To read the full-text of this research, you can request a copy directly from the authors.
... The cytoskeleton reorganizes dramatically once rhizobia are released into nodule cells, leading to differentiation in both indeterminate and determinate nodules (Hlavackova et al., 2023). In Medicago nodules, actin microfilaments and endoplasmic microtubules form a dense network around ITs and infection droplets, likely preparing for IT growth and bacterial release. ...
The legume–rhizobium symbiosis represents the most important system for terrestrial biological nitrogen fixation on land. Efficient nitrogen fixation during this symbiosis depends on successful rhizobial infection and complete endosymbiosis, which are achieved by complex cellular events including cell-wall remodeling, cytoskeletal reorganizations, and extensive membrane expansion and trafficking. In this review, we explore the dynamic remodeling of the plant-specific cell wall-membrane system-cytoskeleton (WMC) continuum during symbiotic nitrogen fixation. We focus on key processes linked to efficient nitrogen fixation, including rhizobial uptake, infection thread formation and elongation, rhizobial droplet release, cytoplasmic bridge formation, and rhizobial endosymbiosis. Additionally, we discuss the advanced techniques for investigating the cellular basis of root-nodule symbiosis and provide insights into the unsolved mysteries of robust symbiotic nitrogen fixation.
Leguminous plants have established a mutualistic endosymbiotic interaction with nitrogen-fixing rhizobia to secure nitrogen sources in new specialised organs called root nodules. Before nodule formation, the development of early symbiotic structures is essential for rhizobia docking, internalization, targeted delivery and intracellular accommodation. We have recently reported that overexpression of stress-induced mitogen-activated protein kinase (SIMK) in alfalfa affects root hair, nodule and shoot formation, which raised the questions how SIMK may modulate these processes. In particular, detailed subcellular spatial distribution, activation and developmental relocation of SIMK during the early stages of alfalfa nodulation remain unclear. Here, we qualitatively and quantitatively characterised SIMK distribution patterns in Ensifer meliloti-infected root hairs using live-cell imaging and immunolocalization, employing alfalfa stable transgenic lines with genetically manipulated SIMK abundance and kinase activity. In the SIMKK-RNAi line, showing downregulation of SIMKK and SIMK, we found considerably decreased accumulation of phosphorylated SIMK around infection pockets and infection threads. However, this was strongly increased in the GFP-SIMK line, constitutively overexpressing GFP-tagged SIMK. Thus, genetically manipulated SIMK modulates root hair capacity to form infection pockets and infection threads. Employment of advanced light-sheet fluorescence microscopy (LSFM) on intact plants allowed gentle and non-invasive imaging of spatiotemporal interactions between root hairs and symbiotic Ensifer meliloti, while immunofluorescence detection confirmed that SIMK was activated in these locations. Our results shed new light on SIMK spatiotemporal participation in early interactions between alfalfa and Ensifer meliloti, and its internalization into root hairs, showing that local accumulation of active SIMK indeed modulates early nodulation in alfalfa.
The root nodule symbiosis with its global impact on nitrogen fertilization of soils is characterized by an intracellular colonization of legume roots by rhizobia. Although the symbionts are initially taken up by morphologically adapted root hairs, rhizobia persistently progress within a membrane-confined infection thread through several root cortical and later nodular cell layers. Throughout this transcellular passaging, rhizobia have to repeatedly pass host plasma membranes and cell walls. Here, we investigated this essential process and describe the concerted action of one of the symbiosis-specific pectin methyl esterases (SyPME1) and the nodulation pectate lyase (NPL) at the infection thread and transcellular passage sites. Their coordinated function mediates spatially confined pectin alterations in the cell-cell interface that result in the establishment of an apoplastic compartment where bacteria are temporarily released into and taken up from the subjacent cell. This process allows successful intracellular progression of infection threads through the entire root cortical tissue.
Legumes have an intimate relationship with nitrogen-fixing gram-negative soil bacteria called rhizobia. Rhizobia convert the atmospheric inert nitrogen (N2) into ammonia inside the nodules, which plants directly assimilate, and in return, rhizobia get photosynthate carbon from plants for survival. This intimate interaction is costly for the plant, and hence it is tightly regulated. Several transcription factors (TF) such as calcium-calmodulin-dependent protein kinase (CCaMK), CYCLOPS, CCaMK/CYCLOPS, Ethylene Response Factor Required for Nodulation 1 (ERN1) and ERN2, members of GRAS family Nodulation Signaling Pathway 1 (NSP1) and NSP2, NODULE INCEPTION (NIN), Nuclear Factor-Y (NF-Y), Nodulation Pectate Lyase (NPL), LOB-domain protein gene (LBD16), Rhizobium-Directed Polar Growth (RPG) and SHORT INTERNODES/STYLISH (STY), and others have been shown to play a significant role in the tight regulation of root nodule symbiosis (RNS). Here, we present comprehensive and recent advances in identification, evolution, structure, and functions of all the major TFs, their crosstalk and further discuss their potential application to maximize RNS to increase nitrogen fixation and decrease the dependency on nitrogen fertilizers.
