ArticlePublisher preview available

Influence of glyphosate and aminomethylphosphonic acid on the mobility of trace elements in uncontaminated and contaminated agricultural soils

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

Glyphosate is one of the most widely used herbicides in the world. In addition to its herbicidal effect, glyphosate is a chelating agent that can form complexes with trace elements. Yet, agricultural soils can be contaminated with both organic and mineral substances, questioning the possible influence of glyphosate application on the trace element mobility. In this context, we specifically studied the extractability of trace elements in uncontaminated and metal-contaminated agricultural soils by adding glyphosate, formulated glyphosate, and aminomethylphosphonic acid (AMPA, a degradation product of glyphosate) in batch experiments from 0 to 100 mg L⁻¹. Results showed that, on average, glyphosate enhanced the extractability of the elements considered (e.g., As, Cd, Cu, Pb, and Zn) at 20 and 100 mg L⁻¹. Surprisingly, the uncontaminated soil highlighted the highest influence of glyphosate compared to the contaminated ones, likely resulting from a higher natural element extractability in the contaminated soils. Although formulated glyphosate presented an overall higher impact than unformulated glyphosate, it was evidenced that AMPA showed lower influence meaning that glyphosate degradation is beneficial to limit deleterious effects.
This content is subject to copyright. Terms and conditions apply.
Vol.:(0123456789)
1 3
Environmental Science and Pollution Research (2023) 30:103983–103995
https://doi.org/10.1007/s11356-023-29660-w
RESEARCH ARTICLE
Influence ofglyphosate andaminomethylphosphonic
acid onthemobility oftrace elements inuncontaminated
andcontaminated agricultural soils
NathanBemelmans1 · BryanArbalestrie1 · HélèneDailly1· EtienneBodart1· YannickAgnan1
Received: 7 June 2023 / Accepted: 29 August 2023 / Published online: 11 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023
Abstract
Glyphosate is one of the most widely used herbicides in the world. In addition to its herbicidal effect, glyphosate is a chelat-
ing agent that can form complexes with trace elements. Yet, agricultural soils can be contaminated with both organic and
mineral substances, questioning the possible influence of glyphosate application on the trace element mobility. In this context,
we specifically studied the extractability of trace elements in uncontaminated and metal-contaminated agricultural soils by
adding glyphosate, formulated glyphosate, and aminomethylphosphonic acid (AMPA, a degradation product of glyphosate)
in batch experiments from 0 to 100mg L−1. Results showed that, on average, glyphosate enhanced the extractability of the
elements considered (e.g., As, Cd, Cu, Pb, and Zn) at 20 and 100mg L−1. Surprisingly, the uncontaminated soil highlighted
the highest influence of glyphosate compared to the contaminated ones, likely resulting from a higher natural element extract-
ability in the contaminated soils. Although formulated glyphosate presented an overall higher impact than unformulated
glyphosate, it was evidenced that AMPA showed lower influence meaning that glyphosate degradation is beneficial to limit
deleterious effects.
Keywords Glyphosate· AMPA· Trace elements· Mobility· Agricultural soil· Contamination
Introduction
Glyphosate (N-(phosphonomethyl)glycine), a non-selective
post-emergence organophosphorus herbicide that inhibits the
biosynthesis of the aromatic amino acids (Pline etal. 2002), is
widely used in agriculture. The commercial glyphosate–based
products include additional molecules (alsocalled co-formu-
lants) to enhance the herbicide role of the active substance
(e.g., by facilitating penetration through the cuticle; Leaper
and Holloway 2000). Unfortunately, the composition of these
glyphosate co-formulants are usually unknown due to com-
mercial confidentiality (Mesnage etal. 2019). The common
glyphosate concentration in the commercial formulated prod-
ucts is 360g L−1, then diluted by the farmer for field appli-
cation. The maximum authorized application of glyphosate
depends on both culture and country: for example, in Bel-
gium, it reaches up to 6L ha−1 of 360g L−1 glyphosate solu-
tion (i.e., 2160g ha−1; Phytoweb 2015).
With a theoretical half-life of 16days (Lewis etal. 2016),
glyphosate is considered to be non-persistent in soil. The
degradation rate, however, varies according to environmen-
tal conditions, such as climate (moisture and temperature),
soil microbial activity, soil organic matter (Alletto etal.
2010; Bento etal. 2016), or even formulation (Wilms etal.
2023). Its main degradation product is aminomethylphos-
phonic acid (AMPA) with a similar chemical structure.
