Article

What Are the Functions of Zinc in the Nervous System?

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... Zinc, an essential trace element, is an important antioxidant of choice due to its crucial role in neurological function [7]. Zinc acts as a cofactor for numerous enzymes and proteins involved in neurotransmission and neuroplasticity [8]. Recent studies have demonstrated zinc's ability to promote neurogenesis, enhance synaptic transmission, and reduce neuroinflammation [9]. ...
Article
This study investigated the neuromodulatory potential of zinc against acrylamide-induced cognitive impairment. Acrylamide (AA), a toxic substance commonly found in certain foods such as potato, grains and coffee, is known to cause neurological damage and severe cognitive decline. Twenty (20) male Wistar rats were divided into four groups (n = 5) by random selection. All groups except Control (Group 1) which received 1 mL/kg water daily, were induced with an oral dose of 10 mg/ kg of Acrylamide. Acrylamide (AA) (Group 2) was left untreated, while Low Zinc (AA + LZN-Group 3) and High zinc (AA + HZN-Group 4) were orally treated respectively with 10 mg/kg and 30 mg/kg of Zinc for 8 weeks. Zinc treatment mitigated the anxiety-like behavior and spatial and non-spatial memory deficit which are all signs of cognitive impairment observed in the AA group. Zinc reverses the significant decrease in superoxide dismutase (SOD) and catalase, significant increase in malondialdehyde (MDA) and interleukin 1β (IL-1β) caused by AA demonstrating its antioxidant and anti-inflammatory properties. Zinc also demonstrated potency in up-regulating brain-derived neurotrophic factor (BDNF) gene expression and down-regulating acetylcholinesterase (AChE) expression. Zinc treatment at both doses significantly increased the number of dentate gyrus cells. This study demonstrates the ability of zinc to mitigate the cognitive impairment secondary to acrylamide exposure.
... Zinc, an essential trace element, is an important antioxidant of choice due to its crucial role in neurological function [7]. Zinc acts as a cofactor for numerous enzymes and proteins involved in neurotransmission and neuroplasticity [8]. Recent studies have demonstrated zinc's ability to promote neurogenesis, enhance synaptic transmission, and reduce neuroinflammation [9]. ...
Article
Full-text available
This study investigated the neuromodulatory potential of zinc against acrylamide-induced cognitive impairment. Acrylamide (AA), a toxic substance commonly found in certain foods such as potato, grains and coffee, is known to cause neurological damage and severe cognitive decline. Twenty (20) male Wistar rats were divided into four groups (n = 5) by random selection. All groups except Control (Group 1) which received 1 mL/kg water daily, were induced with an oral dose of 10 mg/kg of Acrylamide. Acrylamide (AA) (Group 2) was left untreated, while Low Zinc (AA + LZN-Group 3) and High zinc (AA + HZN-Group 4) were orally treated respectively with 10 mg/kg and 30 mg/kg of Zinc for 8 weeks. Zinc treatment mitigated the anxiety-like behavior and spatial and non-spatial memory deficit which are all signs of cognitive impairment observed in the AA group. Zinc reverses the significant decrease in superoxide dismutase (SOD) and catalase, significant increase in malondialdehyde (MDA) and interleukin 1β (IL-1β) caused by AA demonstrating its antioxidant and anti-inflammatory properties. Zinc also demonstrated potency in up-regulating brain-derived neurotrophic factor (BDNF) gene expression and down-regulating acetylcholinesterase (AChE) expression. Zinc treatment at both doses significantly increased the number of dentate gyrus cells. This study demonstrates the ability of zinc to mitigate the cognitive impairment secondary to acrylamide exposure.
... Zn binds to the aminoterminal domain of GLUN2 A subunit of NMDA receptors to decrease the probability of ion channel opening through the increment of proton inhibition. Mutation of GLUN2 can alter the sensitivity of NMDA receptors to Zn and results drug-resistant epilepsies [25]. Zn as a cofactor also has inhibitory effects on neuronal T-type calcium channels [14]. ...
Article
Full-text available
Background Drug-resistant epilepsy is defined as failure of seizure control in spite of using 2 or 3 proper antiepileptic drugs in appropriate time. Mineral elements play important roles in neuronal function; it is believed that mineral deficiency may lead to complications through seizure management. In the present study, serum levels of zinc (Zn), copper (Cu), magnesium (Mg), calcium (Ca), and 25-hydroxy vitamin D (Vit D) in drug-resistant-epilepsy (DRE) patients were evaluated and compared with the controlled patients. Methods In this cross-sectional study, epileptic patients were included and categorized into two groups of DRE and well-controlled patients. Patients’ serum samples were analysed to evaluate Zn, Cu, Mg, Ca, and Vit D levels. The primary objective was comparison of serum levels of different trace elements between the groups. Results Sixty-four epileptic children including 33 DRE and 31 well-controlled children entered the study. The DRE children showed a significantly earlier onset of disease compared to the other group (p = 0.014). Comparing the frequency of developmental delay between the groups, the results showed this complication was significantly more frequent in the DRE group (p < 0.001). Concerning serum elements, the results showed a significantly higher concentration of Zn in the well-controlled group than the DRE group (p = 0.007). On the other hand, no significant differences were observed between the groups regarding the means of Vit D, Ca, Cu, and Mg levels (p > 0.05). Conclusion The results of the present study delineated that drug-resistant epilepsy patients had earlier onset of disease and were at higher risk of neurodevelopmental delay compared with well-controlled-epilepsy patients. A significant lower serum levels of Zn were also observed in drug-resistant-epilepsy patients. This finding may suggest the role of zinc supplementation in help to better control of drug-resistant seizures, as well as, the importance of serum zinc monitoring in epileptic patients.
