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Abstract 

Recording brain activity with high spatial and high temporal resolution across deeper layers of 

cortex has been a long-sought methodology to study how neural information is coded, stored, and 

processed by neural circuits and how it leads to cognition and behavior. Electrical and optical 

neural recording technologies have been the key tools in neurophysiology studies toward a 

comprehensive understanding of the neural dynamics. The advent of optically transparent neural 

microelectrodes has facilitated multimodal experiments combining simultaneous 

electrophysiological recordings from the brain surface with optical imaging and stimulation of 

neural activity. A remaining challenge is to scale down electrode dimensions to single-cell size 

and increase the density to record neural activity with high spatial resolution across large areas 

to capture nonlinear neural dynamics at multiple spatial and temporal scales. Here, we developed 

microfabrication techniques to create transparent graphene microelectrodes with ultra-small 

openings and a large, completely transparent recording area. We achieved this by using long 

graphene microwires without any gold extensions in the field of view. To overcome the quantum 

capacitance limit of graphene and scale down the microelectrode diameter to 20 m, we used Pt 

nanoparticles. To prevent open circuit failure due to defects and disconnections in long graphene 

wires, we employed interlayer doped double layer graphene (id-DLG) and demonstrated cm-scale 

long transparent graphene wires with microscale width and low resistance. Combining these two 

advances, we fabricated high-density microelectrode arrays up to 256 channels. We conducted 

multimodal experiments, combining recordings of cortical potentials with high-density transparent 

arrays with two-photon calcium imaging from layer 1 (L1) and layer 2/3 (L2/3) of the V1 area of 

mouse visual cortex. High-density recordings showed that the visual evoked responses are more 

spatially localized for high-frequency bands, particularly for the multi-unit activity (MUA) band. The 

MUA power was found to be strongly correlated with the cellular calcium activity. Leveraging this 

strong correlation, we applied dimensionality reduction techniques and neural networks to 
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demonstrate that single-cell (L2/3) and average (L1 and L2/3) calcium activities can be decoded 

from surface potentials recorded by high-density transparent graphene arrays. Our high-density 

transparent graphene electrodes, in combination with multimodal experiments and computational 

methods, could lead to the development of minimally invasive neural interfaces capable of 

recording neural activity from deeper layers without requiring depth electrodes that cause damage 

to the tissue. This could potentially improve brain computer interfaces and enable less invasive 

treatments for neurological disorders. 
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Introduction 

Understanding complex dynamics of the brain and the central nervous system require studying 

mechanisms and functions in a diverse set of spatial and temporal scales [1-3]. Spatial scales 

encompass neural circuits in millimeters or centimeters, single neurons in microns, synapses in 

submicrons and proteins such as ion channels and receptors at the nanoscale. This spatial 

diversity also cultivates temporal diversity where some molecular processes are taking place in 

microseconds, action potentials in miliseconds, neurotransmitter or hormone release in minutes 

and learning and behavioral changes in hours to days [1]. Monitoring neural dynamics and 

interrogating neural function across these diverse spatial and temporal scales is not possible 

using a single tool or technology. Therefore, integration of multiple tools and sensing and 

stimulation modalities in the same experiment have been widely employed to link mechanisms 

and functions operating at these different spatiotemporal scales towards a more comprehensive 

understanding of the brain. 

To date, multimodal experiments have been used to investigate the neural dynamics with 

applications ranging from studies of neural circuits [4-10] or pathophysiology of brain disorders 

such as Parkinson’s disease [11], Alzheimer’s disease [12], and Schizophrenia [13-17] to hybrid 

brain computer interfaces (BCI) combining two different modalities with complementary strengths 

to enhance performance [18-21]. Among these multimodal approaches, experiments concurrently 

recording electrophysiological during optical imaging and optogenetic stimulation has become a 

powerful approach to (i) combine temporal resolution advantage of electrophysiology with high 

spatial resolution and cell-type specificity of optical methods, (ii) to bridge the knowledge gap 

between basic neuroscience research relying on optical methods employing genetic modifications 

and clinical research mainly using electrical recordings, and (iii) to expand spatial reach of neural 

recordings [22] and (iv) to identify cell types through opto-tagging during electrophysiological 

recordings of neuronal spikes [23, 24]. To enable crosstalk and artifact free integration of electrical 
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and optical modalities, transparent graphene electrodes with artifact-free recording capability 

have been proposed [25-29]. Among all materials, graphene provides the best of both worlds by 

combining transparency, artifact-free recording capability [25, 26], flexibility [30], low noise [31], 

biocompatibility [32, 33], and chronic reliability [34-36]. Other materials have also been 

investigated to fabricate transparent electrodes, such as indium-tin-oxide (ITO) [37, 38], carbon 

nanotube meshes (CNTs) [39], metal nanowires, meshes or grids [40-43], and PEDOT:PSS [44-

46]. However, several constraints limit the use of these materials as multimodal chronic interfaces. 

The brittle nature of ITO makes it susceptible to crack formation and mechanical degradation [47, 

48]. CNTs and nanowires have shown cytotoxicity in many studies raising concerns on 

biocompatibility [49, 50]. Metal nanowires and meshes might still absorb light leading to light 

induced artifacts in electrical recordings due to photovoltaic and photothermal effects [44, 51, 52]. 

PEDOT:PSS might exhibit chronic reliability issues due to delamination [53]. Transparent 

graphene electrodes have been successfully employed in multimodal studies previously [22, 25-

27, 35, 54-60]. However, all graphene arrays demonstrated to date had low channel counts (~16) 

and large electrode opening sizes (~50 um or larger) limiting the spatiotemporal resolution of 

recorded signals. Reducing electrode dimensions to single cell size is desirable to detect high 

frequency activity including multiunit (MUA) and single unit (SUA) activities with high signal to 

noise ratio [61]. Increasing the array density and channel count is necessary to capture neural 

dynamics with high spatial resolution across large areas [62, 63]. Two important challenges 

remain to be addressed to realize high-density transparent graphene arrays with ultra-small 

electrodes: (1) In order to keep the field of view (FoV) clear, microwires of the arrays need to be 

completely transparent, particularly for high-density arrays. That requires patterning thin and long 

graphene wires. However, that results in increased wire resistance leading to signal attenuation 

and increases the susceptibility to structural defects from growth or fabrication causing open 

circuit failures. (2) Scaling down the graphene electrode dimensions drastically increases the 
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impedance due to the quantum capacitance [56], an intrinsic property of graphene due to its 

unique band structure [64].  

