Conference Paper

Spatio-temporal Analysis of Mobile Phone and Social Media Data Across Multiple Disaster Scenarios: An Input to Population Exposure Assessment

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Population distribution data with high spatiotemporal resolution are of significant value and fundamental to many application areas, such as public health, urban planning, environmental change, and disaster management. However, such data are still not widely available due to the limited knowledge of complex human activity patterns. The emergence of location-based service big data provides additional opportunities to solve this problem. In this study, we integrated ambient population data, nighttime light data, and building volume data; innovatively proposed a spatial downscaling framework for Baidu heat map data during work time and sleep time; and mapped the population distribution with high spatiotemporal resolution (i.e., hourly, 100 m) in Beijing. Finally, we validated the generated population distribution maps with high spatiotemporal resolution using the highest-quality validation data (i.e., mobile signaling data). The relevant results indicate that our proposed spatial downscaling framework for both work time and sleep time has high accuracy, that the distribution of the population in Beijing on a regular weekday shows “centripetal centralization at daytime, centrifugal dispersion at night” spatiotemporal variation characteristics, that the interaction between the purpose of residents’ activities and the spatial functional differences leads to the spatiotemporal evolution of the population distribution, and that China’s “surgical control and dynamic zero COVID-19” epidemic policy was strongly implemented. In addition, our proposed spatial downscaling framework can be transferred to other regions, which is of value for governmental emergency measures and for studies about human risks to environmental issues.
Article
Full-text available
With rapid urbanization and increasing climate risks, enhancing the resilience of urban systems has never been more important. Despite the availability of massive datasets of human behavior (e.g., mobile phone data, satellite imagery), studies on disaster resilience have been limited to using static measures as proxies for resilience. However, static metrics have significant drawbacks such as their inability to capture the effects of compounding and accumulating disaster shocks; dynamic interdependencies of social, economic, and infrastructure systems; and critical transitions and regime shifts, which are essential components of the complex disaster resilience process. In this article, we argue that the disaster resilience literature needs to take the opportunities of big data and move toward a different research direction, which is to develop data-driven, dynamical complex systems models of disaster resilience. Data-driven complex systems modeling approaches could overcome the drawbacks of static measures and allow us to quantitatively model the dynamic recovery trajectories and intrinsic resilience characteristics of communities in a generic manner by leveraging large-scale and granular observations. This approach brings a paradigm shift in modeling the disaster resilience process and its linkage with the recovery process, paving the way to answering important questions for policy applications via counterfactual analysis and simulations.
Article
Full-text available
Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.
Article
Full-text available
The COVID-19 pandemic has deeply impacted all aspects of social, professional, and financial life, with concerns and responses being readily published in online social media worldwide. This study employs probabilistic text mining techniques for a large-scale, high-resolution, temporal, and geospatial content analysis of Twitter related discussions. Analysis considered 20,230,833 English language original COVID-19-related tweets with global origin retrieved between January 25, 2020 and April 30, 2020. Fine grain topic analysis identified 91 meaningful topics. Most of the topics showed a temporal evolution with local maxima, underlining the short-lived character of discussions in Twitter. When compared to real-world events, temporal popularity curves showed a good correlation with and quick response to real-world triggers. Geospatial analysis of topics showed that approximately 30% of original English language tweets were contributed by USA-based users, while overall more than 60% of the English language tweets were contributed by users from countries with an official language other than English. High-resolution temporal and geospatial analysis of Twitter content shows potential for political, economic, and social monitoring on a global and national level.
Article
Full-text available
The assessment of populations affected by urban flooding is crucial for flood prevention and mitigation but is highly influenced by the accuracy of population datasets. The population distribution is related to buildings during the urban floods, so assessing the population at the building scale is more rational for the urban floods, which is possible due to the abundance of multi-source data and advances in GIS technology. Therefore, this study assesses the populations affected by urban floods through population mapping at the building scale using highly correlated point of interest (POI) data. The population distribution is first mapped by downscaling the grid-based WorldPop population data to the building scale. Then, the population affected by urban floods is estimated by superimposing the population data sets onto flood areas, with flooding simulated by the LISFLOOD-FP hydrodynamic model. Finally, the proposed method is applied to Lishui City in southeast China. The results show that the population affected by urban floods is significantly reduced for different rainstorm scenarios when using the building-scale population instead of WorldPop. In certain areas, populations not captured by WorldPop can be identified using the building-scale population. This study provides a new method for estimating populations affected by urban flooding.
Article
Full-text available
Emergency management (EM) has always been a concern of people from all walks of life due to the devastating impacts emergencies can have. The global outbreak of COVID-19 in 2020 has pushed EM to the top topic. As mobile phones have become ubiquitous, many scholars have shown interest in using mobile phone data for EM. This paper presents a systematic literature review about the use of mobile phone data for EM that includes 65 related articles written between 2014 and 2019 from six electronic databases. Five themes in using mobile phone data for EM emerged from the reviewed articles, and a systematic framework is proposed to illustrate the current state of the research. This paper also discusses EM under COVID-19 pandemic and five future implications of the proposed framework to guide future work.
Article
Full-text available
Natural hazards result in devastating losses in human life, environmental assets and personal, and regional and national economies. The availability of different big data such as satellite imageries, Global Positioning System (GPS) traces, mobile Call Detail Records (CDRs), social media posts, etc., in conjunction with advances in data analytic techniques (e.g., data mining and big data processing, machine learning and deep learning) can facilitate the extraction of geospatial information that is critical for rapid and effective disaster response. However, disaster response systems development usually requires the integration of data from different sources (streaming data sources and data sources at rest) with different characteristics and types, which consequently have different processing needs. Deciding which processing framework to use for a specific big data to perform a given task is usually a challenge for researchers from the disaster management field. Therefore, this paper contributes in four aspects. Firstly, potential big data sources are described and characterized. Secondly, the big data processing frameworks are characterized and grouped based on the sources of data they handle. Then, a short description of each big data processing framework is provided and a comparison of processing frameworks in each group is carried out considering the main aspects such as computing cluster architecture, data flow, data processing model, fault-tolerance, scalability, latency, back-pressure mechanism, programming languages, and support for machine learning libraries, which are related to specific processing needs. Finally, a link between big data and processing frameworks is established, based on the processing provisioning for essential tasks in the response phase of disaster management.
Article
Full-text available
Understanding the spatiotemporal dynamics of urban population is crucial for addressing a wide range of urban planning and management issues. Aggregated geospatial big data have been widely used to quantitatively estimate population distribution at fine spatial scales over a given time period. However, it is still a challenge to estimate population density at a fine temporal resolution over a large geographical space, mainly due to the temporal asynchrony of population movement and the challenges to acquiring a complete individual movement record. In this article, we propose a method to estimate hourly population density by examining the time-series individual trajectories, which were reconstructed from call detail records using BP neural networks. We first used BP neural networks to predict the positions of mobile phone users at an hourly interval and then estimated the hourly population density using log-linear regression at the cell tower level. The estimated population density is linearly correlated with population census data at the sub-district level. Trajectory clustering results show five distinct diurnal dynamic patterns of population movement in the study area, revealing spatially explicit characteristics of the diurnal commuting flows, though the driving forces of the flows need further investigation.
Article
Full-text available
Population data is commonly available for administrative units referring to the year of the last census. That level of aggregation and the static character of the information pose particular difficulties for spatial analysis in applications such as disaster management or spatial planning, for which much more time-sensitive population distributions are required. In this study, a flexible model to create dynamic gridded population data with a spatial resolution of 100 m is implemented for the mountainous, hazard-prone and highly touristic region of the Autonomous Province of Bolzano, based on the integration of multiple data sources within an explicit spatio-temporal modelling framework. It is argued that dynamic gridded population information provides an improvement to the existing regional datasets. Our study shows that integrating daily and seasonal changes to the distribution of population improves exposure information for risk assessments especially in highly touristic areas.
Article
Full-text available
Current disaster management procedures to cope with human and economic losses and to manage a disaster’s aftermath suffer from a number of shortcomings like high temporal lags or limited temporal and spatial resolution. This paper presents an approach to analyze social media posts to assess the footprint of and the damage caused by natural disasters through combining machine-learning techniques (Latent Dirichlet Allocation) for semantic information extraction with spatial and temporal analysis (local spatial autocorrelation) for hot spot detection. Our results demonstrate that earthquake footprints can be reliably and accurately identified in our use case. More, a number of relevant semantic topics can be automatically identified without a priori knowledge, revealing clearly differing temporal and spatial signatures. Furthermore, we are able to generate a damage map that indicates where significant losses have occurred. The validation of our results using statistical measures, complemented by the official earthquake footprint by US Geological Survey and the results of the HAZUS loss model, shows that our approach produces valid and reliable outputs. Thus, our approach may improve current disaster management procedures through generating a new and unseen information layer in near real time.
Article
Full-text available
Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population's vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals' movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers.
Article
Full-text available
Abstract Disaster management and in particular disaster response phase are highly time-sensitive and dynamic processes, demanding that real-time information reaches disaster responders prior making critical decisions. During the last decade, disaster management has been widely enabled through utilizing spatial data sourcing and related technologies in the whole process of collection, access, and usage of disaster information. Currently, there are unique challenges that cannot be met without incorporating in situ sensing as an emerging technology for sourcing and managing disaster information. These include (1) high temporal and spatial resolution of information, (2) broad range of disaster data, and (3) automated operations. Incorporating in situ sensing into the disaster management process can potentially address such challenges by providing data that support all of these requirements. Following an examination of current concepts and methods for integrating multisourced sensors, a framework of the requirements for integrating in situ sensors for disaster management, is suggested. Based on this framework and its components, an evaluation of the methods is developed and applied. The results highlight that information integration of multisourced sensors is a major challenge and has not yet adequately addressed for sensor data enablement of disaster management.