Article
Full-text available
Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent sodium channels widely expressed throughout the central and peripheral nervous systems. They are involved in synaptic plasticity, learning/memory, fear conditioning and pain. Zinc, an important trace metal in the body, contributes to numerous physiological functions, with neurotransmission being of note. Zinc has been implicated in the modulation of ASICs by binding to specific sites on these channels and exerting either stimulatory or inhibitory effects depending on the ASIC subtype. ASICs have been linked to several neurological and psychological disorders, such as Alzheimer’s disease, Parkinson’s disease, ischemic stroke, epilepsy and cocaine addiction. Different ASIC isoforms contribute to the persistence of each of these neurological and psychological disorders. It is critical to understand how various zinc concentrations can modulate specific ASIC subtypes and how zinc regulation of ASICs can contribute to neurological and psychological diseases. This review elucidates zinc’s structural interactions with ASICs and discusses the potential therapeutic implications zinc may have on neurological and psychological diseases through targeting ASICs.
Article
Full-text available
Zinc is one of the most abundant metal ions in the central nervous system (CNS), where it plays a crucial role in both physiological and pathological brain functions. Zinc promotes antioxidant effects, neurogenesis, and immune system responses. From neonatal brain development to the preservation and control of adult brain function, zinc is a vital homeostatic component of the CNS. Molecularly, zinc regulates gene expression with transcription factors and activates dozens of enzymes involved in neuronal metabolism. During development and in adulthood, zinc acts as a regulator of synaptic activity and neuronal plasticity at the cellular level. There are several neurological diseases that may be affected by changes in zinc status, and these include stroke, neurodegenerative diseases, traumatic brain injuries, and depression. Accordingly, zinc deficiency may result in declines in cognition and learning and an increase in oxidative stress, while zinc accumulation may lead to neurotoxicity and neuronal cell death. In this review, we explore the mechanisms of brain zinc balance, the role of zinc in neurological diseases, and strategies affecting zinc for the prevention and treatment of these diseases.
Article
Full-text available
Zinc is an essential trace element; it serves as a cofactor for a great number of enzymes, transcription factors, receptors, and other proteins. Zinc is also an important signaling molecule, which can be released from intracellular stores into the cytosol or extracellular space, e.g. during synaptic transmission. Amongst cellular effects of zinc is activation of Kv7 (KCNQ, M-type) voltage-gated potassium channels. Here, we investigated relationships between Kv7 channel inhibition by Ca²⁺/calmodulin (Ca²⁺/CaM) and zinc-mediated potentiation. We show that zinc ionophore, zinc pyrithione (ZnPy), can both prevent or reverse Ca²⁺/CaM-mediated inhibition of Kv7.2. In the presence of both Ca²⁺ and Zn²⁺, the Kv7.2 channels lose most of their voltage-dependence and lock in an open state. Additionally, we demonstrate that mutations that interfere with CaM binding to Kv7.2 and Kv7.3 reduced channel membrane abundance and activity, but these mutants retained zinc sensitivity. Moreover, the relative efficacy of ZnPy to activate these mutants was generally greater, compared to the wild-type channels. Finally, we show that zinc sensitivity was retained in Kv7.2 channels assembled with mutant CaM with all four EF-hands disabled, suggesting that it is unlikely to be mediated by CaM. Taken together, our findings indicate that zinc is a potent Kv7 stabilizer, which may protect these channels from physiological inhibitory effects of neurotransmitters and neuromodulators, protecting neurons from overactivity.
Article
Full-text available
Wilson’s disease (WD) is a hereditary disorder of copper metabolism, producing abnormally high levels of non-ceruloplasmin-bound copper, the determinant of the pathogenic process causing brain and hepatic damage and dysfunction. Although the disease is invariably fatal without medication, it is treatable and many of its adverse effects are reversible. Diagnosis is difficult due to the large range and severity of symptoms. A high index of suspicion is required as patients may have only a few of the many possible biomarkers. The genetic prevalence of ATP7B variants indicates higher rates in the population than are currently diagnosed. Treatments have evolved from chelators that reduce stored copper to zinc, which reduces the toxic levels of circulating non-ceruloplasmin-bound copper. Zinc induces intestinal metallothionein, which blocks copper absorption and increases excretion in the stools, resulting in an improvement in symptoms. Two meta-analyses and several large retrospective studies indicate that zinc is equally effective as chelators for the treatment of WD, with the advantages of a very low level of toxicity and only the minor side effect of gastric disturbance. Zinc is recommended as a first-line treatment for neurological presentations and is gaining acceptance for hepatic presentations. It is universally recommended for lifelong maintenance therapy and for presymptomatic WD.
Article
Full-text available
Background Zinc (Zn) has a diverse role in many biological processes, such as growth, immunity, anti-oxidation system, homeostatic, and repairing. It acts as a regulatory and structural catalyst ion for activities of various proteins, enzymes, and signal transcription factors, as well as cell proliferation, differentiation, and survival. The Zn ion is essential for neuronal signaling and is mainly distributed within presynaptic vesicles. Zn modulates neuronal plasticity and synaptic activity in both neonatal and adult stages. Alterations in brain Zn status results in a dozen neurological diseases including impaired brain development. Numerous researchers are working on neurogenesis, however, there is a paucity of knowledge about neurogenesis, especially in neurogenesis in adults.SummaryNeurogenesis is a multifactorial process and is regulated by many metal ions (e.g. Fe, Cu, Zn, etc.). Among them, Zn has an essential role in neurogenesis. At the molecular level, Zn controls cell cycle, apoptosis, and binding of DNA and several proteins including transcriptional and translational factors. Zn is needed for protein folding and function and Zn acts as an anti-apoptotic agent; organelle stabilizer; and an anti-inflammatory agent. Zn deficiency results in aging, neurodegenerative disease, immune deficiency, abnormal growth, cancer, and other symptoms. Prenatal deficiency of Zn results in developmental disorders in humans and animals.Conclusion Both in vitro and in vivo studies have shown an association between Zn deficiency and increased risk of neurological disorders. This article reviews the existing knowledge on the role of Zn and its importance in neurogenesis.
Article
Full-text available
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Article
Full-text available
Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.
