Chapter

Supply Chain Network Design for e-Groceries Using Clustering and Linear Programming

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

This research aims to provide the best strategic supply chain network design decisions for e-groceries to accommodate growing demand at the minimum cost. The decisions include supply chain network configuration, facility location, and facility capacity at each year in the period of analysis. We use combination approach of k-means clustering and linear programming to cater big dataset of historical demand and number of customers. We use a real case from an Indonesian e-grocery provider. A computer-based mathematical model is built using CPLEX Python API. By optimizing the program, this study concludes the recommendation for the company is to operate facilities at certain capacity level for year 2023–2025, along with the service configuration.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
The paper aims to solve a problem faced by a company competing in the snacks market in Turkey. In line with the growth in this market, the company needs to make important decisions over the next few years about the timing and location of a new plant, its initial capacity, the timing and amount of additional capacity to be installed at the new and existing plants, the assignment of demand points to plants and the amount of raw materials to be shipped from suppliers to the plants in each period. The objective is to minimize the total cost of various components. The problem is formulated as a multi-period supply chain network design model with multi products. The resulting mixed-integer linear programming model is solved by the commercial solver CPLEX. This model enables us to carry out all analyses requested by the company in an efficient way. After this deterministic model is solved on the basis of a 9% annual increase in demand, it is extended to a minimax regret model to deal with uncertainty in demand quantities. The results suggest that opening the new plant in the city of İzmir is indeed a robust solution that is unaffected in different scenarios that are based on three distinct demand increase rates. Even though the location of the new plant remains unchanged with respect to scenarios, the optimal robust solution differs from the optimal solution of each scenario in terms of the capacity expansion decisions. After all obtained results had been communicated to the company managers and executives, the new plant construction was started in 2016 very close to the city that the mathematical model had determined. The new plant is expected to start operating in 2018.
Article
This paper proposes a mixed integer linear programming model and solution algorithm for solving supply chain network design problems in deterministic, multi-commodity, single-period contexts. The strategic level of supply chain planning and tactical level planning of supply chain are aggregated to propose an integrated model. The model integrates location and capacity choices for suppliers, plants and warehouses selection, product range assignment and production flows. The open-or-close decisions for the facilities are binary decision variables and the production and transportation flow decisions are continuous decision variables. Consequently, this problem is a binary mixed integer linear programming problem. In this paper, a modified version of Benders' decomposition is proposed to solve the model. The most difficulty associated with the Benders' decomposition is the solution of master problem, as in many real-life problems the model will be NP-hard and very time consuming. In the proposed procedure, the master problem will be developed using the surrogate constraints. We show that the main constraints of the master problem can be replaced by the strongest surrogate constraint. The generated problem with the strongest surrogate constraint is a valid relaxation of the main problem. Furthermore, a near-optimal initial solution is generated for a reduction in the number of iterations.
K-means clustering: algorithm, applications, evaluation methods, and drawbacks
  • I Dabbura
High growth, low profit: the e-commerce dilemma for CPG companies
  • L Chapple