded experts detected recurrence by the time of radiological diagnosis in 50-72% of cases, improving to 69-92%, if a pre-operative urine steroid result was available. Recurrence detection by steroid profiling preceded detection by imaging by more than 2 months in 22-39% of patients. Specificities varied considerably, ranging from 61 to 97%. The computational classifier detected ACC recurrence with superior accuracy (sensitivity=specificity=81%). Conclusion Urine steroid metabolomics is a promising tool for post-operative recurrence detection in ACC; availability of a pre-operative urine considerably improves the ability to detect ACC recurrence.
Article
Full-text available
Adrenocortical carcinoma (ACC) is a rare orphan disease with a dismal prognosis. Surgery remains the first line treatment, but most patients eventually develop metastatic disease. Mitotane is often used with chemotherapy with modest success. Little information is available concerning the efficacy of immunotherapy in combination with mitotane. We conducted a retrospective review of our initial 6 patients with metastatic ACC, who failed mitotane alone or with chemotherapy, and were subsequently treated with a combination of pembrolizumab and mitotane, between July 2016 and March 2019. Imaging was analyzed per RECIST1.1 criteria. Two patients had a partial response and four patients had stable disease (8-19 months). One patient had grade 3 hepatitis and pembrolizumab was discontinued after 8 months. She died with disease progression 16 months after initiating pembrolizumab. One patient developed brain metastasis after 19 months of treatment and was transitioned to hospice. One patient had focal pneumonitis after 18 months of treatment, and pembrolizumab was discontinued. Three remaining patients continue pembrolizumab plus mitotane at the time of this writing. The current standard of care for ACC is a combination of etoposide, doxorubicin, cisplatin, and mitotane with an overall survival of 14.8 months. All six patients lived for at least 16 months after starting pembrolizumab added to mitotane therapy. The therapy appeared to be effective in both MSI-H and MSS tumors, suggesting some synergistic effect with mitotane. Combined immunotherapy and mitotane should be considered in future clinical trials in patients with ACC.
Article
Full-text available
Background: Adrenocortical carcinoma (ACC) is a rare malignancy without good treatment options. There are limited data about the use of immunotherapy in ACC. We investigated the efficacy and safety of pembrolizumab in patients with metastatic ACC. Methods: This is a pre-specified cohort of a single-center, investigator-initiated, phase II clinical trial using pembrolizumab monotherapy in patients with rare malignancies. Patients must have had prior treatment fail in the past 6 months before study enrollment. Patients were enrolled from August 2016 to October 2018. Follow-up data were updated as of March 26, 2019. Patients received 200 mg pembrolizumab intravenously every 3 weeks without concomitant oncologic therapy. The primary endpoint was non-progression rate (NPR) at 27 weeks. Other endpoints included adverse events, tumor responses measured independently by objective radiologic criteria, and select immunological markers. Results: Sixteen patients with ACC (including eight women [50%]) were included in this cohort. Ten patients (63%) had evidence of hormonal overproduction (seven had cortisol-producing ACC). Non-progression rate at 27 weeks was evaluable in 14 patients, one patient was lost to follow-up, and one patient left the study because of an adverse event. Five of 14 patients were alive and progression-free at 27 weeks (non-progression rate at 27 weeks was 36, 95% confidence interval 13-65%). Of the 14 patients evaluable for imaging response by immune-related Response Evaluation Criteria in Solid Tumors, two had a partial response (including one with cortisol-producing ACC), seven had stable disease (including three with cortisol-producing ACC), and five had progressive disease, representing an objective response rate of 14% (95% confidence interval 2-43%). Of those who had stable disease, six had disease stabilization that lasted ≥4 months. Severe treatment-related adverse events (≥grade 3) were seen in 2 of 16 patients (13%) and resulted in one patient discontinuing study participation. All studied tumor specimens (14/14) were negative for programmed cell death ligand-1 expression. Thirteen of 14 tumor specimens (93%) were microsatellite-stable. Eight of 14 patients (57%) had a high tumor-infiltrating lymphocyte score on immunohistochemistry staining. Conclusions: Single-agent pembrolizumab has modest efficacy as a salvage therapy in ACC regardless of the tumor's hormonal function, microsatellite instability status, or programmed cell death ligand-1 status. Treatment was well tolerated in most study participants, with a low rate of severe adverse events. Trial registration: ClinicalTrials.gov identifier: NCT02721732 , Registered March 29, 2016.