Article
Full-text available
The NMDA receptor (NMDAR) is inhibited by synaptically released zinc. This inhibition is thought to be the result of zinc diffusion across the synaptic cleft and subsequent binding to the extracellular domain of the NMDAR. However, this model fails to incorporate the observed association of the highly zinc-sensitive NMDAR subunit GluN2A with the postsynaptic zinc transporter ZnT1, which moves intracellular zinc to the extracellular space. Here, we report that disruption of ZnT1-GluN2A association by a cell-permeant peptide strongly reduced NMDAR inhibition by synaptic zinc in mouse dorsal cochlear nucleus synapses. Moreover, synaptic zinc inhibition of NMDARs required postsynaptic intracellular zinc, suggesting that cytoplasmic zinc is transported by ZnT1 to the extracellular space in close proximity to the NMDAR. These results challenge a decades-old dogma on how zinc inhibits synaptic NMDARs and demonstrate that presynaptic release and a postsynaptic transporter organize zinc into distinct microdomains to modulate NMDAR neurotransmission.
Article
Full-text available
Cellular Zn2+ homeostasis is tightly regulated and primarily mediated by designated Zn2+ transport proteins, namely zinc transporters (ZnTs; SLC30) that shuttle Zn2+ efflux, and ZRT-IRT-like proteins (ZIPs; SLC39) that mediate Zn2+ influx. While the functional determinants of ZnT-mediated Zn2+ efflux are elucidated, those of ZIP transporters are lesser understood. Previous work has suggested three distinct molecular mechanisms: (I) HCO3− or (II) H+ coupled Zn2+ transport, or (III) a pH regulated electrodiffusional mode of transport. Here, using live-cell fluorescent imaging of Zn2+ and H+, in cells expressing ZIP4, we set out to interrogate its function. Intracellular pH changes or the presence of HCO3− failed to induce Zn2+ influx. In contrast, extracellular acidification stimulated ZIP4 dependent Zn2+ uptake. Furthermore, Zn2+ uptake was coupled to enhanced H+ influx in cells expressing ZIP4, thus indicating that ZIP4 is not acting as a pH regulated channel but rather as an H+ powered Zn2+ co-transporter. We further illustrate how this functional mechanism is affected by genetic variants in SLC39A4 that in turn lead to Acrodermatitis enteropathica, a rare condition of Zn2+ deficiency.
Article
Full-text available
Zinc transporter 1 (ZNT1) is the only zinc transporter predominantly located on the plasma membrane, where it plays a pivotal role exporting cytosolic zinc to the extracellular space. Numerous studies have focused on the physiological and pathological functions of ZNT1. However, its biochemical features remain poorly understood. Here, we investigated the regulation of ZNT1 expression in human and vertebrate cells, and found that ZNT1 expression is posttranslationally regulated by cellular zinc status. We observed that under zinc-sufficient conditions, ZNT1 accumulates on the plasma membrane, consistent with its zinc efflux function. In contrast, under zinc-deficient conditions, ZNT1 molecules on the plasma membrane were endocytosed and degraded through both the proteasomal and lysosomal pathways. Zinc-responsive ZNT1 expression corresponded with that of metallothionein, supporting the idea that ZNT1 and metallothionein cooperatively regulate cellular zinc homeostasis. ZNT1 is N-glycosylated on Asn 299 in the extracellular loop between transmembrane domains V and VI, and this appears to be involved in the regulation of ZNT1 stability, as nonglycosylated ZNT1 is more stable. However, this posttranslational modification had no effect on ZNT1’s ability to confer cellular resistance against high zinc levels or its subcellular localization. Our results provide molecular insights into ZNT1-mediated regulation of cellular zinc homeostasis, and indicate that the control of cellular and systemic zinc homeostasis via dynamic regulation of ZNT1 expression is more sophisticated than previously thought.
Article
Full-text available
Zinc is a vital trace element crucial for the proper function of some 3,000 cellular proteins. Specifically, zinc is essential for key physiological processes including nucleic acid metabolism, regulation of gene expression, signal transduction, cell division, immune- and nervous system functions, wound healing, and apoptosis. Consequently, impairment of zinc homeostasis disrupts key cellular functions resulting in various human pathologies. Mammalian zinc transport proceeds via two transporter families ZnT and ZIP. However, the detailed mechanism of action of ZnT2, which is responsible for vesicular zinc accumulation and zinc secretion into breast milk during lactation, is currently unknown. Moreover, although the putative coupling of zinc transport to the proton gradient in acidic vesicles has been suggested, it has not been conclusively established. Herein we modeled the mechanism of action of ZnT2 and demonstrated both computationally and experimentally, using functional zinc transport assays, that ZnT2 is indeed a proton-coupled zinc antiporter. Bafilomycin A1, a specific inhibitor of vacuolar-type proton ATPase (V-ATPase) which alkalizes acidic vesicles, abolished ZnT2-dependent zinc transport into intracellular vesicles. Moreover, using LysoTracker Red and Lyso-pHluorin, we further showed that upon transient ZnT2 overexpression in intracellular vesicles and addition of exogenous zinc, the vesicular pH underwent alkalization, presumably due to a proton-zinc antiport; this phenomenon was reversed in the presence of TPEN, a specific zinc chelator. Finally, based on computational energy calculations, we propose that ZnT2 functions as an antiporter with a stoichiometry of 2H⁺/Zn²⁺ ion. Hence, ZnT2 is a proton motive force-driven, electroneutral vesicular zinc exchanger, concentrating zinc in acidic vesicles on the expense of proton extrusion to the cytoplasm.
Article
Full-text available
On the basis of the evidence that amyloid β1–42 (Aβ1–42)-induced Zn²⁺ influx affects memory acquisition via attenuated long-term potentiation (LTP) induction, here we tested whether Aβ1–42-induced Zn²⁺ influx affects maintained LTP in freely moving rats, resulting in retrograde amnesia. Both maintained LTP and space memory were impaired by local injection of 250 μM ZnCl2 (2 μl) into the dentate gyrus, while maintained LTP was impaired by injection of either Aβ1–40 or Aβ1–42 (25 μM, 2 μl) into the dentate gyrus. Aβ1–40-induced impairment of maintained LTP was rescued by co-injection of CaEDTA, an extracellular Zn²⁺ chelator, but not by co-injection of ZnAF-2DA, an intracellular Zn²⁺ chelator, suggesting that maintained LTP is impaired by Aβ1–40 via a mechanism that may involve extracellular Zn²⁺. In contrast, Aβ1–42-induced impairments of maintained LTP and space memory were rescued by co-injection of either CaEDTA or ZnAF-2DA. Intracellular Zn²⁺ in dentate granule cells was rapidly increased by Aβ1–42 injection into the dentate gyrus, but not by Aβ1–40 injection. The block of Aβ1–42-induced increase in intracellular Zn²⁺ by pretreatment with dexamethasone, a metallothionein inducer also rescued Aβ1–42-induced impairment of maintained LTP. The present study indicates that Aβ1–42-induced Zn²⁺ influx into dentate granule cells, which more readily occurs than free Zn²⁺-induced Zn²⁺ influx, attenuates maintained LTP followed by retrograde amnesia. It is likely that controlling Aβ1–42-induced intracellular Zn²⁺ dysregulation is a strategy for defending AD pathogenesis.
