Conference PaperPDF Available

Variation of Fluidity of Calcined Clay Limestone Cements by Power Ultrasound and Gypsum Addition

Authors:

Abstract and Figures

The substitution of Portland cement clinker with a combination of limestone, calcined clays and set regulator (calcium sulphates) is a promising way to reduce CO2 emissions of concrete. These cements are described as Limestone Calcined Clay Cement (LC3, https://lc3.ch/). Calcined clays are known to have a high specific surface area, which results in an increased water demand and thus reduced workability of mortars and concretes made from them. In practice, the reduced workability, among other things, means that these cements are rarely used. The advantage of calcined clays is their pozzolanic reactivity, so they contribute to hydration and thus to strength development. Previous work has shown that the amount of set regulator has significant effects on workability and strength development. For Portland cement, it is known that a brief exposure to power ultrasound during the mixing process improves workability and accelerates setting. Here we show how power ultrasound affects the fluidity of LC3 cements. This is compared with the effect of gypsum on the cement fluidity by measuring the slump of cement suspensions. The dispersing effect of ultrasound in cements is imaged in the scanning electron microscope (SEM) using high pressure frozen samples, that are sectioned using a focused ion beam (FIB). This allows to visualize agglomeration and deagglomeration of sub-micron scaled particles in a close-to native state. Result show that PUS strongly de-agglomerates LC3 cements leading to a significantly increased specific surface area. Furthermore, the very early hydration (≤ 5 h) of cements is monitored by in-situ X-ray diffraction. The effects of sonication on hydration and particle dispersion on fluidity of cements pastes are discussed.
Content may be subject to copyright.
The 16th International Congress on the Chemistry of Cement 2023 (ICCC2023)
Further Reduction of CO2 -Emissions and Circularity in the Cement and Concrete Industry
September 1822, 2023, Bangkok, Thailand
Variation of Fluidity of Calcined Clay Limestone Cements by Power
Ultrasound and Gypsum Addition
C. Rößler1, J. Kocis2, M. Heinemann1, F.Kleiner1, T. Sowoidnich1 and H.-M. Ludwig1
1 Bauhaus-University, Weimar, Germany
Email: christiane.roessler@uni-weimar.de, melanie.heinemann@uni-weimar.de,
thomas.sowoidnich@uni-weimar.de horst-michael.ludwig@uni-weimar.de
2 Friedrich-Schiller-University, Jena, Germany
Email: jackson.robert.kocis@uni-jena.de
ABSTRACT
The substitution of Portland cement clinker with a combination of limestone, calcined clays and set
regulator (calcium sulphates) is a promising way to reduce CO2 emissions of concrete. These cements are
described as Limestone Calcined Clay Cement (LC3, https://lc3.ch/). Calcined clays are known to have a
high specific surface area, which results in an increased water demand and thus reduced workability of
mortars and concretes made from them. In practice, the reduced workability, among other things, means
that these cements are rarely used. The advantage of calcined clays is their pozzolanic reactivity, so they
contribute to hydration and thus to strength development. Previous work has shown that the amount of set
regulator has significant effects on workability and strength development. For Portland cement, it is known
that a brief exposure to power ultrasound during the mixing process improves workability and accelerates
setting.
Here we show how power ultrasound affects the fluidity of LC3 cements. This is compared with the effect
of gypsum on the cement fluidity by measuring the slump of cement suspensions. The dispersing effect of
ultrasound in cements is imaged in the scanning electron microscope (SEM) using high pressure frozen
samples, that are sectioned using a focused ion beam (FIB). This allows to visualize agglomeration and
deagglomeration of sub-micron scaled particles in a close-to native state. Result show that PUS strongly
de-agglomerates LC3 cements leading to a significantly increased specific surface area. Furthermore, the
very early hydration ( 5 h) of cements is monitored by in-situ X-ray diffraction. The effects of sonication
on hydration and particle dispersion on fluidity of cements pastes are discussed.