AMPA, however, is more persistent in soil with a typical
half-life that is ranging widely from 23 to 958days (Bento
etal. 2016; Lewis etal. 2016; Bergström etal. 2011). Due
to the widespread use of glyphosate, both glyphosate and
AMPA are largely present as pesticide residues in agricul-
tural soils (Silva etal. 2019). In soil, these molecules can
interact with soil constituents. Indeed, with its three acid
functions (phosphonate, carboxylic, and amino; pKa of 2.6,
5.6, and 10.6, respectively; Sprankle etal. 1975), glypho-
sate has three negative and one positive charges in most
Responsible Editor: Kitae Baek
* Yannick Agnan
yannick.agnan@biogeoscience.eu
1 Earth andLife Institute, Université catholique de Louvain,
Louvain-La-Neuve1348, Belgium
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
Preprint
Full-text available
Living cover crops play a key role in reducing nitrogen leaching to groundwater during fallow periods. They also enhance soil microbial activity through root exudates, improving soil structure and increasing organic matter content. While the degradation of pesticides in soil relies primarily on microbial biodegradation, the extent to which cover crops influence this degradation remains poorly quantified. In this paper we (1) monitored pesticide residue levels in soil and soil solution under two different cover crop densities and (2) correlated the observed reductions with physicochemical properties of the active substances. Our results show that thin cover crops (0.4 tDM ha-1) reduce pesticide leaching 80 days after sowing compared to bare soil, retaining the residues in the microbiologically active topsoil. In addition, well-developed cover crops (1 tDM ha-1) reduce soil pesticide contents by more than 33 % for compounds with low to high water solubility (s ≤ 1400 mg L-1) and low to moderate soil mobility (Koc ≥ 160 mL g-1). This effect is probably due to enhanced pesticide degradation of the retained pesticide in the rhizosphere. These results confirm previous studies on individual compounds, individual cover crop types and individual soil compartments, while providing new thresholds for physicochemical properties associated with significant pesticide degradation. By directly enhancing pesticide degradation within the soil compartment where pesticides are applied, cover crops limit their transfer to other environmental compartments, particularly groundwater.
Article
Full-text available
Transfer of trace elements, such as toxic metals, from soil to plant is a corner stone for risk assessment. Rare earth elements (REE) are frequently used as environmental tracers to understand biogeochemical processes in the soil–plant system. In this study, we combined trace element and REE measurements in the soil–plant continuum to evaluate the element transfer between different compartments. We specifically aimed at: (1) assessing the geochemical relevance and representativeness of intermediate compartments (soil solution and soil water-extract as a proxy of the bioavailable soil fraction) by comparing the REE normalized patterns; and (2) characterizing the environmental conditions that control the trace element transfer by quantifying the REE indices. For that purpose, we compared geochemical signatures in an intercropping cover crop (bean, Persian clover, and spelt) in Belgium, including soil, root, shoot, soil solution, soil water-extract, earthworm, and snow samples. Evaluation of the element mobility was performed using both soil extractability and transfer factors. The main result showed dissimilar REE patterns between soil/plant samples and soil solution/soil water-extract samples, indicating that the intermediate compartments (i.e., soil solutions or soil water-extracts) do not chemically represent the bioavailable fraction of elements without obvious propensity to biological accumulation (unlike Cd, Cu, or Zn). Compared to light REE, heavy REE were more extractable and thus transferred to plants unlike what is observed in the literature. According to their different extractabilities, Ce and Eu allowed to highlight distinct transfer from soil to plant due to possible adsorption or organic matter complexation that should be further confirmed by studying contrasted soils.
Article
Full-text available
Glyphosate is the active ingredient in glyphosate-based herbicides (GBHs). Other chemicals in GBHs are presumed as inert by regulatory authorities and are largely ignored in pesticide safety evaluations. We identified the surfactants in a cross-section of GBH formulations and compared their acute toxic effects. The first generation of polyethoxylated amine (POEA) surfactants (POE-tallowamine) in Roundup are markedly more toxic than glyphosate and heightened concerns of risks to human health, especially among heavily-exposed applicators. Beginning in the mid-1990s, first-generation POEAs were progressively replaced by other POEA surfactants, ethoxylated etheramines, which exhibited lower non-target toxic effects. Lingering concern over surfactant toxicity was mitigated at least in part within the European Union by the introduction of propoxylated quaternary ammonium surfactants. This class of POEA surfactants are ∼100 times less toxic to aquatic ecosystems and human cells than previous GBH-POEA surfactants. As GBH composition is legally classified as confidential commercial information, confusion concerning the identity and concentrations of co-formulants is common and descriptions of test substances in published studies are often erroneous or incomplete. In order to resolve this confusion, laws requiring disclosure of the chemical composition of pesticide products could be enacted. Research to understand health implications from ingesting these substances is required.