Article
Full-text available
Zinc (Zn2+) is a pleiotropic modulator of the neuronal and brain activity. The disruption of intraneuronal Zn2+ levels triggers neurotoxic processes and affects neuronal functioning. In this study, we investigated how the pharmacological modulation of brain Zn2+ affects synaptic plasticity and cognition in wild-type mice. To manipulate brain Zn2+ levels, we employed the Zn2+ (and copper) chelator 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ). CQ was administered for two weeks to 2.5-month-old (m.o.) mice, and effects studied on BDNF-related signaling, metalloproteinase activity as well as learning and memory performances. CQ treatment was found to negatively affect short- and long-term memory performances. The CQ-driven perturbation of brain Zn2+ was found to reduce levels of BDNF, synaptic plasticity-related proteins and dendritic spine density in vivo. Our study highlights the importance of choosing "when", "where", and "how much" in the modulation of brain Zn2+ levels. Our findings confirm the importance of targeting Zn2+ as a therapeutic approach against neurodegenerative conditions but, at the same time, underscore the potential drawbacks of reducing brain Zn2+ availability upon the early stages of development.
Article
Full-text available
While zinc has had a well-established structural role for many years, it is only during the last two decades that its role as a signaling molecule has been recognized. Ionic zinc, Zn2+, that is endogenously released during physiological activity acts as a first messenger, triggering the activity of a distinct Zn2+-sensing-receptor, ZnR. The ZnR is a member of the Gq-coupled receptor family, and the molecular moiety mediating its activity is GPR39. In this review, we will discuss the role of the ZnR/GPR39 in mediating Zn2+-dependent signaling in epithelial tissues and in neurons, where Zn2+ homeostasis plays physiological as well as pathological roles. Importantly, ZnR/GPR39 activates signaling that regulates a remarkably wide range of cell functions, including proliferation, differentiation and survival, as well as modulation of ion transport, and thereby, regulation of Na+, H+ and Cl- homeostasis. Moreover, signaling activated by ZnR/GPR39 plays a key role in mediating effects of Zn2+ in health and disease. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Article
Full-text available
Zinc, which is involved in the structure of all enzyme classes, is a micro nutrient element and necessary for growth and development. The ability of zinc to function without causing toxic effects is depends on the protection of its homeostasis. Zinc transporter proteins are responsible for keeping zinc at certain concentrations. Based on their predicted membrane topology, Zn transporters are divided into two major families, SLC39s/ZIPs and SLC30s/ZnTs, which transport Zn in opposite directions through cellular and intracellular membranes. ZIPs increases the zinc concentration in the cytosol. For this, the ZIPs carries the zinc from extracellular and intracellular compartments to the cytosol. ZnTs, reduces the concentration of zinc in the cytosol. For this, ZnTs carries the zinc from the cytosol to extracellular and intracellular compartments. After being transported to the cell, 50% of the zinc is found in the cytoplasm, 30–40% in the nucleus, and 10% in the plasma and organelle membranes. The expression of many zinc transporter proteins in the cell is depending on the concentration of zinc and the physiological problems. The aim of this study is to give information about association of zinc transporter proteins with physiological events and health problems.
Article
Full-text available
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function
Article
Full-text available
Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1. SIGNIFICANCE STATEMENT The chemotherapy-induced peripheral neuropathy is a major limiting factor affecting the chemotherapy patients. There is no effective treatment available currently. We demonstrate that zinc prevents paclitaxel-induced mechanical hypersensitivity via inhibiting the TRPV1 channel, which is involved in the sensitization of peripheral nociceptors in chemotherapy. Zinc transporters in DRG neurons are required for the entry of zinc into the intracellular side, where it inhibits TRPV1. Our study provides insight into the mechanism underlying the pain-soothing effect of zinc and suggests that zinc could be developed to therapeutics for the treatment of chemotherapy-induced peripheral neuropathy.
Article
Full-text available
The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer’s disease or negative outcomes following brain injury.
Article
Full-text available
Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.
Article
Full-text available
Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple sclerosis (MS), such as matrix metallopeptidase 9 (MMP-9) activation, blood-brain barrier (BBB) disruption, and subsequent immune cell infiltration from peripheral systems. Oral administration of a zinc chelator decreased BBB disruption, immune cell infiltration, and spinal white matter myelin destruction. Therefore, we hypothesized that zinc released into the extracellular space during MS progression is involved in destruction of the myelin sheath in spinal cord white mater and in generation of motor deficits. To confirm our previous study, we employed zinc transporter 3 (ZnT3) knockout mice to test whether vesicular zinc depletion shows protective effects on multiple sclerosis-induced white matter damage and motor deficits. ZnT3 gene deletion profoundly reduced the daily clinical score of experimental autoimmune encephalomyelitis (EAE) by suppression of inflammation and demyelination in the spinal cord. ZnT3 gene deletion also remarkably inhibited formation of multiple sclerosis-associated aberrant synaptic zinc patches, MMP-9 activation, and BBB disruption. These two studies strongly support our hypothesis that zinc release from presynaptic terminals may be involved in multiple sclerosis pathogenesis. Further studies will no doubt continue to add mechanistic detail to this process and with luck, clarify how these observations may lead to development of novel therapeutic approaches for the treatment of multiple sclerosis.
Article
Full-text available
Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.