KEYWORDS: calcined clay cements, fluidity, power-ultrasound, cryo-FIB-SEM
1. Introduction
It is no surprise that climate change has influenced the course of scientific research towards the development
of low(er)-carbon solutions for sources of anthropologically generated carbon emissions.
Born of this realization, researchers from Cuba, India, and Switzerland began development in the late
2000’s of a low-clinker cement not reliant on industrial waste. This research would eventually result in
what are known as Limestone Calcined Clay Cements, or LC3 for short (https://lc3.ch/). LC3s function by
replacing 50% of the clinker with a mixture of hydraulically active calcined clay (30%, usually metakaolin),
ground limestone (15%), and gypsum (5%) while obtaining similar engineering performances as Ordinary
Portland cement (Sharma et al. 2021).
These cements are made from globally abundant materials (clays, limestones) and can, in comparison to
Ordinary Portland cement (OPC), reduce emissions associated with production by up to 40% while
maintaining comparable long-term strength, costs, while sometimes even exceeding the lifespans of OPCs,
depending on the application (Scrivener et al. 2022, Scrivener et al. 2019, Pillai et al. 2019, Nguyen et al.
2020). These benefits are however checked by the generally poorer, and unpredictable rheology LC3
concretes exhibit (Tregger et al. 2010, Mousavi et al. 2021). Workability is amongst the most crucial factors
to consider when laying, casting, or pouring cement products and is naturally of particular importance to
the construction sector who steadfastly rely on uniform and predictable rheological outcomes from their
cements.
The application of Power Ultrasound (PUS) has been shown in previous studies to improve the rheological
behaviour, increase early strength gain, and accelerate setting time in OPC mortars and concretes (Peters
2016, Remus et al. 2018).
In preliminary tests PUS was shown however to greatly worsen the rheology in pure, metakaolin based
LC3s. The present work is therefore targeted on trying to understand the origin of the loss in workability
experienced by LC3s when given PUS treatment. In addition, it will be evaluated whether to what extent
additions of gypsum might stymy this process or whether it can be used towards a more predictable
rheological outcome.
2. Materials and Methods
2.1 LC3 cement
The LC3 Reference (Ref) is used as a bulk standard for the Deutsche Forschungsgesellschaft (DFG) funded
project “Opus Fluidum Futurum” (https://www.spp2005.de/), which seeks to build a foundation for
rheology-based design of cements as well as the development of sustainable construction materials. The
Ref LC3’s preparation was done by project partner Heidelberg Materials. The LC3 Ref contains 52.0 wt.-
% CEM I, 30.0 wt.-% calcined clay, 15.6 wt.-% limestone and 5.0 wt.-% of set regulator (C$ = anhydrite
+ gypsum + hemihydrate). Samples LC3 Ref +C$ and ++C$ contained 5.7 respectively 6.7 wt.-% C$.
Further details on LC3 Ref properties can be found elsewhere (Pott et al. 2023).
The uncalcined clay contained 5.6 wt.-% calcite, 18.6 wt.-% quartz, 7.5 wt.-% muscovite, 31.9 wt.-% illite,
32.0 wt.-% kaolinite and 4.4 wt.-% montmorillonite. After calcination the amorphous content of the
calcined clay was approximately 45 wt.-%.
2.2 Slump test and Setting time
The production of mortars (w/c 0.5) tested for their slump bases itself on DIN 196-1 but deviates from the
norm in several ways to accommodate the extra step of applying PUS to the cement pastes while
maintaining the highest degree of comparability. The measurement of slump itself follows DIN EN 1045-
3. The slump of each mortar, with and without the addition of PUS, was measured 20 minutes after the
initial addition of water. The determination of setting time was carried out using an automatic Vicat device
(RatioTEC) following DIN 196-3. Measurements were made every 10 minutes over the course of 15 hours.