Article
Background Adrenocortical carcinoma (ACC) is an aggressive, rare malignancy. 2-deoxy-2-[18F]-fluoro-d-glucose positron emission tomography (FDG-PET) assesses tumor metabolism and glucose utilization. We hypothesized that higher maximum standard uptake value (SUVmax) is associated with decreased survival. Methods We performed a retrospective analysis of patients with ACC. Included patients (n = 26) had an FDG-PET scan available with a documentable SUVmax. Patients were dichotomized into “High” (≥8.4, n = 12) and “Low” (<8.4, n = 14) SUVmax. Univariate analysis and survival analysis were performed to compare groups. Results Demographics between groups were equivalent. The high SUVmax cohort demonstrated lower survival (median 479 days or 15.7 months) compared to the low group (median 1490 days or 48.6 months, p = .01). Log-Rank curve confirmed differences in survival (p = .007). Conclusions Higher SUVmax was associated with significantly worse survival in ACC and may reflect a more aggressive phenotype. FDG-PET may provide clinically useful information to determine prognosis and treatment. Further studies should prospectively evaluate using FDG-PET/CT in ACC.
Article
Purpose of review: comprehensive molecular characterization of adrenocortical carcinoma (ACC) through next-generation sequencing and bioinformatics analyses is expanding the number of targets with potential prognostic and therapeutic value. We performed a critical review of recent published literature on genotyping of ACC. Recent findings: 423 studies were published between 2019 and 2021. After manual curation we summarized selected evidence in two thematic areas: germline deoxyribonucleic acid (DNA) variations, genomic alterations and prognosis. Summary: the evolving genomic landscape of ACC requires target validation in terms of prognostic and predictive value within scientific consortia. Although the existing multiple driver genes are difficult targets in the perspective of precision oncology, alterations in DNA damage repair genes or in promoter hypermethylation could open new venues for repurposing of existing drugs in ACC.
Article
Despite recent advances in elucidating molecular pathways underlying adrenocortical carcinoma (ACC), this orphan malignancy is associated with poor survival. Identification of targetable genomic alterations is critical to improve outcomes. The objective of this study was to characterize the genomic profile of a large cohort of patient ACC samples to identify actionable genomic alterations. Three hundred sixty-four individual patient ACC tumors were analyzed. The median age of the cohort was 52 years and 60.9% (n = 222) were female. ACC samples had common alterations in epigenetic pathways with 38% of tumors carrying alterations in genes involved in histone modification, 21% in telomere lengthening, and 21% in SWI/SNF complex. Tumor suppressor genes and WNT signaling pathway were each mutated in 51% of tumors. Fifty (13.7%) ACC tumors had a genomic alteration in genes involved in the DNA mismatch repair (MMR) pathway with many tumors also displaying an unusually high number of mutations and a corresponding MMR mutation signature. In addition, genomic alterations in several genes not previously associated with ACC were observed, including IL7R, LRP1B, FRS2 mutated in 6, 8 and 4% of tumors, respectively. In total, 58.5% of ACC (n = 213) had at least one potentially actionable genomic alteration in 46 different genes. As more than half of ACC have one or more potentially actionable genomic alterations, this highlights the value of targeted sequencing for this orphan cancer with a poor prognosis. In addition, significant incidence of MMR gene alterations suggests that immunotherapy is a promising therapeutic for a considerable subset of ACC patients.
Article
An adrenal mass discovered in testing for another condition (an “incidentaloma”) warrants biochemical tests to detect pheochromocytoma, excess cortisol, and, in a patient with hypertension, primary hyperaldosteronism. Imaging may distinguish benign from malignant lesions. Small nonfunctioning adrenal tumors with low CT attenuation generally do not warrant intervention or long-term follow-up.
Article
Advanced adrenocortical cancer (ACC) is a rare, highly aggressive malignancy, which typically has a poor prognosis. In advanced ACC, the overall trend is toward a short PFS interval following first-line systemic therapy, highlighting a clear need for improved second-/third-line treatment strategies. We conducted a review of the literature and relevant scientific guidelines related to systemic therapy for advanced ACC. Public indexes including PubMed/MEDLINE were searched. Treatment selection in the second-line setting is based on small phase 2 trials, case reports, and pre-clinical evidence. The best data available for initial second-line therapy selection supports the use of gemcitabine and capecitabine (G + C) or streptozotocin (S), both with or without mitotane. G + C is becoming increasingly recommended based on phase 2 clinical trial data in patients of good PS, due to the inferred superior PFS and OS from non-comparative trials. Alternatively, streptozotocin was better tolerated than EDP + M in the FIRM-ACT study and remains an option when warranted. Beyond this, further treatment approaches should be tailored to individual patient characteristics, utilizing a mixture of systemic therapies, local therapies, and enrolment in clinical trials where available. Additionally, the role of molecular stratification, predictive biomarkers, and immune checkpoint inhibitors in specific individuals, such as Lynch syndrome, is evolving and may become increasingly utilized in clinical practice. Advanced ACC necessitates a multidisciplinary approach and is best managed in a specialist center. Although there is no one definitive second-line treatment strategy, there are some favorable approaches, which require further validation in larger clinical trials.
Article
Lineage plasticity, the ability of cells to transition from one committed developmental pathway to another, has been proposed as a source of intratumoural heterogeneity and of tumour adaptation to an adverse tumour microenvironment including exposure to targeted anticancer treatments. Tumour cell conversion into a different histological subtype has been associated with a loss of dependency on the original oncogenic driver, leading to therapeutic resistance. A well-known pathway of lineage plasticity in cancer — the histological transformation of adenocarcinomas to aggressive neuroendocrine derivatives — was initially described in lung cancers harbouring an EGFR mutation, and was subsequently reported in multiple other adenocarcinomas, including prostate cancer in the presence of antiandrogens. Squamous transformation is a subsequently identified and less well-characterized pathway of adenocarcinoma escape from suppressive anticancer therapy. The increased practice of tumour re-biopsy upon disease progression has increased the recognition of these mechanisms of resistance and has improved our understanding of the underlying biology. In this Review, we provide an overview of the impact of lineage plasticity on cancer progression and therapy resistance, with a focus on neuroendocrine transformation in lung and prostate tumours. We discuss the current understanding of the molecular drivers of this phenomenon, emerging management strategies and open questions in the field.
Article
Purpose: Adrenocortical carcinomas (ACC) are rare and aggressive malignancies with limited treatment options. This study was undertaken to evaluate the immunogenicity of ACC. Patients and methods: Patients with advanced ACC were enrolled in a phase II study to evaluate the clinical activity of pembrolizumab 200 mg every 3 weeks, without restriction on prior therapy. The primary end point was objective response rate. Efficacy was correlated with tumor programmed death-ligand 1 expression, microsatellite-high and/or mismatch repair deficient (MSI-H/MMR-D) status, and somatic and germline genomic correlates. Results: We enrolled 39 patients with advanced ACC and herein report after a median follow-up of 17.8 months (range, 5.4 months to 34.7 months). The objective response rate to pembrolizumab was 23% (nine patients; 95% CI, 11% to 39%), and the disease control rate was 52% (16 patients; 95% CI, 33% to 69%). The median duration of response was not reached (lower 95% CI, 4.1 months). Two of six patients with MSI-H/MMR-D tumors responded. The other seven patients with objective responses had microsatellite stable tumors. The median progression-free survival was 2.1 months (95% CI, 2.0 months to 10.7 months), and the median overall survival was 24.9 months (95% CI, 4.2 months to not reached). Thirteen percent of patients (n = 5) had treatment-related grade 3 or 4 adverse events. Tumor programmed death-ligand 1 expression and MSI-H/MMR-D status were not associated with objective response. Conclusion: MSI-H/MMR-D tumors, for which pembrolizumab is a standard therapy, are more common in ACC than has been recognized. In advanced ACC that is microsatellite stable, pembrolizumab provided clinically meaningful and durable antitumor activity with a manageable safety profile.
Article
The success of targeted therapies in cancer treatment has been impeded by various mechanisms of resistance. Besides the acquisition of resistance-conferring genetic mutations, reversible mechanisms that lead to drug tolerance have emerged. Plasticity in tumour cells drives their transformation towards a phenotypic state that no longer depends on the drug-targeted pathway. These drug-refractory cells constitute a pool of slow-cycling cells that can either regain drug sensitivity upon treatment discontinuation or acquire permanent resistance to therapy and drive relapse. In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in various cancers, ranging from prostate and lung adenocarcinoma to melanoma and basal cell carcinoma. Our understanding of the mechanisms that control this phenotypic switch has also expanded, revealing the crucial role of reprogramming factors and chromatin remodelling. Further deciphering the molecular basis of tumour cell plasticity has the potential to contribute to new therapeutic strategies which, combined with existing anticancer treatments, could lead to deeper and longer-lasting clinical responses.
Article
Background: Adrenocortical carcinoma is an aggressive malignancy with a low but variable overall survival rate. The role of in adrenocortical carcinoma is poorly understood. Thus, in this study we performed long noncoding RNA expression profiling in adrenocortical carcinomas, adrenocortical adenomas, and normal adrenal cortex. Methods: Long noncoding RNA expression profile using Human LncRNA/mRNA Expression Microarray V3.0 (Arraystar, Inc, Rockville, MD) was analyzed in samples from 11 adrenocortical adenomas, 9 adrenocortical carcinomas, and 5 normal adrenal cortex. Differentially expressed long noncoding RNAs were validated using TaqMan, real-time quantitative polymerase chain reaction with additional samples. The dataset from the adrenocortical carcinoma Cancer Genome Atlas Programproject was used to evaluate the prognostic utility of long noncoding RNAs. Results: Unsupervised hierarchical clustering showed distinct clustering of adrenocortical carcinoma samples compared with normal adrenal cortex and adrenocortical adenoma samples by long noncoding RNA expression profiles. A total of 874 long noncoding RNAs were differentially expressed between adrenocortical carcinoma and normal adrenal cortex. LINC00271 expression level was associated with prognosis, patients with low LINC00271 expression survived a shorter time than patients with high LINC00271 expression. Low LINC00271 expression was positively associated with WNT signaling, cell cycle, and chromosome segregation pathways. Conclusion: Adrenocortical carcinoma has a distinct long noncoding RNA expression profile. LINC00271 is downregulated in adrenocortical carcinoma and appears to be involved in biologic pathways commonly dysregulated in adrenocortical carcinoma.
Article
Context While the development of immune checkpoint inhibitors has transformed treatment strategies of several human malignancies, research models to study immunotherapy in ACC are lacking. Objective To explore the effect of anti-PD1 immunotherapy on the alteration of the immune milieu in ACC in a newly generated preclinical model and correlate with the response of the matched patient. Design, Setting and Intervention To characterize the CU-ACC2-M2B patient-derived xenograft in a humanized mouse model, evaluate the effect of a PD-1 inhibitor therapy and compare to the CU-ACC2 patient with metastatic disease. Results Characterization of the CU-ACC2-hu-CB-BRGS model confirmed ACC origin and match with the original human tumor. Treatment of the mice with pembrolizumab demonstrated significant tumor growth inhibition (TGI = 60%) compared to controls, which correlated with increased tumor infiltrating lymphocyte activity, with an increase of human CD8+ T cells (p<0.05), HLA-DR+ T cells (p<0.05) as well as Granzyme B+ CD8+ T cells (<0.001). In parallel, treatment of the CU-ACC2 patient, who had progressive disease, demonstrated a partial response with 79%-100% reduction in the size of target lesions, and no new sites of metastasis. Pre-treatment analysis of the patient’s metastatic liver lesion demonstrated abundant intra-tumoral CD8+ T cells by immunohistochemistry. Conclusions Our study reports the first humanized ACC PDX mouse model which may be useful to define mechanisms and biomarkers of response and resistance to immune-based therapies, to ultimately provide more personalized care for patients with ACC.