(1) Background: Alfalfa is an important legume forage throughout the world. Although alfalfa is considered moderately tolerant to salinity, its production and nitrogen-fixing activity are greatly limited by salt stress. (2) Methods: We examined the physiological changes and proteomic profiles of alfalfa with active nodules (NA) and without nodules (NN) under NaCl treatment. (3) Results: Our data suggested that NA roots showed upregulation of the pathways of abiotic and biotic stress responses (e.g., heat shock proteins and pathogenesis-related proteins), antioxidant enzyme synthesis, protein synthesis and degradation, cell wall degradation and modification, acid phosphatases, and porin transport when compared with NN plants under salt stress conditions. NA roots also upregulated the processes or proteins of lipid metabolism, heat shock proteins, protein degradation and folding, and cell cytoskeleton, downregulated the DNA and protein synthesis process, and vacuolar H⁺-ATPase proteins under salt stress. Besides, NA roots displayed a net H⁺ influx and low level of K⁺ efflux under salt stress, which may enhance the salt tolerance of NA plants. (4) Conclusions: The rhizobium symbiosis conferred the host plant salt tolerance by regulating a series of physiological processes to enhance stress response, improve antioxidant ability and energy use efficiency, and maintain ion homeostasis.
Plant cell differentiation is based on rearrangements of the tubulin cytoskeleton; this is also true for symbiotic nodules. Nevertheless, although for indeterminate nodules (with a long-lasting meristem) the organization of microtubules during nodule development has been studied for various species, for determinate ones (with limited meristem activity) such studies are rare. Here, we investigated bacteroid morphology and dynamics of the tubulin cytoskeleton in determinate nodules of four legume species: Glycine max, Glycine soja, Phaseolus vulgaris, and Lotus japonicus. The most pronounced differentiation of bacteroids was observed in G. soja nodules. In meristematic cells in incipient nodules of all analyzed species, the organization of both cortical and endoplasmic microtubules was similar to that described for meristematic cells of indeterminate nodules. In young infected cells in developing nodules of all four species, cortical microtubules formed irregular patterns (microtubules were criss-crossed) and endoplasmic ones were associated with infection threads and infection droplets. Surprisingly, in uninfected cells the patterns of cortical microtubules differed in nodules of G. max and G. soja on the one hand, and P. vulgaris and L. japonicus on the other. The first two species exhibited irregular patterns, while the remaining two exhibited regular ones (microtubules were oriented transversely to the longitudinal axis of cell) that are typical for uninfected cells of indeterminate nodules. In contrast to indeterminate nodules, in mature determinate nodules of all four studied species, cortical microtubules formed a regular pattern in infected cells. Thus, our analysis revealed common patterns of tubulin cytoskeleton in the determinate nodules of four legume species, and species-specific differences were associated with the organization of cortical microtubules in uninfected cells. When compared with indeterminate nodules, the most pronounced differences were associated with the organization of cortical microtubules in nitrogen-fixing infected cells. The revealed differences indicated a possible transition during evolution of infected cells from anisotropic growth in determinate nodules to isodiametric growth in indeterminate nodules. It can be assumed that this transition provided an evolutionary advantage to those legume species with indeterminate nodules, enabling them to host symbiosomes in their infected cells more efficiently.
Significance
Oscillations in intracellular calcium concentration play an essential role in the regulation of multiple cellular processes. In plants capable of root endosymbiosis with nitrogen-fixing bacteria and/or arbuscular mycorrhizal fungi, nuclear localized calcium oscillations are essential to transduce the microbial signal. Although the ion channels required to generate the nuclear localized calcium oscillations have been identified, their mechanisms of regulation are unknown. Here, we combined proteomics and engineering approaches to demonstrate that the calcium-bound form of the calmodulin 2 (CaM2) associates with CYCLIC NUCLEOTIDE GATED CHANNEL 15 (CNGC15s), closing the channels and providing the negative feedback to sustain the oscillatory mechanism. We further unraveled that the engineered CaM2 accelerates early endosymbioses and enhanced root nodule symbiosis but not arbuscular mycorrhization.
Chinese liquorice (Glycyrrhiza uralensis Fisch. ex DC.) is widely used in the food industry and as a medicine. Like other legumes, G. uralensis forms symbiotic nodules. However, the structural organization of G. uralensis nodules is poorly understood. In this study, we analyzed the histological and ultrastructural organization and dynamics of the tubulin cytoskeleton in various cells from different histological zones of indeterminate nodules formed by two strains of Mesorhizobium sp. The unusual walls of infection threads and formation of multiple symbiosomes with several swollen bacteroids were observed. A large amount of poly-β-hydroxybutyrate accumulated in the bacteroids, while the vacuoles of meristematic and uninfected cells contained drop-shaped osmiophilic inclusions. Immunolocalization of the tubulin cytoskeleton and quantitative analysis of cytoskeletal elements revealed patterns of cortical microtubules in meristematic, infected and uninfected cells, and of endoplasmic microtubules associated with infection structures, typical of indeterminate nodules. The intermediate pattern of endoplasmic microtubules in infected cells was correlated with disordered arrangement of symbiosomes. Thus, analysis of the structural organization of G. uralensis nodules revealed some ancestral features more characteristic of determinate nodules, demonstrating the evolutionary closeness of G. uralensis nodulation to more ancient members of the legume family.
Significance
Plant cell surface receptors perceive carbohydrate signaling molecules and hereby establish communication with surrounding microbes. Genetic studies have identified two different classes of lysin motif receptor kinases as gatekeepers that together trigger the symbiotic pathway in plants; however, no structural or functional data of the perception mechanisms switching these receptors from resting state into activation is known. In this study, we use structural biology, biochemical, and genetic approaches to demonstrate how the NFP/NFR5 class of lipochitooligosaccharide (LCO) receptors discriminate bacterial symbionts based on a kinetic proofreading mechanism that controls receptor activation and signaling specificity. We show that the LCO binding site can be engineered to support symbiotic functions, which greatly advance future opportunities for receptor engineering in legumes and nonlegumes.