Article
Full-text available
Pesticide use is a major foundation of the agricultural intensification observed over the last few decades. As a result, soil contamination by pesticide residues has become an issue of increasing concern due to some pesticides' high soil persistence and toxicity to non-target species. In this study, the distribution of 76 pesticide residues was evaluated in 317 agricultural topsoil samples from across the European Union. The soils were collected in 2015 and originated from 11 EU Member States and 6 main cropping systems. Over 80% of the tested soils contained pesticide residues (25% of samples had 1 residue, 58% of samples had mixtures of two or more residues), in a total of 166 different pesticide combinations. Glyphosate and its metabolite AMPA, DDTs (DDT and its metabolites) and the broad-spectrum fungicides boscalid, epoxiconazole and tebuconazole were the compounds most frequently found in soil samples and the compounds found at the highest concentrations. These compounds occasionally exceeded their predicted environmental concentrations in soil but were below the respective toxic endpoints for standard in-soil organisms. Maximum individual pesticide content assessed in a soil sample was 2.05 mg kg⁻¹ while maximum total pesticide content was 2.87 mg kg⁻¹. This study reveals that the presence of mixtures of pesticide residues in soils are the rule rather than the exception, indicating that environmental risk assessment procedures should be adapted accordingly to minimize related risks to soil life and beyond. This information can be used to implement monitoring programs for pesticide residues in soil and to trigger toxicity assessments of mixtures of pesticide residues on a wider range of soil species in order to perform more comprehensive and accurate risk assessments.
Article
Full-text available
Copper (Cu) distribution in soil is influenced by climatic, geological and pedological factors. Apart from geological sources and industrial pollution, other anthropogenic sources, related to the agricultural activity, may increase copper levels in soils, especially in permanent crops such as olive groves and vineyards. This study uses 21,682 soil samples from the LUCAS topsoil survey to investigate copper distribution in the soils of 25 European Union (EU) Member States. Generalized Linear Models (GLM) were used to investigate the factors driving copper distribution in EU soils. Regression analysis shows the importance of topsoil properties, land cover and climate in estimating Cu concentration. Meanwhile, a copper regression model confirms our hypothesis that different agricultural management practices have a relevant influence on Cu concentration. Besides the traditional use of copper as a fungicide for treatments in several permanent crops, the combined effect of soil properties such as high pH, soil organic carbon and clay, with humid and wet climatic conditions favours copper accumulation in soils of vineyards and tree crops. Compared to the overall average Cu concentration of 16.85 mg kg−1, vineyards have the highest mean soil Cu concentration (49.26 mg kg−1) of all land use categories, followed by olive groves and orchards.
Article
High arsenic, chromium and nickel in soils can pose a hazard to the ecosystem and/or human health. Large areas can be affected by elevated potentially toxic elements (PTE) background contents, entailing a significant effort for managing the potential risk. Assessing the environmental hazard associated to PTE-contaminated soils requires the determination of soil PTE environmental bioavailability, which reflects the capacity of these elements to be transferred to living organisms. Here we assess the environmental bioavailability of As, Cr and Ni in topsoils from the Liège basin and Belgian Lorraine, two areas in Wallonia, Belgium, affected by elevated As, Cr and Ni background contents. The source of soil As, Cr and Ni differs in Liège and Lorraine: anthropogenic in the former location and geogenic in the latter. The environ- mental bioavailability of PTE was determined using two complementary approaches: (1) by chemical fractionation with the Community Bureau of Reference (BCR) three- step sequential extraction protocol and (2) by estimating the phytoavailability using a plant-based biotest (Lolium multiflorum as plant model). The results show that total As (6-130 mg·kg-1), Cr (15-268 mg·kg-1), and Ni (8-140 mg·kg-1) contents in the Liège and Lorraine soils frequently exceed the soil clean-up standards. However, no positive correlation was found between the total contents and BCR extraction results or rye- grass contents, except for As in Liège soils. Total As, Cr or Ni contents surpassing soil standards do not necessarily result in elevated mobile, potentially mobilizable and phytoavailable contents. In general, environmental bioavailability of As, Cr and Ni is higher in soils from Liège basin compared to those sampled in Belgian Lorraine. The mobile and potentially mobilizable fractions of As, Cr and Ni account for <30 % of their total contents following the BCR extractions. Our study provides valuable information for sustainable management at the regional scale of soils containing high PTE contents.