Article
Full-text available
Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.
Article
Full-text available
Mobile phone datasets allow for the analysis of human behavior on an unprecedented scale. The social network, temporal dynamics and mobile behavior of mobile phone users have often been analyzed independently from each other using mobile phone datasets. In this article, we explore the connections between various features of human behavior extracted from a large mobile phone dataset. Our observations are based on the analysis of communication data of 100000 anonymized and randomly chosen individuals in a dataset of communications in Portugal. We show that clustering and principal component analysis allow for a significant dimension reduction with limited loss of information. The most important features are related to geographical location. In particular, we observe that most people spend most of their time at only a few locations. With the help of clustering methods, we then robustly identify home and office locations and compare the results with official census data. Finally, we analyze the geographic spread of users' frequent locations and show that commuting distances can be reasonably well explained by a gravity model.
Article
Full-text available
A relationship between people's mobility and their social networks is presented based on an analysis of calling and mobility traces for one year of anonymized call detail records of over one million mobile phone users in Portugal. We find that about 80% of places visited are within just 20 km of their nearest (geographical) social ties' locations. This figure rises to 90% at a 'geo-social radius' of 45 km. In terms of their travel scope, people are geographically closer to their weak ties than strong ties. Specifically, they are 15% more likely to be at some distance away from their weak ties than strong ties. The likelihood of being at some distance from social ties increases with the population density, and the rates of increase are higher for shorter geo-social radii. In addition, we find that area population density is indicative of geo-social radius where denser areas imply shorter radii. For example, in urban areas such as Lisbon and Porto, the geo-social radius is approximately 7 km and this increases to approximately 15 km for less densely populated areas such as Parades and Santa Maria da Feira.
Article
The advances in location-acquisition and mobile computing techniques have generated massive spatial trajectory data, which represent the mobility of a diversity of moving objects, such as people, vehicles, and animals. Many techniques have been proposed for processing, managing, and mining trajectory data in the past decade, fostering a broad range of applications. In this article, we conduct a systematic survey on the major research into trajectory data mining, providing a panorama of the field as well as the scope of its research topics. Following a road map from the derivation of trajectory data, to trajectory data preprocessing, to trajectory data management, and to a variety of mining tasks (such as trajectory pattern mining, outlier detection, and trajectory classification), the survey explores the connections, correlations, and differences among these existing techniques. This survey also introduces the methods that transform trajectories into other data formats, such as graphs, matrices, and tensors, to which more data mining and machine learning techniques can be applied. Finally, some public trajectory datasets are presented. This survey can help shape the field of trajectory data mining, providing a quick understanding of this field to the community.
Article
To take full advantage of fast-acting temperature-sensitive mutations, thermal control must be extremely rapid. We developed the Therminator, a device capable of shifting sample temperature in ∼17 s while simultaneously imaging cell division in vivo. Applying this technology to six key regulators of cytokinesis, we found that each has a distinct temporal requirement in the Caenorhabditis elegans zygote. Specifically, myosin-II is required throughout cytokinesis until contractile ring closure. In contrast, formin-mediated actin nucleation is only required during assembly and early contractile ring constriction. Centralspindlin is required to maintain division after ring closure, although its GAP activity is only required until just prior to closure. Finally, the chromosomal passenger complex is required for cytokinesis only early in mitosis, but not during metaphase or cytokinesis. Together, our results provide a precise functional timeline for molecular regulators of cytokinesis using the Therminator, a powerful tool for ultra-rapid protein inactivation.
Population Division Exposure and Vulnerability to Natural Disasters for World's Cities. Gu Danan. 2019. Population Division Exposure and Vulnerability to Natural Disasters for World's Cities
  • Gu Danan
P06: Temporal Analyses of Occurred Flood Events | COPERNICUS EMERGENCY MANAGEMENT SERVICE
  • Anon
Tools and Methods for Estimating Populations at Risk from Natural Disasters and Complex Humanitarian Crises. Anon. n.d. Tools and Methods for Estimating Populations at Risk from Natural Disasters and Complex Humanitarian Crises
  • Anon
Tokyo Sees 1st Heavy Snowfall in 4 Years, over 50 People Injured
  • Anon
in Integrating Disaster Science and Management: Global Case Studies in Mitigation and Recovery
  • Joice K Joseph
  • A P Karunakaran Akhil Dev
  • Mahesh Pradeepkumar
  • Mohan
  • Joice