Article
Full-text available
A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9's highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is through defective function of this novel activity of SLC30A9 rather than by a defect in its previously described role in transcriptional activation of Wnt signalling.
Article
Full-text available
Unlabelled: Zinc (Zn(2+)) is an essential cofactor in mammalian cells and neurons. Zn(2+) is released from synaptic vesicles of certain nerve terminals in the hippocampus during neuronal activity. Zn(2+) has been shown to inhibit synaptic GABAA receptors and alter the hippocampal network excitability. However, the ability of Zn(2+) to block extrasynaptic receptors remains unclear. Endogenous neurosteroids, such as allopregnanolone (AP), regulate neuronal excitability by allosteric activation of synaptic and extrasynaptic GABAA receptors. Neurosteroids activate extrasynaptic δGABAA receptor-mediated tonic inhibition in dentate gyrus granule cells (DGGCs), thereby contributing to the regulation of downstream circuit excitability. Here we report a novel inhibitory role of Zn(2+) at neurosteroid-sensitive, extrasynaptic δGABAA receptors by electrophysiological recordings in DGGCs from adult mice. Zn(2+) displayed a concentration-dependent, reversible noncompetitive blockade of AP-sensitive tonic current in DGGCs (IC50, 16 μm). Tonic current was fully blocked by Zn(2+), akin to the GABAA receptor antagonist gabazine. Zn(2+) inhibition of tonic current was lacking in DGGCs from δ-subunit knock-out mice. Moreover, AP-activated synaptic receptor-mediated phasic currents were not affected by Zn(2+) Finally, intrahippocampal infusion of Zn(2+) elicited rapid epileptiform activity and significantly blocked the antiseizure activity of AP in the kindling model of epilepsy. Thus, Zn(2+) inhibition of neurosteroid-sensitive, extrasynaptic GABAA receptors in the hippocampus has direct implications in many brain hyperexcitability conditions, such as seizures, epileptogenesis, and epilepsy. Zn(2+) interactions may aid to further understand the physiology of extrasynaptic GABAA receptors. Significance statement: Zn(2+) is most abundant in the synaptic vesicles of hippocampal mossy fibers. Zn(2+) release occurs with neuronal excitation, including seizure events, and exerts powerful excitability effects in the hippocampus circuits. Zn(2+) inhibits synaptic GABAA receptors, but its interaction is less well appreciated at the extrasynaptic receptors, which respond sensitively to endogenous neurosteroids. Here, we describe selective functional blockade by Zn(2+) of neurosteroid-sensitive, extrasynaptic GABAA receptors in the mouse hippocampus dentate gyrus, a key region associated with epilepsy and memory disorders. By demonstrating that extracellular Zn(2+) prevents neurosteroid augmentation of tonic current and protection against limbic seizures, our findings provide novel implications of this potential antagonistic interaction in a variety of neurological conditions.
Article
Full-text available
Abstract The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the “mobile” zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn2+ differs from s-block cations such as Ca2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is important in zinc biochemistry and for biological recognition as a variety of low molecular weight zinc complexes have already been implicated in biological processes, e.g. with ATP, glutathione, citrate, ethylenediaminedisuccinic acid, nicotianamine, or bacillithiol.
Article
Full-text available
Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca(2+)-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn(2+) that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn(2+)-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE.
Article
Full-text available
The divalent zinc ion is a cation that plays an indispensable role as a structural constituent of numerous proteins, including enzymes and transcription factors. Recently, it has been suggested that zinc also plays a dynamic role in extracellular and intracellular signaling as well. Ion channels are pore-forming proteins that control the flow of specific ions across the membrane, which is important to maintain ion gradients. In this review, we outline the modulatory effect of zinc on the activities of several ion channels through direct binding of zinc into histidine, cysteine, aspartate, and glutamate moieties of channel proteins. The binding of zinc to ion channels results in the activation or inhibition of the channel due to conformational changes. These novel aspects of ion-channel activity modulation by zinc provide new insights into the physiological regulation of ion channels.
Article
Full-text available
Metal responsive transcription factor 1 (MTF-1) is a zinc dependent transcription factor which is involved in the regulation of intracellular signaling pathways. MTF-1 regulates the expression of two streams of genes functioning in metal homeostasis and anti-oxidative response. MTF-1 acts in the process of binding of toxic metal ions in the cell, due to the activation of the expression of metallothioneins (MTs). Additionally, MTF-1 regulates transcription of genes involved in the sequestration of zinc and its intracellular transport. Disruption of zinc and MT homeostasis has an indispensable influence on the development of several pathological states. Moreover, by increasing MT activity, MTF-1 can effectively protect cells from oxidative and hypoxic stresses. The mechanism of MTF-1 action in cells includes the regulation of the proper immune response through activation/repression of anti- and pro-inflammatory cytokines. MTF-1 function in immune response is related to nuclear factor-κB (NF-κB) activity. Synthesis of insulin is also related to the activity of this transcription factor and zinc balance. Insulin transport also depends on zinc. In pancreatic β-cells, several types of the zinc transporters are found. Zinc transporters coordinated action is crucial for the synthesis and secretion of insulin. Disturbances in the regulation of signaling pathways connected with MTF-1 function can entail further alterations in zinc intracellular status and this growing imbalance can promote the pathophysiology of degenerative disorders.
Article
Full-text available
Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn(2+) level ([Zn(2+)]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia-reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn(2+)]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn(2+)]c but abolished the cytosolic Zn(2+) accumulation during reperfusion as well as ROS-elicited increases in the [Zn(2+)]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn(2+)]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury.
Article
Full-text available
Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc-mediated disruption of neuronal chloride homeostasis.
Article
Zn2+ is an important contributor to ischemic brain injury and recent studies support the hypothesis that mitochondria are key sites of its injurious effects. In murine hippocampal slices (both sexes) subjected to oxygen glucose deprivation (OGD), we found that Zn2+ accumulation and its entry into mitochondria precedes and contributes to the induction of acute neuronal death. In addition, if the ischemic episode is short (and sublethal), there is ongoing Zn2+ accumulation in CA1 mitochondria after OGD that may contribute to their delayed dysfunction. Using this slice model of sublethal OGD, we have now examined Zn2+ contributions to the progression of changes evoked by OGD and occurring over 4-5 hours. We detected progressive mitochondrial depolarization occurring from ∼ 2 hours after ischemia, a large increase in spontaneous synaptic activity between 2-3 hours, and mitochondrial swelling and fragmentation at 4 hours. Blockade of the primary route for Zn2+ entry, the mitochondrial Ca2+ uniporter (MCU; with ruthenium red, RR) or Zn2+ chelation shortly after OGD withdrawal substantially attenuated the mitochondrial depolarization and the changes in synaptic activity. RR also largely reversed the mitochondrial swelling. Finally, using an in vivo rat (male) asphyxial cardiac arrest (CA) model of transient global ischemia, we found that ∼8 min asphyxia induces considerable injury of CA1 neurons 4 hours later that is associated with strong Zn2+ accumulation within many damaged mitochondria. These effects were substantially attenuated by infusion of RR upon reperfusion. Our findings highlight mitochondrial Zn2+ accumulation after ischemia as a possible target for neuroprotective therapy.SIGNIFICANCE STATEMENT:Brain ischemia is a leading cause of mortality and long-term disability that still lacks effective treatment. After transient ischemia delayed death of neurons occurs in vulnerable brain regions. There is a critical need to understand mechanisms of this delayed neurodegeneration which can be targeted for neuroprotection. We found progressive and long-lasting mitochondrial Zn2+ accumulation to occur in highly vulnerable CA1 neurons after ischemia. Here we demonstrate that this Zn2+ accumulation contributes strongly to deleterious events occurring after ischemia including mitochondrial dysfunction, swelling and structural changes. We suggest that this mitochondrial Zn2+ entry may constitute a promising target for development of therapeutic interventions to be delivered after termination of an episode of transient global ischemia.
Article
Significance While zinc (Zn ²⁺ ) is a vital ion for cell function and human health, little is known about the role it plays in regulating cell signaling. Here, we use fluorescent tools to study the interaction between Zn ²⁺ and cell signaling pathways that play a role in cell growth and proliferation. Importantly, we use small, non-toxic Zn ²⁺ concentrations to ensure that our Zn ²⁺ changes are closer to what cells would experience in the body and not stress inducing. We also demonstrate that these signaling changes are driven by Ras activation, which contradicts one of the major hypotheses in the field. Our sensors shed light on how cells respond to an important micronutrient in real time.
Article
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm stained brain tissue found that this “labile” pool of cellular zinc was highly concentrated in synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc’s role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Article
Zinc(II) ions are redox-inert in biology. Yet, their interaction with sulfur of cysteine in cellular proteins can confer ligand-centered redox activity on zinc coordination sites, control protein functions, and generate signalling zinc ions as potent effectors of many cellular processes. The specificity and relative high affinity of binding sites for zinc allow regulation in redox biology, free radical biology, and the biology of reactive species. Understanding the role of zinc in these areas of biology requires an understanding of how cellular Zn²⁺ is homeostatically controlled and can serve as a regulatory ion in addition to Ca²⁺, albeit at much lower concentrations. A rather complex system of dozens of transporters and metallothioneins buffer the relatively high (hundreds of micromolar) total cellular zinc concentrations in such a way that the available zinc ion concentrations are only picomolar but can fluctuate in signalling. The proteins targeted by Zn²⁺ transients include enzymes controlling phosphorylation and redox signalling pathways. Networks of regulatory functions of zinc integrate gene expression and metabolic and signalling pathways at several hierarchical levels. They affect enzymatic catalysis, protein structure and protein-protein/biomolecular interactions and add to the already impressive number of catalytic and structural functions of zinc in an estimated three thousand human zinc proteins. The effects of zinc on redox biology have adduced evidence that zinc is an antioxidant. Without further qualifications, this notion is misleading and prevents a true understanding of the roles of zinc in biology. Its antioxidant-like effects are indirect and expressed only in certain conditions because a lack of zinc and too much zinc have pro-oxidant effects. Teasing apart these functions based on quantitative considerations of homeostatic control of cellular zinc is critical because opposite consequences are observed depending on the concentrations of zinc: pro- or anti-apoptotic, pro- or anti-inflammatory and cytoprotective or cytotoxic. The article provides a biochemical basis for the links between redox and zinc biology and discusses why zinc has pleiotropic functions. Perturbation of zinc metabolism is a consequence of conditions of redox stress. Zinc deficiency, either nutritional or conditioned, and cellular zinc overload cause oxidative stress. Thus, there is causation in the relationship between zinc metabolism and the many diseases associated with oxidative stress.
Article
Zinc is the second most abundant metal in human and serves as an essential trace element in the body. During the past decades, zinc has been found to play important roles in central nervous system, such as the development of neurons and synaptic activities. An imbalance of zinc is associated with brain diseases. The blood-brain barrier (BBB) maintains the homeostasis of the microenvironment, regulating the balance of zinc in the brain. A compromised BBB is the main cause of severe complications in cerebral ischemic patients, such as hemorrhage transformation, inflammation and edema. Recent studies reported that zinc in the brain may be a potential target for integrative protection against ischemic brain injury. Although zinc has long been regarded as important transmitters in central nervous system, the critical role of zinc dyshomeostasis in damage to the BBB has not been fully recognized. In this review, we summarize the role of the BBB in regulating homeostasis of zinc in physiological conditions and the effects of changes in zinc levels on the permeability of the BBB in cerebral ischemia. The integrity of BBB maintains the homeostasis of zinc in pathological conditions, while the balance of zinc in the brain and the circulation maintains the normal function of the BBB. Interrupting the zinc/BBB system will disturb the microenvironment in the brain, leading to pathological diseases. In stroke patients, zinc may serve as a potential target for protecting the BBB and reducing hemorrhage transformation, inflammation and edema.