The documentation of plant growth and development requires integrative and scalable approaches to investigate and spatiotemporally resolve various dynamic processes at different levels of plant body organization. The present update deals
with vigorous developments in mesoscopy, microscopy and nanoscopy methods that have been translated to imaging of
plant subcellular compartments, cells, tissues and organs over the past 3 years with the aim to report recent applications
and reasonable expectations from current light-sheet fluorescence microscopy (LSFM) and super-resolution microscopy
(SRM) modalities. Moreover, the shortcomings and limitations of existing LSFM and SRM are discussed, particularly for
their ability to accommodate plant samples and regarding their documentation potential considering spherical aberrations
or temporal restrictions prohibiting the dynamic recording of fast cellular processes at the three dimensions. For a more
comprehensive description, advances in living or fixed sample preparation methods are also included, supported by an
overview of developments in labeling strategies successfully applied in plants. These strategies are practically documented
by current applications employing model plant Arabidopsis thaliana (L.) Heynh., but also robust crop species such as
Medicago sativa L. and Hordeum vulgare L. Over the past few years, the trend towards designing of integrative microscopic
modalities has become apparent and it is expected that in the near future LSFM and SRM will be bridged to achieve
broader multiscale plant imaging with a single platform.
The formation of nitrogen‐fixing no dules on legume roots requires the coordination of infection by rhizobia at the root epidermis with the initiation of cell divisions in the root cortex. During infection, rhizobia attach to the tip of elongating root hairs which then curl to entrap the rhizobia. However, the mechanism of root hair deformation and curling in response to symbiotic signals is still elusive. Here, we found that small GTPases (MtRac1/MtROP9 and its homologs) are required for root hair development and rhizobial infection in Medicago truncatula. Our results show that the Nod factor receptor LYK3 phosphorylates the guanine nucleotide exchange factor MtRopGEF2 at S73 which is critical for the polar growth of root hairs. In turn, phosphorylated MtRopGEF2 can activate MtRac1. Activated MtRac1 was found to localize at the tips of root hairs and to strongly interact with LYK3 and NFP. Taken together, our results support the hypothesis that MtRac1, LYK3, and NFP form a polarly localized receptor complex that regulates root hair deformation during rhizobial infection.
Legumes have maintained the ability to associate with rhizobia to sustain the nitrogen-fixing root nodule symbiosis (RNS). In Medicago truncatula, the Nod factor (NF)-dependent intracellular root colonization by Sinorhizobium meliloti initiates from young, growing root hairs. They form rhizobial traps by physically curling around the symbiont.1,2 Although alterations in root hair morphology like branching and swelling have been observed in other plants in response to drug treatments3 or genetic perturbations,4, 5, 6 full root hair curling represents a rather specific invention in legumes. The entrapment of the symbiont completes with its full enclosure in a structure called the “infection chamber” (IC),1,2,7,8 from which a tube-like membrane channel, the “infection thread” (IT), initiates.1,2,9 All steps of rhizobium-induced root hair alterations are aided by a tip-localized cytosolic calcium gradient,10,11 global actin re-arrangements, and dense subapical fine actin bundles that are required for the delivery of Golgi-derived vesicles to the root hair tip.7,12, 13, 14 Altered actin dynamics during early responses to NFs or rhizobia have mostly been shown in mutants that are affected in the actin-related SCAR/WAVE complex.15, 16, 17, 18 Here, we identified a polarly localized SYMBIOTIC FORMIN 1 (SYFO1) to be required for NF-dependent alterations in membrane organization and symbiotic root hair responses. We demonstrate that SYFO1 mediates a continuum between the plasma membrane and the cell wall that is required for the onset of rhizobial infections.
The tubulin cytoskeleton plays an important role in establishing legume–rhizobial symbiosis at all stages of its development. Previously, tubulin cytoskeleton organization was studied in detail in the indeterminate nodules of two legume species, Pisum sativum and Medicago truncatula. General as well as species-specific patterns were revealed. To further the understanding of the formation of general and species-specific microtubule patterns in indeterminate nodules, the tubulin cytoskeleton organization was studied in three legume species (Vicia sativa, Galega orientalis, and Cicer arietinum). It is shown that these species differ in the shape and size of rhizobial cells (bacteroids). Immunolocalization of microtubules revealed the universality of cortical and endoplasmic microtubule organization in the meristematic cells, infected cells of the infection zone, and uninfected cells in nodules of the three species. However, there are differences in the endoplasmic microtubule organization in nitrogen-fixing cells among the species, as confirmed by quantitative analysis. It appears that the differences are linked to bacteroid morphology (both shape and size).
Leguminous plants possess the almost unique ability to enter symbiosis with soil-resident, nitrogen fixing bacteria called rhizobia. During this symbiosis, the bacteria physically colonize specialized organs on the roots of the host plant called nodules, where they reduce atmospheric nitrogen into forms that can be assimilated by the host plant and receive photosynthates in return. In order for nodule development to occur, there is extensive chemical cross-talk between both parties during the formative stages of the symbiosis. The vast majority of the legume family are capable of forming root nodules and typically rhizobia are only able to fix nitrogen within the context of this symbiotic association. However, many legume species only enter productive symbiosis with a few, or even single rhizobial species or strains, and vice-versa. Permitting symbiosis with only rhizobial strains that will be able to fix nitrogen with high efficiency is a crucial strategy for the host plant to prevent cheating by rhizobia. This selectivity is enforced at all stages of the symbiosis, with partner choice beginning during the initial communication between the plant and rhizobia. However, it can also be influenced even once nitrogen-fixing nodules have developed on the root. This review sets out current knowledge about the molecular mechanisms employed by both parties to influence host range during legume-rhizobia symbiosis.
In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.
The discovery of microtubules in plants, as well as their subsequent study, was made possible by the methods of electron microscopy. Further, methods for visualizing the cytoskeleton in a plant cell were actively developed using immunolocalization combined with laser scanning confocal microscopy (K. Celler et al., 2016). All the above-listed methods involve the fixation of the analyzed biological material. It should be noted that the tubulin cytoskeleton is an extremely dynamic structure ; therefore, techniques of microtubule visualization in living plant cells using fluorescent proteins have been actively developed in recent years (K. Celler et al., 2016). Nevertheless, immunohisto-chemical analysis is still an essential method (J. Dyachok et al., 2016). First of all, this is due to the fact that in vivo observations are limited to plant cells of the surface layers (root hairs, epidermis) (F.M. Perrine-Walker et al., 2014; J. Dyachok et al., 2016). Moreover, for many plant species, the size of their organs is much larger than that of Arabidopsis thaliana, which makes it impossible to analyze changes in the organization of the cytoskeleton in vivo (J. Dyachok et al., 2016). Another limiting factor is that for several plant species, transformation protocols have not yet been developed or are very difficult, including the pea (Pisum sativum L.) (A. Iantcheva et al., 2013). Therefore, the optimization of fixation protocol of plant material remains relevant for effective immunohistochemi-cal analysis of the tubulin cytoskeleton. In our study, it was shown that this optimization is required when new legume species are studied. For instance, the protocol for pea nodule fixation developed by us required changes when applied to the nodules of Medicago truncatula. Moreover, modifications in the protocol for fixation may even be necessary when examining different mutants in the symbi-otic genes of a plant species, because such mutations can exert a strong influence on the physico-chemical properties of the nodule tissues. Therefore, we used various fixation protocols for the wild-type line of M. truncatula A17 and its mutants dnf1-1, efd-1 and TR3 (ipd3). It has also been shown that the preparation of sections of fixed nodules using a microtome with a vibrating blade can significantly improve the preservation of the structure of the tubulin cytoskeleton as compared to the use of fixed specimens embedded in Steedman's wax and subsequent sectioning using a rotary microtome. It was found that the age of the nodules is also an important factor in the visualization of the tubulin cytoskeleton. To compare the patterns of tubulin cytoskeleton in different cell types, quantitative analysis is required. We found that the MicroFilament Analyzer (E. Jacques et al., 2013) with additional scripts seemed well suited for checking the frequency of microtubules with a given orientation.
Actin plays a critical role in the rhizobium–legume symbiosis. Cytoskeletal rearrangements and changes in actin occur in response to Nod factors secreted by rhizobia during symbiotic interactions with legumes. These cytoskeletal rearrangements are mediated by diverse actin-binding proteins, such as actin depolymerization factors (ADFs). We examined the function of an ADF in the Phaseolus vulgaris–rhizobia symbiotic interaction (PvADFE). PvADFE was preferentially expressed in rhizobia-inoculated roots and nodules. PvADFE promoter activity was associated with root hairs harbouring growing infection threads, cortical cell divisions beneath root hairs, and vascular bundles in mature nodules. Silencing of PvADFE using RNA interference increased the number of infection threads in the transgenic roots, resulting in increased nodule number, nitrogen fixation activity, and average nodule diameter. Conversely, overexpression of PvADFE reduced the nodule number, nitrogen fixation activity, average nodule diameter, as well as NODULE INCEPTION (NIN) and EARLY NODULIN2 (ENOD2) transcript accumulation. Hence, changes in ADFE transcript levels affect rhizobial infection and nodulation, suggesting that ADFE is fine-tuning these processes.
The initiation of intracellular host cell colonization by symbiotic rhizobia in Medicago truncatula requires repolarization of root hairs, which includes the re-arrangement of cytoskeletal filaments. The molecular players governing microtubule (MT) re-organization during rhizobial infections remain to be discovered. Here, we identified M. truncatula DREPP, a member of the microtubule binding DREPP/PCaP protein family and investigated its functions during rhizobial infections. We show that rhizobial colonization of drepp mutant roots as well as transgenic roots over-expressing DREPP is impaired. DREPP re-localizes into symbiosis-specific membrane nanodomains in a stimulus-dependent manner. This subcellular segregation coincides with DREPP-dependent MT fragmentation and a partial loss of the ability to re-organize the MT cytoskeleton in response to rhizobia, which might rely on an interaction between DREPP and the MT organizing protein SPIRAL2 (SPR2). Taken together, our results reveal that establishment of symbiotic associations in M. truncatula require DREPP in order to regulate MT reorganization during initial root hair responses to rhizobia.
Bradyrhizobium elkanii, a rhizobium with a relatively wide host range, possesses a functional type III secretion system (T3SS) that is involved in symbiotic incompatibility against Rj4-genotype soybean (Glycine max) and some accessions of mung bean (Vigna radiata). To expand our knowledge on the T3SS-mediated partner selection mechanism in the symbiotic legume-rhizobia association, we inoculated three Lotus experimental accessions with wild-type and T3SS-mutant strains of B. elkanii USDA61. Different responses were induced by T3SS in a host genotype-dependent manner. Lotus japonicus Gifu inhibited infection; L. burttii allowed infection, but inhibited nodule maturation at the post-infection stage; and L. burttii and L. japonicus MG-20 both displayed a nodule early senescence-like response. By conducting inoculation tests with mutants of previously reported and newly identified effector protein genes of B. elkanii USDA61, we identified NopF as the effector protein triggering the inhibition of infection, and NopM as the effector protein triggering the nodule early senescence–like response. Consistent with these results, the B. elkanii USDA61 gene for NopF introduced into the Lotus symbiont Mesorhizobium japonicum induced infection inhibition in L. japonicus Gifu, but did not induce any response in L. burttii or L. japonicus MG-20. These results suggest that Lotus accessions possess at least three checkpoints to eliminate unfavorable symbionts, including the post-infection stage, by recognizing different T3SS effector proteins at each checkpoint.
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, control of microbial infection of plant cells, control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, control of bacteroid differentiation, metabolism and transport supporting symbiosis, and control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also consider, briefly, the future of SNF genetics in the era of pan genomics and genome editing.
A family of plant nuclear ion channels, including DMI1 (Does not Make Infections 1) and its homologs CASTOR and POLLUX, are required for the establishment of legume-microbe symbioses by generating nuclear and perinuclear Ca2+ spiking. Here we show that CASTOR from Lotus japonicus is a highly selective Ca2+ channel whose activation requires cytosolic/nucleosolic Ca2+, contrary to the previous suggestion of it being a K+ channel. Structurally, the cytosolic/nucleosolic ligand-binding soluble region of CASTOR contains two tandem RCK (Regulator of Conductance for K+) domains, and four subunits assemble into the gating ring architecture, similar to that of large conductance, Ca2+-gated K+ (BK) channels despite the lack of sequence similarity. Multiple ion binding sites are clustered at two locations within each subunit, and three of them are identified to be Ca2+ sites. Our in vitro and in vivo assays also demonstrate the importance of these gating-ring Ca2+ binding sites to the physiological function of CASTOR as well as DMI1.
Microbial tRNA pieces regulate nodulation
To fix nitrogen, leguminous plants enter into a symbiotic relationship with nodulating bacteria. Ren et al. now reveal the bacteria as active regulators in this process (see the Perspective by Baldrich and Meyers). Small fragments cleaved from rhizobial tRNA molecules tap into the hosts' RNA interference machinery to silence key host genes. Thus, both host and microbe shape the symbiotic environment.
Science , this issue p. 919 ; see also p. 868
During root nodule symbiosis, intracellular accommodation of rhizobia by legumes is a prerequisite for nitrogen fixation. For many legumes, rhizobial colonization initiates in root hairs through transcellular infection threads. In Medicago truncatula, VAPYRIN (VPY) and a putative E3 ligase LUMPY INFECTIONS (LIN) are required for infection thread development but their cellular and molecular roles are obscure. Here we show that LIN and its homolog LIN-LIKE interact with VPY and VPY-LIKE in a subcellular complex localized to puncta both at the tip of the growing infection thread and at the nuclear periphery in root hairs and that the punctate accumulation of VPY is positively regulated by LIN. We also show that an otherwise nuclear and cytoplasmic exocyst subunit, EXO70H4, systematically co-localizes with VPY and LIN during rhizobial infection. Genetic analysis shows that defective rhizobial infection in exo70h4 is similar to that in vpy and lin. Our results indicate that VPY, LIN and EXO70H4 are part of the symbiosis-specific machinery required for polar growth of infection threads.
Background:
In the present work, we provide an account of structured illumination microscopy (SIM) imaging of fixed and immunolabeled plant probes. We take advantage of SIM, to superresolve intracellular structures at a considerable z-range and circumvent its low temporal resolution capacity during the study of living samples. Further, we validate the protocol for the imaging of fixed transgenic material expressing fluorescent protein-based markers of different subcellular structures.
Results:
Focus is given on 3D imaging of bulky subcellular structures, such as mitotic and cytokinetic microtubule arrays as well as on the performance of SIM using multichannel imaging and the quantitative correlations that can be deduced. As a proof of concept, we provide a superresolution output on the organization of cortical microtubules in wild-type and mutant Arabidopsis cells, including aberrant preprophase microtubule bands and phragmoplasts in a cytoskeletal mutant devoid of the p60 subunit of the microtubule severing protein KATANIN and refined details of cytoskeletal aberrations in the mitogen activated protein kinase (MAPK) mutant mpk4. We further demonstrate, in a qualitative and quantitative manner, colocalizations between MPK6 and unknown dually phosphorylated and activated MAPK species and we follow the localization of the microtubule associated protein 65-3 (MAP65-3) in telophase and cytokinetic microtubular arrays.
Conclusions:
3D SIM is a powerful, versatile and adaptable microscopy method for elucidating spatial relationships between subcellular compartments. Improved methods of sample preparation aiming to the compensation of refractive index mismatches, allow the use of 3D SIM in the documentation of complex plant cell structures, such as microtubule arrays and the elucidation of their interactions with microtubule associated proteins.