In this work, we overcome these challenges and demonstrate completely transparent, high-

density, microelectrode arrays with ultra-small graphene electrodes for multimodal experiments. 

We reduced the sheet resistance of graphene wires 7-fold by adopting double layer graphene 

and interlayer nitric acid doping and realized high aspect ratio graphene wires with high yield. We 

fabricated high-density graphene arrays up to 256-channels without any metal wires in the field 

of view to prevent any shadows that can block the imaging field of view and to cause light-induced 

artifacts. To overcome the quantum capacitance and lower the impedance of small graphene 

electrodes, we employed platinum nanoparticles (PtNPs) and achieved low impedances (~300 

kΩ) for electrodes with 20 μm diameter. We implanted these transparent, high-density electrodes 

over the visual cortex of awake mice and performed simultaneous two-photon calcium imaging at 

different depths. These experiments enabled simultaneous recordings of cortical potentials and 

neural activity from multiple cortical layers, which provide mutual and modality-specific information 

on neural dynamics. Our analysis showed that the surface potentials at high frequencies are 

highly correlated with the average calcium activities of L2/3 neurons. We trained recurrent neural 

networks (RNNs) using the multimodal dataset acquired from these experiments to predict the 

average calcium activities at L1 and L2/3 from surface recordings. Moreover, we extracted a 

representative latent space from the neural population’s calcium response and trained RNNs to 

decode the latent variables (n=8). Next, we projected the decoded latents back to the original 

space to predict single-cell activities of L2/3 neurons. Our results demonstrated that the average 

(L1 and L2/3) and single-cell (L2/3) calcium activities could be predicted from the surface 

potentials recorded by our graphene electrodes. 
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Results 

Elimination of defects and reduction of resistivity to enable large area high-density 

transparent arrays 

To build large area and high-density graphene arrays with a completely transparent recording 

area, we needed to reduce the width of the graphene wires to increase the electrode density 

without causing a huge increase in wire resistance. Conventional metal microwires can offer low 

resistivity. However, they completely block the field of view for high-density arrays, which would 

prevent multimodal imaging (Figure S1a). Previous designs of transparent graphene arrays using 

monolayer graphene required Au wires surrounding the recording electrode area, which limited 

the field of view and increased the potential for light-induced artifacts [26].  Therefore, microwires 

of the high-density arrays have to be made of graphene to maintain complete transparency across 

the entire recording area (Figure S1b). Compared to conventional metal microwires with finite 

thicknesses, graphene has relatively high sheet resistance due to its single-plane 2D atomic 

structure and grain boundaries. Therefore, reducing the width and increasing the length of 

graphene wires can significantly increase the wire resistance and lead to attenuation of the 

recorded signals. Furthermore, thin and long graphene wires are susceptible to defects from the 

growth and fabrication processes. These defects increase the probability of having open circuits 

in the graphene wires and reduce the yield of the graphene microelectrode array.  

Here, we addressed these challenges by introducing interlayer-doped double layer graphene (id-

DLG) to build flexible and transparent arrays with low resistance long graphene wires and ultra-

small microelectrodes (Figure 1a). To form id-DLG layers, the first graphene layer was transferred 

with the electrochemical delamination transfer method and doped by dipping it in a 50% nitric acid 

(HNO3) solution. Then, the second graphene layer was transferred using the same method as the 

first graphene layer to cap the interlayer dopants, as shown in Figure 1b. Trapping dopants 

between two graphene layers is important for achieving stable doping and corresponding 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2023. ; https://doi.org/10.1101/2023.10.05.561133doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.05.561133
http://creativecommons.org/licenses/by-nd/4.0/


Decoding depth activity from surface recordings using graphene arrays 

8 
 

resistivity decrease in graphene layers [65]. Details of the fabrication steps are explained in the 

Methods section. 

Our id-DLG approach was effective in eliminating the defects formed in growth or fabrication. 

Figure 1c compares the graphene microwires made of single layer graphene (SLG) and id-DLG. 

SLG can exhibit defects formed during fabrication which may cause open circuits when patterned 

to form microscale wires. These defects constitute a limit in scaling graphene wire width to build 

high-density and large area microelectrode arrays. id-DLG overcomes this issue since these 

defects are randomly distributed and they do not overlap across the top and bottom layers, 

allowing continuous conductivity for the microscale graphene wires with high yield (Figure 1c and 

Figure S2). Furthermore, scaling down the width of long graphene wires increases the wire 

resistance. HNO3 is well known as a p-type dopant for graphene, inducing Fermi level shift in 

graphene due to the surface charge transfer between HNO3 and carbon, which increases the 

conductivity [65]. id-DLG formed with HNO3 doping effectively reduces the graphene sheet 

resistance from 1908 Ω/sq (SLG) to 276 Ω/sq (id-DLG) (Figure 1d), which enabled us to shrink 

the graphene wires without further attenuation in recorded signals. It is important to note that 

double layer graphene without interlayer dopants only reduces the sheet resistance to 606 Ω/sq 

(DLG). 

By addressing the defect and sheet resistance issues, our id-DLG approach allowed us to 

fabricate transparent arrays consisting of 64 and 256 electrodes with 20 μm openings, 350 μm 

center-to-center pitch, and total areas of 3.1 × 2.8 mm2 and 6.4 × 6.1 mm2, respectively (Figure 

1e and Figure S3a-b). Moreover, we designed and fabricated different configurations of 

transparent arrays including various opening sizes, and a dense array with 50 μm center-to-center 

pitch size to suit the specific needs of different in-vivo experiments (Figure S3c-e).  