2.4 Power Ultrasound
Sonication proceeded using an ultrasound processor and generator (UIP1000hd, Hielscher) connected to an
amplifier (Booster B2-2.2, Hielscher) and Sonotrode (BS2d34, Hielscher). The maximum amplitude was
set at 42.4 μm for all experiments. To ensure all treated sample received the same amount of energy, a
voltmeter (Energy-Check 3000, Voltcraft) was first used to determine the amount of energy delivered to
samples.
2.5 XRD and SEM
In-situ XRD measurements were performed (D8 diffractometer, energy-dispersive Sol-X detector Siemens)
using Cu radiation at 40 kV and 30 mA. The scanning was set at a step width of 0.015° 2θ over an angular
range from 8° to 56° 2θ with 19.2 s counting time per step. The samples were sealed with a Kapton foil and
placed on a Peltier-cooled sample holder to maintain a stable reaction temperature of 25°C. After mixing
with water the sample was immediately placed and sealed on the XRD sample holder. The first XRD scan
was taken approximately 5 min after water addition and following after every hour.
Cryo-SEM on 20 min hydrated cement suspensions was carried out using a high-pressure freezing (HPM
100, Leica) procedure as described elsewhere (Holzer et al. 2007). For obtaining a section and recording of
backscattered electron images (BSE) a high-resolution scanning electron microscope equipped with a
focused ion beam (SEM-FIB, Helios G4 UX, ThermofisherScientific) was used.
3. Results
Results in Figure 1 show that PUS worsened workability
across all C$ levels. Important to note as well, is that
additional C$ did only improve the slump for the sonicated
sample. Interestingly the error bars in the sonicated sample
are reduced compared to the non-sonicated LC3 Ref.
The second effect of sonication is an acceleration of setting
of cement pastes as shown by results in Table 1. These
findings furthermore reveal that additional C$ has a minor
influence on this acceleration effect.
The phase formation during early (≤ 5 h) hydration of the
sonicated and non-sonicated LC3 samples were
investigated by in-situ XRD (Figure 2). Results show that
within the investigated hydration time sonication does not
introduce other phases (AFm for example) or accelerates
gypsum consumption and that the intensities of the
ettringite and gypsum reflections are very similar. This indicates that sonication does not alter the LC3
phase assemblage to a verifiable extent.
To further unravel the cause of the fluidity reduction caused
by sonication of cement suspensions, cryo-SEM
investigations on 20 min hydrated LC3 pastes have been
carried out. In order to view LC3 particle distribution in the
aqueous phase without the necessity to sublimate the
sample, the high-pressure frozen suspension was sectioned
in the SEM using a focused ion beam. Results are shown in
Figure 3. The BSE images in Figure 3A and B clearly show
that in the sonicated sample the particles are dispersed and more homogenously distributed within the
amorphous ice. To analyse the particles, images were segmented (Figure 3C & D) and particle size
distributions were determined (Figure 4). As indicated by the images in Figure 3, the sonication leads to a
dispersion of particles, and thus to a shift in particle size distribution towards smaller particles (Figure 4).
In the non-sonicated LC3 reference sample these particles are probably agglomerated.
4. Conclusions
Results of the investigation show:
1. Sonication of LC3 cement leads to a slump
reduction, which is in contrast to
observations with OPC.
2. Nevertheless, sonication leads to an
acceleration of LC3 setting.
3. Phase assemblage investigated by in-situ
XRD is mostly unaffected by sonication.
4. Cryo-FIB-SEM imaging revealed that
sonication caused a dispersion of particles
shifting the particle size distribution to
smaller sizes. This is consistent to OPC.
However, the dispersion of particles is
associated with improved slump in OPC,
whereas in LC3 a reduction was shown.
Figure 2: Stacked in-situ X-ray diffractograms for
2 θ range from 7.8-17.5°. reflections labels: Ett-
ettringite, C$-gypsum, A) LC3 Ref, B) LC3 w. PUS.
Figure 1: Slump of mortars in
dependence of sonication and gypsum
(C$) content.
5.1% C$ 5.7% C$ 6.7% C$
120
130
140
150
160
170
155,5
160
157
123
135,5
141
slump (mm)
C$ content (wt%)
LC3 Ref w.o. US LC3 Ref w. US
Table 1: Set times of cement pastes (Vicat).
w. PUS
LC3
360 min
LC3++C$
360 min
References
Holzer L., Gasser P., Kaech A., Wegmann M., Zingg
A., Wepf R., Muench B., Cryo-FIB-nanotomography
for quantitative analysis of particle structures in
cement suspensions, Journal of Microscopy, 227
(2007) 216-228.
Mousavi S.S., Bhojaraju C., Ouellet-Plamondon C.,
Clay as a Sustainable Binder for Concrete A
Review, Construction Materials 1 (2021) 134168.
Nguyen Q.D., Kim T., Castel A., Mitigation of alkali-
silica reaction by limestone calcined clay cement
(LC3), Cement and Concrete Research 137 (2020)
106176.
Peters S., The Influence of Power Ultrasound on Setting
and Strength Development of Cement Suspensions: Doctoral Dissertation, Bauhaus-Universität Weimar, 2016
https://doi.org/10.25643/bauhaus-universitaet.2744
Pillai R.G., Gettu R., Santhanam M., Rengaraju S., Dhandapani Y., Rathnarajan S., Basavaraj A.S., Service life and
life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3), Cement and
Concrete Research 118 (2019) 111 119.
Pott, U., Crasselt, C., Fobbe, N., Haist, M., Heinemann, M., Hellmann, S., ... & Stephan, D. (2023). Characterization
data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum–
Rheology of reactive, multiscale, multiphase construction materials”. Data in Brief, 108902.
Remus R., Rößler Ch., Ludwig H.-M. "Power Ultrasound-Assisted Concrete ProductionWorkability, Strength
Development, and Durability." ACI Special Publication 330 (2018): 135-150.
Scrivener K.L., Laffely J. D, Favier A., Cement Plant Environmental Handbook 3rd Edition: LC3 Limestone
Calcined Clay Cement, Tradeship Publications Ltd, UK, 2022.
Scrivener K., Avet F., Maraghechi H., Zunino F., Ston J., Hanpongpun W., Favier A., Impacting factors and properties
of limestone calcined clay cements (LC 3 ), Green Materials 7 (2019) 314.
Sharma M., Bishnoi S., Martirena F., Scrivener K., Limestone calcined clay cement and concrete: A state-of-the-art
review, Cement and Concrete Research 149 (2021).
Tregger N.A., Pakula M.E., Shah S.P., Influence of clays on the rheology of cement pastes, Cement and Concrete
Research 40 (2010) 384391.
Figure 3: Cryo-SEM images of high-pressure frozen, FIB sectioned LC3 cement suspension (w/c = 0.5,
20 min hydrated): A, Reference B, Sonicated. C, D) segmented particles (Image width 46.3 µm resp.
44.8 µm).
Figure 4: Particle size distribution determined from
segmented images and Fig. 3C & D.
0.001 0.01 0.1 1
0.0
0.2
0.4
0.6
0.8
1.0
particle area in µm²
frequency
LC3 Ref w.o. US LC3 Ref w. US
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The negative environmental impacts of Portland cement as a binder in the construction industry have created a growing impetus to develop sustainable alternative binders. Various types of clay have been considered as potential cement replacements. The impact of clays as cement replacement depends on the dosage and treatment methods. This paper presents a comprehensive review to determine the effects of different types of clay on the fresh and hardened properties of concrete mixtures by analyzing the experimental database reported by the literature, including raw, calcined, modified, nano, and organo. This study intends to show the process of optimizing the use of clay in concrete, the reason behind converting raw clay to modified types, and research gaps through a comparison study between different types of clays. The present review study shows that clay-based concrete mixtures have higher thixotropy and yield stress values, improving shape stability. This results in lower early-age shrinkage of the concrete. However, the high floc strength of clay-based concrete causes a reduction in flowability. Treatment methods of raw clay, such as calcination and nano-sized clay particles, improve concrete compressive strength. General results of the previous studies highlight that all types of clay investigated positively affect the resistance of concrete to environmental attack.
Article
This article reviews the rapidly developing state-of-the-art literature available on the subject of the recently developed limestone calcined clay cement (LC³). An introduction to the background leading to the development of LC³ is first discussed. The chemistry of LC³ hydration and its production are detailed. The influence of the properties of the raw materials and production conditions are discussed. The mixture design of concrete using LC³ and the mechanical and durability properties of LC³ cement and concrete are then compared with other cements. At the end the economic and environmental aspects of the production and use of LC³ are discussed. The paper ends with suggestions on subjects on which further research is required.
Article
The study aims to investigate the influence of limestone calcined clay cement (LC3) on the alkali-silica reaction (ASR). Kinetics and sequence of ASR formation were monitored using the model reactant method. Accelerated mortar bar test (AMBT) was also conducted to evaluate the effect LC3 in the ASR expansion. 30 wt% replacement by flash calcined clay and limestone in binder reduced the mortar expansion lower than the limit of Australian Standard. From the model reactant method, the additional calcium rich phases in LC3 model reactant system seem to delay the ASR gel formation or produce high Ca/Si ASR products, relatively rigid C-S-H and C-A-S-H that has less expansive capability. The current results reveal the possibility to utilize model reactant experiments to monitor the formation sequence of ASR gels with the presence of calcined clay and limestone due to the consistent results observed between model reactant experiments and real LC3-based specimens.
Article
This paper presents data on the chloride diffusion coefficient (Dcl), ageing coefficient (m) and chloride threshold (Clth) related to seven concretes (four M35 and three M50) with OPC, OPC+PFA (pulverized fuel ash) and limestone-calcined clay cement (LC3). Using these, the service lives of a typical bridge pier and girder with the PFA and LC3 concretes were found to be much higher than those with OPC concretes of similar strength. From life-cycle assessment, the CO2 footprint of PFA and LC3 concretes were found to be significantly lower than those of OPC concretes of similar strength. Further, the CO2 emissions per unit of concrete per year of estimated service life, as a combined indicator of service life and carbon footprint, are similar for concretes with PFA and LC3, which are much lower than that with OPC.
Article
This paper details the main factors influencing the performance of limestone calcined clay cements (LC ³ ). The kaolinite content plays a major role in the rheological properties as well as strength development. Even in the presence of secondary phases, kaolinite can be accurately quantified by thermogravimetric analysis. The performance of LC ³ is slightly influenced by the calcination process of clay, but it can be optimized by using the correct calcination temperature and applying a specific mix design with adjusted sulfate and alkali content. The hydration reactions of LC ³ are fully characterized. They vary slightly from plain cement. There is no significant change in terms of phase assemblage. The main properties of LC ³ are also described. LC ³ blends show a lower creep compliance and a delay in shrinkage strains compared with plain cement. Concerning durability, LC ³ blends show outstanding performance with respect to resisting chloride ingress and expansion from the alkali–silica reaction.
Thesis
Ein aktuelles Thema in der Forschung der Betonindustrie ist die gezielte Steuerung des Erstarrens und der Entwicklung der (Früh)Festigkeit von Betonen und Mörteln. Aus ökonomischer Sicht sind außerdem die Reduktion der CO2-Emission und die Schonung von Ressourcen und Energie wichtige Forschungsschwerpunkte. Eine Möglichkeit zum Erreichen dieser Ziele ist es, die Reaktivität/Hydratation der silikatischen Klinkerphasen gezielt anzuregen. Neben den bereits bekannten Möglichkeiten der Hydratationsbeschleunigung (u.a. Wärmebehandlung, Zugabe von Salzen) bietet die Anwendung von Power-Ultraschall (PUS) eine weitere Alternative zur Beschleunigung der Zementhydratation. Da bis zum jetzigen Zeitpunkt noch keine Erfahrungen zum Einsatz von PUS in der Zementchemie vorliegen, sollen mit der vorliegenden Arbeit grundlegende Kenntnisse zum Einfluss von PUS auf das Fließ- und Erstarrungsverhalten von Zementsuspensionen erarbeitet werden. Dazu wurde die Arbeit in fünf Hauptuntersuchungsabschnitte aufgeteilt. Im ersten Teil wurden optimale PUS-Parameter wie Amplitude und Energieeintrag ermittelt, die eine effiziente Beschleunigung der Portlandzement(CEM I)hydratation bei kurzen Beschallzeiten und begrenzter Zementleimtemperaturerhöhung erlauben. Mit Hilfe unabhängiger Untersuchungsmethoden (Bestimmung des Erstarrungsbeginns, der Festigkeitsentwicklung, zerstörungsfreier Ultraschallprüfung, isothermer Wärmeflusskalorimetrie, hochauflösender Rasterelektronmikroskopie (REM) wurde die Wirkung von PUS auf den Hydratationsverlauf von CEM I-Suspensionen charakterisiert. Die Ergebnisse zeigen, dass die Behandlung von CEM I-Suspensionen mit PUS grundsätzlich ein beschleunigtes Erstarren und eine beschleunigte (Früh)Festigkeitsentwicklung hervorruft. Anhand von REM-Untersuchungen konnte eindeutig nachgewiesen werden, dass die Beschleunigung der CEM I-Hydratation mit einer beschleunigten Hydratation der Hauptklinkerphase Alit korreliert. Auf Grundlage dieser Erkenntnisse wurden die Ursachen der Aktivierung der Alithydratation untersucht. Dazu wurden Untersuchungen an Einzelsystemen des CEM I (silikatische Klinkerphase) durchgeführt. Es ist bekannt, das die Hydratation der Hauptklinkerphase Alit (in der reinen Form Tricalciumsilikat 3CaO*SiO2; C3S) durch Lösungs-/Fällungsreaktionen (Bildung von Calcium-Silikat-Hydrat Phasen, C-S-H Phasen) bestimmt wird. Mit Hilfe von Untersuchungen zur Auflösung (C3S) und Kristallbildung (C-S-H Phasen) in Lösungen und Suspensionen (Aufzeichnung der elektrischen Leitfähigkeit sowie Bestimmung der Ionenkonzentrationen der wässrigen Phase, REM-Charakterisierung der Präzipitate) wurde die Beeinflussung dieser durch eine PUS-Behandlung charakterisiert. Die Ergebnisse zeigen, dass in partikelfreien Lösungen (primäre Keimbildung) eine PUS-Behandlung keinen Einfluss auf die Kinetik der Kristallisation von C-S-H Phasen hervorruft. Das heißt, auch die durch PUS eingetragene Energie reicht offensichtlich nicht aus, um in Abwesenheit von Oberflächen die C-S-H Phasen Bildung zu beschleunigen. Das weist darauf hin, dass die Bildung von C-S-H Phasen nicht durch eine Beschleunigung von Ionen in der Lösung (erhöhte Diffusion durch Anwendung von PUS) hervorgerufen wird. Eine Beschleunigung des Kristallisationsprozesses (Keimbildung und Wachstum von C-S-H Phasen) durch PUS wird nur in Anwesenheit von Partikeln in der Lösung (Suspension) erzielt. Das belegen Ergebnisse, bei denen die Bildung erster C-S-H Phasen bei geringer Übersättigung (heterogene Keimbildung, in Anwesenheit von Oberflächen) erfolgt. Unter diesen Bedingungen konnte gezeigt werden, dass PUS innerhalb der ersten 30 Minuten der Hydratation eine erhöhte Fällung von ersten C-S-H Phasen bewirkt. Diese fungieren dann vermutlich während der