Article
The applicability of herbicidal ionic liquids (HILs) as an alternative form of herbicides is currently evaluated. Yet, the available research is lacking information on the behaviour of herbicidal ionic liquids upon addition to the environment, i.e., if cations and anions act as separate moieties or remain an ionic salt. Hence, we tested degradation of five HILs with the glyphosate anion, their bioavailability in soil, toxicity towards microorganisms, impact on the biodiversity and the abundance of phnJ and soxA genes. The cations were proven to be slightly or moderately toxic. The properties of cations determined the properties of the whole formulation, which it might suggest that cations and anion act as the independent mixture of ions. The mineralisation efficiencies were in the range of 15–53%; however, in the case of cations (except non-toxic choline), only 13–20% were bioavailable for degradation. The hydrophobic cations were proven to be highly sorbed, while the anion was readily available for microbial degradation regardless of its counterion. The approach to enrich test samples with isolated microorganisms specialised in glyphosate degradation resulted in higher degradation efficiencies, yet not high enough to mitigate the negative impact of cations. In addition, increased activity of enzymes participating in glyphosate degradation was observed. In the view of obtained results, the use of cationic surfactants in HILs structure is not recommended, as sorption was shown to be determining factor in HILs degradation efficiency. Moreover, obtained results indicate that corresponding ions in HILs might act as separate moieties in the environment.
Article
Pollution of soils with As, Cd, Co, Cr, Cu, Ni, Pb and Zn, collectively termed heavy metals (HMs), can threaten human health and ecosystem functioning. Therefore, polluted soils must be remediated. Soil washing of strongly polluted soils and phytoextraction on moderately polluted sites seem currently the most attractive remediation methods. Both methods depend on HM solubility (extractability), which can be increased by addition of ligands such as EDTA, NTA and other aminopolycarboxylic acids. As an alternative to these synthetic and environmentally questionable chemicals, the possibility of using naturally occurring dissolved organic matter (DOM) to extract the HMs from anthropogenic polluted soils is evaluated in this review based on mainly recently published laboratory studies. DOM isolated or extracted from soils consists of fulvic acid (FA) with up to 10% low-molecular-weight-organic-acids (LMWOAs), e.g. citric, oxalic and salicylic acids. In addition to soil DOM, results with other soluble humic substances and organic waste materials have been included, e.g. food wastes that after composting give useful LMWOAs. Although generally less efficient than EDTA and NTA, the review clearly shows potential of DOM as HM extractant. Through its carboxylate and/or phenolate functional groups, DOM can form soluble complexes with Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Ni ²⁺ , Pb ²⁺ and Zn ²⁺ (and other di- and trivalent cations). Extraction of anionic As(III), As(V) and Cr(VI) sorbed by soil solids, mainly amorphous Al and Fe oxides, is accomplished by DOM dissolution of the sorbents (oxides). In addition to the soil HM extraction potential, use of DOM will probably extract organic pollutants, stimulate microbial activity and improve soil structure. On the other hand, the efficiency of DOM to extract HMs (and other pollutants) seems to depend of numerous variables/factors including the specific HM, DOM and polluted soil as well as environmental (external) conditions such as pH, solution:soil ratio, extraction time and metal loading of the extractant. Furthermore, several different studies have shown conflicting (inconclusive) results, e.g. of pH and ageing effects on HM extractability. Therefore, much is still to be learnt about different DOM-HM-soil systems and their dependency of external factors. To create operational and safe guidelines for using DOM as HM extractant in relation to remediation of polluted field soils by phytoextraction or soil washing, considerably more precise knowledge is needed on influence of composition of different DOM samples and of characteristics of the polluted soils for extraction of the different HMs under various, clearly specified environmental conditions. If future investigations confirm the suitability of DOM in soil remediation, the next challenges will be upscaling to field conditions as well as to ensure availability of enough good quality DOM and to complete state-of-art economic analysis of using DOM in operational phytorextraction and soil washing.
Article
Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil.
Article
Increasing concerns about potential environmental effects of ethylenediaminetetraacetic acid (EDTA) accumulation in soils require better understanding of its behavior and its effect on trace element mobilization. In this study we investigated the effect of EDTA on soil trace element mobilization in undisturbed soil columns taken from a heavy metal contaminated field. The columns were leached by EDTA solutions of different concentrations under unsaturated, steady-state conditions. The transport of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, Zn) and EDTA was monitored by regularly collecting the leachates. After the termination of the leaching experiment the soil columns were divided into 5 layers to determine trace elements and EDTA concentrations in the soil. The results revealed that the soil analysis alone was not suitable to infer mobilization or immobilization patterns in relation to the EDTA concentration, as the mobilized fraction was too small in relation to the total trace metal concentrations in the soil. Analysis of the leachates displayed that after 2–4 pore volumes the EDTA output concentration reached about 80% of the input concentration. The trace element concentrations in the leachates showed that some elements were mobilized by EDTA (Cd, Cu, Fe, Pb, Co, Ni, Zn) while others were immobilized (Mn, Cr, Mo, Sn) in the soil columns after EDTA application.