Overcoming quantum capacitance to build ultra-small electrodes 
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Scaling down the electrode dimensions is important for recording high-frequency activity and 

building high-density arrays [61, 63]. However, ultra-small graphene electrodes exhibit large 

impedance due to quantum capacitance of graphene, which is a result of low density of states 

near the Dirac point [56]. As shown in Figure 2a, employing multilayer graphene and introducing 

dopants increase the quantum capacitance [27, 56, 65], however overall capacitance is still 

dominated by the quantum capacitance since it is larger than electrical double layer capacitance 

(see Methods). To reduce the impedance, we electrochemically deposited platinum 

nanoparticles (PtNP) which has been suggested to overcome the quantum capacitance effect by 

creating a low impedance parallel conductance path [56].  PtNP modifies the electrode/electrolyte 

interface by increasing the effective surface and enabling faradaic reactions. Figure 2b shows 

the microscope and scanning electron microscopy (SEM) images of id-DLG electrode before and 

after platinum nanoparticles (PtNP) deposition. The impedance distribution of an array with 64 

channels before and after PtNP deposition is shown in Figure 2c.      

To quantitatively analyze the electrochemical impedance of electrodes, we constructed an 

equivalent circuit model for id-DLG with and without PtNPs (Figure 2d). We modified the 

conventional Randles model to capture the quantum capacitance effect, resistance of graphene 

wires, and pseudo-capacitance of PtNP. Unlike previously reported circuit model for PtNP/SLG 

electrode [56], we do not have a parallel branch to explain the electrochemical reaction at the 

electrolyte/electrode interface as the graphene channels are completely covered by PtNPs and 

the interface is converted from electrolyte/id-DLG to electrolyte/PtNP. Therefore, we removed the 

quantum capacitance component and added Cp that simulates the pseudo-capacitance of PtNP. 

Measured electrochemical impedance spectroscopy (EIS) and the fitted equivalent circuit model 

results are shown in Figure 2e, and the extracted parameters are listed in Table S1 for PtNP/id-

DLG and id-DLG models (Figure S4a and see Methods). We observed that the impedance of 

channels decreased with increased deposition time (Figure S4b). Since the impedance of 
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channels saturated after 150s of PtNP deposition with a value around 200 kΩ, we decided to set 

the deposition time to 150s. In addition, we found that the PtNP coverage and particle grain size 

increased with the deposition time (Figure S4c). Cyclic voltammetry (CV) results before and after 

150s PtNP deposition are shown in Figure S4d. The absence of redox peaks in the CV curve of 

id-DLG indicates that the electrolyte/id-DLG interface is fully capacitive. On the other hand, PtNP 

deposited id-DLG shows surface oxide reduction peaks around -300 mV and hydrogen absorption 

peaks around -500 mV to -800 mV, showing that PtNPs are contributing to the charge transfer 

process the electrode/electrolyte interface [56, 66]. Finally, deposition of PtNPs significantly 

increased the charge storage capacity (CSC) 7.5 times from 4.08 mC/cm2 (id-DLG) to 30.72 

mC/cm2 (PtNP/id-DLG) due to the large pseudo-capacitance of the PtNP interface and increased 

surface roughness (larger effective surface area). Although the transparency of electrodes 

covered with PtNPs are reduced, they only cover 0.23% of the total area of the array, therefore 

the PtNP/id-DLG arrays maintain high transparency (Figure 2f). With the combination of id-DLG 

and PtNP we successfully achieved high-yield completely transparent arrays with ultra-small 

electrodes and low impedance.  

In-vivo multimodal experiments with transgenic mice 

We performed multimodal experiments with transparent PtNP/id-DLG arrays to record 

electrophysiological signals from the cortical surface while conducting calcium imaging with two-

photon microscopy from the ipsilateral visual cortex of transgenic mice expressing GCaMP6s in 

most cortical excitatory neurons (CaMK2-tTA::tetO-GCaMP6s; see Methods) [67, 68]. Drifting 

gratings were used as visual stimulation (Figure 3a and see Methods). Two-photon imaging was 

performed at two different depths, 50 μm and 225 μm, corresponding to layer 1 and layer 2/3, 

respectively. The field of view was 960 μm × 960 μm that spans over nine channels (Figure 3b). 

While the imaging was performed in layer 1 or layer 2/3, we simultaneously recorded the neural 

activities using the 64 channels of the array that spans an area of 2.5 mm × 2.5 mm. Figure 3c 
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shows representative cortical potentials recorded by 64 channels during one trial of visual 

stimulus. 

The high optical transparency of the implanted array allowed for easy detection of excitatory 

neurons and their compartments and recording calcium signals with single-cell resolution. The 

imaging quality was not compromised by the transparent graphene array and the ultra-small PtNP 

electrodes did not obstruct the FoV (Figure S5). Following motion correction and detection of 

neural regions of interest (ROIs), we extracted fluorescence signals and calculated ∆F/F using 

the Suite2p software (see Methods). Representative fluorescence activities of ten neurons 

(highlighted in Figure 3e) are plotted in Figure 3f. The trial averaged population activity shows 

that the imaged cells could be categorized into three groups based on their specific responses to 

the stimulus; activated, suppressed, and non-modulated (Figure 3d and see Methods). Activated 

cells exhibit an increase in their activity while suppressed cells show decreased activity during 

stimulus presentation. Non-modulated cells do not show significant changes in their activity during 

visual stimulation. 

Unlike layer 2/3, layer 1 is occupied mainly by intermingled neuropils, including dendrites and 

axons extended from deeper layers. Therefore, the observed fluorescence represents dendritic 

and axonal activity. As there are almost no detectable cell bodies at this depth, the activity of layer 

1 is defined as the average (pixel-level) fluorescence changes in the FoV (excluding the blood 

vessels, see Methods). Figure 3g shows a representative average calcium activity of layer 1 in 

response to drifting gratings presented in eight different orientations.  