Haupthydratation als Keim bzw. geeignete Oberfläche zum beschleunigten Aufwachsen von weiteren C-S-H Phasen. Weiterhin ist vorstellbar, dass (in Analogie zu anderen Bereichen der Sonochemie) PUS durch Kavitation Schockwellen hervorruft, welche Partikel und wässriges Medium beschleunigen und damit erhöhte Partikelbewegungen und -kollisionen induziert. Dies wiederum bewirkt, dass die anfänglich auf der C3S-Oberfläche gebildeten C-S-H Phasen teilweise wieder entfernt werden. Damit ist das Inlösunggehen von Ca- und Si-Ionen aus dem C3S weiterhin möglich. Um den genauen Mechanismus weiter zu charakterisieren sollten mit geeigneten Methoden weitere Untersuchungen durchgeführt werden. Im zweiten Teil der Arbeit wurde der Einfluss von PUS auf das Fließverhalten von CEM I-Suspensionen untersucht. Aus der Anwendung von PUS in anderen technischen Bereichen sind unter anderem Effekte wie das Entlüften, das Homogenisieren und das Dispergieren von Suspensionen und Emulsionen mittels PUS bekannt. Mit Hilfe der Bestimmung des Luftporengehaltes, Sedimentationsversuchen und cryo-SEM Untersuchungen wurde der Einfluss von PUS auf CEM I-Suspensionen charakterisiert. Die Ergebnisse belegen, dass durch PUS eine verbesserte Homogenität und Dispergierung der CEM I-Suspension erzielt wird. Damit wird für CEM I-Suspensionen unterschiedlichster w/z-Werte eine verbesserte Fließfähigkeit festgestellt. Ergebnisse der Bestimmung von Ausbreitmaßen und Trichterauslaufzeiten zeigen, dass PUS einen direkten Einfluss vor allem auf die Viskosität der CEM I-Suspensionen besitzt. Werden Fließmitteln (FM) der CEM I-Suspension zugegeben, wird nicht in jedem Fall eine verbesserte Fließfähigkeit festgestellt. Hier scheint unter bestimmten Voraussetzungen (w/z-Wert, FM-Gehalt, PUS) die Reaktion zwischen Aluminat- und Sulfatphase des Klinkers gestört. Zur eindeutigen Klärung dieses Sachverhaltes bedarf es jedoch weiterer quantitativer Untersuchungen zum Reaktionsumsatz. Im dritten Teil der Arbeit wurden die am CEM I gewonnenen Erkenntnisse zum Einfluss von PUS auf die Hydratation an Portland-Hüttensand(HÜS)-Zement-Systemen verifiziert. Dafür wurden auch in diesem Teil der Arbeit zunächst die optimalen PUS-Parameter festgelegt und der Einfluss auf das Erstarrung- und Erhärtungsverhalten dokumentiert. Untersuchungsmethoden sind unter anderem die Bestimmung des Erstarrungsbeginns und der (Früh)Festigkeitsentwicklung, Temperaturaufzeichnungen und isothermale Wärmeflusskalorimetrie sowie REM. Die Ergebnisse zeigen, dass auch die Reaktion von HÜS-Zementen durch PUS beschleunigt wird. Weiterführende Untersuchungen belegen, dass die erzielte Beschleunigung vorwiegend auf der Beschleunigung der Alitkomponente des CEM I beruht. Im Fokus der Teile vier und fünf dieser Arbeit stand die Anwendbarkeit der PUS-Technik unter praktischen Bedingungen. Zum einen wurde die Anwendbarkeit von PUS in fertig gemischten Mörteln beurteilt. Anhand des Vergleichs wichtiger Frisch- und Festmörteleigenschaften unterschiedlich hergestellter Mörtel (beschallt im Anschluss an konventionelle Mischtechnik, beschallt im Anschluss an Suspensionsmischtechnik mit anschließender Zumischung der Gesteinskörnung und nicht beschallt) wird gezeigt, dass im Fall von Mörteln mit hohem Leimanteil eine durch PUS induzierte beschleunigte Festigkeitsentwicklung auch mit herkömmlichen Mischabläufen (ohne aufwendige Umstellung des Mischprozesses) möglich ist. Abschließend wird untersucht, ob der Herstellungsprozess von Wandbauteilen im Fertigteilwerk durch den Einsatz von PUS optimiert werden kann und ob eine Einbindung der PUS-Technik in den Fertigungsprozess ohne größeren Aufwand möglich ist. Dazu wurden in einem ersten Schritt die Frisch- und Festbetoneigenschaften eines aktuell angewendeten