Significance
Pattern recognition receptors control the cellular entry of pathogenic as well as symbiotic microbes. While ligand-induced changes in receptor mobility at the plasma membrane and their localization in membrane nanodomains are general features, the molecular mechanism and the biological relevance of this phenomenon have remained unknown. Here we show that immobilization of the symbiotic cell entry receptor LYK3 in nanodomains requires the presence of actin and two molecular scaffold proteins, FLOT4 and SYMREM1. While FLOT4 forms the initial core structure, infection-induced expression and subsequent physical interaction of SYMREM1 with LYK3 stabilize the activated receptors in membrane nanodomains. This recruitment prevents stimulus-dependent endocytosis and ensures progression of the primary infection thread into root cortical cells.
This paper reviews the rapid advances that have been made in one form of optical biological imaging in the last decade, namely that of light sheet microscopy. Although the concept was originally presented over one hundred years ago, at the time it was a methodology that lacked the technology to really make it a viable tool for practical everyday imaging in the biologist’s laboratory. However, since its re-discovery, it has started to transform in vivo and increasingly intact organ imaging in a number of areas of biology. This review looks back at the beginning of the method and then the crucial role that modern optical technology, frequently developed for other fields, has played in advancing the instrumentation. This paper will also look at the OpenSPIM route that was developed whereby, through the purchase of a few optical components, researchers have been able to develop their own bespoke instruments and we consider if this may be a route forward for the rapid development of other technological breakthroughs.
Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.
The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems.
Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.
Significance
The legume–rhizobial symbiosis culminates in the formation of nitrogen-fixing root nodules. This symbiotic relationship plays a critical role in sustainable agriculture because it reduces the need for nitrogen fertilizers. However, nitrogen fixation efficiency varies tremendously between different plant–bacteria combinations, and the molecular mechanisms that regulate this specificity are not well understood. We report that this specificity is regulated by nodule-specific cysteine-rich (NCR) peptides in Medicago truncatula , a model legume closely related to alfalfa ( Medicago sativa ). Our finding provides insights into cross-kingdom signaling in host–bacterial symbioses and makes NCRs attractive agents for engineering legume–rhizobia pairs to optimize nitrogen fixation performance.
Significance
Nitrogen is a limiting factor for plant growth. Most crops obtain their nitrogen through the use of nitrogen-based fertilizers, which is costly, and also causes environmental pollution. Legumes, however, have the unique ability to fix atmospheric nitrogen through symbioses with nitrogen-fixing bacteria. Although legumes can be nodulated by indigenous soil bacteria, nitrogen fixation efficiency differs significantly depending on host and bacterial genotypes. Understanding the genetic mechanisms that underlie this specificity will allow for optimizing symbiotic partnerships with improved symbiotic performance. We report that specific nodule-specific cysteine-rich (NCR) peptides negatively regulate symbiotic persistence in a strain-specific manner in Medicago truncatula . This finding offers a strategy to improve nitrogen fixation efficiency through selection or manipulation of NCR alleles that favor specific bacterial strains.
In legume-Rhizobium symbioses, specialised soil bacteria fix atmospheric nitrogen in return for carbon. However, ineffective strains can arise, making discrimination essential. Discrimination can occur via partner choice, where legumes prevent ineffective strains from entering, or via sanctioning, where plants provide fewer resources. Several studies have inferred that legumes exercise partner choice, but the rhizobia compared were not otherwise isogenic. To test when and how plants discriminate ineffective strains we developed sets of fixing and non-fixing strains that differed only in the expression of nifH – essential for nitrogen fixation – and could be visualised using marker genes. We show that the plant is unable to select against the non-fixing strain at the point of entry, but that non-fixing nodules are sanctioned. We also used the technique to characterise mixed nodules (containing both a fixing and a non-fixing strain), whose frequency could be predicted using a simple diffusion model. We discuss that sanctioning is likely to evolve in preference to partner choice in any symbiosis where partner quality cannot be adequately assessed until goods or services are actively exchanged.
Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections.
Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are perceived by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that only induce Nod factor production in homologous rhizobia, and therefore act as important determinants of host range. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles in rhizobial infection. Recent studies suggest that production of key "infection" flavonoids is highly localized at infection sites. Furthermore, some of the flavonoids being produced at infection sites are phytoalexins and may have a role in the selection of compatible symbionts during infection. The molecular details of how flavonoid production in plants is regulated during nodulation have not yet been clarified, but nitrogen availability has been shown to play a role.
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Light sheet fluorescence microscopy (LSFM) is increasingly used to investigate biological processes in animals as well as in plants. LSFM achieves optical sectioning by the selective illumination of a single plane of the sample with a sheet of laser light while simultaneously recording emitted fluorescence orthogonally to the illumination plane. A 3D image of the sample can then be generated with a temporal resolution ranging from seconds to several days, and at scales ranging from subcellular to whole organ. By design, LSFM provides fast imaging, and low phototoxicity, two key criteria for live imaging under physiological conditions. Despite its potential, LSFM remains underutilized in plant biology. This review aims to highlight challenges of live imaging in plants, to describe key steps in using LSFM on live plant samples and finally at providing an overview of published examples of applications of LSFM in plants.