Our flexible array enabled us to record the surface potentials from 64 channels that spanned over 

a large area (2.5 X 2.5 mm) of the cortex including regions such as primary visual cortex (V1), 

primary somatosensory cortex (S1), posterior parietal cortex (PPC), and retrosplenial cortex 

(RSC) (Figure 4a). With such broad spatial coverage, we were able to examine the propagation 
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of visual stimulation responses. The responses were initiated from the top-right parts of the array 

that are located over the visual cortex and spread to the other channels while the peak amplitudes 

are detected over V1 (Figure 4b). The top three rows of the array, which were placed over V1 

and RSC, appeared to have the strongest biphasic responses. We analyzed the power of visual 

evoked responses at different frequency bands and found that the high-frequency bands (γ, and 

MUA) were more localized compared to low-frequency bands (δ, θ), which propagated to RSC, 

PPC, and even S1 (Figure 4c and see Methods). This result is consistent with previous works 

that showed the spatial reach of signal is limited at higher frequencies [62, 69-71]. The small 

electrode size (20 μm) with low impedance allowed us to record multi-unit activity (MUA) from the 

cortical surface with high fidelity. Representative MUA traces detected on different channels are 

shown in Figure 4d. These short-duration spikes recorded from the surface were classified as 

MUA since their auto correlograms do not show any refractory period (Figure S6a). To investigate 

the origins of MUA spikes detected from the surface, we examined the correlation between the 

cellular signals from calcium imaging and the MUA power for each channel. To calculate the MUA 

power, we band-pass filtered the signal between 500 Hz to 4 kHz and smoothed the squared 

values with a Gaussian kernel (see Methods). First, we extracted the peaks of the cell-averaged 

calcium signal and then took the time-average of MUA power around those peaks’ onsets for all 

64 channels (see Methods). The high correlation between the cellular calcium peaks and the 

MUA for the channels within the FoV (Figure 4e) suggests that the spiking activity of L2/3 

excitatory neurons underneath these channels is an important contributor to the MUA signals 

detected on the surface. Figure 4f shows representative cell-averaged calcium signal and MUA 

power of the channel with maximum correlation. The correspondence between the two signals is 

evident from the sharp deflections in the MUA power followed by peaks in the calcium signal. 

Figure 4g shows the correlation between calcium peaks and MUA power extracted from the 

whole recording of the same channel. We found similar correlation values between MUA power 

and calcium signal in other experiments with 16ch PtNP/id-DLG arrays (Figure S6b-e). 
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Predicting Neural Activity in Layer 1 and Layer 2-3 from Surface Recordings 

Given the correlation between the MUA power recorded from the surface and the cellular calcium 

signals imaged at 225 μm depth, we asked whether it is possible to predict the brain activity at 

deeper layers by only harnessing high-resolution electrical recordings from the cortical surface. 

To that end, we implemented a simple neural network model that consists of a linear hidden layer, 

a single-layer LSTM network, and a linear readout layer (Figure 5a) [22, 72]. The neural networks 

were trained to learn the nonlinear relationships between cellular calcium activities and surface 

potentials. It is important to emphasize that simultaneous recordings enabled by the high 

transparency of our graphene microelectrode arrays are critical to acquiring the multimodal 

datasets needed for training the neural networks. The power of signals at different frequency 

bands (δ: 1–4 Hz, θ: 4–7 Hz, α: 8–15 Hz, β: 15–30 Hz, γ: 31–59 Hz, H-γ: 61–200 Hz, MUA: 0.5–

4 kHz) were fed as inputs to the network to predict the pixel-level averaged calcium fluorescence 

change of L1 and L2/3 and the cell-averaged activity of L2/3. Five-fold cross-validation was 

performed by splitting the 40-minute recording sessions into eight-minute-long segments. 

Representative examples of decoded and ground truth activities for L1 and L2/3 are shown in 

Figure 5b. Calcium activity predicted from the surface potentials shows good agreement with the 

ground truth calcium fluorescence change imaged using two-photon microscopy for both depths. 

To evaluate the contributions spatially provided by different channels, we performed the decoding 

using subsets of channels starting from those closest to the FoV (Figure S7a). The decoding 

performance increased with the inclusion of more channels (Figure 5c), which indicates that 

different channels provide complementary information. However, the decoding performance was 

saturated when ~20 channels were used, suggesting that additional channels provide redundant 

information beyond this point.  

We next investigated the contribution of different frequency bands to the decoding performance 

by carrying out decoding using low (δ, θ, α, and β) and high (γ, H-γ, MUA) frequency components 
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from 20 channels closest to the FoV (9 channels in the FoV and 11 channels around it, see Figure 

S7a). The results show that the highest correlation is achieved when MUA and γ, H-γ were 

included, suggesting that high-frequency components carry a vast amount of information on the 

neural activity including the cellular spiking in the FoV (Figure 5d). As demonstrated in Figure 

4c, the low-frequency bands were also modulated by the visual stimulation, so the model could 

still use these bands as informative features to decode the calcium activity. However, the 

correlation between the peaks of average cellular activity and power at different frequency bands 

for those channels over and around the FoV (Figure S7b and see Methods) is significantly larger 

for high frequency bands (H-γ and MUA). Therefore, excluding the low-frequency components 

does not have a substantial effect on the decoding performance of cell averaged calcium activity. 

This indicates that low-frequency components do not provide additional information when 

combined with high-frequency bands for decoding cellular spiking at deeper layers. 

Predicting Single-cell Activity from Surface Recordings 

We showed that recordings from cortical surfaces could be used to train networks and predict the 

average calcium fluorescence change of neurons in L2/3. However, the average calcium signal 

mostly represents the dominant and synchronous dynamics in the neural network. A more 

interesting question is whether predicting calcium fluorescence of single cells from deeper layers 

is possible by only using high-resolution recordings of cortical potentials. Developing a network 

similar to Figure 5a to predict the activity of all 136 neurons would require increasing the 

complexity of the network which is not efficient due to the covariances in the neural activity. 

Previous studies have shown that the neural activity of neurons could be defined by low-

dimensional manifolds that capture most of the variance [73, 74]. Therefore, a better approach 

would be predicting the low-dimensional neural manifolds and projecting them back to the single-

cell space. Gaussian Process Factor Analysis (GPFA) is a generative model that unifies 
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dimensionality reduction and smoothing in one framework to extract latent representations that 

describe the shared variability of high-dimensional data [75]. 