selbstverdichtenden Betons im Labormaßstab (Mörtel) in Abhängigkeit einer PUS-Behandlung dokumentiert und mit der seiner unbeschallten Referenz verglichen. Aufgrund der durch PUS verursachten verbesserten Fließ- und Festigkeitseigenschaften kann die beschallte Mörtelrezeptur hinsichtlich Fließmittelgehalt und Dauer der Wärmebehandlung optimiert werden. Somit werden ca. 30 % der Fließmittelzugabe und 40 % der Dauer der Wärmebehandlung eigespart. Eine Einbindung der PUS-Technik in das betrachtete Fertigteilwerk ist nach Überprüfung der konstruktiven Gegebenheiten der Fertigungsstrukturen ohne größeren Aufwand möglich.
Article
The fresh state of concrete is becoming increasingly important in furthering the types of applications of today's construction world. Processing techniques have resulted in technologies such as self-consolidating concrete and depend on the microstructural changes that take place during and immediately after mixing and placing. These changes to the microstructure reflect the flocculation behavior between the particles in suspension. The ability to modify this behavior allows control over the balance among flowability and shape-stability of concrete. This study investigates how clay admixtures affect the microstructure of cement pastes from a rheological stand point. Shear and compressive rheology techniques are used to measure how the solids volume fraction of suspensions with different admixtures evolves with stress. Based on these relationships, the effectiveness of clays on the balance between flowability and shape-stability is measured. Results are consistent with green strength tests performed on concrete mixes derived from the cement paste mixes.
Article
Cryo-FIB-nanotomography is a novel high-resolution 3D-microscopy technique, which opens new possibilities for the quantitative microstructural analysis of complex suspensions. In this paper, we describe the microstructural changes associated with dissolution and precipitation processes occurring in a fresh cement paste, which has high alumina and sulphate contents. During the first 6 min, precipitation of ettringite leads to a general decrease of the particle size distribution. In the unhydrated cement paste almost no particles smaller than 500 nm are present, whereas after 6 min this size class already represents 9 vol%. The precipitation of ettringite also leads to a significant increase of the particle number density from 0.294*10(9)/mm(3) at t(0min) to 20.55*10(9)/mm(3) at t(6min). Correspondingly the surface area increases from 0.75 m(2)/g at t(0min) to 2.13 m(2)/g at t(6min). The small ettringite particles tend to form agglomerates, which strongly influence the rheological properties. The particular strength of cryo-FIB-nt is the potential to quantify particle structures in suspension and thereby also to describe higher-order topological features such as the particle-particle interfaces, which is important for the study of agglomeration processes.
Characterization data of reference materials used for phase II of the priority program DFG SPP
  • U Pott
  • C Crasselt
  • N Fobbe
  • M Haist
  • M Heinemann
  • S Hellmann
  • . . Stephan
Pott, U., Crasselt, C., Fobbe, N., Haist, M., Heinemann, M., Hellmann, S.,... & Stephan, D. (2023). Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 "Opus Fluidum Futurum-Rheology of reactive, multiscale, multiphase construction materials". Data in Brief, 108902.
Power Ultrasound-Assisted Concrete Production-Workability, Strength Development, and Durability
  • R Remus
  • Rößler Ch
  • H.-M Ludwig
Remus R., Rößler Ch., Ludwig H.-M. "Power Ultrasound-Assisted Concrete Production-Workability, Strength Development, and Durability." ACI Special Publication 330 (2018): 135-150.