Understanding the composition and activation of multicomponent receptor complexes is a challenge in biology. To address this, we developed a synthetic approach based on nanobodies to drive assembly and activation of cell surface receptors and apply the concept by manipulating receptors that govern plant symbiosis with nitrogen-fixing bacteria. We show that the Lotus japonicus Nod factor receptors NFR1 and NFR5 constitute the core receptor complex initiating the cortical root nodule organogenesis program as well as the epidermal program controlling infection. We find that organogenesis signaling is mediated by the intracellular kinase domains whereas infection requires functional ectodomains. Finally, we identify evolutionarily distant barley receptors that activate root nodule organogenesis, which could enable engineering of biological nitrogen-fixation into cereals.
Symbiotic rhizobium‐legume interactions, such as root hair curling, rhizobial invasion, infection thread expansion, cell division and proliferation of nitrogen‐fixing bacteroids, and nodule formation, involve extensive membrane synthesis, lipid remodeling, and cytoskeleton dynamics. However, little is known about these membrane‐cytoskeleton interfaces and related genes. Here, we report the roles of a major root phospholipase D (PLD), PLDα1, and its enzymatic product, phosphatidic acid (PA), in rhizobium‐root interaction and nodulation. PLDα1 was activated and the PA content transiently increased in roots after rhizobial infection. PLDα1 transcript and PA levels, as well as actin and tubulin cytoskeleton‐related gene expression, changed markedly during root‐rhizobium interactions and nodule development. n‐Butanol pretreatment of soybean seedling roots suppressed the generation of PLD‐derived PA, expression of early nodulation genes, and nodule numbers. Overexpression or knockdown of GmPLDα1 resulted in changes in PA levels, glycerolipid profiles, nodule numbers, actin cytoskeletal dynamics, early nodulation gene expression, and hormone levels upon rhizobial infection, as compared with GUS roots. The transcript levels of cytoskeleton‐related genes, such as GmACTIN, GmTUBULIN, actin capping protein 1 (GmCP1), and microtubule‐associating protein (GmMAP1), were modified in GmPLDα1‐altered hairy roots as compared with those of GUS roots. PA physically bound to GmCP1 and GmMAP1, which could be related to cytoskeletal changes in rhizobium‐infected GmPLDα1 mutant roots. These data suggest that PLDα1 and PA play important roles in soybean‐rhizobium interaction and nodulation. The possible underlying mechanisms, including PLDα1‐ and PA‐mediated lipid signaling, membrane remodeling, cytoskeleton dynamics, and related hormone signaling, are discussed herein.
Switching perception of friend and foe
Lysine motif receptors in plants perceive glycans that signal the presence of pathogenic or symbiotic nitrogen-fixing microbes. Bozsoki et al. now define the portions of these receptors that create the discriminatory binding pocket (see the Perspective by Bisseling and Geurts). The motifs were conserved in receptors that initiate immune responses, reflecting the invariable nature of the chitin fragments that they sense. Conversely, the motifs in receptors that respond to symbiotic signals were more varied, reflecting the greater diversity of the lipochitooligosaccharides (Nod factors) that they sense. With domain swapping, the authors switched the Nod factor specificity of receptors from two legume species and also enabled a chitin receptor that was otherwise dedicated to the detection of pathogenic microbes to instead recognize Nod factors.
Science , this issue p. 663 ; see also p. 620
Study of microtubules on cellular and subcellular levels is compromised by limited resolution of conventional fluorescence microscopy. However, it is possible to improve Abbe's diffraction-limited resolution by employment of super-resolution microscopy methods. Two of them, described herein, are structured-illumination microscopy (SIM) and Airyscan laser scanning microscopy (AM). Both methods allow high-resolution imaging of cortical microtubules in plant cells, thus contributing to the current knowledge on plant morphogenesis, growth and development. Both SIM and AM provide certain advantages and characteristic features, which are described here. We present immunofluorescence localization methods for microtubules in fixed plant cells achieving high signal efficiency, superb sample stability and sub-diffraction resolution. These protocols were developed for whole-mount immunolabeling of root samples of legume crop species Medicago sativa. They also contain tips for optimal sample preparation of plants germinated from seeds as well as plantlets regenerated from somatic embryos in vitro. We describe in detail all steps of optimized protocols for sample preparation, microtubule immunolabeling and super-resolution imaging.
Plants perceive multiple physiological and environmental signals in order to fine-tune their growth and development. The highly dynamic plant cytoskeleton, including actin and microtubule networks, can rapidly alter their organization, stability and dynamics in response to internal and external stimuli, which is considered vital for plant growth and adaptation to the environment. The cytoskeleton-associated proteins have been shown to be key regulatory molecules in mediating cytoskeleton reorganization in response to multiple environmental signals, such as light, salt, drought and biotic stimuli. Recent findings, including our studies, have expanded knowledge about the functions and underlying mechanisms of the plant cytoskeleton in environmental adaptation.
Light-sheet fluorescence microscopy (LSFM) methods collectively represent the major breakthrough in developmental bio-imaging of living multicellular organisms. They are becoming a mainstream approach through the development of both commercial and custom-made LSFM platforms that are adjusted to diverse biological applications. Based on high-speed acquisition rates under conditions of low light exposure and minimal photo-damage of the biological sample, these methods provide ideal means for long-term and in-depth data acquisition during organ imaging at single-cell resolution. The introduction of LSFM methods into biology extended our understanding of pattern formation and developmental progress of multicellular organisms from embryogenesis to adult body. Moreover, LSFM imaging allowed the dynamic visualization of biological processes under almost natural conditions. Here, we review the most important, recent biological applications of LSFM methods in developmental studies of established and emerging plant model species, together with up-to-date methods of data editing and evaluation for modelling of complex biological processes. Recent applications in animal models push LSFM into the forefront of current bio-imaging approaches. Since LSFM is now the single most effective method for fast imaging of multicellular organisms, allowing quantitative analyses of their long-term development, its broader use in plant developmental biology will likely bring new insights.
