Content uploaded by Peter Dekker
Author content
All content in this area was uploaded by Peter Dekker on Sep 21, 2023
Content may be subject to copyright.
0.0 0.2 0.4 0.6 0.8 1.0
vigilance
0.0
0.2
0.4
0.6
0.8
Adjust ed Rand Index
2-g ram -set
K-m eans Baseline
3-g ram -set
2-g ram -con cat
3-g ram -con cat
Adaptive Resonance Theory as a computational model of learning inflection classes
Peter Dekker, Heikki Rasilo & Bart de Boer AI Lab, Vrije Universiteit Brussel
peter.dekker@ai.vub.ac.be
How do humans use generalisation in production of verb
morphology?
Which role do inflection classes play in this process?
Recent computer models of morphological processing
Mostly generation of inflected forms (Elsner et al., 2019; Kodner et
al., 2022)
Some work on clustering inflection classes: supervised (Guzman
Naranjo 2019, 2020) and unsupervised approaches (Beniamine et al.,
2018; Lefevre et al., 2021)
This study: Can Adaptive Resonance Theory learn a system
of inflection classes?
Which features does the model attend to?
Task: Unsupervised inflection class clustering
Cluster verb paradigms (1 datapoint = all forms for one verb) into
inflection classes
Adaptive Resonance Theory
(Carpenter & Grossberg 1987)
Cognitively inspired neural network of category learning
Input layer (new stimuli) and perception layer (learned
categories)
Vigilance parameter: more or less generalisation
Explainability via critical feature patterns (Grossberg, 2020)
This study: ART1 clustering model
Carpenter & Grossberg (2002)
Data
Romance Verbal Inflection Dataset (Beniamine et al.,
2020)
Phonetic word forms with inflection classes for evaluation.
Our study: Latin present tense
Representation of n-grams (n=2/3): form concat and
paradigm set
References
Future work
Experiment with ordering of data
Study language change using agent-based model equipped
with ART network (cf. Round et al. 2022; Parker et al., 2018;
Hare & Elman, 1995; Cotterell et al., 2018).
staːre
domaːre
teneːre
caleːre
amaːre timeːre
sapere
trahere
skriːbere
dormiːre
finiːre sentiːre
esse
iːre
posse
III III IV special
1SG
2SG
3SG
1PL
2PL
3PL
stoː
staːs
stat
staːmus
staːtis
staːs
staːre
teneoː
teneːs
tenet
teneːmus
teneːtis
tenent
teneːre
sapioː
sapis
sapit
sapimus
sapitis
sapiunt
sapere
dormioː
dormiːs
dormit
dormiːmus
dormiːtis
dormiunt
dormiːre
sum
es
est
sumus
estis
sunt
esse
Paradigm set: presence of n-
gram in all forms together
Form concat: n-grams represented separately for
each form and concatenated
do ... oː
1 0 0 0 1
su um es ... st mu us ... ti is un nt
1 1 1 0 1 1 1 0 1 1 1 1
do ... ːs
1 0 0 0 1
do ... it
1 0 0 0 1
do ... us
1 0 0 0 1
do ... is
1 0 0 0 1
do ... nt
1 0 0 0 1
Analysis of clusters (model: 3-gram and paradigm set representation)
Bar: Cluster
Colour: real inflection class of assigned datapoints per cluster
Text in bar: learned n-gram features (distinctive features in bold)
Clustering similarity to real inflection classes (Adjusted Rand Index).
Different representations (2/3-gram, set and concat) for different vigilance values
Conclusion
ART learns system of inflection classes and learned n-grams
can be interpreted using critical feature patterns
Trigrams and set representation for moderate vigilance give
best results
Results
Beniamine, S., Bonami, O., & Sagot, B. (2018). Inferring Inflection Classes with Description Length. Journal of Language Modelling, 5(3), 465. https://doi.org/10.15398/jlm.v5i3.184
Beniamine, S., Maiden, M., & Round, E. (2020). Opening the Romance Verbal Inflection Dataset 2.0: A CLDF lexicon. Proceedings of the 12th Language Resources and Evaluation Conference, 3027–3035.
Carpenter, G. A., & Grossberg, S. (1987). A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37(1), 54–115. https://doi.org/10.1016/S0734-189X(87)80014-2
Carpenter, G. A., & Grossberg, S. (2002). ADAPTIVE RESONANCE THEORY. 12.
Cotterell, R., Kirov, C., Hulden, M., & Eisner, J. (2018). On the Diachronic Stability of Irregularity in Inflectional Morphology. ArXiv:1804.08262 [Cs]. http://arxiv.org/abs/1804.08262
Elsner, M., Sims, A. D., Erdmann, A., ... Stevens-Guille, S. (2019). Modeling morphological learning, typology, and change: What can the neural sequence-to-sequence framework contribute? Journal of Language Modelling, 7(1), 53. https://doi.org/10.15398/jlm.v7i1.244
Grossberg, S. (2020). A Path Toward Explainable AI and Autonomous Adaptive Intelligence: Deep Learning, Adaptive Resonance, and Models of Perception, Emotion, and Action. Frontiers in Neurorobotics, 14. https://www.frontiersin.org/article/10.3389/fnbot.2020.00036
Guzmán Naranjo, M. (2019). Analogical classification in formal grammar. Zenodo. https://doi.org/10.5281/ZENODO.3191825
GuzmánNaranjo, M. (2020). Analogy, complexity and predictability in the Russian nominal inflection system. Morphology, 30(3), 219–262. https://doi.org/10.1007/s11525-020-09367-1
Hare, M., & Elman, J. L. (1995). Learning and morphological change. Cognition, 56(1), 61–98. https://doi.org/10.1016/0010-0277(94)00655-5
Kodner, J., Khalifa, S., Batsuren, K., … Vylomova, E. (2022). SIGMORPHON–UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection. Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, 176–203.
LeFevre, G., Elsner, M., & Sims, A. D. (2021). Formalizing Inflectional Paradigm Shape with Information Theory. https://doi.org/10.7275/JZ7Z-J842
Parker, J., Reynolds, R., & Sims, A. D. (2018). A Bayesian Investigation of Factors Shaping the Network Structure of Inflection Class Systems. Proceedings of the Society for Computation in Linguistics, 3.
Round, E., Mann, S., Beniamine, S., Lindsay-Smith, E., Esher, L., & Spike, M. (2022). COGNITION AND THE STABILITY OF EVOLVING COMPLEX MORPHOLOGY: AN AGENT-BASED MODEL. Joint Conference on Language Evolution.
Digital version of poster: