Damage refers to the degradation of a material subjected to an external condition such as loading, temperature, and environment. Several investigations have been undertaken to understand the damage of materials like steel, aluminum alloy, titanium alloy, and other materials. However, a comprehensive study on the range of damage values for various materials is scarce. Therefore, an attempt has
... [Show full abstract] been made in the current study to investigate the range of damage values of 32 aluminum alloys because of their widespread applications in the aerospace, railway, automotive, and marine industries. The damage value of materials is determined by incorporating the Continuum Damage Mechanics (CDM)-based Bhattacharya and Ellingwood model. This model demands the monotonic properties of materials as inputs, and these are obtained from the literature. The critical damage values of the alloys were determined, and their values vary in the range of 0.1 to 0.9. It was observed that damage value is primarily influenced by plastic strain. The variation in the damage value of aluminum alloys is also analyzed under different plastic strain conditions. The comprehensive results of critical damage value and the variation in the damage value of the aluminum alloys obtained helps in selecting an appropriate aluminum alloy for applications where damage criteria play a significant role.