To investigate the feasibility of predicting the single-cell activities of L2/3 neurons from the surface 

potentials, we first used GPFA to find a low-dimensional latent space that is very representative 

of the high-dimensional calcium fluorescence signal. We identified eight distinct latent variables 

that explain most of the variance of the high-dimensional data (Figure S8a). Next, we trained 

eight networks (same architecture used for the average calcium fluorescence decoding) to predict 

each of these latent variables separately using the surface recordings of 20 channels closest to 

the FoV (Figure S8b). To reconstruct the single-cell calcium fluorescence, we projected the 

decoded latent variables to high dimensional space using the GPFA parameters. The schematic 

in Figure 6a shows the three main steps in single-cell decoding which are dimensionality 

reduction using GPFA, prediction using RNNs, and projection to high dimensional space (See 

Methods and Figure S8c). Representative examples of decoded and ground truth single-cell 

activities are shown in Figure 6b, which demonstrates that our model can infer the activity of 

several neurons at depth using electrical recordings from the cortical surface. Figure 6c shows 

the decoding performance of all 136 cells with their location in the FoV. It is noteworthy to mention 

that maximum correlation is partially limited by the amount of information extracted using the 

GPFA model, as seen in the reconstructed calcium signals using true latent variables (Figure 

S9a-b). Prediction error can be further reduced, and correlation values can be further increased 

by optimizing the dimensionality reduction methods. We also compared the decoding 

performance for modulated (suppressed or activated) and non-modulated cells and found that the 

decoding performance is significantly better for cells that are responsive to the visual stimulus 

(Figure S9c, see Methods). These results indicate that the surface potentials recorded by 

transparent PtNP/id-DLG arrays carry information about the neural activities in both superficial 

and deep layers of the brain and could be used to infer neural population dynamics not only at 
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the average but even at single-cell level by projecting higher dimensional neural activity to a latent 

space. 

Discussion 

In this work, we developed a transparent, high-density graphene array with ultra-small electrodes 

and demonstrated its application in multimodal experiments to study the neural dynamics at 

different cortical layers with complementary spatiotemporal resolution provided by optical imaging 

and electrophysiological recording. Complete transparency of the graphene arrays enabled us to 

perform multimodal experiments combining electrical recordings from surface with two-photon 

imaging from depth and investigate the neural dynamics in the visual cortex of awake mice 

presented with drifting gratings as visual stimuli. By using double layer graphene, interlayer 

doping, and PtNP deposition we achieved high-aspect-ratio graphene wires and ultra-small 

electrodes with low impedances and drastically reduced the artifacts induced by two-photon 

imaging. 

We explored the multimodal datasets and found that the trial averaged signal powers at different 

frequency bands (δ, θ, γ, and MUA) demonstrated different spatial propagation patterns. 

Consistent with previous studies on the propagation of signals, we found that the responses are 

more localized at higher frequency bands. We also realized that the peaks of cell-averaged 

calcium activity of L2/3 neurons are highly correlated with the increases in the MUA power of 

those channels in and around the FoV. Such correspondence indicates that the synchronous 

spiking activity of pyramidal cells propagates to the cortical surfaces and could be detected using 

Electrocorticography (ECoG) electrodes. The means of propagation could be the axons projected 

to the superficial layers, volume conduction, and other connections in the neural network. These 

results suggest that surface potentials convey information about the neuronal activity at depth 
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and proper features extracted from these signals could be used to predict the cellular activities at 

depth. 

To that end, we first focused on the average calcium signals in L1 and L2/3. Due to the absence 

of neuronal bodies in L1, we used pixel-averaged ΔF/F as representative output signal and for 

L2/3 we used both the cell- and pixel-averaged ΔF/F signals. We developed simple RNNs and 

fed the powers of 7 different frequency bands (δ, θ, α, β, γ, Hγ, and MUA) as predictive features 

to decode the average calcium activities in L1 and L2/3. The inferred calcium signals resemble 

the true signals with minimal error which demonstrates the performance of the decoding model. 

To investigate the spatial and frequency contribution of these features we repeated the decoding 

with different combinations of channels and frequency bands. We showed that the inclusion of 

more channels improves the decoding performance due to the non-redundant information 

provided by each channel. However, adding the channels that are farther away from the FoV does 

not improve the decoding performance which suggests that these channels do not provide 

additional information about the activity of imaged neurons. We also showed that excluding the 

low frequency (δ, θ, α, β) signals does not deteriorate the decoding performance which suggests 

that these bands do not provide additional information when combined with high frequency bands 

(γ, Hγ, and MUA). 

To further improve the spatial resolution of the decoding network, we used GPFA to extract a low-

dimensional neural manifold and trained RNNs to separately decode the extracted latent 

variables. By projecting the decoded latent variables, we reconstructed single-cell calcium 

activities of all 136 neurons in L2/3. We predicted the activity of several neurons with high 

correlation (r>0.5) which indicates that surface recordings convey information on the spiking 

activity of neurons at depth. 
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These results demonstrate that our transparent graphene arrays could be potentially integrated 

with other techniques to facilitate multimodal experiments with unprecedented spatiotemporal 

resolutions. For instance, optical techniques could be utilized to manipulate/monitor the neural 

circuits and uncover the complex dynamics of surface potentials by realizing cross modality 

inference. Ultimately this may lead to localizing the potential sources of distinct features that are 

detected in surface recordings. The results of such experiments could be the applied to BCI 

technologies to improve and expand current systems to new realms of complex motor and 

behavioral tasks. Moreover, such multimodal experiments could be used to study the generation 

and propagation of neural oscillations that are imperative to various cognition mechanisms. 

Recordings of neural activity at depth without implanting invasive neural probes could extend the 

lifetime of neural implants and improve the longevity of BCI technologies and pave the way for 

their medical translation. It can also open up new avenues for minimally invasive neural 

prosthetics or targeted treatments for various neurological disorders.   

Methods 

Fabrication process of id-DLG arrays 

To form the transparent and flexible substrate, we deposited a 14 µm-thick layer of Parylene-C 

on a 4-inch silicon wafer coated with 100 nm PMGI SF3 as sacrificial layer. Next, we DC sputtered 

5 nm Chromium and 100 nm gold on the parylene-C substrate and patterned it with 

photolithography and wet etching to form metal wires and contact pad. The First graphene layer 

was transferred using electrochemical delamination process previously developed [26, 76]. To 

decrease the wire resistance, the first graphene layer was immersed into 50% nitric acid (HNO3) 

solution for 10 minutes. After cleaning the HNO3-doped graphene with acetone and IPA, the 

second graphene layer was transferred using the same process as the first layer. To pattern 

double layer graphene, we used bilayer photoresist (PMGI/AZ1512) and etched the graphene 
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with oxygen plasma, followed by acetone/IPA cleaning. To protect the double layer graphene 

during the next steps, we sputtered a 25 nm silicon dioxide (SiO2) etch-stop layer on the patterned 

graphene. Then we deposited a 2 µm-thick Parylene-C as encapsulation layer and patterned it 

with oxygen plasma to define electrode openings. To remove the protective SiO2 layer and get 

access to the double layer graphene we used 6:1 buffered oxide etchant. Finally, we detached 

the arrays from the wafer by immersing it in acetone and applying slight physical force to the 

edges of the wafer. 