In plants, the actin cytoskeleton plays a central role in regulating intracellular transport and trafficking in the endomembrane system. Work in legumes suggested that during nodulation, the actin cytoskeleton coordinates numerous cellular processes in the development of nitrogen‐fixing nodules. However, we lacked live‐cell visualizations demonstrating dynamic remodeling of the actin cytoskeleton during infection droplet release and symbiosome development.
Here, we generated transgenic Medicago truncatula lines stably expressing the fluorescent actin marker ABD2‐GFP, and utilized live‐cell imaging to reveal the architecture and dynamics of the actin cytoskeleton during nodule development.
Live‐cell observations showed that different zones in nitrogen‐fixing nodules exhibit distinct actin architectures and infected cells display five characteristic actin architectures during nodule development. Live‐cell imaging combined with three‐dimensional reconstruction demonstrated that dense filamentous‐actin (F‐actin) arrays channel the elongation of infection threads and the release of infection droplets, an F‐actin network encircles freshly‐released rhizobia, and short F‐actin fragments and actin dots around radially distributed symbiosomes.
Our findings suggest an important role of the actin cytoskeleton in infection droplet release, symbiosome development and maturation, and provide significant insight into the cellular mechanisms underlying nodule development and nitrogen fixation during legume–rhizobia interactions.
The plant cytoskeleton is a dynamic framework of cytoplasmic filaments that rearranges as the needs of the cell change during growth and development. Incessant turnover mechanisms allow these networks to be rapidly redeployed in defense of host cytoplasm against microbial invaders. Both chemical and mechanical stimuli are recognized as danger signals to the plant, and these are perceived and transduced into cytoskeletal dynamics and architecture changes through a collection of well-recognized, previously characterized players. Recent advances in quantitative cell biology approaches, along with the powerful molecular genetics techniques associated with Arabidopsis, have uncovered two actin-binding proteins as key intermediaries in the immune response to phytopathogens and defense signaling. Certain bacterial phytopathogens have adapted to the cytoskeletal-based defense mechanism during the basal immune response and have evolved effector proteins that target actin filaments and microtubules to subvert transcriptional reprogramming, secretion of defense-related proteins, and cell wall-based defenses. In this review, we describe current knowledge about host cytoskeletal dynamics operating at the crossroads of the molecular and cellular arms race between microbes and plants. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
The actin cytoskeleton plays an essential role in several biological processes in plants, including cell division, cell expansion, organelle movement, vesicle trafficking, and the establishment of polar cell growth. To function properly, actin has to undergo continuous rounds of dynamic remodeling as the plant is presented with a constant stream of endogenous and exogenous signals. Remodeling of the actin cytoskeleton in plants is modulated by a multitude of highly conserved actin-binding proteins (ABPs). In recent years, additional proteins that interact directly or indirectly with actin have been uncovered. Although the precise roles of these newly described proteins have yet to be fully understood, initial studies suggest that they could confer actin functionalities and remodeling mechanisms that are distinct from those found in other eukaryotes. In this chapter, we briefly highlight some of the recent advances toward understanding how the actin cytoskeleton modulates plant growth, form, and adaptation to the environment. We focus primarily on live cell actin tools and on new insights about plant actin and ABP function culminating from the use of such tools. We also discuss some recently discovered plant proteins that function in actin-mediated biological processes that are unique to plants.
The Lotus japonicus symbiont Mesorhizobium loti R7A encodes two copies of nodD and here we identify striking differences in Nod factor biosynthesis gene induction by NodD1 and NodD2 both in vitro and in planta. We demonstrate that induction of Nod factor biosynthesis genes is preferentially controlled by NodD1 and NodD2 at specific stages of symbiotic infection. NodD2 is primarily responsible for induction in the rhizosphere and within nodules, while NodD1 is primarily responsible for induction within root hair infection threads. nodD1 and nodD2 mutants showed significant symbiotic phenotypes and competition studies establish that nodD1 and nodD2 mutants were severely outcompeted by wild-type R7A, indicating that both proteins are required for proficient symbiotic infection. These results suggest preferential activation of NodD1 and NodD2 by different inducing compounds produced at defined stages of symbiotic infection. We identified Lotus chalcone isomerase CHI4 as a root hair induced candidate involved in the biosynthesis of an inducer compound that may be preferentially recognised by NodD1 within root hair infection threads. We propose an alternative explanation for the function of multiple copies of nodD that provides the host plant with another level of compatibility scrutiny at the stage of infection thread development. This article is protected by copyright. All rights reserved.
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed.
The general fascination of biology concerns how structure is related to function and how development is related to evolution. In this context, the legume nodule is a peculiar structure that develops in a peculiar way. As a structure, this organ is concerned with the biochemical conversion of nitrogen gas into ammonia. As a developmental process, nodule formation involves synergy between two genomes, that of a bacterium and that of a plant, which cooperate to establish a highly regulated mutualistic symbiosis.