Article
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Chapter
Zinc-induced neurotoxicity has been shown to play a role in neuronal damage and death associated with traumatic brain injury, stroke, seizures, and neurodegenerative diseases. During normal firing of “zinc-ergic” neurons, vesicular free zinc is released into the synaptic cleft where it modulates a number of postsynaptic neuronal receptors. However, excess zinc, released after injury or disease, leads to excitotoxic neuronal death. The mechanisms of zinc-mediated neurotoxicity appear to include not only neuronal signaling but also regulation of mitochondrial function and energy production, as well as other mechanisms such as aggregation of amyloid beta peptides in Alzheimer’s disease. However, recent data have raised questions about some of our long-standing assumptions about the mechanisms of zinc in neurotoxicity. Thus, this review explores the most recent published findings and highlights the current mechanistic controversies.
Article
Zinc transporter 3 (ZnT3) is the sole mechanism responsible for concentrating zinc ions within synaptic vesicles in a subset of the brain’s glutamatergic neurons. This vesicular zinc can then be released into the synaptic cleft in an activity-dependent fashion, where it can exert many signaling functions. This review provides a comprehensive discussion of the localization and function of ZnT3 and vesicular zinc in the central nervous system. We begin by reviewing the fundamentals of zinc homeostasis and transport, and the discovery of ZnT3. We then focus on four main topics. I) The anatomy of the zincergic system, including its development and its modulation through experience-dependent plasticity. II) The role of zinc in intracellular signaling, with a focus on how zinc affects neurotransmitter receptors and synaptic plasticity. III) The behavioural characterization of the ZnT3 KO mouse, which lacks ZnT3 and, therefore, vesicular zinc. IV) The roles of ZnT3 and vesicular zinc in health and disease.
Article
Zinc (Zn) is an essential trace mineral that regulates the expression and activation of biological molecules such as transcription factors, enzymes, adapters, channels, and growth factors, along with their receptors. Zn deficiency or excessive Zn absorption disrupts Zn homeostasis and affects growth, morphogenesis, and immune response, as well as neurosensory and endocrine functions. Zn levels must be adjusted properly to maintain the cellular processes and biological responses necessary for life. Zn transporters regulate Zn levels by controlling Zn influx and efflux between extracellular and intracellular compartments, thus, modulating the Zn concentration and distribution. Although the physiological functions of the Zn transporters remain to be clarified, there is growing evidence that Zn transporters are related to human diseases, and that Zn transporter-mediated Zn ion acts as a signaling factor, called “Zinc signal”. Here we describe critical roles of Zn transporters in the body and their contribution at the molecular, biochemical, and genetic levels, and review recently reported disease-related mutations in the Zn transporter genes.
Article
Significance The inability of CNS pathways to regenerate after injury can lead to devastating, life-long losses in sensory, motor, and other functions. We report that after injury to the optic nerve, a widely studied CNS pathway that normally cannot regenerate, mobile zinc (Zn ²⁺ ) increases rapidly in the processes of retinal interneurons (amacrine cells) and then transfers via vesicular release to retinal ganglion cells (RGCs), the injured projection neurons. Eliminating Zn ²⁺ leads to both persistent RGC survival and substantial axon regeneration with a broad therapeutic window. These findings show that signaling between interneurons and RGCs contributes to regulating the fate of RGCs after optic nerve injury, and that Zn ²⁺ chelation may provide a potent therapeutic approach.
Article
Zn2+, the second most prevalent trace element in the body, is essential for supporting a wide range of biological functions. While the majority of Zn2+ in the brain is protein-bound, a significant proportion of free Zn2+ is found co-localized with glutamate in synaptic vesicles and is released in an activity-dependent manner. Clinical studies have shown Zn2+ levels are significantly lower in blood and cerebrospinal fluid of children that suffer febrile seizures. Likewise, investigations in multiple animal models demonstrate that low levels of brain Zn2+ increase seizure susceptibility. Recent work provides human genetic evidence that disruption of brain Zn2+ homeostasis at the level of the synapse is associated with increased seizure susceptibility. In this review we will explore the clinical, functional and genetic data supporting the view that low synaptic Zn2+ increases cellular excitability and febrile seizure susceptibility. Finally, the review will focus on the potential of therapeutic Zn2+ supplementation for at risk patients.
Article
A hallmark of Alzheimer's disease is accumulation of amyloid beta (Aβ) deposits, which are associated with neuronal dysfunction, spine loss and impaired Ca2+ homeostasis. Amyloid beta (Aβ) binds to and is aggregated by Zn2+, a metal released from synaptic glutamatergic vesicles during neuronal activity. Synaptically released Zn2+ activates a metabotropic Gq-coupled Zn2+-sensing receptor, mZnR/GPR39, and induces Ca2+-signaling in postsynaptic neurons. We asked if Aβ, as a Zn2+ binding protein, regulates neuronal Zn2+-signaling mediated by mZnR/GPR39 using SHSY-5Y cells and cortical neurons from GPR39 wildtype and knockout mice. Following acute or chronic treatment with Aβ neuronal Zn2+-dependent Ca2+ release via mZnR/GPR39 is significantly reduced. This impairment is overcome when excess Zn2+ is applied, suggesting that impaired Ca2+-signaling results from Aβ binding of Zn2+. The Zn2+-dependent mZnR/GPR39 activation triggers phosphorylation of extracellular regulated kinase (ERK1/2) and upregulates expression of the chaperone protein clusterin (Clu). Importantly, neuronal Zn2+-dependent ERK1/2 phosphorylation and upregulation of Clu are attenuated by silencing mZnR/GPR39 as well as by Aβ treatment. In contrast, Zn2+-dependent AKT phosphorylation is not mediated by mZnR/GPR39 and is not attenuated by Aβ treatment. Thus, Zn2+ signaling via mZnR/GPR39 is distinctively disrupted by a critical pathological component of Alzheimer's disease. This article is protected by copyright. All rights reserved.