Electrical double layer capacitance and quantum capacitance calculation 

To extract the capacitances, we first obtained the values of CPEGr and CQ by fitting the 

measurement data to the circuit model of id-DLG electrode. Then we extracted the CPE 

parameters (capacitance parameter, Y, and phase change element exponent, α) and used 

equation (1) to calculate the Cdl [77]. Rs is the solution resistance. 

Cdl = (Y * Rs) (1/α) / Rs  (1) 

We used equation (2) and the measured open circuit voltage to calculate the impurity 

concentration of SLG, DLG, and id-DLG [64, 78]. 

CQ= 
2𝑒2

ħ𝑣𝐹√𝜋
{(

𝑒𝑉

ħ𝑣𝐹√𝜋
)

2
+ |n∗|}

1/2

  (2) 

Here, 𝑣𝐹  is Fermi velocity, ħ  is plank constant, and V is open circuit voltage. To plot the 

capacitances in Figure 2a, we used equation (2) and swept the open circuit voltage from -0.4 to 

0.4 V (Cdl is not a function of V, so its value is constant). 

Electrode characterization and platinum nanoparticle deposition 

All the electrochemical characterizations were conducted with Gamry 600 plus with immersing in 

1x phosphate buffered saline. Both electrochemical impedance spectroscopy and cyclic 
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voltammetry were measured under three-electrode configuration using Ag/AgCl as reference 

electrode and Pt as counter electrode. To avoid electromagnetic noise, all the measurements 

were conducted inside of Faraday cage. Platinum nanoparticles (PtNPs) deposition was 

conducted with two-electrode configuration (Gamry 600 plus). The id-DLG electrode was 

connected to the working electrode while Pt wire was connected to the counter or auxiliary 

electrode. While both electrodes were immersed in the H2PtCl6 (0.05 M) and K2HPO4 (0.01 M) 

solution, the current of 50 nA was flown from the id-DLG electrode to counter electrode for 

selected time periods under ambient condition.  

Animal Procedures 

All procedures were performed in accordance with protocols approved by the UCSD Institutional 

Animal Care and Use Committee and guidelines of the National Institute of Health. Adult mice 

(cross between CaMKIIa-tTA (JAX 003010) [68]) and tetO-GCaMP6s (JAX 024742) [67], 2 

months old) were anesthetized with isoflurane (3% for induction and 1% for maintenance). Both 

eyes were protected by Vaseline (Vaseline) and a circular piece of scalp was removed. After 

cleaning the underlying bone using a razor blade, a custom-built head plate was implanted to the 

exposed skull (≈1 mm posterior to lambda) with cyanoacrylate glue and cemented with dental 

acrylic (Lang Dental). Two stainless steel screw (F000CE156, J.I. Morris) were implanted over 

olfactory bulb as reference and ground. A square craniotomy was made over the left hemisphere 

(~3.5 × 4 mm, centered ~1.75 mm lateral and 2 mm posterior to bregma), and dura of the 

craniotomized area was carefully removed with a hooked needle. The transparent PtNPs/id-DLG 

electrode array was first attached to a glass window with UV glue and connected to the amplifier 

board. Then the assembled interface was gently placed onto the exposed cortex with the 

electrode array facing to the cortical surface. The glass window was gradually press down through 

a micromanipulator (Sutter Instrument) until the whole electrode array was tightly attached to the 

cortical surface. Cortical areas covered by the electrode array included primary somatosensory 
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cortex (S1), posterior parietal cortex (PPC), primary visual cortex (V1), and retrosplenial cortex 

(RSC). Vetbond (3M) was applied to fill the gap between the skull and the glass window, and the 

glass window was further secured with cyanoacrylate glue and dental acrylic. A cocktail of 

dexamethasone (2 mg/kg body weight), buprenorphine (0.1 mg/kg body weight), and baytril (10 

mg/kg body weight) was given at the end of surgery. The animal was fully recovered from 

anesthesia before recording. 

Visual Stimulation 

Square-wave drifting grating stimuli (100% contrast, 0.04 cycles/degree, 3 cycles/sec, covering 

entire contralateral receptive field) were presented on an LCD monitor (30 × 38 cm) positioned 

15 cm away from the right eye using Psychtoolbox (http://psychtoolbox.org/). One of 8 orientations 

(45° apart) was presented for 2 or 2.5 sec on each trial in pseudorandom order. Inter-stimulus-

interval was 8 seconds. We presented each orientation at least 30 times in a session. 

Two Photon Imaging and analysis of imaging data 

Two-photon imaging was conducted for a head-fixed awake mouse through a 16 × 0.8 NA 

objective (Nikon) mounted on a commercial two-photon microscope (B-scope, Thorlabs) and 

using a 925 nm laser (Ti:sapphire laser, Newport). Images were acquired at ~29 Hz and a 

resolution of 512 × 512 pixels, covering 960 × 960 µm (Figures 2b-C). The laser power was 

~15mW for imaging layer 1 (~50 μm deep) and ~40mW for imaging layer 2/3 (~225 μm deep). 

Acquired images were motion corrected offline [79]. For quantification of calcium signals from 

layer 1, pixels in blood vessels and 10 pixels close to frame edges were excluded. The 

fluorescence time course (F) was calculated as the ground average of remaining pixels in each 

frame. At each time point, the baseline (F0) was estimated by the 10th percentile of the 

fluorescence distribution. For quantification of calcium signals from layer 2/3 cell bodies, ROIs 

were first identified by Suite2P package [80] and then visually inspected to remove non-somatic 
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ones. Next, fluorescence time course of each cellular ROI and its surrounding neuropil ROI was 

extracted using Suite2P package. Then fluorescence signal of a cell body was estimated with 

Fcellbody = FcellROI − 0.7*FneuropilROI. ΔF/F0 was computed as (Fcellbody − F0)/F0, where F0 is the 8th 

percentile of the intensity distribution during the recording session. 

To analyze the stimulus response of imaged cells, we subtracted the baseline activity (2 seconds 

before the stimulus onset) from the trial averaged fluorescence signal for each cell body and 

normalized with the baseline activity. To categorize the cells, we sorted (descending) them based 

on their average of normalized stimulus response (between 0.3 to 3 s after the stimulus onset). 

We considered the first and last 20 cells as being responsive to the visual stimulation. 

Electrophysiology Data Recording 

Electrophysiological recording was conducted with the RHD2000 amplifier board and RHD2000 

evaluation system (Intan Technologies). The sampling rate was set to 20 kHz and DC offset was 

removed with the recording system’s built-in filtering above 0.1 Hz. Intan data was imported into 

MATLAB (MathWorks) and analyzed using custom scripts. 

Electrophysiology Data Analysis and Statistics 

Analyzing the data is done mainly in MATLAB v2019b and the decoding is done using Python. 

Electrodes with impedances above 10MΩ are excluded from analysis. To remove common 

artifacts (imaging and power line), a bank of notch filters is applied to the raw surface recordings 

(the filters are optimized for each channel separately). The multi-unit activity (MUA) is extracted 

by applying a 6th order bandpass filter from 0.5 to 4 kHz followed by common average referencing. 

The signals are lowpass filtered below 250 Hz using a 4th order Butterworth filter to achieve the 

local field potential (LFP). The peaks of the visually evoked LFP were extracted and the trial 

averaged peak-to-peak amplitude and the propagation of the stimulus responses were visualized 

using 2-D color maps. To further filter the signals into common low frequency bands (δ: 1–4 Hz, 
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θ: 4–7 Hz, α: 8–15 Hz, β: 15–30 Hz, γ: 31–59 Hz, H-γ: 61–200 Hz), 6th order Butterworth bandpass 

signals are applied with corresponding frequency ranges.  

The powers at different bands (δ, θ, α, β, γ, H-γ, MUA) were calculated by taking the square of 

the bandpass filtered signals and applying a 100ms Gaussian filter to reduce the noise. The power 

changes due to the visual stimulus were calculated by trial averaging the powers at different bands 

and subtracting the baseline activity (2 seconds before the stimulus onset) and the results were 

demonstrated using 2D spatial maps to visualize the localization of different bands. The MUA 

events for each channel were extracted by using the threshold crossing method (-4*std).   

To analyze the MUA and average cellular calcium correlation, the peaks of normalized cell-

averaged ∆F/F are determined (findpeaks, minimum peak height is set to 0.75) and the MUA 

power of each channel is averaged in a 2-second window [-1.5s, 0.5s] around the calcium peak 

onset. The Pearson correlation values were calculated for each channel between the calcium 

peaks and the averaged MUA powers. The same procedure is followed to calculate the correlation 

of average cellular calcium activity with other frequency bands (δ, θ, α, β, γ, H-γ). 

To decode the cell averaged calcium activity from surface potentials, a neural network model with 

a sequential stack of a linear hidden layer, one bidirectional LSTM layer and a linear readout layer 

was implemented. The linear hidden layer is followed by batch normalization, ReLU activation, 

and dropout (p=0.3). The LSTM layer is followed by batch normalization. ECoG power at different 

frequency bands (δ, θ, α, β, γ, H-γ, MUA) were down sampled to match the sampling rates of the 

calcium signal (29 Hz) and clipped with a threshold of 95 percentile to suppress the potential 

artifacts. These power signals are then used as inputs to the neural network model. To decode 

the neural activity at time step t, the power segments between [t − 1.5 s, t + 1.5 s] was used (90 

time-steps in total). The 1st linear layer had 25 neurons and the bidirectional LSTM had 15 hidden 

neurons. The last layer outputs the predicted cell-averaged calcium signal. 
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Adam is used to train and optimize the parameters of the model with learning rate = 6 × 10−5, 

beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−8. The batch size was set to 128 and the training 

converged within ∼20 epochs. The mean squared error (MSE) was used as the loss function. 

Five-fold cross-validation is performed by splitting the 40 minutes recording sessions into five 

segments, each lasting for 8 minutes. The Pearson correlation between the decoded and ground 

truth data was used to evaluate the model performance, and the correlation values are averaged 

over five folds to get a single correlation value.  

Low Dimensional Latent Space of Population Activity 

GPFA models observations as a Gaussian model that is related to the latent variable through 

equation (3). 

𝑦:,𝑡|𝑥:,𝑡~𝑁(𝐶𝑥:,𝑡 + 𝑑, 𝑅)  (3) 

Where x:,t represents the latent variable at timepoint t, d is the signal mean, C is the factor loading 

matrix, and R represents the covariance matrix. The ith latent variable x is modeled as a Gaussian 

process (GP) with a covariance matrix K that correlates latent variables across time points: 

𝑥𝑖~𝑁(0, 𝐾𝑖)  (4) 

Using the training data of calcium signal Y, we train a GPFA model that learn the parameters and 

infer the trajectory of the latent variable x.  

𝐸[𝑋|𝑌] = 𝐾𝐶′(𝐶𝐾𝐶 + 𝑅)−1(𝑌 − 𝑑)   (5) 

We use the latent variables 𝑥 and the inferred latent variable 𝑥̂ from the BiLSTM model to project 

into calcium signal space (Fig S8c). 
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𝐸[𝑌̂] = 𝐶𝑋 + 𝑑   (6) 

𝐸 [𝑌̂̂] = 𝐶𝑋̂ + 𝑑   (7) 

where 𝑌̂ is the projected calcium signal using the originally inferred latents and 𝑌̂̂ is the projected 

calcium signal using the predicted latents from the BiLSTM model. The projected calcium signals 

are then compared to the true calcium signals (Fig S9). 
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Main Figures 

 

Figure 1. High-density transparent graphene array. (a) Transparent and flexible 64-channel 

graphene array (left) and magnified part of it with graphene wires shown with white dashed lines 

(right). The scale bar is 100 μm. (b) Schematic of HNO3 interlayer doped double layer graphene 

(id-DLG). (c) Two-photon microscopy image of pinhole defects on the graphene wires. Top and 

bottom wires are single- and double layer graphene, respectively. The scale bar is 10 μm. (d) 

Graphene wire resistance for single-layer graphene (SLG), double layer graphene (DLG), and 

interlayer doped double layer graphene (id-DLG) wires as a function of wire length. The error bars 
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indicate the s.d. (n=4). (e) Optical image of high-density 256-channel graphene array. The scale 

bar is 1 mm.  
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Figure 2. Overcoming quantum capacitance and reducing the impedance with PtNP deposition. 