Article
Recent human genetic studies have identified a surprisingly high number of alterations in genes encoding NMDA receptor (NMDAR) subunits in several common brain diseases. Among NMDAR subunits, the widely-expressed GluN2A subunit appears particularly affected, with tens of de novo or inherited mutations associated with neurodevelopmental conditions including childhood epilepsies and cognitive deficits. Despite the increasing identification of NMDAR mutations of clinical interest, there is still little information about the effects of the mutations on receptor and network function. Here we analyze the impact on receptor expression and function of nine GluN2A missense (i.e. single-point) mutations targeting the N-terminal domain, a large regulatory region involved in subunit assembly and allosteric signaling. While several mutations produced no or little apparent effect on receptor expression, gating and pharmacology, two showed a drastic expression phenotype and two resulted in marked alterations in the sensitivity to zinc, a potent allosteric inhibitor of GluN1/GluN2A receptors and modulator of excitatory synaptic transmission. Surprisingly, both increase (GluN2A-R370W) and decrease (GluN2A-P79R) of zinc sensitivity were observed on receptors containing either one or two copies of the mutated subunits. Overexpression of the mutant subunits in cultured rat neurons confirmed the results from heterologous expression. These results, together with previously published data, indicate that disease-causing mutations in NMDARs produce a wide spectrum of receptor alterations, at least in vitro. They also point to a critical role of the zinc-NMDAR interaction in neuronal function and human health.
Article
Zinc (Zn2+) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.
Conference Paper
Zinc translocation from presynaptic nerve terminals to postsynaptic neurons has generally been considered the critical step leading to the accumulation of intracellular free zinc and subsequent neuronal injury. Recent evidence, however, strongly suggests that the liberation of zinc from intracellular stores upon oxidative and nitrative stimulation contributes significantly to the toxicity of this metal not only to neurons, but also to oligodendrocytes. The exact cell death signaling pathways triggered by zinc are beginning to be deciphered, In this review, we describe how the activation of 12-lipoxygenase and mitogen-activated protein kinase (MAPK) contribute to the toxicity of liberated zinc to neurons and oligodendrocytes.
Article
Significance Ionotropic glutamate AMPA receptors (AMPARs) play a fundamental role in normal function and plasticity of the brain, and they are also involved in many brain disorders. Despite the central role of AMPARs in neurobiology, the modulation of synaptic AMPA responses by endogenous modulators remains not well understood. Here, in three synapses found in two different brain areas, we provide the first evidence, to our knowledge, that endogenous zinc is coreleased with glutamate and modulates the strength of synaptic AMPAR responses. Because in many neocortical areas more than 50% of excitatory presynaptic terminals contain zinc within their glutamatergic vesicles, our findings establish zinc as a general neuromodulator that allows for fine-tuning and plasticity of glutamatergic fast synaptic transmission in the brain.
Article
Seizures are among the most common causes of apparent life-threatening events. There are discrepancies among the published reports on the correlation between epilepsy/febrile seizures and deficiency or overload of trace elements. The objective of this review and meta-analysis was to examine the present knowledge on the concentrations of the most investigated trace metals, including zinc, copper, selenium, and magnesium, in patients with epilepsy and febrile seizures. The PubMed and Scopus databases were searched to identify case-control studies that compared the concentration of zinc, copper, magnesium, and selenium in serum, hair, or cerebrospinal fluid between patients with epilepsy/febrile seizures and controls. A total of 60 articles were included in the present study (40 pertaining to epilepsy and 25 pertaining to febrile seizures). The serum concentration of zinc in nontreated patients with epilepsy was significantly higher than in controls (P = 0.034). There were significantly reduced serum concentrations of zinc (P = 0.018) and selenium (P = 0.012) in patients with febrile seizures compared with controls. The concentrations of copper, magnesium, and zinc were all significantly altered in patients with epilepsy who received antiepileptic drugs compared with untreated patients with epilepsy. Designing treatments to selectively restore zinc levels may be a strategy for treating patients with epilepsy. It is still unclear whether these ions are causal to, or a cofactor in, the development of epilepsy. Knowledge of the effects of various antiepileptic drugs on trace element homeostasis could potentially be used to effectively guide appropriate therapeutic strategies in the future.
Article
Zinc (Zn2+) is one of the most important trace metals in the body. It is necessary for the normal function of a large number of proteins including enzymes and transcription factors. While extracellular fluid may contain up to micromolar Zn2+, intracellular Zn2+ concentration is generally maintained at a subnanomolar level; this steep gradient across the cell membrane is primarily attributable to Zn2+ extrusion by Zn2+ transporting systems. Interestingly, systematic investigation has revealed that activities, previously believed to be dependent on calcium (Ca2+), may be partially mediated by Zn2+. This is also supported by new findings that some Ca2+-permeable channels such as voltage-dependent calcium channels (VDCCs), N-methyl-D-aspartate receptors (NMDA), and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPA-Rs) are also permeable to Zn2+. Thus, the importance of Zn2+ in physiological and pathophysiological processes is now more widely appreciated. In this review, we describe Zn2+-permeable membrane molecules, especially Zn2+-permeable ion channels, in intracellular Zn2+dynamics and Zn2+ mediated physiology/pathophysiology.
Article
The aim of this study was to investigate the role of the synaptic metabotropic zinc receptor mZnR/GPR39 in physiological adaptation to epileptic seizures. We previously demonstrated that synaptic activation of mZnR/GPR39 enhances inhibitory drive in the hippocampus by upregulating neuronal K(+)/Cl(-) co-transporter 2 (KCC2) activity. Here, we first show that mZnR/GPR39 knockout (KO) adult mice have dramatically enhanced susceptibility to seizures triggered by a single intraperitoneal injection of kainic acid, when compared to wild type (WT) littermates. Kainate also substantially enhances seizure-associated gamma oscillatory activity in juvenile mZnR/GPR39 KO hippocampal slices, a phenomenon that can be reproduced in WT tissue by extracellular Zn(2+) chelation. Importantly, kainate-induced synaptic Zn(2+) release enhances surface expression and transport activity of KCC2 in WT, but not mZnR/GPR39 KO hippocampal neurons. Kainate-dependent upregulation of KCC2 requires mZnR/GPR39 activation of the Gαq/phospholipase C/extracellular regulated kinase (ERK1/2) signaling cascade. We suggest that mZnR/GPR39-dependent upregulation of KCC2 activity provides homeostatic adaptation to an excitotoxic stimulus by increasing inhibition. As such, mZnR/GPR39 may provide a novel pharmacological target for dampening epileptic seizure activity. Copyright © 2014. Published by Elsevier Inc.