(a) The quantum capacitance for single-layer graphene (SLG), double layer graphene (DLG), 

interlayer doped double layer graphene (id-DLG), and the Helmholtz electrical double layer (EDL) 
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capacitance with respect to voltage are plotted. The quantum capacitance is dominant in the 

open-circuit potential range of graphene (-100 to 100 mV). (b) Optical image of the 64-channel 

array (left) and example SEM images of the electrode area before and after PtNP deposition 

(right). The scale bar is 5μm. (c) The impedance distribution of 64 channels at 1 kHz measured 

before and after PtNP deposition. The average impedances of electrodes are 5.4±1.1MΩ and 

250±56kΩ (mean±s.d.), before and after PtNP deposition, respectively. (d) The equivalent circuit 

model for the id-DLG electrode with and without PtNPs. Rs is the solution resistance, RGr is the 

graphene wire resistance, CQ is the quantum capacitance, CPEGr and CPEPt are the constant 

phase elements representing EDL of id-DLG and PtNP/id-DLG electrodes, respectively. WB is the 

bounded Warburg element explaining diffusion process, and Rct is the charge-transfer resistance 

that simulates Faradaic reactions. WE and CE stand for working electrode and counter electrode, 

respectively. (e) Measured electrochemical impedance spectroscopy (EIS) of the PtNP/id-DLG 

electrode and the fitted values using the equivalent circuit model. (f) Transmittance of different 

stacks that constitute the array. PC and Gr stand for Parylene-C and graphene, respectively.  
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Figure 3. Multimodal experiments combining recordings of cortical potentials from surface and 

two-photon imaging at two different depths. (a) Schematic of the multimodal experimental setup. 

(b) Exposed cortex area covered by the array with the FoV depicted by the black square (left) and 

time-averaged two-photon images of layer 1 (middle) and layer 2/3 (right). PtNP/id-DLG 

electrodes are shown by yellow circles. The scale bars are 700 μm for the left panel and 150 μm 

for the middle and right panels. (c) Representative surface potentials recorded from the 64 

channels of the array. The red line shows the duration of the visual stimulus. (d) Trial averaged 

population activity (relative to the 2-second baseline before stimulus onset) of neurons detected 

in layer 2/3. Black dashed lines show the onset and offset of the visual stimulus. (e) Ten neurons 
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highlighted from the red box in panel b and (f) their normalized ∆F/F signals. (g) Pixel-level 

average ∆F/F signal of layer 1. The scale bars in panels f and g are 5 z-score. The black arrows 

and gray bars if panels f and g show the direction and duration of drifting gratings, respectively.  
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Figure 4. Stimulus-evoked local field potentials and high-frequency activities detected using 

electrodes on the cortical surface. (a) Cortical regions covered by the 64 channels of the array. 

The total area covered is 2.45 X 2.45 mm. (b) Peak-to-peak amplitude (left) and the delay map 

(right) of the visual evoked responses. The horizontal and vertical scale bars are 250 ms and 100 

μV, respectively. (c) Spatial maps of the evoked powers (relative to the baseline) at different 
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frequency bands across the array. High-frequency activities are spatially localized while low-

frequency bands have broad propagation ranges. (d) Representative event-triggered MUA 

waveforms on different channels. The horizontal and vertical scale bars are 2 ms and 20 μV, 

respectively. (e) Correlation between the cell-averaged calcium peaks and MUA power around 

the peak onset for all 64 channels. The channels in the FoV show the highest correlation values. 

Yellow box shows the channel with maximum correlation (r=0.71). Black dashed boxes and black 

circles in the colormaps in panels b, c, and e indicate the FoV and the electrodes’ locations, 

respectively. (f) Representative cell-averaged ∆F/F and MUA power of the channel with maximum 

correlation (yellow box in panel e). The scale bar is 2 z-score for calcium and 0.5 dB for MUA 

power. (g) Scatter plot of cell-averaged calcium peaks and corresponding MUA powers for the 

channel with maximum correlation (yellow box in panel e).   
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Figure 5. Decoding the average calcium activity from recorded surface potentials. (a) Schematic 

of the decoding model. Signal powers at different frequency bands (ten channels are shown as 

example) around time t are used as inputs to the model to decode the calcium activity at time t. 

The model consists of a linear hidden layer, a single-layer BiLSTM network, and a linear readout 

layer. (b) Decoded (orange) vs ground truth (black) ∆F/F of layer 1 (pixel-averaged) and layer 2/3 

(cell-averaged). (c) Decoding performance for layer 1 and layer 2/3 (cell and pixel-averaged) 

using all seven frequency bands but different numbers of channels. The error bars indicate the 

s.e.m. (d) Decoding performance for layer 1 and layer 2/3 (cell and pixel-averaged) using different 
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frequency bands of the 20 channels closest to the FoV. Bars and black lines indicate the mean 

and s.e.m., respectively. 
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Figure 6. Decoding single-cell calcium activity from surface potentials using latent variables. (a) 

Schematic of single-cell decoding model. Eight latent variables (L1 to L8) extracted using GPFA 

are used to train BiLSTM models (similar to Fig. 5a). Inferred latent variables are projected to 

high-dimensional space to achieve single-cell ∆F/F signals. (b) Representative examples for 

decoded (orange) vs ground truth (black) ∆F/F of five best-decoded cells. The scale bar is 3 z-

score. (c) Decoding performance for all 136 cells with their locations outlined in the FoV. Black 

circles are the 9 channels inside the FoV. The scale bars are 100µm. 
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